JP3618546B2 - High transmittance transparent conductive film and manufacturing method thereof - Google Patents

High transmittance transparent conductive film and manufacturing method thereof Download PDF

Info

Publication number
JP3618546B2
JP3618546B2 JP13335298A JP13335298A JP3618546B2 JP 3618546 B2 JP3618546 B2 JP 3618546B2 JP 13335298 A JP13335298 A JP 13335298A JP 13335298 A JP13335298 A JP 13335298A JP 3618546 B2 JP3618546 B2 JP 3618546B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
transmittance
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13335298A
Other languages
Japanese (ja)
Other versions
JPH11322333A (en
Inventor
雅夫 水野
隆志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13335298A priority Critical patent/JP3618546B2/en
Priority to KR1019990016919A priority patent/KR100323297B1/en
Publication of JPH11322333A publication Critical patent/JPH11322333A/en
Application granted granted Critical
Publication of JP3618546B2 publication Critical patent/JP3618546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高透過率透明導電膜及びその製造方法に関し、詳細には、高い可視光透過率を有する透明導電膜及びその製造方法に関し、特には、薄膜トランジスター型液晶ディスプレイの表示電極用透明電極として好適な高透過率透明導電膜及びその製造方法に関する技術分野に属する。
【0002】
【従来の技術】
透明導電膜は、液晶ディスプレイ;Liquid Crystal Display(以降、LCDという)やエレクトロルミネッセンス表示装置、太陽電池の透明電極、あるいはタッチパネル、帯電防止膜、ガスセンサー等に適用されている。
【0003】
これらの中でも、LCDは、従来のブラウン管にくらべ、薄型、軽量、低小電力で、しかも高い解像度が得られるため、近年、その用途が拡大している。LCD用の透明電極として透明導電膜は不可欠である。
【0004】
かかるLCDの画面表示は、印加電圧の制御によって液晶分子の配置を変化させることによって、画素液晶を透過し画面に到達し得るバックライトからの投射光の光量を調節することにより行われている。従って、LCDの透明電極として用いられる透明導電膜は、投射光を効率良く画面表示に使用するために可視光領域で高い透過率を有することが要求され、しかも液晶分子に安定な電圧を印加するために低電気抵抗率であることが要求される。透過率については80%以上であることが必要とされている。
【0005】
現在、この要求を満たし、LCDの透明電極として用いられている透明導電膜は、Snを添加したIn2O3(;Indium Tin Oxide)(以降ITOという)である。このITOの母体であるIn2O3 は、酸化物半導体であり、結晶中に含まれる酸素欠陥からキャリア電子が供給され導電性を示す透明導電物質である。ここに、Snを添加するとキャリア電子が大幅に増加し高い導電性を示すようになると考えられている。現在、10原子%前後のSnを添加したITOが一般的に実用化されている。かかるLCD透明電極用ITO薄膜は主にマグネトロンスパッタリング法で成膜されている。
【0006】
ところで、LCDにおいてはアクティブマトリックス方式の採用、即ち、薄膜トランジスター(TFT:Thin film transister)型液晶装置の導入など高精細化が進展している。かかるTFT型液晶装置に使用される透明電極には2種類あり、一つは表示画素の液晶を駆動させるための画素電極であり、もう一つは全ての画素に同時に電力を印加する共通電極である。
【0007】
前者の画素電極には金属材料からなる配線膜が接続されており、画素への電力の供給は金属配線膜からなされている。画素電極は、液晶に電力を印加するのに充分な電気電導率を有しておればよいため、電気抵抗率は1×10-2Ωcm以下であればよい。これに対し、後者の共通電極は、表示部分全体に共通して広がる大型電極であるため、低電気抵抗であることが要求される。両者には高い光透過率を有することが要求される。これらの結果、共通電極は低電気抵抗であることが必要条件であるとされ、画素電極は、電気抵抗率は共通電極よりも高くてよいものの、高い光透過率を有することが優先される。そして、液晶表示部全体の光透過率を高くするためには、画素電極の透明性をできるかぎり高くする必要がある。
【0008】
かかる電極(透明電極、即ち透明導電膜)の透明性を上げるためには、先ず、膜厚を薄くすることが考えられる。膜厚を薄くすればするほど光透過率は向上する。しかし、膜厚を薄くすれば膜厚に反比例して膜の電気抵抗が上昇する。故に、透明性を上げるために膜厚を薄くすることは、透明性と導電性を同時に両立させる手段としては適当ではない。更には、膜厚を薄くすると膜厚の不均一による抵抗のむらが顕著化するため、これを回避するために一定の膜厚が必要である。従って、膜の電気抵抗を一定以下に保ち、且つ、均一な膜を有する条件として現状では膜厚:1000Å以上の膜が一般的である。そのため、膜厚:1000Å以上の場合においても、高い透過率を有する透明導電膜の成膜が望ましい。
【0009】
次に、酸素欠陥を減少させることが考えられる。即ち、従来のITO膜において透過率の減少の原因となるものは膜中の酸素欠陥による光吸収である。従って、透過率を上昇させるためには、高い酸素分圧下で成膜し、それにより膜中の酸素欠陥を減少させればよい。しかし、ITOにおいては、Snと酸素欠陥が複合欠陥を形成し、この複合欠陥からキャリア電子が供給されて、電気伝導を生じているために、適量の酸素欠陥が膜中に必要であり、酸素欠陥が減少すると、電気抵抗率が増加する。そのため、低い電気抵抗率を保ったままで、透過率を上昇させることは困難である。
【0010】
又、スパッタリングの際の成膜温度を高くすることが考えられる。即ち、成膜温度を高くすると、得られる膜の電気抵抗率が低くなり、400 ℃以上の成膜温度では電気抵抗率の低い膜が得られている。しかし、近年のLCDは大型化、カラー化あるいは高精細化の動きがあり、これらには電気抵抗率がより低いことが強く要求されており、又、LCDのカラー化に対応するためには、カラーフィルターやプラスチック基板上に透明導電膜を成膜するために透明電極の成膜を基板温度(成膜温度):250℃以下の条件で行う必要があることから、成膜温度:250 ℃以下の成膜においても電気抵抗率が低く1×10-2Ωcm以下である透明導電膜の開発が強く望まれ、更に、透過率も同時に高く、可視光領域で85%以上である透明導電膜の開発が強く望まれる。
【0011】
【発明が解決しようとする課題】
本発明はこの様な事情に着目してなされたものであって、その目的は、可視光透過率が高く、90%以上である透明導電膜及びその製造方法を提供しようとするものである。更には、成膜温度(基板温度):250 ℃以下の成膜条件で成膜される場合においても得られる膜の電気抵抗率が低く、1×10-2Ωcm以下であると共に、可視光透過率が90%以上である透明導電膜を提供しようとするものである。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る透明導電膜及びその製造方法は、請求項1〜記載の透明導電膜、請求項記載の透明導電膜の製造方法としており、それは次のような構成としたものである。
【0013】
即ち、請求項1記載の透明導電膜は、Ge Ge 量と In 量の合計に対して2〜6原子%含有 する In の酸化物からなる透明導電膜であって、電気抵抗率が2× 10 -3 Ω cm 以下であり、且つ、可視光透過率が 95 %以上であることを特徴とする高透過率透明導電膜である(第1発明)。
【0014】
請求項2記載の透明導電膜は、液晶ディスプレイの透明電極として用いられる請求項1記載の高透過率透明導電膜である(第2発明)。
【0015】
請求項記載の透明導電膜の製造方法は、Ge Ge 量と In 量の合計に対して2〜6原子%含有する In の酸化物からなる高透過率透明導電膜をスパッタリング法により形成するに際し、スパッタリングガスとして酸素分圧: 0.04 0.4mTorr のガスを用いると共に、成膜速度を 45 Å/ s 以下とすることを特徴とする高透過率透明導電膜の製造方法である(第3発明)。
【0016】
【発明の実施の形態】
本発明に係る透明導電膜は、例えばスパッタリング法により次のようにして成膜することができる。即ち、スパッタリング装置内に基板を配置し、一方、スパッタリングターゲットとして例えば In2O3ターゲット上にGeのチップを設置した複合ターゲットを配置し、酸素ガスを含む不活性ガス雰囲気中で、前記基板を加熱した状態にしてから、この基板と前記複合ターゲットとの間に電界を印加することにより、基板上にGeを含有するIn2O3 よりなる透明導電膜を形成(成膜)することができる。このとき、複合ターゲットでの In2O3ターゲットとGeチップの表面積比率を変えることにより、Ge含有量を変化させることができる。このGe含有量の調整、及び、成膜条件の調整により、本発明に係る透明導電膜を得ることができる。
【0017】
本発明者等はスパッタリング法により種々の組成の透明導電膜を形成し、その組成、及び、透明導電膜としての特性を調べた。その結果、Inの酸化物を主成分とする透明導電膜であってGeを含有するものは、可視光透過率が高く、90%以上であり、又、成膜温度(基板温度):250 ℃以下の成膜条件で成膜される場合においても電気抵抗率が低く、1×10-2Ωcm以下であると共に、可視光透過率:90%以上であることを見出し、本発明を完成するに至った。
【0018】
この詳細を以下説明する。
【0019】
In2O3 には酸素欠陥が存在し、欠陥準位からキャリア電子が供給され、In2O3 は電気伝導性を示す。このとき、酸素欠陥の量が少ない場合には欠陥準位による可視光の吸収が少なく透過率が向上するが、その代わりに欠陥準位からのキャリアの供給量が少なくなるため電気抵抗が大きくなり、一方、酸素欠陥の量が多すぎると欠陥準位による光の吸収が大きくなり、可視光透過率が減少し、又、欠陥による散乱が生じるため電気抵抗も増大し、いずれの場合も透明導電膜として不適当になる。
【0020】
LCD用透明電極として一般的なITO膜においてITO中のSnはIn2O3 中の欠陥準位からのキャリア電子の放出を促進させる働きがあるため、In2O3 にSnを添加することでキャリア密度を増大させることが可能となり、そのためITO膜の電気抵抗率はIn2O3 膜の場合より減少する。ここで、キャリア電子の放出はSnと酸素欠陥との複合効果によって発生するため、酸素欠陥の量が少なくなるとSn添加の効果が現れなくなる。従って、In2O3 膜の場合と同様に酸素欠陥をある程度残した状態でITO膜を成膜する必要があり、酸素を含むArガスであって酸素分圧:0.0002〜0.01mTorr のものをスパッタリングの雰囲気ガスとして成膜を行うと、この酸素分圧の範囲内で電気抵抗率が最小のITO膜が得られる。これ以上の酸素を含む雰囲気で成膜を行うと電気抵抗率は1×10-2Ωcm超に上昇する。
【0021】
これに対し、本発明に係る透明導電膜のようにGeを添加した In2O3膜においてはGeが In2O3の酸素欠陥とは独立に単体でキャリア電子を放出する働きがある。従って、かかるGeを添加した In2O3膜では、ITOとは異なり、膜中の酸素欠陥の量を減少させてもGeからのキャリア電子放出には影響がなく、電気抵抗率が減少しないので、電気抵抗率の増大を懸念することなく、高酸素分圧下で成膜することができ、そのため、かかる高酸素分圧下で成膜することにより、電気抵抗率の増大を来すことなく低電気抵抗率を維持した状態で、酸素欠陥を減少させて可視光透過率を向上させることができる。このとき、酸素分圧が高いほど可視光透過率が上昇する。酸素分圧:0.04〜0.4mTorrの場合、可視光透過率:90%以上の高透過率透明導電膜を得ることができる。
【0022】
又、Ge量とIn量の合計を100 原子%とした場合のGeの含有量(以下、Ge含有量という)が0〜6原子%の範囲内においては、Ge含有量が多くなるほど電気抵抗率が減少するが、同時に可視光透過率が減少する。更に、成膜速度を遅くし、膜に与えるダメージを減少させると透過率が向上し、この反対に、成膜速度を早くすると、透過率が減少する。これらの成膜条件の最適化、Ge含有量の最適化により、可視光透過率が高く、90%以上であると共に電気抵抗率が低く、1×10-2Ωcm以下である高透過率透明導電膜を成膜し得ることを見出した。
【0023】
即ち、酸素分圧:0.04〜0.4mTorr、成膜速度:45Å/s 以下の成膜条件で、Ge含有量:1〜7原子%のGe添加In2O3 膜を成膜すると、可視光透過率:90%以上であると共に電気抵抗率:1×10-2Ωcm以下である高透過率透明導電膜を得ることができ、又、成膜温度(基板温度)を250 ℃以下にした場合においても電気抵抗率が低く1×10-2Ωcm以下であると共に、可視光透過率:90%以上である高透過率透明導電膜を得ることができる。更に、上記Ge含有量が2〜6原子%になるようにすると、可視光透過率:95%以上、電気抵抗率:2×10-3Ωcm以下の高透過率透明導電膜が得られること等を見出した。
【0024】
ここで、Ge含有量が1原子%未満であると、透過率は95%以上であるものの、抵抗率が1×10-2Ωcm超となる。又、7原子%超であると、抵抗率は2×10-3Ωcm以下であるものの、透過率が90%未満となる。
【0025】
本発明は以上のような知見に基づき完成されたものであり、本発明に係る透明導電膜は、可視光透過率が高く95%以上であると共に電気抵抗率が低くて優れた高透過率透明導電膜であり、更には、成膜温度(基板温度):250 ℃以下の成膜条件で成膜される場合においても得られる膜の電気抵抗率が低く、2× 10 -3 Ωcm以下であると共に、可視光透過率が95%以上である。又、本発明に係る透明導電膜の製造方法によれば、かかる優れた特性を有する高透過率透明導電膜を得ることができる。
【0026】
ところで、特開昭62-202415 号公報には、Ge添加 In2O3膜及びGe添加ITO膜が開示されている。しかしながら、前述の如く、高透過率及び低抵抗率のGe添加In2O3 膜を成膜して得るには独自の成膜方法が必要となり、かかる成膜方法は上記公報には記載されておらず、かかる成膜方法によって得られる高透過率及び低抵抗率のGe添加In2O3 膜は上記公報には記載されていない。又、上記公報に記載されたGe添加ITO膜は、即ちGeとSnを同時添加した In2O3膜であり、このようにGeとSnを同時添加させた状態ではGeとSnが複合してしまうため、高酸素分圧下で成膜を行っても透過率は向上せず、むしろITOの場合よりも透過率が減少する。
【0027】
成膜温度(基板温度):250 ℃以下の成膜条件で成膜される場合においても得られる膜の電気抵抗率が低く、1×10-2Ωcm以下であると共に、可視光透過率が90%以上である透明導電膜を実現するためには、前述の成膜条件及びGe添加量を満足することが不可避である。かかる成膜条件及びGe添加量等は上記公報には記載されていない。
【0028】
このように本発明に係る透明導電膜は優れた特性を有するので、LCDや太陽電池等の透明電極として好適に用いることができる。
【0029】
【実施例】
(実施例1)
スパッタリングターゲットとして、 In2O3ターゲット(純度 99.95%)上に5mm角のGeのチップ(純度 99.99%)或いはGeO2チップ(純度99.9%)を所定量設置した複合ターゲット、又は、Geを所定量含有するIn2O3 ターゲットを用い、ガラス基板上に厚さ:2000Å、Ge含有量:3.7 原子%のGe添加In2O3 膜をマグネトロンスパッタリング法によって形成(成膜)した。このときの成膜条件は下記の通りである。
【0030】
基板温度(成膜温度)----200 ℃
雰囲気ガス--------------O2含有Ar
酸素分圧----------------x mTorr(パラメータとして変化させた)
成膜速度----------------25Å/s
【0031】
上記成膜により得られた透明導電膜(Ge添加In2O3 膜)について、4端子(探針)法により電気抵抗率(比抵抗)を測定し、また、自記分光光度計で可視光透過率(500nm )を測定した。この結果を図1に示す。なお、比較のために、ITO(10wt%Sn添加In2O3 )膜も上記と同様の成膜条件で成膜し、上記と同様の測定を行い、特性の比較を行った。
【0032】
Ge添加In2O3 膜では酸素分圧:0.004mTorr未満の場合に膜の可視光透過率が90%未満であるが、酸素分圧:0.04mTorr 以上で可視光透過率が90%以上となり、酸素分圧:0.08mTorr 以上で透過率:95%となる。これに対し、電気抵抗率はほとんど変化せず、5×10-4〜7×10-4Ωcmの範囲に収まっている。
【0033】
一方、ITO膜では酸素分圧が増えると、可視光透過率が上昇するものの、電気抵抗率は酸素分圧によって大きく変化する。酸素分圧:0.01mTorr では抵抗率は2×10-4Ωcmであるが、透過率は85%である。酸素分圧が0.04mTorr になると、透過率は87%まで上昇するが、抵抗率は1×10-2Ωcm超となる。
【0034】
(実施例2)
スパッタリングターゲットとして、 In2O3ターゲット(純度 99.95%)上に5mm角のGeのチップ(純度 99.99%)或いはGeO2チップ(純度99.9%)を所定量設置した複合ターゲット、又は、Geを所定量含有するIn2O3 ターゲットを用い、ガラス基板上に厚さ:1600Å、Ge含有量:所定量のGe添加In2O3 膜を形成(成膜)した。このときの成膜条件は下記の通りである。
【0035】
基板温度(成膜温度)----200 ℃
雰囲気ガス--------------O2含有Ar
酸素分圧----------------0.06mTorr
成膜速度----------------30Å/s
【0036】
上記成膜により得られた透明導電膜(Ge添加In2O3 膜)について、電気抵抗率及び波長550nm の可視光透過率を測定した。この結果を図2に示す。Ge含有量:1〜7原子%では、抵抗率:1×10-2Ωcm以下であり、かつ、透過率:90%以上である。中でも、Ge含有量:2〜6原子%では、抵抗率:2×10-3Ωcm以下であり、かつ、透過率:95%以上である。
【0037】
(実施例3)
スパッタリングターゲットとして、 In2O3ターゲット(純度 99.95%)上に5mm角のGeのチップ(純度 99.99%)或いはGeO2チップ(純度99.9%)を所定量設置した複合ターゲット、又は、Geを所定量含有するIn2O3 ターゲットを用い、厚さ0.5mm のガラス基板上に厚さ:1500Å、Ge含有量:4.3 原子%のGe添加In2O3 膜を形成(成膜)した。このときの成膜条件は下記の通りである。
【0038】
基板温度(成膜温度)----20℃
雰囲気ガス--------------O2含有Ar
酸素分圧----------------0.08mTorr
成膜速度----------------35Å/s
【0039】
上記成膜により得られた透明導電膜(Ge添加In2O3 膜)について、電気抵抗率及び波長550nm の可視光透過率を測定したところ、抵抗率:28×10-4Ωcm、透過率:90.6%であった。
【0040】
(実施例4)
スパッタリングターゲットとして、 In2O3ターゲット(純度 99.95%)上に5mm角のGeのチップ(純度 99.99%)或いはGeO2チップ(純度99.9%)を所定量設置した複合ターゲット、又は、Geを所定量含有するIn2O3 ターゲットを用い、厚さ0.5mm のガラス基板上に厚さ:1700Å、Ge含有量:5.0 原子%のGe添加In2O3 膜を形成(成膜)した。このときの成膜条件は下記の通りである。
【0041】
基板温度(成膜温度)----300 ℃
雰囲気ガス--------------O2含有Ar
酸素分圧----------------0.04mTorr
成膜速度----------------25Å/s
【0042】
上記成膜により得られた透明導電膜(Ge添加In2O3 膜)について、電気抵抗率及び波長550nm の可視光透過率を測定したところ、抵抗率:1.8 ×10-4Ωcm、透過率:96.5%であった。
【0043】
【発明の効果】
本発明に係る透明導電膜は、以上の如き構成を有し作用をなすものであり、可視光透過率が高く、95%以上であり、又、成膜温度(基板温度):250 ℃以下の成膜条件で成膜される場合においても得られる膜の電気抵抗率が低く、2× 10 -3 Ωcm以下であると共に、可視光透過率:95%以上であり、そのため、液晶ディスプレイの透明電極、中でも薄膜トランジスター型液晶ディスプレイの表示電極用透明電極として好適に用いることができ、従って、今後のディスプレイの大型化、カラー化、高精細化等の高機能化及び品質向上を図ることができるという顕著な効果を奏し得る。又、本発明に係る透明導電膜の製造方法は、かかる優れた特性を有する本発明に係る透明導電膜を得ることができるという顕著な効果を奏し得る。
【図面の簡単な説明】
【図1】実施例1に係る透明導電膜についての抵抗率及び透過率と成膜の際の酸素分圧の関係を示す図である。
【図2】実施例2に係る透明導電膜についてのGe添加量(Ge/Ge+In)と抵抗率及び透過率の関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high transmittance transparent conductive film and a method for producing the same, and more particularly to a transparent conductive film having a high visible light transmittance and a method for producing the same, and in particular, a transparent electrode for a display electrode of a thin film transistor type liquid crystal display. It belongs to the technical field regarding a highly transparent transparent conductive film and a method for producing the same.
[0002]
[Prior art]
The transparent conductive film is applied to a liquid crystal display (hereinafter referred to as LCD), an electroluminescence display device, a transparent electrode of a solar cell, a touch panel, an antistatic film, a gas sensor, or the like.
[0003]
Among these, LCDs have been increasingly used in recent years because they are thinner, lighter, lower power and higher resolution than conventional CRTs. A transparent conductive film is indispensable as a transparent electrode for LCD.
[0004]
Such LCD screen display is performed by adjusting the amount of projection light from the backlight that can pass through the pixel liquid crystal and reach the screen by changing the arrangement of the liquid crystal molecules by controlling the applied voltage. Therefore, a transparent conductive film used as a transparent electrode of an LCD is required to have a high transmittance in the visible light region in order to efficiently use projected light for screen display, and applies a stable voltage to liquid crystal molecules. Therefore, a low electrical resistivity is required. The transmittance is required to be 80% or more.
[0005]
Currently, a transparent conductive film that satisfies this requirement and is used as a transparent electrode of LCD is In 2 O 3 (; Indium Tin Oxide) (hereinafter referred to as ITO) to which Sn is added. In 2 O 3 that is the base material of ITO is an oxide semiconductor, and is a transparent conductive material that exhibits conductivity when carrier electrons are supplied from oxygen defects contained in the crystal. Here, it is considered that when Sn is added, the number of carrier electrons is greatly increased and high conductivity is exhibited. At present, ITO to which Sn of about 10 atomic% is added is generally put into practical use. Such an ITO thin film for an LCD transparent electrode is mainly formed by a magnetron sputtering method.
[0006]
By the way, in LCDs, high definition is progressing, such as adoption of an active matrix system, that is, introduction of a thin film transistor (TFT) type liquid crystal device. There are two types of transparent electrodes used in such TFT type liquid crystal devices, one is a pixel electrode for driving the liquid crystal of the display pixel, and the other is a common electrode that applies power to all the pixels simultaneously. is there.
[0007]
A wiring film made of a metal material is connected to the former pixel electrode, and power is supplied to the pixel from the metal wiring film. The pixel electrode only needs to have an electric conductivity sufficient to apply power to the liquid crystal, and thus the electric resistivity may be 1 × 10 −2 Ωcm or less. On the other hand, the latter common electrode is a large electrode that spreads in common throughout the entire display portion, and therefore requires low electrical resistance. Both are required to have high light transmittance. As a result, it is regarded as a necessary condition that the common electrode has a low electric resistance, and the pixel electrode may have a higher light transmittance, although the electric resistivity may be higher than that of the common electrode. In order to increase the light transmittance of the entire liquid crystal display unit, it is necessary to increase the transparency of the pixel electrode as much as possible.
[0008]
In order to increase the transparency of such an electrode (transparent electrode, ie, transparent conductive film), it is conceivable that the film thickness is first reduced. The light transmittance improves as the film thickness decreases. However, if the film thickness is reduced, the electrical resistance of the film increases in inverse proportion to the film thickness. Therefore, reducing the film thickness in order to increase transparency is not appropriate as a means for achieving both transparency and conductivity at the same time. Furthermore, when the film thickness is reduced, resistance unevenness due to the non-uniform film thickness becomes conspicuous, and a certain film thickness is necessary to avoid this. Therefore, at present, a film having a film thickness of 1000 mm or more is generally used as a condition for keeping the electric resistance of the film below a certain level and having a uniform film. Therefore, even when the film thickness is 1000 mm or more, it is desirable to form a transparent conductive film having a high transmittance.
[0009]
Next, it is conceivable to reduce oxygen defects. That is, in the conventional ITO film, the cause of the decrease in transmittance is light absorption due to oxygen defects in the film. Therefore, in order to increase the transmittance, the film should be formed under a high oxygen partial pressure, thereby reducing oxygen defects in the film. However, in ITO, Sn and oxygen defects form complex defects, and carrier electrons are supplied from these complex defects to cause electrical conduction. Therefore, an appropriate amount of oxygen defects is required in the film, and oxygen As the defects decrease, the electrical resistivity increases. Therefore, it is difficult to increase the transmittance while maintaining a low electrical resistivity.
[0010]
It is also conceivable to increase the film forming temperature during sputtering. That is, when the film forming temperature is increased, the electric resistivity of the obtained film is lowered, and at a film forming temperature of 400 ° C. or higher, a film having a low electric resistivity is obtained. However, LCDs in recent years have been increasing in size, color or high definition, and these are strongly required to have a lower electrical resistivity. In order to cope with the colorization of LCDs, In order to form a transparent conductive film on a color filter or plastic substrate, it is necessary to form a transparent electrode under the substrate temperature (film formation temperature): 250 ° C or less, so the film formation temperature: 250 ° C or less The development of a transparent conductive film with low electrical resistivity and 1 × 10 −2 Ωcm or less is also strongly desired for the film formation, and furthermore, the transmittance of the transparent conductive film with a high transmittance of 85% or more in the visible light region is also desired. Development is highly desired.
[0011]
[Problems to be solved by the invention]
The present invention has been made paying attention to such circumstances, and an object thereof is to provide a transparent conductive film having a high visible light transmittance of 90% or more and a method for producing the same. Furthermore, the film resistivity (substrate temperature) is low even when the film is formed under film forming conditions of 250 ° C. or lower, and the electric resistivity of the film obtained is low, 1 × 10 −2 Ωcm or lower, and visible light transmission. An object of the present invention is to provide a transparent conductive film having a rate of 90% or more.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a transparent conductive film according to the present invention and a method for manufacturing the transparent conductive film are the transparent conductive film according to claims 1 and 2 , and the method for manufacturing the transparent conductive film according to claim 3 . The configuration is as follows.
[0013]
That is, the transparent conductive film according to claim 1 is a transparent conductive film made of an oxide of In containing 2-6 atomic% of Ge on the total of the amount of Ge and In content, the electrical resistivity of 2 × and at 10 -3 Omega cm or less, and a high transmittance transparent conductive film, wherein the visible light transmittance of 95% (first invention).
[0014]
The transparent conductive film according to claim 2 is the high transmittance transparent conductive film according to claim 1, which is used as a transparent electrode of a liquid crystal display (second invention).
[0015]
The method for producing a transparent conductive film according to claim 3, a high transmittance transparent conductive film made of an oxide of In containing 2-6 atomic% of Ge on the total of the amount of Ge and In content is formed by sputtering In this case, the present invention is a method for producing a highly transparent transparent conductive film, characterized in that a gas having an oxygen partial pressure of 0.04 to 0.4 mTorr is used as a sputtering gas , and the film formation rate is 45 Å / s or less (third invention). ).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The transparent conductive film according to the present invention can be formed as follows, for example, by sputtering. That is, a substrate is placed in a sputtering apparatus, and a composite target in which a Ge chip is placed on, for example, an In 2 O 3 target is placed as a sputtering target, and the substrate is placed in an inert gas atmosphere containing oxygen gas. A transparent conductive film made of In 2 O 3 containing Ge can be formed (film formation) on the substrate by applying an electric field between the substrate and the composite target after being heated. . At this time, the Ge content can be changed by changing the surface area ratio of the In 2 O 3 target and the Ge chip in the composite target. The transparent conductive film according to the present invention can be obtained by adjusting the Ge content and adjusting the film formation conditions.
[0017]
The inventors of the present invention formed transparent conductive films having various compositions by a sputtering method, and investigated the composition and characteristics as the transparent conductive film. As a result, a transparent conductive film containing In oxide as a main component and containing Ge has a high visible light transmittance of 90% or more, and a film forming temperature (substrate temperature): 250 ° C. In the case where the film is formed under the following film formation conditions, the electrical resistivity is low, 1 × 10 −2 Ωcm or less, and the visible light transmittance: 90% or more, and the present invention is completed. It came.
[0018]
Details will be described below.
[0019]
In 2 O 3 has oxygen defects, carrier electrons are supplied from the defect level, and In 2 O 3 exhibits electrical conductivity. At this time, when the amount of oxygen vacancies is small, the absorption of visible light due to the defect level is small and the transmittance is improved, but instead, the amount of carriers supplied from the defect level is reduced, and the electrical resistance increases. On the other hand, if the amount of oxygen vacancies is too large, the absorption of light due to the defect level increases, the visible light transmittance decreases, and the scattering due to the defects increases the electrical resistance. It becomes unsuitable as a film.
[0020]
Sn in ITO in a typical ITO film as a transparent electrode for LCD, since there is a function to facilitate the release of carrier electrons from the defect levels in the In 2 O 3, by adding Sn to In 2 O 3 The carrier density can be increased, so that the electrical resistivity of the ITO film is reduced compared to the case of the In 2 O 3 film. Here, since the emission of carrier electrons occurs due to the combined effect of Sn and oxygen defects, the effect of adding Sn does not appear when the amount of oxygen defects decreases. Therefore, as in the case of the In 2 O 3 film, it is necessary to form an ITO film with some oxygen defects left, and sputtering is performed using an Ar gas containing oxygen and having an oxygen partial pressure of 0.0002 to 0.01 mTorr. When the film is formed as the atmospheric gas, an ITO film having a minimum electric resistivity within the range of the oxygen partial pressure can be obtained. When film formation is performed in an atmosphere containing more oxygen, the electrical resistivity rises to over 1 × 10 −2 Ωcm.
[0021]
On the other hand, in the In 2 O 3 film to which Ge is added as in the transparent conductive film according to the present invention, Ge has a function of emitting carrier electrons independently from the oxygen defect of In 2 O 3 . Therefore, in the case of an In 2 O 3 film to which Ge is added, unlike ITO, even if the amount of oxygen defects in the film is reduced, the carrier electron emission from Ge is not affected, and the electrical resistivity does not decrease. Therefore, it is possible to form a film under a high oxygen partial pressure without worrying about an increase in the electric resistivity. Therefore, by forming a film under such a high oxygen partial pressure, it is possible to reduce the electric resistance without increasing the electric resistivity. In a state where the resistivity is maintained, oxygen defects can be reduced and visible light transmittance can be improved. At this time, the visible light transmittance increases as the oxygen partial pressure increases. When the oxygen partial pressure is 0.04 to 0.4 mTorr, a highly transparent transparent conductive film having a visible light transmittance of 90% or more can be obtained.
[0022]
In addition, when the Ge content (hereinafter referred to as Ge content) is in the range of 0 to 6 atomic% when the total amount of Ge and In is 100 atomic%, the electrical resistivity increases as the Ge content increases. Decreases, but at the same time, the visible light transmittance decreases. Furthermore, if the film formation rate is slowed down and the damage given to the film is reduced, the transmittance is improved. Conversely, if the film formation rate is increased, the transmittance is reduced. Optimization of these film-forming conditions, by optimizing the Ge content, high visible light transmittance, low electrical resistivity with less than 90%, high transmittance transparent conducting which is 1 × 10 -2 Ωcm or less It has been found that a film can be formed.
[0023]
That is, when a Ge-added In 2 O 3 film having a Ge content of 1 to 7 atomic% is formed under a film formation condition of oxygen partial pressure: 0.04 to 0.4 mTorr and film formation speed of 45 Å / s or less, visible light transmission is achieved. When the film forming temperature (substrate temperature) is 250 ° C. or less, a high transmittance transparent conductive film having a rate of 90% or more and an electric resistivity of 1 × 10 −2 Ωcm or less can be obtained. In addition, it is possible to obtain a highly transparent transparent conductive film having a low electrical resistivity of 1 × 10 −2 Ωcm or less and a visible light transmittance of 90% or more. Furthermore, when the Ge content is 2 to 6 atomic%, a high transmittance transparent conductive film having a visible light transmittance of 95% or more and an electrical resistivity of 2 × 10 −3 Ωcm or less can be obtained. I found.
[0024]
Here, when the Ge content is less than 1 atomic%, the transmittance is 95% or more, but the resistivity is more than 1 × 10 −2 Ωcm. On the other hand, if it exceeds 7 atomic%, the resistivity is 2 × 10 −3 Ωcm or less, but the transmittance is less than 90%.
[0025]
The present invention has been completed based on the above knowledge, and the transparent conductive film according to the present invention has a high visible light transmittance of 95 % or higher and a low electrical resistivity, and an excellent high transmittance and transparency. Furthermore, the electrical resistivity of the film obtained is low even when the film is formed under the film formation temperature (substrate temperature): 250 ° C. or lower, and it is 2 × 10 −3 Ωcm or lower. At the same time, the visible light transmittance is 95 % or more. Moreover, according to the manufacturing method of the transparent conductive film which concerns on this invention, the high transmittance | permeability transparent conductive film which has this outstanding characteristic can be obtained.
[0026]
Incidentally, Japanese Patent Laid-Open No. 62-202415 discloses a Ge-added In 2 O 3 film and a Ge-added ITO film. However, as described above, a unique film forming method is required to form a Ge-doped In 2 O 3 film having a high transmittance and a low resistivity. Such a film forming method is described in the above publication. In addition, the high transmittance and low resistivity Ge-doped In 2 O 3 film obtained by such a film forming method is not described in the above publication. In addition, the Ge-added ITO film described in the above publication is an In 2 O 3 film in which Ge and Sn are simultaneously added. Thus, Ge and Sn are combined in a state where Ge and Sn are simultaneously added. Therefore, even if film formation is performed under a high oxygen partial pressure, the transmittance is not improved, but rather the transmittance is reduced as compared with the case of ITO.
[0027]
Deposition temperature (substrate temperature): Even when film formation is performed under film formation conditions of 250 ° C. or less, the electric resistivity of the obtained film is low, 1 × 10 −2 Ωcm or less, and visible light transmittance is 90 In order to realize a transparent conductive film of at least%, it is inevitable that the above-described film formation conditions and Ge addition amount are satisfied. Such film forming conditions and Ge addition amounts are not described in the above publication.
[0028]
Thus, since the transparent conductive film according to the present invention has excellent characteristics, it can be suitably used as a transparent electrode for LCDs and solar cells.
[0029]
【Example】
(Example 1)
As a sputtering target, a composite target in which a predetermined amount of 5 mm square Ge chip (purity 99.99%) or GeO 2 chip (purity 99.9%) is placed on an In 2 O 3 target (purity 99.95%), or a predetermined amount of Ge. Using the contained In 2 O 3 target, a Ge-added In 2 O 3 film having a thickness of 2000 mm and a Ge content of 3.7 atomic% was formed (film formation) on the glass substrate by a magnetron sputtering method. The film forming conditions at this time are as follows.
[0030]
Substrate temperature (deposition temperature) ---- 200 ℃
Atmospheric gas -------------- O 2 containing Ar
Oxygen partial pressure --- x mTorr (changed as a parameter)
Deposition rate --- 25 Å / s
[0031]
For the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation, the electrical resistivity (resistivity) is measured by a four-terminal (probe) method, and visible light is transmitted through a self-recording spectrophotometer. The rate (500 nm) was measured. The result is shown in FIG. For comparison, an ITO (10 wt% Sn-added In 2 O 3 ) film was also formed under the same film formation conditions as described above, and the same measurement was performed to compare the characteristics.
[0032]
In the Ge-added In 2 O 3 film, when the oxygen partial pressure is less than 0.004 mTorr, the visible light transmittance of the film is less than 90%, but when the oxygen partial pressure is 0.04 mTorr or more, the visible light transmittance is 90% or more. When the oxygen partial pressure is 0.08 mTorr or more, the transmittance is 95%. On the other hand, the electrical resistivity hardly changes and falls within the range of 5 × 10 −4 to 7 × 10 −4 Ωcm.
[0033]
On the other hand, in the ITO film, when the oxygen partial pressure is increased, the visible light transmittance is increased, but the electrical resistivity is largely changed by the oxygen partial pressure. At an oxygen partial pressure of 0.01 mTorr, the resistivity is 2 × 10 −4 Ωcm, but the transmittance is 85%. When the oxygen partial pressure becomes 0.04 mTorr, the transmittance increases to 87%, but the resistivity exceeds 1 × 10 −2 Ωcm.
[0034]
(Example 2)
As a sputtering target, a composite target in which a predetermined amount of 5 mm square Ge chip (purity 99.99%) or GeO 2 chip (purity 99.9%) is placed on an In 2 O 3 target (purity 99.95%), or a predetermined amount of Ge. Using the contained In 2 O 3 target, a Ge-added In 2 O 3 film having a thickness of 1600 mm and a Ge content of a predetermined amount was formed (film formation) on a glass substrate. The film forming conditions at this time are as follows.
[0035]
Substrate temperature (deposition temperature) ---- 200 ℃
Atmospheric gas -------------- O 2 containing Ar
Oxygen partial pressure --- 0.06 mTorr
Deposition rate ---------------- 30 Å / s
[0036]
The transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation was measured for electrical resistivity and visible light transmittance at a wavelength of 550 nm. The result is shown in FIG. When the Ge content is 1 to 7 atomic%, the resistivity is 1 × 10 −2 Ωcm or less, and the transmittance is 90% or more. Among them, when the Ge content is 2 to 6 atomic%, the resistivity is 2 × 10 −3 Ωcm or less, and the transmittance is 95% or more.
[0037]
(Example 3)
As a sputtering target, a composite target in which a predetermined amount of 5 mm square Ge chip (purity 99.99%) or GeO 2 chip (purity 99.9%) is placed on an In 2 O 3 target (purity 99.95%), or a predetermined amount of Ge. Using the contained In 2 O 3 target, a Ge-added In 2 O 3 film having a thickness of 1500 mm and a Ge content of 4.3 atomic% was formed (film formation) on a 0.5 mm-thick glass substrate. The film forming conditions at this time are as follows.
[0038]
Substrate temperature (deposition temperature) ---- 20 ℃
Atmospheric gas -------------- O 2 containing Ar
Oxygen partial pressure --- 0.08mTorr
Deposition rate --- 35 Å / s
[0039]
For the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation, the electrical resistivity and the visible light transmittance at a wavelength of 550 nm were measured. The resistivity was 28 × 10 −4 Ωcm, and the transmittance was: It was 90.6%.
[0040]
(Example 4)
As a sputtering target, an In 2 O 3 target (purity 99.95%) with a 5 mm square Ge chip (purity 99.99%) or a GeO 2 chip (purity 99.9%) set in a predetermined amount, or a predetermined amount of Ge Using the contained In 2 O 3 target, a Ge-added In 2 O 3 film having a thickness of 1700 mm and a Ge content of 5.0 atomic% was formed (film formation) on a 0.5 mm-thick glass substrate. The film forming conditions at this time are as follows.
[0041]
Substrate temperature (deposition temperature) ---- 300 ℃
Atmospheric gas -------------- O 2 containing Ar
Oxygen partial pressure --- 0.04 mTorr
Deposition rate --- 25 Å / s
[0042]
The transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation was measured for electrical resistivity and visible light transmittance at a wavelength of 550 nm. As a result, the resistivity was 1.8 × 10 −4 Ωcm, and the transmittance was: It was 96.5%.
[0043]
【The invention's effect】
The transparent conductive film according to the present invention has the above-described structure and functions, has a high visible light transmittance, is 95 % or more, and has a film formation temperature (substrate temperature) of 250 ° C. or less. Even when the film is formed under the film forming conditions, the electric resistivity of the obtained film is low, 2 × 10 −3 Ωcm or less, and visible light transmittance: 95 % or more. Therefore, the transparent electrode of the liquid crystal display In particular, it can be suitably used as a transparent electrode for a display electrode of a thin film transistor type liquid crystal display. Therefore, it is possible to improve the function and quality of the display in the future, such as upsizing, colorization, and high definition. It can have a remarkable effect. Moreover, the manufacturing method of the transparent conductive film which concerns on this invention can have the remarkable effect that the transparent conductive film which concerns on this invention which has this outstanding characteristic can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the resistivity and transmittance of a transparent conductive film according to Example 1 and the oxygen partial pressure during film formation.
2 is a graph showing the relationship between the Ge addition amount (Ge / Ge + In), the resistivity, and the transmittance of the transparent conductive film according to Example 2. FIG.

Claims (3)

Ge Ge 量と In 量の合計に対して2〜6原子%含有する In の酸化物からなる透明導電膜であって、電気抵抗率が2× 10 -3 Ω cm 以下であり、且つ、可視光透過率が 95 %以上であることを特徴とする高透過率透明導電膜。 The Ge a transparent conductive film made of an oxide of In containing 2-6 atomic% relative to the total amount of Ge and In content, the electrical resistivity is at 2 × 10 -3 Ω cm, and a visible A high transmittance transparent conductive film characterized by having a light transmittance of 95 % or more . 液晶ディスプレイの透明電極として用いられる請求項1記載の高透過率透明導電膜。The high transmittance transparent conductive film according to claim 1, which is used as a transparent electrode of a liquid crystal display . GeGe The GeGe 量とWith quantity InIn 量の合計に対して2〜6原子%含有する2 to 6 atomic percent of the total amount InIn の酸化物からなる高透過率透明導電膜をスパッタリング法により形成するに際し、スパッタリングガスとして酸素分圧:When forming a high transmittance transparent conductive film made of the above oxide by sputtering, oxygen partial pressure as sputtering gas: 0.040.04 ~ 0.4mTorr0.4mTorr のガスを用いると共に、成膜速度をAnd the film formation speed 4545 Å/Å / s s 以下とすることを特徴とする高透過率透明導電膜の製造方法。The manufacturing method of the highly transparent transparent conductive film characterized by the following.
JP13335298A 1998-05-15 1998-05-15 High transmittance transparent conductive film and manufacturing method thereof Expired - Lifetime JP3618546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13335298A JP3618546B2 (en) 1998-05-15 1998-05-15 High transmittance transparent conductive film and manufacturing method thereof
KR1019990016919A KR100323297B1 (en) 1998-05-15 1999-05-12 Transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13335298A JP3618546B2 (en) 1998-05-15 1998-05-15 High transmittance transparent conductive film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11322333A JPH11322333A (en) 1999-11-24
JP3618546B2 true JP3618546B2 (en) 2005-02-09

Family

ID=15102720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13335298A Expired - Lifetime JP3618546B2 (en) 1998-05-15 1998-05-15 High transmittance transparent conductive film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3618546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150153478A1 (en) 2007-04-18 2015-06-04 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
WO2006025470A1 (en) 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article

Also Published As

Publication number Publication date
JPH11322333A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
EP0411726B1 (en) A method of manufacturing flat panel display backplanes
US7060320B1 (en) Transparent conductive film for transparent touch panel, transparent touch panel using transparent conductive film, and method of manufacturing transparent conductive film
US20090242887A1 (en) Display Substrate Having a Transparent Conductive Layer Made of Zinc Oxide and Manufacturing Method Thereof
KR20100102399A (en) Thin film transistor display panel
US20110102722A1 (en) Indium tin oxide sputtering target and transparent conductive film fabricated using the same
KR0147867B1 (en) A two-terminal nonlinear device
US6317185B1 (en) Liquid crystal display apparatus
JP3618546B2 (en) High transmittance transparent conductive film and manufacturing method thereof
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
CN1153090C (en) Active matrix substrate and liquid crystal display comprising the same
JP3780100B2 (en) Transparent conductive film with excellent processability
JP3515688B2 (en) Low electric resistance transparent conductive film
JPH0950711A (en) Transparent conductive film
JPH06160876A (en) Transparent electrode plate and its production
KR100323297B1 (en) Transparent conducting film
JPH06139844A (en) Ito conducting film and its manufacture
CN112209626A (en) High-resistance film and preparation method and application thereof
US10852601B2 (en) Display panel and method of manufacturing the same
JP2945947B2 (en) Liquid crystal display
JPH06103817A (en) Conductive thin film
CN110488544B (en) Array substrate and display device
JP3382461B2 (en) Method for manufacturing transparent conductive film and liquid crystal display element
JP2775354B2 (en) Liquid crystal electro-optical device
KR101317803B1 (en) Liquid Crystal Display Device, Organic Light Emitting Diode and Touch Screen Having Phase-Transition Indium Tin Oxide Transparent Conductive Film As Electrode
JPH0869981A (en) Transparent conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term