JP3515688B2 - Low electric resistance transparent conductive film - Google Patents

Low electric resistance transparent conductive film

Info

Publication number
JP3515688B2
JP3515688B2 JP13335198A JP13335198A JP3515688B2 JP 3515688 B2 JP3515688 B2 JP 3515688B2 JP 13335198 A JP13335198 A JP 13335198A JP 13335198 A JP13335198 A JP 13335198A JP 3515688 B2 JP3515688 B2 JP 3515688B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13335198A
Other languages
Japanese (ja)
Other versions
JPH11329085A (en
Inventor
雅夫 水野
隆志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13335198A priority Critical patent/JP3515688B2/en
Priority to KR1019990016919A priority patent/KR100323297B1/en
Publication of JPH11329085A publication Critical patent/JPH11329085A/en
Application granted granted Critical
Publication of JP3515688B2 publication Critical patent/JP3515688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低電気抵抗透明導
電膜に関し、詳細には、低電気抵抗を有すると共に高い
可視光透過率を有する透明導電膜に関し、特には、液晶
ディスプレイ、エレクトロルミネッセンスディスプレ
イ、プラズマディスプレイ等のフラットパネルディスプ
レイの透明電極や太陽電池の透明電極として好適に利用
し得る透明導電膜に関し、中でもスパッタリング法によ
り250 ℃以下で成膜される場合でも低電気抵抗を有し得
る透明導電膜に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having a low electric resistance, and more particularly to a transparent conductive film having a low electric resistance and a high visible light transmittance, and more particularly, a liquid crystal display and an electroluminescent display. The present invention relates to a transparent conductive film that can be suitably used as a transparent electrode of a flat panel display such as a plasma display or a transparent electrode of a solar cell. Among them, a transparent conductive film that can have a low electric resistance even when formed by a sputtering method at 250 ° C. or less. It belongs to the technical field of conductive films.

【0002】[0002]

【従来の技術】電気伝導性を有し、電気抵抗が低く、か
つ可視光透過率が高い透明導電膜は、液晶ディスプレ
イ;Liquid Crystal Display(以降、LCDという)や
エレクトロルミネッセンス表示装置、太陽電池の透明電
極、あるいはタッチパネル、帯電防止膜、ガスセンサー
等に適用されている。
2. Description of the Related Art Transparent conductive films having electric conductivity, low electric resistance and high visible light transmittance are used for liquid crystal displays; Liquid Crystal Display (hereinafter referred to as LCD), electroluminescence display devices, and solar cells. It is applied to transparent electrodes, touch panels, antistatic films, gas sensors, etc.

【0003】これらの中でも、LCDは、従来のブラウ
ン管にくらべ、薄型、軽量、小電力で、しかも高い解像
度が得られるため、近年、その用途が拡大している。
Among these, the LCD has been widely used in recent years because it is thinner, lighter in weight, smaller in electric power and higher in resolution than the conventional cathode ray tube.

【0004】かかるLCDの画面表示は、印加電圧の制
御によって液晶分子の配置を変化させることによって、
画素液晶を透過し画面に到達し得るバックライトからの
投射光の光量を調節することにより行われている。従っ
て、液晶を駆動するために用いられる電極は、液晶分子
に安定な電圧を印加するために低電気抵抗率であること
が要求され、又、投射光を効率良く画面表示に使用する
ために可視光領域で高い透過率を有することが要求され
る。
The screen display of such an LCD is achieved by changing the arrangement of liquid crystal molecules by controlling the applied voltage.
This is performed by adjusting the amount of projection light from a backlight that can pass through the pixel liquid crystal and reach the screen. Therefore, the electrodes used to drive the liquid crystal are required to have a low electrical resistivity in order to apply a stable voltage to the liquid crystal molecules, and the visible light is required to efficiently use the projected light for screen display. It is required to have high transmittance in the light region.

【0005】可視光領域で高い透過率を有し、且つ導電
性を示す透明導電物質として SnO2 、ZnO 、In2O3 があ
げられるが、LCDの透明電極は500 〜5000Åの膜厚の
薄膜として使用されるために、これらのSnO2、ZnO 、In
2O3 では電気抵抗が高くなって使用できない。LCDの
透明電極として用いるためには電気抵抗率が10×10-4Ω
cm以下であり、透過率が可視光領域で80%以上であるこ
とが必要である。現在、この要求を満たしLCDの透明
電極として用いられている透明導電膜は、Snを添加した
In2O3(;Indium Tin Oxide)(以降ITOという)であ
り、かかるLCD透明電極用ITO薄膜は主にマグネト
ロンスパッタリング法で成膜されている。
SnO 2 , ZnO and In 2 O 3 are examples of transparent conductive materials having high transmittance in the visible light region and exhibiting conductivity. LCD transparent electrodes are thin films with a thickness of 500 to 5000 Å. These SnO 2 , ZnO, In to be used as
2 O 3 cannot be used due to its high electrical resistance. To use as a transparent electrode of LCD, the electric resistivity is 10 × 10 -4 Ω
It is required to be less than or equal to cm and the transmittance to be greater than or equal to 80% in the visible light region. Currently, Sn is added to the transparent conductive film that satisfies this requirement and is used as a transparent electrode of LCD.
In 2 O 3 (; Indium Tin Oxide) (hereinafter referred to as ITO), and the ITO thin film for an LCD transparent electrode is mainly formed by a magnetron sputtering method.

【0006】ところで、近年のLCDの大型化、カラー
化あるいは高精細化の動きにより、LCDの透明電極に
おいては低比抵抗化、高透過率化が最も重要な要求特性
になりつつある。即ち、LCDの大型化を目指す場合、
表示画面の大型化に伴って長さの長い透明電極が必要と
なり、そのため、これまでのものよりも低比抵抗の透明
導電膜が要求される。膜の電気抵抗率はスパッタリング
の際の成膜温度に大きく依存しており、成膜温度が高い
と得られる膜の電気抵抗率が低くなり、400 ℃以上の成
膜温度では電気抵抗率:1.2 ×10-4Ωcm程度の膜が得ら
れている。
By the way, in recent years, due to the trend toward larger size, colorization and higher definition of LCDs, it is becoming the most important required characteristics for the transparent electrodes of LCDs to have low specific resistance and high transmittance. That is, when aiming to increase the size of the LCD,
Along with the increase in size of the display screen, a long transparent electrode is required. Therefore, a transparent conductive film having a lower specific resistance than the conventional ones is required. The electrical resistivity of the film depends largely on the deposition temperature during sputtering, and the higher the deposition temperature, the lower the electrical resistivity of the film obtained. At the deposition temperature of 400 ℃ or higher, the electrical resistivity: 1.2 A film of about 10 -4 Ωcm is obtained.

【0007】しかし、LCDのカラー化に対応するため
には耐熱性に劣るカラーフィルターやプラスチック基板
上に透明導電膜を成膜する必要があり、そのため透明電
極の成膜を基板温度:250℃以下の条件で行う必要があ
る。250 ℃以下で成膜すると電気抵抗率は10×10-4Ωcm
以上に増加し、これがLCDのカラー表示画面の精度の
劣化の一因となる。従って、かかるカラーLCDの表示
画面の精度を向上させるためには、基板温度:250℃以下
で成膜された場合でも電気抵抗率が低く、同時に高透過
率を備えた透明導電膜が要求される。ここで、電気抵抗
率の増加を回避するために透明導電膜の膜厚を厚くする
と、透明導電膜の透過率が減少して液晶画面(LCD表
示画面)の輝度、色調に支障を来すことになる。将来の
さらなるLCDの高精細化に対応するためには、250 ℃
以下の成膜においても電気抵抗率が10×10-4Ωcm以下で
あり、透過率が可視光領域で85%以上である透明導電膜
の開発が強く望まれる。
However, in order to cope with the colorization of LCD, it is necessary to form a transparent conductive film on a color filter or a plastic substrate having poor heat resistance. Therefore, the transparent electrode is formed at a substrate temperature of 250 ° C. or less. It is necessary to do it under the condition of. The electrical resistivity is 10 × 10 -4 Ωcm when the film is formed at 250 ℃ or less.
The above increase contributes to the deterioration of the accuracy of the color display screen of the LCD. Therefore, in order to improve the accuracy of the display screen of such a color LCD, a transparent conductive film having a low electric resistance and a high transmittance at the same time is required even when the film is formed at a substrate temperature of 250 ° C. or less. . Here, if the film thickness of the transparent conductive film is increased in order to avoid an increase in the electrical resistivity, the transmittance of the transparent conductive film is reduced and the brightness and color tone of the liquid crystal screen (LCD display screen) are hindered. become. In order to support the further high definition of LCD in the future, 250 ℃
Also in the following film formation, development of a transparent conductive film having an electric resistivity of 10 × 10 −4 Ωcm or less and a transmittance of 85% or more in a visible light region is strongly desired.

【0008】ところで、従来のLCD用透明電極として
一般的なITO、即ち、Snをドープした In2O3の導電機
構は次の通りである。即ち、母体であるIn2O3 には酸素
欠陥が存在し、この欠陥準位からキャリア電子が供給さ
れ、In2O3 は電気伝導性を示す。酸素欠陥の量が少ない
場合には欠陥準位による可視光の吸収が少なく透過率が
向上し、その反面、欠陥準位からのキャリアの供給量が
少なくなるため電気抵抗が大きくなる。
The conventional conductive mechanism of ITO, ie, Sn-doped In 2 O 3 as a conventional transparent electrode for LCD is as follows. That is, oxygen defects are present in the matrix In 2 O 3 , and carrier electrons are supplied from this defect level, and In 2 O 3 exhibits electrical conductivity. When the amount of oxygen defects is small, visible light is not absorbed by the defect level and the transmittance is improved. On the other hand, the supply amount of carriers from the defect level is decreased and the electric resistance is increased.

【0009】ITO中のSnは、In2O3 中の酸素欠陥と複
合し、キャリア電子を放出する働きがある。従って、In
2O3 にSnを添加することでキャリア密度を増大させるこ
とが可能となり、ITO膜の電気抵抗率はIn2O3 膜より
減少する。
Sn in ITO combines with oxygen defects in In 2 O 3 to release carrier electrons. Therefore, In
The carrier density can be increased by adding Sn to 2 O 3 , and the electrical resistivity of the ITO film is lower than that of the In 2 O 3 film.

【0010】ITO中のキャリア電子の放出はSnと酸素
欠陥との複合効果により発生する。そのため、酸素欠陥
の量が少なくなるとSn添加の効果が現れなくなる。従っ
て、酸素欠陥をある程度残した状態でITO膜を成膜す
る必要がある。又、酸素欠陥が多すぎても、Snとの複合
構造が乱れてキャリア電子の放出量が減少する。さら
に、酸素欠陥の量が多いと、キャリア移動度も低下す
る。
The emission of carrier electrons in ITO occurs due to the combined effect of Sn and oxygen defects. Therefore, when the amount of oxygen defects decreases, the effect of Sn addition does not appear. Therefore, it is necessary to form the ITO film with oxygen defects left to some extent. Also, if there are too many oxygen defects, the composite structure with Sn is disturbed and the amount of carrier electrons emitted is reduced. Furthermore, when the amount of oxygen defects is large, the carrier mobility also decreases.

【0011】具体的には、室温で成膜したITO膜はキ
ャリア密度が7×1020/cm3、キャリア移動度が13cm3/Vs
程度、電気抵抗率が11×10-4Ωcmである。
Specifically, the ITO film formed at room temperature has a carrier density of 7 × 10 20 / cm 3 and a carrier mobility of 13 cm 3 / Vs.
The electrical resistivity is about 11 × 10 -4 Ωcm.

【0012】更には、酸素欠陥が多くなると、欠陥準位
による光吸収が増加するため、膜の可視光透過率が減少
する。従って、膜の透明度を上げるためには酸素欠陥が
少ないことが望ましい。又、Snの添加量が増加しても透
過率は減少する。
Further, as the number of oxygen defects increases, the light absorption by the defect level increases, so that the visible light transmittance of the film decreases. Therefore, it is desirable that the number of oxygen defects is small in order to increase the transparency of the film. Also, the transmittance decreases even if the amount of Sn added increases.

【0013】上記の如く重要な影響を及ぼす膜中の酸素
欠陥を支配する主要な成膜パラメータは、成膜ガス中の
酸素分圧と成膜速度である。
As described above, the main film formation parameters that control the oxygen defects in the film, which have an important influence, are the oxygen partial pressure in the film formation gas and the film formation rate.

【0014】ITO中の酸素欠陥量を適当量にする酸素
量(即ち、酸素分圧)は、0.0001〜0.002 mTorr であ
る。この酸素分圧下で成膜を行うと、酸素欠陥が適量残
るため、電気抵抗率が最小となる。これ以上の酸素を含
む雰囲気で成膜を行うと、酸素欠陥の量が減少するた
め、透過率は上昇するものの、電気抵抗率が大きくな
る。従って、高い酸素分圧下での成膜はできない。
The amount of oxygen (that is, the oxygen partial pressure) which makes the amount of oxygen defects in ITO appropriate is 0.0001 to 0.002 mTorr. When film formation is performed under this oxygen partial pressure, an appropriate amount of oxygen defects remain, so that the electrical resistivity becomes minimum. When film formation is performed in an atmosphere containing more oxygen than this, the amount of oxygen defects decreases, so that the transmittance increases but the electrical resistivity increases. Therefore, it is not possible to form a film under a high oxygen partial pressure.

【0015】次に、成膜速度と酸素欠陥の量の関係につ
いて述べる。成膜速度が早い条件下での成膜では、スパ
ッタガス中の反跳Ar等の衝突によって膜中に欠陥が生じ
やすく、成膜速度が遅いと欠陥が少なくなる。極間距離
や成膜パワーを制御することにより成膜速度が制御で
き、20Å/second (Å/s)以下の成膜速度で成膜する
と、250 ℃の成膜において、電気抵抗率が2×10-4Ωcm
であり、1000Å以上の膜厚において透過率80%である膜
が成膜可能となる。しかし、成膜速度を20Å/s以上にす
ると、急激に透過率が低下する。従って、ITOでは生
産性を上げるためにむやみやたらに成膜速度を上げるこ
とはできない。
Next, the relationship between the film formation rate and the amount of oxygen defects will be described. In the film formation under the condition that the film formation speed is high, defects are likely to occur in the film due to collision of recoil Ar or the like in the sputtering gas, and the defects are reduced when the film formation speed is low. The film deposition rate can be controlled by controlling the distance between the electrodes and the film deposition power. When the film deposition rate is 20 Å / second (Å / s) or less, the electrical resistivity is 2 × at 250 ℃. 10 -4 Ωcm
Thus, a film having a transmittance of 80% can be formed at a film thickness of 1000Å or more. However, when the film-forming rate is 20 Å / s or more, the transmittance drops sharply. Therefore, with ITO, it is not possible to unnecessarily increase the film formation speed in order to increase productivity.

【0016】以上述べたように、将来のさらなる高精細
カラーLCDに対応するためには、250 ℃以下の成膜に
おいても電気抵抗率が10×10-4Ωcm以下であり、透過率
が可視光領域で80%以上であり、しかも生産性の点から
高い成膜速度で成膜可能な透明導電膜が不可欠であり、
従来のITOにかわる新しい透明導電膜の開発が望まれ
ている。
As described above, in order to support future high-definition color LCDs, the electrical resistivity is 10 × 10 −4 Ωcm or less even in film formation at 250 ° C. or less, and the transmittance is visible light. It is indispensable to have a transparent conductive film capable of forming a film at a high film forming rate from the viewpoint of productivity, which is 80% or more in the area.
It is desired to develop a new transparent conductive film that replaces the conventional ITO.

【0017】[0017]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は、成膜温
度(基板温度):250 ℃以下の成膜条件で成膜される場
合においても得られる膜の電気抵抗率が低く、10×10-4
Ωcm以下であり、又、可視光透過率が高く、80%以上で
ある透明導電膜を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to form a film at a film forming temperature (substrate temperature) of 250 ° C. or less. The resulting film has a low electric resistivity even at 10 × 10 -4
It is intended to provide a transparent conductive film having an Ωcm or less and a high visible light transmittance of 80% or more.

【0018】[0018]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る透明導電膜は、請求項1〜3記載の
透明導電膜としており、それは次のような構成としたも
のである。即ち、請求項1記載の透明導電膜は、Inの酸
化物を主成分とし、GeあるいはGe酸化物を含有する透明
導電膜であって、Geの含有量Ge量とIn量の合計に対し
て2〜10原子%とすると共に、成膜速度を 45 100 /s
とし、更に成膜中の雰囲気ガスとして酸素含有ガスを用
いて成膜中の酸素分圧を 0.002mTorr 以上とする製造条件
で得られた透明導電膜であり、且つ、キャリア密度が9
×1020/cm3以上、キャリア移動度が20cm3/Vs以上、電気
抵抗率が10×10-4Ωcm以下可視光透過率が80%以上で
あることを特徴とする低電気抵抗透明導電膜である(第
1発明)。
In order to achieve the above object, the transparent conductive film according to the present invention is the transparent conductive film according to claims 1 to 3, and it has the following constitution. is there. That is, the transparent conductive film according to claim 1 is a transparent conductive film containing an oxide of In as a main component and containing Ge or a Ge oxide, and the content of Ge with respect to the total of the amount of Ge and the amount of In. 2 to 10 atom%, and the film formation rate is 45 to 100 Å / s
And an oxygen-containing gas is used as the atmosphere gas during film formation.
And manufacturing conditions that the oxygen partial pressure during film formation is 0.002 mTorr or more
And the carrier density is 9
× 10 20 / cm 3 or more, carrier mobility is 20 cm 3 / Vs or more, electrical resistivity is 10 × 10 -4 Ωcm or less , visible light transmittance is 80% or more, low electrical resistance transparent conductivity It is a film (first invention).

【0019】請求項2記載の透明導電膜は、Geの含有量
がGe量とIn量の合計に対して5〜7原子%、キャリア密
度が15×1020/cm3以上、キャリア移動度が25cm3/Vs以
上、電気抵抗率が1.6 ×10-4Ωcm以下であると共に可視
光透過率が80%以上である請求項1記載の低電気抵抗透
明導電膜である(第2発明)。請求項3記載の透明導電
膜は、液晶ディスプレイの透明電極として用いられる請
求項1または2記載の低電気抵抗透明導電膜である(第
3発明)。
The transparent conductive film according to claim 2 has a Ge content of 5 to 7 atomic% with respect to the total amount of Ge and In, a carrier density of 15 × 10 20 / cm 3 or more, and a carrier mobility of 25 cm 3 / Vs or more, the electrical resistivity is low electric resistant transparent conductive film according to claim 1, wherein the visible light transmittance of 80% or more with it 1.6 × 10 -4 Ωcm or less (second invention). The transparent conductive film according to claim 3 is the low-electric-resistance transparent conductive film according to claim 1 or 2 used as a transparent electrode of a liquid crystal display (third invention).

【0020】[0020]

【発明の実施の形態】本発明に係る透明導電膜は、例え
ばスパッタリング法により次のようにして成膜すること
ができる。即ち、スパッタリング装置内に基板を配置
し、一方、スパッタリングターゲットとして例えば In2
O3ターゲット上にGeのチップを設置した複合ターゲット
を配置し、酸素ガスを含む不活性ガス雰囲気中で、前記
基板を加熱した状態にしてから、この基板と前記複合タ
ーゲットとの間に電界を印加することにより、基板上に
Geを含有するIn2O3 よりなる透明導電膜を形成(成膜)
することができる。このとき、複合ターゲットでの In2
O3ターゲットとGeチップの表面積比率を変えることによ
り、Ge含有量を変化させることができる。このGe含有量
の調整、及び、成膜条件の調整により、本発明に係る透
明導電膜を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive film according to the present invention can be formed as follows by, for example, a sputtering method. That is, the substrate is placed in a sputtering apparatus, while a sputtering target such as In 2 is used.
A composite target in which a Ge chip is placed on an O 3 target is placed, and in an inert gas atmosphere containing oxygen gas, the substrate is heated, and then an electric field is applied between the substrate and the composite target. On the substrate by applying
Forming a transparent conductive film made of In 2 O 3 containing Ge (deposition)
can do. At this time, In 2
The Ge content can be changed by changing the surface area ratio between the O 3 target and the Ge chip. The transparent conductive film according to the present invention can be obtained by adjusting the Ge content and adjusting the film forming conditions.

【0021】本発明者等はスパッタリング法により種々
の組成の透明導電膜を形成し、その組成、及び、透明導
電膜としての特性を調べた。その結果、Inの酸化物を主
成分とし、GeあるいはGe酸化物を含有する透明導電膜で
あって、Geの含有量がGe量とIn量の合計に対して2〜10
原子%であるものは、成膜温度(基板温度):250 ℃以
下の成膜条件で成膜される場合においても電気抵抗率が
低く、10×10-4Ωcm以下であり、又、可視光透過率が高
く、80%以上であることを見出し、本発明を完成するに
至った。
The present inventors formed transparent conductive films of various compositions by the sputtering method, and investigated the composition and characteristics of the transparent conductive film. As a result, it is a transparent conductive film containing an oxide of In as a main component and Ge or a Ge oxide, and the content of Ge is 2 to 10 with respect to the total amount of Ge and In.
Atomic% has a low electric resistivity of 10 × 10 −4 Ωcm or less even when the film is formed under a film forming temperature (substrate temperature): 250 ° C. or less, and a visible light The inventors have found that the transmittance is high and 80% or more, and have completed the present invention.

【0022】この詳細を以下説明する。The details will be described below.

【0023】本発明に係る透明導電膜の如くGeを添加し
た In2O3膜においては、Geが In2O3の酸素欠陥とは独立
に単体でキャリア電子を放出する働きがある。従って、
かかるGeを添加した In2O3膜では、従来のITOの如く
ITO中のSnが酸素欠陥と複合しているために適量の酸
素欠陥が必要であったものとは異なり、膜中の酸素欠陥
の量を減少させてもGeからのキャリア電子放出には影響
がない。その結果、高い酸素分圧下での成膜によって酸
素欠陥を少なくし、酸素欠陥に起因する散乱を減少させ
ることが可能となり、ITOよりも電気抵抗率を減少さ
せることができる。又、酸素欠陥が多い場合において
も、Geから放出されるキャリア密度は変化が少ないた
め、少々欠陥が生成する条件下、例えば、高パワー下で
の成膜や早い成膜速度を維持した状態での成膜条件下
で、低電気抵抗膜の成膜が可能である。
In the In 2 O 3 film to which Ge is added as in the transparent conductive film according to the present invention, Ge has a function of emitting carrier electrons independently of oxygen defects of In 2 O 3 . Therefore,
In the In 2 O 3 film containing such Ge, unlike the conventional ITO in which Sn in ITO is compounded with oxygen defects, an appropriate amount of oxygen defects are required. The carrier electron emission from Ge is not affected even if the amount of is reduced. As a result, it is possible to reduce oxygen defects by film formation under a high oxygen partial pressure, reduce scattering due to oxygen defects, and reduce electrical resistivity as compared with ITO. In addition, even when there are many oxygen defects, the carrier density released from Ge does not change so much, so under the condition that some defects are generated, for example, under the condition of high power film formation or high film formation rate. It is possible to form a low electric resistance film under the above film forming conditions.

【0024】また、GeはSnよりもの原子半径が小さいた
め、In2O3 に生じる結晶そのもののひずみが大きくな
る。この際、結晶のひずみが大きくなると、キャリア移
動度が低下し、電気抵抗率が上昇する。成膜速度を遅く
して成膜すると、結晶に生じるひずみが残存してしまう
ため、ある程度、高エネルギー状態で成膜する必要があ
る。つまり、早い成膜速度で成膜した方が結晶性が高
く、キャリア移動度が高い良好な膜が得られる。
Further, since Ge has a smaller atomic radius than Sn, the strain of the crystal itself generated in In 2 O 3 becomes large. At this time, when the strain of the crystal is increased, the carrier mobility is reduced and the electrical resistivity is increased. If the film formation is performed at a slower film formation rate, the strain generated in the crystal remains, so it is necessary to form the film in a high energy state to some extent. That is, when the film is formed at a high film formation speed, a good film having high crystallinity and high carrier mobility can be obtained.

【0025】Ge添加 In2O3は上記の如き性質を有してい
るので、その性能を充分に発揮させるためには、これに
適した成膜方法を適用することが重要である。この成膜
方法や成膜条件等について以下説明する。
Since Ge-added In 2 O 3 has the above-mentioned properties, it is important to apply a film-forming method suitable for it in order to fully exhibit its performance. The film forming method and film forming conditions will be described below.

【0026】先ず、 In2O3膜そのものに残存するひずみ
を減少させるため、高エネルギー状態での成膜を行う。
具体的には、成膜速度を45〜100 Å/sとする。この際、
成膜速度が100 Å/s超にすると、反跳Ar衝突による結晶
の欠陥起因の透過率の減少が不可避となり、膜厚1000Å
以上の膜に対して透過率が80%未満となる。45Å/s未満
にすると、結晶構造の乱れに起因してキャリア移動度が
20cm3/Vs未満となるため、電気抵抗率が10×10-4Ωcm超
となる。
First, in order to reduce the strain remaining in the In 2 O 3 film itself, film formation is performed in a high energy state.
Specifically, the film forming rate is set to 45 to 100 Å / s. On this occasion,
If the deposition rate exceeds 100 Å / s, the decrease in transmittance due to crystal defects due to recoil Ar collision becomes unavoidable, and the film thickness 1000 Å
The transmittance is less than 80% for the above films. If it is less than 45Å / s, the carrier mobility will be increased due to the disorder of the crystal structure.
Since it is less than 20 cm 3 / Vs, the electrical resistivity exceeds 10 × 10 -4 Ωcm.

【0027】次に、Geの酸素欠陥量を減少させ、電気抵
抗率を増加させることなく透過率を向上させるために、
成膜ガス中の酸素分圧を0.002mTorr以上とする。この条
件下で、膜厚1000Å以上の膜に対して80%以上の透過率
が得られる。
Next, in order to reduce the amount of oxygen defects in Ge and improve the transmittance without increasing the electrical resistivity,
The oxygen partial pressure in the film forming gas is set to 0.002 mTorr or more. Under this condition, a transmittance of 80% or more can be obtained for a film having a film thickness of 1000Å or more.

【0028】以上の成膜条件下で、Geの含有量がGe量と
In量の合計に対して2〜10原子%であると、低電気抵抗
膜の成膜が難しい250 ℃以下の成膜温度においてキャリ
ア密度が9×1020/cm3以上、キャリア移動度が20cm3/Vs
以上となり、その結果、電気抵抗率が10×10-4Ωcm以下
であると共に可視光透過率が80%以上である結晶質のGe
含有 In2O3よりなる透明導電膜が得られる。
Under the above film forming conditions, the Ge content is equal to the Ge amount.
When the content of In is 2 to 10 atom%, it is difficult to form a low electric resistance film. At a film forming temperature of 250 ℃ or less, the carrier density is 9 × 10 20 / cm 3 or more and the carrier mobility is 20 cm. 3 / Vs
As a result, crystalline Ge having an electric resistivity of 10 × 10 −4 Ωcm or less and a visible light transmittance of 80% or more.
A transparent conductive film containing In 2 O 3 is obtained.

【0029】このとき、Ge量とIn量の合計に対するGeの
含有量(以降、Ge含有量という)が5〜7原子%である
と、250 ℃以下の成膜温度においてキャリア密度が15×
1020/cm3以上、キャリア移動度が25cm3/Vs以上となり、
電気抵抗率が1.6 ×10-4Ωcm以下であると共に可視光透
過率が80%以上である結晶質膜が得られる。
At this time, if the Ge content (hereinafter referred to as Ge content) with respect to the total Ge content and In content is 5 to 7 atomic%, the carrier density is 15 × at a film forming temperature of 250 ° C. or less.
10 20 / cm 3 or more, carrier mobility is 25 cm 3 / Vs or more,
A crystalline film having an electric resistivity of 1.6 × 10 −4 Ωcm or less and a visible light transmittance of 80% or more can be obtained.

【0030】成膜温度が250 ℃超であれば、上記のキャ
リア密度、キャリア移動度は容易に達成され、容易に電
気抵抗率が1.6 ×10-4Ωcm以下の膜となる。
When the film forming temperature is higher than 250 ° C., the above carrier density and carrier mobility are easily achieved, and the film having an electric resistivity of 1.6 × 10 −4 Ωcm or less is easily obtained.

【0031】ここで、Ge含有量が2原子%未満である
と、キャリア密度が9×1020/cm3未満となるため、電気
抵抗率が10×10-4Ωcm超の膜になり、又、Ge含有量が10
原子%超であると、キャリア移動度が20cm3/Vs未満とな
るため、電気抵抗率が10×10-4Ωcm超の膜になり、低電
気抵抗透明導電膜とはならない。
When the Ge content is less than 2 atomic%, the carrier density is less than 9 × 10 20 / cm 3 , so that the film has an electric resistivity of more than 10 × 10 −4 Ωcm. , Ge content is 10
If it is more than atomic%, the carrier mobility will be less than 20 cm 3 / Vs, resulting in a film having an electric resistivity of more than 10 × 10 −4 Ωcm, which is not a low electric resistance transparent conductive film.

【0032】本発明は以上のような知見に基づき完成さ
れたものであり、本発明に係る透明導電膜は、成膜温度
(基板温度):250 ℃以下の成膜条件で成膜される場合
においても得られる膜の電気抵抗率が低く、10×10-4Ω
cm以下であり、又、可視光透過率が高く、80%以上であ
る。
The present invention has been completed on the basis of the above findings. When the transparent conductive film according to the present invention is formed under the film forming conditions (substrate temperature): 250 ° C. or lower. The electric resistance of the obtained film is low at 10 × 10 -4 Ω
cm or less, high visible light transmittance, and 80% or more.

【0033】ところで、特開昭62-202415 号公報には、
Sn含量がIn1モルに対して0.01〜3モル、Ge含量がIn1
モルに対して0.0001〜0.6 モルであるIn2O3 膜(ITO
膜)において400 ℃の成膜温度で電気抵抗率2×10-4Ω
cm以下の膜を成膜した例が開示されている。しかしなが
ら、前述の如く、Ge添加 In2O3の低抵抗化に必要な成膜
条件は、ITOの低抵抗化必要な成膜条件とは大きく異
なるため、250 ℃以下の成膜温度において低抵抗のGe添
加 In2O3を成膜するにはITOの成膜条件とは異なるGe
添加 In2O3膜の低抵抗化を目的とする独自の成膜方法が
必要となる。
By the way, JP-A-62-202415 discloses that
0.01 to 3 moles of Sn content and 1 mole of In, Ge content of In1
An In 2 O 3 film (ITO having a molar ratio of 0.0001 to 0.6 mol)
Film) with an electrical resistivity of 2 × 10 -4 Ω at a deposition temperature of 400 ° C
An example in which a film having a thickness of cm or less is formed is disclosed. However, as mentioned above, the film formation conditions required to reduce the resistance of Ge-doped In 2 O 3 are significantly different from the film formation conditions required to reduce the resistance of ITO. In order to form a Ge-doped In 2 O 3 film, the Ge film formation conditions differ from those of ITO.
A unique film formation method is required to reduce the resistance of the added In 2 O 3 film.

【0034】さらに、Geの能力を発揮させる成膜条件
と、Snの能力を発揮させる成膜条件とは大きく異なって
いるため、GeとSnを同時添加させた状態では、Ge添加 I
n2O3膜の低抵抗化の能力を充分発揮させる成膜条件を選
択することは難しく、同時添加の電気抵抗率は、GeやSn
を単独で添加した場合の電気抵抗率よりも上昇してしま
う。
Further, since the film forming conditions for exerting the Ge ability are greatly different from the film forming conditions for exerting the Sn ability, when Ge and Sn are simultaneously added, Ge addition I
It is difficult to select the film formation conditions that sufficiently bring out the ability of the n 2 O 3 film to lower the resistance, and the electrical resistivity of the simultaneous addition is Ge or Sn.
Is higher than the electrical resistivity when added alone.

【0035】従って、250 ℃以下の成膜温度で、高い透
過率保持し、低電気抵抗率を有する透明導電膜を実現す
るためには、Ge単独添加、或いはGe添加及び悪影響を与
えない程度の量のSnの添加(Sn添加量:Sn量とIn量の合
計に対して2原子%以下)とすること、及び、前述の成
膜条件及びGe添加量を満足することが不可避となる。
Therefore, in order to realize a transparent conductive film having a high transmittance and a low electrical resistivity at a film forming temperature of 250 ° C. or less, Ge alone is added, or Ge is added and there is no adverse effect. It is unavoidable to add Sn in an amount (Sn addition amount: 2 atomic% or less with respect to the total of Sn amount and In amount) and to satisfy the above-mentioned film forming conditions and the Ge addition amount.

【0036】このように本発明に係る透明導電膜は優れ
た特性を有するので、LCD等のディスプレイ機器や太
陽電池等の透明電極として好適に用いることができる。
Since the transparent conductive film according to the present invention has excellent properties as described above, it can be suitably used as a transparent electrode for display devices such as LCDs and solar cells.

【0037】[0037]

【実施例】(実施例1) スパッタリングターゲットとして、 In2O3ターゲット
(純度 99.95%、相対密度95%)上に5mm角のGeのチッ
プ(純度 99.9 %)を所定量設置した複合ターゲット、
又は、Geを所定量含有するIn2O3 ターゲットを用い、ガ
ラス基板上に厚さ:1500Å、Ge含有量:7原子%のGe添
加In2O3 膜をマグネトロンスパッタリング法によって成
膜速度を制御しながら形成(成膜)した。このときの成
膜条件は下記の通りである。
Example 1 As a sputtering target, a composite target in which a 5 mm square Ge chip (purity 99.9%) was placed on an In 2 O 3 target (purity 99.95%, relative density 95%) in a predetermined amount,
Alternatively, using an In 2 O 3 target containing a specified amount of Ge, a film-forming rate of a Ge-added In 2 O 3 film with a thickness of 1500Å and a Ge content of 7 atom% is controlled by a magnetron sputtering method on a glass substrate. While forming (deposition). The film forming conditions at this time are as follows.

【0038】 成膜温度(基板温度)----200 ℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.002mTorr 電力--------------------4.5 W/cm2 Film forming temperature (substrate temperature) ---- 200 ° C. Atmosphere gas -------------- O 2 -containing Ar oxygen partial pressure ----------- ----- 0.002mTorr Electricity -------------------- 4.5 W / cm 2

【0039】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、4端子(探針)法により電気抵
抗率(比抵抗)を測定し、又、自記分光光度計で可視光
透過率(550nm )を測定した。この結果を図1に示す。
成膜速度:45Å/s以下の場合には電気抵抗率が10-4Ωcm
以上に増加し、成膜速度:100Å/s以上の場合には透過率
が80%以下に減少する。
The electric resistance (specific resistance) of the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above-mentioned film formation was measured by the 4-terminal (probe) method, and it was also measured by a self-recording spectrophotometer. The visible light transmittance (550 nm) was measured. The result is shown in FIG.
Deposition rate: electrical resistivity of 10 -4 Ωcm at 45 Å / s or less
When the deposition rate is 100 Å / s or more, the transmittance decreases to 80% or less.

【0040】(実施例2) 実施例1と同様の条件で成膜して得られたGe添加In2O3
膜について、実施例1の場合と同様の方法により電気抵
抗率を測定し、又、ファンデルポー法によりキャリア密
度及びキャリア移動度を測定した。この結果を図2に示
す。成膜速度:45Å/s以下の場合にはキャリア移動度が
20cm3/Vs以下に減少し、そのため電気抵抗率が10-4Ωcm
以上に増加する。
Example 2 Ge-added In 2 O 3 obtained by forming a film under the same conditions as in Example 1
The electrical resistivity of the film was measured by the same method as in Example 1, and the carrier density and carrier mobility were measured by the van der Pauw method. The result is shown in FIG. Deposition rate: 45 Å / s or less, carrier mobility is
20 cm 3 / Vs or less, so the electrical resistivity is 10 -4 Ωcm
More than that.

【0041】(実施例3) スパッタリングターゲットとして、 In2O3ターゲット
(純度 99.95%、相対密度95%)上に5mm角のGeのチッ
プ(純度 99.9 %)を所定量設置した複合ターゲット、
又は、Geを所定量含有するIn2O3 ターゲットを用い、ガ
ラス基板上に厚さ:1500ÅのGe添加In2O3 膜をマグネト
ロンスパッタリング法によって成膜した。このときの成
膜条件は下記の通りである。
Example 3 As a sputtering target, a composite target in which a 5 mm square Ge chip (purity 99.9%) was placed on an In 2 O 3 target (purity 99.95%, relative density 95%) in a predetermined amount,
Alternatively, an In 2 O 3 target containing a predetermined amount of Ge was used to form a Ge-added In 2 O 3 film having a thickness of 1500 Å on the glass substrate by magnetron sputtering. The film forming conditions at this time are as follows.

【0042】 成膜温度(基板温度)----200 ℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.04mTorr 電力--------------------4.5 W/cm2 Film forming temperature (substrate temperature) ---- 200 ° C. Atmosphere gas -------------- O 2 -containing Ar oxygen partial pressure ----------- ----- 0.04mTorr Electricity -------------------- 4.5 W / cm 2

【0043】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、実施例1、2の場合と同様の方
法により電気抵抗率、及び、可視光透過率(550nm )を
測定した。この結果を図3に示す。Ge含有量:2〜10原
子%の間で電気抵抗率:1.0 ×10-3Ωcm以下の透明導電
膜が得られる。Ge含有量:5〜7原子%の間で電気抵抗
率:1.5 ×10-4Ωcm以下の透明導電膜が得られる。Ge含
有量:6原子%の場合では電気抵抗率:1.2 ×10-4Ωcm
である。Ge含有量:0〜10原子%の間で80%以上の高い
可視光透過率を有している。Ge含有量:10原子%超では
透過率:80%以下となる。
Regarding the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation, the electrical resistivity and the visible light transmittance (550 nm) were measured by the same method as in Examples 1 and 2. It was measured. The result is shown in FIG. A transparent conductive film having an electrical resistivity of 1.0 × 10 −3 Ωcm or less can be obtained when the Ge content is 2 to 10 atomic%. A transparent conductive film having an electric resistivity of 1.5 × 10 −4 Ωcm or less is obtained when the Ge content is 5 to 7 atomic%. When the Ge content is 6 atomic%, the electrical resistivity is 1.2 × 10 -4 Ωcm.
Is. Ge content: High visible light transmittance of 80% or more between 0 and 10 atomic%. If the Ge content exceeds 10 atom%, the transmittance becomes 80% or less.

【0044】(実施例4) 実施例3と同様の条件で成膜して得られたGe添加In2O3
膜について、電気抵抗率、キャリア密度、キャリア移動
度を測定した。この結果を図4に示す。Ge含有量:2〜
10原子%の間で電気抵抗率:1.0 ×10-3Ωcm以下の透明
導電膜が得られる。Ge含有量:2〜10原子%であると、
キャリア密度:9×1020/cm3以上、キャリア移動度:20
cm3/Vs以上となり、電気抵抗率:10×10-4Ωcm以下とな
る。
Example 4 Ge-doped In 2 O 3 obtained by forming a film under the same conditions as in Example 3
The electrical resistivity, carrier density, and carrier mobility of the film were measured. The result is shown in FIG. Ge content: 2
A transparent conductive film having an electric resistivity of 1.0 × 10 −3 Ωcm or less can be obtained at 10 atom%. Ge content: 2 to 10 atom%
Carrier density: 9 × 10 20 / cm 3 or more, carrier mobility: 20
cm 3 / Vs or more and electrical resistivity: 10 × 10 -4 Ωcm or less.

【0045】(実施例5) スパッタリングターゲットとして、 In2O3ターゲット
(純度 99.95%、相対密度95%)上に5mm角のGeのチッ
プ(純度 99.9 %)を所定量設置した複合ターゲット、
又は、Geを所定量含有するIn2O3 ターゲットを用い、厚
さ0.5mm のガラス基板上に厚さ:1500ÅのGe添加In2O3
膜をマグネトロンスパッタリング法によって成膜した。
このときの成膜条件は下記の通りである。
(Example 5) As a sputtering target, a composite target in which a 5 mm square Ge chip (purity 99.9%) was placed on an In 2 O 3 target (purity 99.95%, relative density 95%) in a predetermined amount,
Or, using In 2 O 3 target containing a predetermined amount of Ge, thickness on a glass substrate having a thickness of 0.5mm is: 1500 Å of Ge added In 2 O 3
The film was formed by the magnetron sputtering method.
The film forming conditions at this time are as follows.

【0046】 成膜温度(基板温度)----20℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.06mTorr 電力--------------------4.5 W/cm2 Film forming temperature (substrate temperature) ---- 20 ° C Atmosphere gas -------------- O 2 -containing Ar oxygen partial pressure ----------- ----- 0.06mTorr Electricity -------------------- 4.5 W / cm 2

【0047】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、電気抵抗率を測定した。その結
果、Ge含有量:3.8 原子%であり、電気抵抗率:3.6 ×
10-4Ωcmの透明導電膜が得られた。550nm の可視光透過
率は91%であった。
The electrical resistivity of the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation was measured. As a result, the Ge content was 3.8 atomic%, and the electrical resistivity was 3.6 ×.
A transparent conductive film of 10 −4 Ωcm was obtained. The visible light transmittance at 550 nm was 91%.

【0048】[0048]

【発明の効果】本発明に係る透明導電膜は、以上の如き
構成を有し作用をなすものであり、成膜温度(基板温
度):250 ℃以下の成膜条件で成膜される場合において
も得られる膜の電気抵抗率が低く、10×10-4Ωcm以下で
あり、又、可視光透過率が高く、80%以上であり、その
ため、ディスプレイ機器の透明電極として好適に用いる
ことができ、特には今後のディスプレイの大型化、カラ
ー化、高精細化等の高機能化及び品質向上を図ることが
できるという顕著な効果を奏し得る。
EFFECTS OF THE INVENTION The transparent conductive film according to the present invention has the above-described constitution and functions, and is formed under the film forming conditions of film forming temperature (substrate temperature): 250 ° C. or less. The obtained film has a low electric resistivity of 10 × 10 −4 Ωcm or less, and a high visible light transmittance of 80% or more. Therefore, it can be suitably used as a transparent electrode of a display device. In particular, it is possible to achieve a remarkable effect that the display can be improved in function and quality such as upsizing, colorization, and high definition in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1に係る透明導電膜についての成膜速
度と抵抗率及び透過率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a film forming rate, a resistivity, and a transmittance of a transparent conductive film according to Example 1.

【図2】 実施例2に係る透明導電膜についての成膜速
度と抵抗率、キャリア密度及びキャリア移動度の関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a film forming rate, a resistivity, a carrier density, and a carrier mobility of a transparent conductive film according to Example 2.

【図3】 実施例3に係る透明導電膜についてのGe添加
量(Ge/Ge+In)と抵抗率及び透過率の関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the Ge addition amount (Ge / Ge + In) and the resistivity and transmittance of the transparent conductive film according to Example 3.

【図4】 実施例4に係る透明導電膜についてのGe添加
量(Ge/Ge+In)と抵抗率、キャリア密度及びキャリア
移動度の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the Ge addition amount (Ge / Ge + In) and the resistivity, carrier density, and carrier mobility in the transparent conductive film according to Example 4.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Toshiro Maruyama, Teruoki Tago,Germ anium− and silicon −doped indium−oxid e thin films prepa red by radio−frequ ency magnetron spu tterin,Appl. Phys. Lett.,米国,American Institute of Phys ics,1994年 3月14日,64巻11号, 1935−1937 (58)調査した分野(Int.Cl.7,DB名) H01B 5/14 H01B 13/00 501 H01B 13/00 503 C23C 14/08 G02F 1/1343 ─────────────────────────────────────────────────── ─── of the front page continued (56) references Toshiro Maruyama, Teruoki Tago, Germ anium- and silicon -doped indium-oxid e thin films prepa red by radio-frequ ency magnetron spu tterin, Appl. Phys. Lett. , USA, American Institute of Physics, March 14, 1994, Vol. 64, No. 11, 1935-1937 (58) Fields investigated (Int.Cl. 7 , DB name) H01B 5/14 H01B 13/00 501 H01B 13/00 503 C23C 14/08 G02F 1/1343

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Inの酸化物を主成分とし、GeあるいはGe
酸化物を含有する透明導電膜であって、Geの含有量Ge
量とIn量の合計に対して2〜10原子%とすると共に、成
膜速度を 45 100 /s とし、更に成膜中の雰囲気ガスと
して酸素含有ガスを用いて成膜中の酸素分圧を 0.002mTo
rr 以上とする製造条件で得られた透明導電膜であり、且
、キャリア密度が9×1020/cm3以上、キャリア移動度
が20cm3/Vs以上、電気抵抗率が10×10-4Ωcm以下可視
光透過率が80%以上であることを特徴とする低電気抵抗
透明導電膜。
1. Ge or Ge containing In oxide as a main component.
A transparent conductive film containing an oxide, wherein the content of Ge is Ge
2 to 10 atom% with respect to the total amount of In and In , and
The film speed is 45 to 100 Å / s, and the atmospheric gas during film formation
Then, the oxygen partial pressure during film formation was adjusted to 0.002 mTo using an oxygen-containing gas.
It is a transparent conductive film obtained under the manufacturing conditions of rr or more, and
The carrier density is 9 × 10 20 / cm 3 or more, the carrier mobility is 20 cm 3 / Vs or more, the electric resistivity is 10 × 10 −4 Ωcm or less , and the visible light transmittance is 80% or more. Low electric resistance transparent conductive film.
【請求項2】 Geの含有量がGe量とIn量の合計に対して
5〜7原子%、キャリア密度が15×1020/cm3以上、キャ
リア移動度が25cm3/Vs以上、電気抵抗率が1.6 ×10-4Ω
cm以下であると共に可視光透過率が80%以上である請求
項1記載の低電気抵抗透明導電膜。
2. The Ge content is 5 to 7 atomic% with respect to the total of Ge content and In content, the carrier density is 15 × 10 20 / cm 3 or more, the carrier mobility is 25 cm 3 / Vs or more, and the electrical resistance is Rate 1.6 × 10 -4 Ω
The transparent conductive film having a low electric resistance according to claim 1, wherein the transparent conductive film has a visible light transmittance of 80% or more and is not more than cm.
【請求項3】 液晶ディスプレイの透明電極として用い
られる請求項1または2記載の低電気抵抗透明導電膜。
3. The low electric resistance transparent conductive film according to claim 1, which is used as a transparent electrode of a liquid crystal display.
JP13335198A 1998-05-15 1998-05-15 Low electric resistance transparent conductive film Expired - Fee Related JP3515688B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13335198A JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film
KR1019990016919A KR100323297B1 (en) 1998-05-15 1999-05-12 Transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13335198A JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film

Publications (2)

Publication Number Publication Date
JPH11329085A JPH11329085A (en) 1999-11-30
JP3515688B2 true JP3515688B2 (en) 2004-04-05

Family

ID=15102699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13335198A Expired - Fee Related JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film

Country Status (1)

Country Link
JP (1) JP3515688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045182A1 (en) * 1999-12-17 2001-06-21 Institute Of Materials Research & Engineering Improved transparent electrode material for quality enhancement of oled devices
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
JP5416991B2 (en) * 2009-03-03 2014-02-12 Jx日鉱日石金属株式会社 Oxide sintered body target, method for producing the target, transparent conductive film, and method for producing the transparent conductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Toshiro Maruyama, Teruoki Tago,Germanium− and silicon−doped indium−oxide thin films prepared by radio−frequency magnetron sputterin,Appl. Phys. Lett.,米国,American Institute of Physics,1994年 3月14日,64巻11号,1935−1937

Also Published As

Publication number Publication date
JPH11329085A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
TWI412135B (en) A semiconductor thin film, and a method of manufacturing the same, and a thin film transistor, an active matrix driving display panel
US6351068B2 (en) Transparent conductive laminate and electroluminescence light-emitting element using same
El Hajj et al. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
US20090242887A1 (en) Display Substrate Having a Transparent Conductive Layer Made of Zinc Oxide and Manufacturing Method Thereof
JP2003297150A (en) Transparent electrically conductive laminate and manufacturing method therefor
US20090269588A1 (en) Transparent conductive film and method of producing transparent conductive film
JP3366046B2 (en) Amorphous transparent conductive film
US20110089026A1 (en) Touch panel manufacturing method and film formation apparatus
JP4168689B2 (en) Thin film laminate
JP3515688B2 (en) Low electric resistance transparent conductive film
JPH07131044A (en) Transparent conductive substrate
JP4358251B2 (en) Method for forming high resistance tin-doped indium oxide film
JP3780100B2 (en) Transparent conductive film with excellent processability
JPH0950711A (en) Transparent conductive film
JPH0756131A (en) Production of transparent conductive film
JP3618546B2 (en) High transmittance transparent conductive film and manufacturing method thereof
JP3943612B2 (en) Conductive transparent substrate and method for producing the same
JPH06160876A (en) Transparent electrode plate and its production
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JP7478721B2 (en) Method for manufacturing a substrate with a transparent electrode
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
JP2002025362A (en) Manufacturing method of silver series transparent conductive thin film and transparent laminate
KR100323297B1 (en) Transparent conducting film
JP3095232B2 (en) Method for producing transparent conductive film
JP4255655B2 (en) Method for forming high resistance tin-doped indium oxide film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees