JPH11329085A - Low electrical resistant transparent conductive film - Google Patents

Low electrical resistant transparent conductive film

Info

Publication number
JPH11329085A
JPH11329085A JP13335198A JP13335198A JPH11329085A JP H11329085 A JPH11329085 A JP H11329085A JP 13335198 A JP13335198 A JP 13335198A JP 13335198 A JP13335198 A JP 13335198A JP H11329085 A JPH11329085 A JP H11329085A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
less
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13335198A
Other languages
Japanese (ja)
Other versions
JP3515688B2 (en
Inventor
Masao Mizuno
雅夫 水野
Takashi Miyamoto
隆志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13335198A priority Critical patent/JP3515688B2/en
Priority to KR1019990016919A priority patent/KR100323297B1/en
Publication of JPH11329085A publication Critical patent/JPH11329085A/en
Application granted granted Critical
Publication of JP3515688B2 publication Critical patent/JP3515688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film having electrical conductivity, low electrical resistivity and high visible light permeability even under a low film-forming temperature condition by using the In oxide as a main component, and including a specified quantity of Ge or Ge oxide so as to obtain a specified carrier density and carrier mobility. SOLUTION: In a spattering device, a target made of In2 O3 or the like doped with Sn according to need is spattered in the O2 included inert gas atmosphere so as to form a transparent conductive film mainly composed of In2 O3 on a board at 250 deg.C or below. At this stage, a metal Ge chip is placed on the In2 O3 target at the predetermined area ratio so as to form a compound target, and this compound target is spattered, and content percentage of Ge in the formed conductive film is regulated at 2-10 atom.% in relation to Ge+In, desirably at 5-7 atom.%. A film having carrier density at 9×10<20> /cm<3> or more, desirably at 15×10<20> /cm<3> or more, carrier mobility at 20 cm<3> /Vs or more, desirably 25 cm<3> /Vs, electrical resistivity at 10×10<-4> Ωcm or less, and visible light permeability at 80% or more is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低電気抵抗透明導
電膜に関し、詳細には、低電気抵抗を有すると共に高い
可視光透過率を有する透明導電膜に関し、特には、液晶
ディスプレイ、エレクトロルミネッセンスディスプレ
イ、プラズマディスプレイ等のフラットパネルディスプ
レイの透明電極や太陽電池の透明電極として好適に利用
し得る透明導電膜に関し、中でもスパッタリング法によ
り250 ℃以下で成膜される場合でも低電気抵抗を有し得
る透明導電膜に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having a low electric resistance, and more particularly, to a transparent conductive film having a low electric resistance and a high visible light transmittance, and more particularly to a liquid crystal display and an electroluminescent display. The present invention relates to a transparent conductive film which can be suitably used as a transparent electrode of a flat panel display such as a plasma display or a transparent electrode of a solar cell. It belongs to the technical field of conductive films.

【0002】[0002]

【従来の技術】電気伝導性を有し、電気抵抗が低く、か
つ可視光透過率が高い透明導電膜は、液晶ディスプレ
イ;Liquid Crystal Display(以降、LCDという)や
エレクトロルミネッセンス表示装置、太陽電池の透明電
極、あるいはタッチパネル、帯電防止膜、ガスセンサー
等に適用されている。
2. Description of the Related Art A transparent conductive film having electric conductivity, low electric resistance and high visible light transmittance is used for a liquid crystal display; a liquid crystal display (hereinafter, referred to as an LCD), an electroluminescent display device, and a solar cell. It is applied to transparent electrodes, touch panels, antistatic films, gas sensors and the like.

【0003】これらの中でも、LCDは、従来のブラウ
ン管にくらべ、薄型、軽量、小電力で、しかも高い解像
度が得られるため、近年、その用途が拡大している。
[0003] Among these, LCDs have been used in recent years because of their thinness, light weight, small power consumption, and high resolution as compared with conventional cathode-ray tubes.

【0004】かかるLCDの画面表示は、印加電圧の制
御によって液晶分子の配置を変化させることによって、
画素液晶を透過し画面に到達し得るバックライトからの
投射光の光量を調節することにより行われている。従っ
て、液晶を駆動するために用いられる電極は、液晶分子
に安定な電圧を印加するために低電気抵抗率であること
が要求され、又、投射光を効率良く画面表示に使用する
ために可視光領域で高い透過率を有することが要求され
る。
[0004] Such an LCD screen display is made by changing the arrangement of liquid crystal molecules by controlling the applied voltage.
This is performed by adjusting the amount of projection light from a backlight that can pass through the pixel liquid crystal and reach the screen. Therefore, the electrodes used to drive the liquid crystal are required to have a low electrical resistivity in order to apply a stable voltage to the liquid crystal molecules, and are required to be visible in order to efficiently use the projected light for screen display. It is required to have high transmittance in the light region.

【0005】可視光領域で高い透過率を有し、且つ導電
性を示す透明導電物質としてSnO2、ZnO 、In2O3 があげ
られるが、LCDの透明電極は500 〜5000Åの膜厚の薄
膜として使用されるために、これらのSnO2、ZnO 、In2O
3 では電気抵抗が高くなって使用できない。LCDの透
明電極として用いるためには電気抵抗率が10×10-4Ωcm
以下であり、透過率が可視光領域で80%以上であること
が必要である。現在、この要求を満たしLCDの透明電
極として用いられている透明導電膜は、Snを添加したIn
2O3(;Indium Tin Oxide)(以降ITOという)であり、
かかるLCD透明電極用ITO薄膜は主にマグネトロン
スパッタリング法で成膜されている。
[0005] SnO 2 , ZnO, and In 2 O 3 can be cited as transparent conductive materials having high transmittance in the visible light region and exhibiting electrical conductivity. The transparent electrode of an LCD is a thin film having a thickness of 500 to 5000 mm. To be used as these SnO 2 , ZnO, In 2 O
3 cannot be used due to high electrical resistance. For use as a transparent electrode of LCD, the electrical resistivity is 10 × 10 -4 Ωcm
And the transmittance must be 80% or more in the visible light region. At present, a transparent conductive film that satisfies this requirement and is used as a transparent electrode of an LCD is an Sn-added In conductive film.
2 O 3 (; Indium Tin Oxide) (hereinafter referred to as ITO)
Such an ITO thin film for an LCD transparent electrode is mainly formed by a magnetron sputtering method.

【0006】ところで、近年のLCDの大型化、カラー
化あるいは高精細化の動きにより、LCDの透明電極に
おいては低比抵抗化、高透過率化が最も重要な要求特性
になりつつある。即ち、LCDの大型化を目指す場合、
表示画面の大型化に伴って長さの長い透明電極が必要と
なり、そのため、これまでのものよりも低比抵抗の透明
導電膜が要求される。膜の電気抵抗率はスパッタリング
の際の成膜温度に大きく依存しており、成膜温度が高い
と得られる膜の電気抵抗率が低くなり、400 ℃以上の成
膜温度では電気抵抗率:1.2 ×10-4Ωcm程度の膜が得ら
れている。
[0006] With the recent trend toward larger LCDs, larger colors, and higher definition LCDs, lower specific resistance and higher transmittance of the transparent electrodes of LCDs are becoming the most important required characteristics. In other words, when aiming for a larger LCD,
As the size of the display screen increases, a transparent electrode having a longer length is required. Therefore, a transparent conductive film having a lower specific resistance than that of the conventional one is required. The electrical resistivity of the film greatly depends on the film forming temperature during sputtering, and the higher the film forming temperature, the lower the electrical resistivity of the obtained film becomes. When the film forming temperature is 400 ° C. or higher, the electric resistivity is 1.2. A film of about × 10 −4 Ωcm is obtained.

【0007】しかし、LCDのカラー化に対応するため
には耐熱性に劣るカラーフィルターやプラスチック基板
上に透明導電膜を成膜する必要があり、そのため透明電
極の成膜を基板温度:250℃以下の条件で行う必要があ
る。250 ℃以下で成膜すると電気抵抗率は10×10-4Ωcm
以上に増加し、これがLCDのカラー表示画面の精度の
劣化の一因となる。従って、かかるカラーLCDの表示
画面の精度を向上させるためには、基板温度:250℃以下
で成膜された場合でも電気抵抗率が低く、同時に高透過
率を備えた透明導電膜が要求される。ここで、電気抵抗
率の増加を回避するために透明導電膜の膜厚を厚くする
と、透明導電膜の透過率が減少して液晶画面(LCD表
示画面)の輝度、色調に支障を来すことになる。将来の
さらなるLCDの高精細化に対応するためには、250 ℃
以下の成膜においても電気抵抗率が10×10-4Ωcm以下で
あり、透過率が可視光領域で85%以上である透明導電膜
の開発が強く望まれる。
However, it is necessary to form a transparent conductive film on a color filter or a plastic substrate having inferior heat resistance in order to cope with the colorization of the LCD. Therefore, the transparent electrode is formed at a substrate temperature of 250 ° C. or less. Must be performed under the following conditions. When the film is formed at 250 ° C or less, the electric resistivity is 10 × 10 -4 Ωcm
This increases the accuracy of the color display screen of the LCD. Therefore, in order to improve the accuracy of the display screen of such a color LCD, a transparent conductive film having low electric resistivity and high transmittance at the same time is required even when the film is formed at a substrate temperature of 250 ° C. or lower. . Here, if the thickness of the transparent conductive film is increased in order to avoid an increase in the electrical resistivity, the transmittance of the transparent conductive film decreases, and the brightness and color tone of the liquid crystal screen (LCD display screen) are hindered. become. In order to cope with higher definition of LCDs in the future, 250 ℃
Even in the following film formation, development of a transparent conductive film having an electric resistivity of 10 × 10 −4 Ωcm or less and a transmittance of 85% or more in a visible light region is strongly desired.

【0008】ところで、従来のLCD用透明電極として
一般的なITO、即ち、SnをドープしたIn2O3 の導電機
構は次の通りである。即ち、母体であるIn2O3 には酸素
欠陥が存在し、この欠陥準位からキャリア電子が供給さ
れ、In2O3 は電気伝導性を示す。酸素欠陥の量が少ない
場合には欠陥準位による可視光の吸収が少なく透過率が
向上し、その反面、欠陥準位からのキャリアの供給量が
少なくなるため電気抵抗が大きくなる。
By the way, the conductive mechanism of the general ITO, ie, Sn-doped In 2 O 3 , as a conventional transparent electrode for LCD is as follows. That is, the base In 2 O 3 has oxygen vacancies, carrier electrons are supplied from the defect levels, and the In 2 O 3 exhibits electric conductivity. When the amount of oxygen vacancies is small, the absorption of visible light by the defect levels is small and the transmittance is improved. On the other hand, the supply amount of carriers from the defect levels is small, so that the electric resistance increases.

【0009】ITO中のSnは、In2O3 中の酸素欠陥と複
合し、キャリア電子を放出する働きがある。従って、In
2O3 にSnを添加することでキャリア密度を増大させるこ
とが可能となり、ITO膜の電気抵抗率はIn2O3 膜より
減少する。
[0009] Sn in ITO has a function of emitting carrier electrons in combination with oxygen vacancies in In 2 O 3 . Therefore, In
By adding Sn to 2 O 3 , the carrier density can be increased, and the electrical resistivity of the ITO film is lower than that of the In 2 O 3 film.

【0010】ITO中のキャリア電子の放出はSnと酸素
欠陥との複合効果により発生する。そのため、酸素欠陥
の量が少なくなるとSn添加の効果が現れなくなる。従っ
て、酸素欠陥をある程度残した状態でITO膜を成膜す
る必要がある。又、酸素欠陥が多すぎても、Snとの複合
構造が乱れてキャリア電子の放出量が減少する。さら
に、酸素欠陥の量が多いと、キャリア移動度も低下す
る。
The release of carrier electrons in ITO is caused by the combined effect of Sn and oxygen vacancies. Therefore, when the amount of oxygen vacancies decreases, the effect of Sn addition does not appear. Therefore, it is necessary to form the ITO film while leaving some oxygen defects. Also, if the number of oxygen vacancies is too large, the composite structure with Sn is disturbed and the amount of emitted carrier electrons is reduced. Furthermore, when the amount of oxygen vacancies is large, the carrier mobility also decreases.

【0011】具体的には、室温で成膜したITO膜はキ
ャリア密度が7×1020/cm3、キャリア移動度が13cm3/Vs
程度、電気抵抗率が11×10-4Ωcmである。
Specifically, an ITO film formed at room temperature has a carrier density of 7 × 10 20 / cm 3 and a carrier mobility of 13 cm 3 / Vs
The electrical resistivity is about 11 × 10 −4 Ωcm.

【0012】更には、酸素欠陥が多くなると、欠陥準位
による光吸収が増加するため、膜の可視光透過率が減少
する。従って、膜の透明度を上げるためには酸素欠陥が
少ないことが望ましい。又、Snの添加量が増加しても透
過率は減少する。
Furthermore, when the number of oxygen vacancies increases, light absorption due to defect levels increases, so that the visible light transmittance of the film decreases. Therefore, it is desirable that the number of oxygen vacancies be small in order to increase the transparency of the film. Further, even if the amount of Sn added increases, the transmittance decreases.

【0013】上記の如く重要な影響を及ぼす膜中の酸素
欠陥を支配する主要な成膜パラメータは、成膜ガス中の
酸素分圧と成膜速度である。
As described above, the main film forming parameters that govern oxygen defects in the film that have an important effect are the oxygen partial pressure in the film forming gas and the film forming speed.

【0014】ITO中の酸素欠陥量を適当量にする酸素
量(即ち、酸素分圧)は、0.0001〜0.002mTorrである。
この酸素分圧下で成膜を行うと、酸素欠陥が適量残るた
め、電気抵抗率が最小となる。これ以上の酸素を含む雰
囲気で成膜を行うと、酸素欠陥の量が減少するため、透
過率は上昇するものの、電気抵抗率が大きくなる。従っ
て、高い酸素分圧下での成膜はできない。
The amount of oxygen (that is, oxygen partial pressure) for making the amount of oxygen vacancies in ITO an appropriate amount is 0.0001 to 0.002 mTorr.
When a film is formed under this oxygen partial pressure, an appropriate amount of oxygen vacancies remains, so that the electrical resistivity is minimized. When the film is formed in an atmosphere containing oxygen more than this, the amount of oxygen vacancies is reduced, so that the transmittance increases but the electrical resistivity increases. Therefore, a film cannot be formed under a high oxygen partial pressure.

【0015】次に、成膜速度と酸素欠陥の量の関係につ
いて述べる。成膜速度が早い条件下での成膜では、スパ
ッタガス中の反跳Ar等の衝突によって膜中に欠陥が生じ
やすく、成膜速度が遅いと欠陥が少なくなる。極間距離
や成膜パワーを制御することにより成膜速度が制御で
き、20Å/second (Å/s)以下の成膜速度で成膜する
と、250 ℃の成膜において、電気抵抗率が2×10-4Ωcm
であり、1000Å以上の膜厚において透過率80%である膜
が成膜可能となる。しかし、成膜速度を20Å/s以上にす
ると、急激に透過率が低下する。従って、ITOでは生
産性を上げるためにむやみやたらに成膜速度を上げるこ
とはできない。
Next, the relationship between the film forming rate and the amount of oxygen defects will be described. In the film formation under a condition where the film formation speed is high, defects are easily generated in the film due to collision of recoil Ar or the like in the sputtering gas, and the defects are reduced when the film formation speed is low. The film formation rate can be controlled by controlling the distance between the electrodes and the film formation power. When the film is formed at a film formation rate of 20Å / second (Å / s) or less, the electrical resistivity becomes 2 × at 250 ° C. 10 -4 Ωcm
Thus, a film having a transmittance of 80% at a film thickness of 1000 ° or more can be formed. However, when the film formation rate is set to 20 ° / s or more, the transmittance is rapidly reduced. Therefore, it is not possible to increase the film formation rate in ITO in order to increase productivity.

【0016】以上述べたように、将来のさらなる高精細
カラーLCDに対応するためには、250 ℃以下の成膜に
おいても電気抵抗率が10×10-4Ωcm以下であり、透過率
が可視光領域で80%以上であり、しかも生産性の点から
高い成膜速度で成膜可能な透明導電膜が不可欠であり、
従来のITOにかわる新しい透明導電膜の開発が望まれ
ている。
As described above, in order to support future high-definition color LCDs, the electrical resistivity is 10 × 10 −4 Ωcm or less and the transmittance is visible light even at 250 ° C. or less. A transparent conductive film that is 80% or more in the area and that can be deposited at a high deposition rate is indispensable from the viewpoint of productivity.
There is a demand for the development of a new transparent conductive film that replaces the conventional ITO.

【0017】[0017]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は、成膜温
度(基板温度):250 ℃以下の成膜条件で成膜される場
合においても得られる膜の電気抵抗率が低く、10×10-4
Ωcm以下であり、又、可視光透過率が高く、80%以上で
ある透明導電膜を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to form a film under a film forming temperature (substrate temperature): 250 ° C. or less. even low electrical resistivity of the resulting film when that, 10 × 10 -4
It is an object of the present invention to provide a transparent conductive film having a Ωcm or less and a high visible light transmittance of 80% or more.

【0018】[0018]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る透明導電膜は、請求項1〜5記載の
透明導電膜としており、それは次のような構成としたも
のである。即ち、請求項1記載の透明導電膜は、Inの酸
化物を主成分とし、GeあるいはGe酸化物を含有する透明
導電膜であって、Geの含有量がGe量とIn量の合計に対し
て2〜10原子%、キャリア密度が9×1020/cm3以上、キ
ャリア移動度が20cm3/Vs以上であることを特徴とする低
電気抵抗透明導電膜である(第1発明)。
In order to achieve the above object, a transparent conductive film according to the present invention is a transparent conductive film according to claims 1 to 5, which has the following structure. is there. That is, the transparent conductive film according to claim 1 is a transparent conductive film containing an oxide of In as a main component and containing Ge or a Ge oxide, wherein the Ge content is relative to the sum of the Ge amount and the In amount. A low electric resistance transparent conductive film characterized by having a carrier density of 9 × 10 20 / cm 3 or more and a carrier mobility of 20 cm 3 / Vs or more (first invention).

【0019】請求項2記載の透明導電膜は、電気抵抗率
が10×10-4Ωcm以下であると共に、可視光透過率が80%
以上である請求項1記載の低電気抵抗透明導電膜である
(第2発明)。請求項3記載の透明導電膜は、Geの含有
量がGe量とIn量の合計に対して5〜7原子%、キャリア
密度が15×1020/cm3以上、キャリア移動度が25cm3/Vs以
上である請求項1記載の低電気抵抗透明導電膜である
(第3発明)。請求項4記載の透明導電膜は、電気抵抗
率が1.6 ×10-4Ωcm以下であると共に、可視光透過率が
80%以上である請求項3記載の低電気抵抗透明導電膜で
ある(第4発明)。請求項5記載の透明導電膜は、液晶
ディスプレイの透明電極として用いられる請求項1、
2、3又は4記載の透明導電膜である(第5発明)。
The transparent conductive film according to claim 2 has an electric resistivity of 10 × 10 −4 Ωcm or less and a visible light transmittance of 80%.
The low electric resistance transparent conductive film according to claim 1, which is the above (second invention). The transparent conductive film according to claim 3, wherein the content of Ge is 5 to 7 atomic% with respect to the total of the Ge amount and the In amount, the carrier density is 15 × 10 20 / cm 3 or more, and the carrier mobility is 25 cm 3 / The low electric resistance transparent conductive film according to claim 1, which is not lower than Vs (third invention). The transparent conductive film according to claim 4 has an electric resistivity of 1.6 × 10 −4 Ωcm or less and a visible light transmittance.
The low electric resistance transparent conductive film according to claim 3, which is 80% or more (fourth invention). The transparent conductive film according to claim 5 is used as a transparent electrode of a liquid crystal display.
A transparent conductive film according to 2, 3, or 4 (fifth invention).

【0020】[0020]

【発明の実施の形態】本発明に係る透明導電膜は、例え
ばスパッタリング法により次のようにして成膜すること
ができる。即ち、スパッタリング装置内に基板を配置
し、一方、スパッタリングターゲットとして例えば In2
O3ターゲット上にGeのチップを設置した複合ターゲット
を配置し、酸素ガスを含む不活性ガス雰囲気中で、前記
基板を加熱した状態にしてから、この基板と前記複合タ
ーゲットとの間に電界を印加することにより、基板上に
Geを含有するIn2O3 よりなる透明導電膜を形成(成膜)
することができる。このとき、複合ターゲットでの In2
O3ターゲットとGeチップの表面積比率を変えることによ
り、Ge含有量を変化させることができる。このGe含有量
の調整、及び、成膜条件の調整により、本発明に係る透
明導電膜を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The transparent conductive film according to the present invention can be formed, for example, by a sputtering method as follows. That is, a substrate is placed in a sputtering apparatus, while a sputtering target such as In 2
A composite target having a Ge chip placed thereon is placed on an O 3 target, and the substrate is heated in an inert gas atmosphere containing oxygen gas, and then an electric field is applied between the substrate and the composite target. By applying
Formation (film formation) of a transparent conductive film made of In 2 O 3 containing Ge
can do. In this case, In 2
The Ge content can be changed by changing the surface area ratio between the O 3 target and the Ge chip. By adjusting the Ge content and the film formation conditions, the transparent conductive film according to the present invention can be obtained.

【0021】本発明者等はスパッタリング法により種々
の組成の透明導電膜を形成し、その組成、及び、透明導
電膜としての特性を調べた。その結果、Inの酸化物を主
成分とし、GeあるいはGe酸化物を含有する透明導電膜で
あって、Geの含有量がGe量とIn量の合計に対して2〜10
原子%であるものは、成膜温度(基板温度):250 ℃以
下の成膜条件で成膜される場合においても電気抵抗率が
低く、10×10-4Ωcm以下であり、又、可視光透過率が高
く、80%以上であることを見出し、本発明を完成するに
至った。
The present inventors formed transparent conductive films of various compositions by a sputtering method, and examined the compositions and characteristics of the transparent conductive films. As a result, a transparent conductive film containing an oxide of In as a main component and containing Ge or a Ge oxide, wherein the content of Ge is 2 to 10 with respect to the total of the Ge amount and the In amount.
Atomic% means that the film has a low electric resistivity even at a film forming temperature (substrate temperature) of 250 ° C. or less, that is, 10 × 10 −4 Ωcm or less. The inventors have found that the transmittance is high and is 80% or more, and have completed the present invention.

【0022】この詳細を以下説明する。The details will be described below.

【0023】本発明に係る透明導電膜の如くGeを添加し
た In2O3膜においては、Geが In2O3の酸素欠陥とは独立
に単体でキャリア電子を放出する働きがある。従って、
かかるGeを添加した In2O3膜では、従来のITOの如く
ITO中のSnが酸素欠陥と複合しているために適量の酸
素欠陥が必要であったものとは異なり、膜中の酸素欠陥
の量を減少させてもGeからのキャリア電子放出には影響
がない。その結果、高い酸素分圧下での成膜によって酸
素欠陥を少なくし、酸素欠陥に起因する散乱を減少させ
ることが可能となり、ITOよりも電気抵抗率を減少さ
せることができる。又、酸素欠陥が多い場合において
も、Geから放出されるキャリア密度は変化が少ないた
め、少々欠陥が生成する条件下、例えば、高パワー下で
の成膜や早い成膜速度を維持した状態での成膜条件下
で、低電気抵抗膜の成膜が可能である。
In the In 2 O 3 film to which Ge is added, such as the transparent conductive film according to the present invention, Ge has a function of emitting carrier electrons by itself independently of oxygen defects of In 2 O 3 . Therefore,
In the In 2 O 3 film to which Ge is added, unlike the conventional ITO, which requires a proper amount of oxygen deficiency because Sn in ITO is combined with oxygen vacancy, the oxygen deficiency in the film is different. Has no effect on the carrier electron emission from Ge. As a result, oxygen vacancies can be reduced by film formation under a high oxygen partial pressure, scattering caused by oxygen vacancies can be reduced, and electric resistivity can be reduced as compared with ITO. In addition, even when there are many oxygen defects, the carrier density emitted from Ge does not change much, so that under a condition that a few defects are generated, for example, under a high power or a high film formation rate, Under the conditions described above, a low electric resistance film can be formed.

【0024】また、GeはSnよりもの原子半径が小さいた
め、In2O3 に生じる結晶そのもののひずみが大きくな
る。この際、結晶のひずみが大きくなると、キャリア移
動度が低下し、電気抵抗率が上昇する。成膜速度を遅く
して成膜すると、結晶に生じるひずみが残存してしまう
ため、ある程度、高エネルギー状態で成膜する必要があ
る。つまり、早い成膜速度で成膜した方が結晶性が高
く、キャリア移動度が高い良好な膜が得られる。
Since Ge has a smaller atomic radius than Sn, the strain of the crystal itself generated in In 2 O 3 increases. At this time, when the strain of the crystal increases, the carrier mobility decreases and the electric resistivity increases. If the film is formed at a low film formation rate, the strain generated in the crystal remains, so that it is necessary to form the film in a high energy state to some extent. In other words, when a film is formed at a high film formation rate, a good film having high crystallinity and high carrier mobility can be obtained.

【0025】Ge添加 In2O3は上記の如き性質を有してい
るので、その性能を充分に発揮させるためには、これに
適した成膜方法を適用することが重要である。この成膜
方法や成膜条件等について以下説明する。
Since Ge-added In 2 O 3 has the above-mentioned properties, it is important to apply a film forming method suitable for this in order to sufficiently exhibit its performance. The film forming method and the film forming conditions will be described below.

【0026】先ず、 In2O3膜そのものに残存するひずみ
を減少させるため、高エネルギー状態での成膜を行う。
具体的には、成膜速度を45〜100 Å/sとする。この際、
成膜速度が100 Å/s超にすると、反跳Ar衝突による結晶
の欠陥起因の透過率の減少が不可避となり、膜厚1000Å
以上の膜に対して透過率が80%未満となる。45Å/s未満
にすると、結晶構造の乱れに起因してキャリア移動度が
20cm3/Vs未満となるため、電気抵抗率が10×10-4Ωcm超
となる。
First, in order to reduce the distortion remaining in the In 2 O 3 film itself, the film is formed in a high energy state.
Specifically, the film forming speed is set to 45 to 100 Å / s. On this occasion,
When the film formation rate exceeds 100 mm / s, a decrease in transmittance due to crystal defects due to recoil Ar collision becomes inevitable, and the film thickness becomes 1000 mm / s.
The transmittance of the above film is less than 80%. If it is less than 45Å / s, carrier mobility may be reduced due to disorder of the crystal structure.
Since it is less than 20 cm 3 / Vs, the electric resistivity exceeds 10 × 10 −4 Ωcm.

【0027】次に、Geの酸素欠陥量を減少させ、電気抵
抗率を増加させることなく透過率を向上させるために、
成膜ガス中の酸素分圧を0.002mTorr以上とする。この条
件下で、膜厚1000Å以上の膜に対して80%以上の透過率
が得られる。
Next, in order to reduce the amount of oxygen vacancies in Ge and improve the transmittance without increasing the electrical resistivity,
The oxygen partial pressure in the deposition gas is set to 0.002 mTorr or more. Under these conditions, a transmittance of 80% or more is obtained for a film having a thickness of 1000 mm or more.

【0028】以上の成膜条件下で、Geの含有量がGe量と
In量の合計に対して2〜10原子%であると、低電気抵抗
膜の成膜が難しい250 ℃以下の成膜温度においてキャリ
ア密度が9×1020/cm3以上、キャリア移動度が20cm3/Vs
以上となり、その結果、電気抵抗率が10×10-4Ωcm以下
であると共に可視光透過率が80%以上である結晶質のGe
含有 In2O3よりなる透明導電膜が得られる。
Under the above film forming conditions, the content of Ge is
When the In content is 2 to 10 atomic% with respect to the total amount, the carrier density is 9 × 10 20 / cm 3 or more and the carrier mobility is 20 cm at a deposition temperature of 250 ° C. or less where it is difficult to form a low electric resistance film. 3 / Vs
As a result, crystalline Ge having an electric resistivity of 10 × 10 −4 Ωcm or less and a visible light transmittance of 80% or more is obtained.
A transparent conductive film comprising In 2 O 3 is obtained.

【0029】このとき、Ge量とIn量の合計に対するGeの
含有量(以降、Ge含有量という)が5〜7原子%である
と、250 ℃以下の成膜温度においてキャリア密度が15×
1020/cm3以上、キャリア移動度が25cm3/Vs以上となり、
電気抵抗率が1.6 ×10-4Ωcm以下であると共に可視光透
過率が80%以上である結晶質膜が得られる。
At this time, if the content of Ge with respect to the sum of the amount of Ge and the amount of In (hereinafter referred to as Ge content) is 5 to 7 atomic%, the carrier density becomes 15 × at a film formation temperature of 250 ° C. or less.
10 20 / cm 3 or more, carrier mobility 25 cm 3 / Vs or more,
A crystalline film having an electric resistivity of 1.6 × 10 −4 Ωcm or less and a visible light transmittance of 80% or more is obtained.

【0030】成膜温度が250 ℃超であれば、上記のキャ
リア密度、キャリア移動度は容易に達成され、容易に電
気抵抗率が1.6 ×10-4Ωcm以下の膜となる。
When the film formation temperature is higher than 250 ° C., the above carrier density and carrier mobility can be easily achieved, and a film having an electric resistivity of 1.6 × 10 −4 Ωcm or less can be easily obtained.

【0031】ここで、Ge含有量が2原子%未満である
と、キャリア密度が9×1020/cm3未満となるため、電気
抵抗率が10×10-4Ωcm超の膜になり、又、Ge含有量が10
原子%超であると、キャリア移動度が20cm3/Vs未満とな
るため、電気抵抗率が10×10-4Ωcm超の膜になり、低電
気抵抗透明導電膜とはならない。
Here, when the Ge content is less than 2 atomic%, the carrier density becomes less than 9 × 10 20 / cm 3 , so that the film has an electric resistivity of more than 10 × 10 −4 Ωcm, and , Ge content is 10
When the content is more than atomic%, the carrier mobility becomes less than 20 cm 3 / Vs, so that the film has an electric resistivity of more than 10 × 10 −4 Ωcm, and does not become a low electric resistance transparent conductive film.

【0032】本発明は以上のような知見に基づき完成さ
れたものであり、本発明に係る透明導電膜は、成膜温度
(基板温度):250 ℃以下の成膜条件で成膜される場合
においても得られる膜の電気抵抗率が低く、10×10-4Ω
cm以下であり、又、可視光透過率が高く、80%以上であ
る。
The present invention has been completed on the basis of the above findings, and the transparent conductive film according to the present invention is formed when the film is formed under a film forming temperature (substrate temperature): 250 ° C. or less. The electrical resistivity of the obtained film is low, 10 × 10 -4 Ω
cm or less, and has a high visible light transmittance of 80% or more.

【0033】ところで、特開昭62-202415 号公報には、
Sn含量がIn1モルに対して0.01〜3モル、Ge含量がIn1
モルに対して0.0001〜0.6 モルであるIn2O3 膜(ITO
膜)において400 ℃の成膜温度で電気抵抗率2×10-4Ω
cm以下の膜を成膜した例が開示されている。しかしなが
ら、前述の如く、Ge添加 In2O3の低抵抗化に必要な成膜
条件は、ITOの低抵抗化必要な成膜条件とは大きく異
なるため、250 ℃以下の成膜温度において低抵抗のGe添
加 In2O3を成膜するにはITOの成膜条件とは異なるGe
添加 In2O3膜の低抵抗化を目的とする独自の成膜方法が
必要となる。
Incidentally, Japanese Patent Application Laid-Open No. 62-202415 discloses that
Sn content is 0.01 to 3 moles per mole of In, Ge content is In1
0.0001 to 0.6 mol per mol of In 2 O 3 film (ITO
Film) at a film formation temperature of 400 ° C. with an electric resistivity of 2 × 10 −4 Ω
An example in which a film having a size of not more than cm is formed is disclosed. However, as described above, the film formation conditions required for lowering the resistance of Ge-added In 2 O 3 are significantly different from the film formation conditions required for lowering the resistance of ITO. Ge-added In 2 O 3 is formed using a different Ge
A unique film forming method for lowering the resistance of the added In 2 O 3 film is required.

【0034】さらに、Geの能力を発揮させる成膜条件
と、Snの能力を発揮させる成膜条件とは大きく異なって
いるため、GeとSnを同時添加させた状態では、Ge添加 I
n2O3膜の低抵抗化の能力を充分発揮させる成膜条件を選
択することは難しく、同時添加の電気抵抗率は、GeやSn
を単独で添加した場合の電気抵抗率よりも上昇してしま
う。
Further, since the film forming conditions for exhibiting the ability of Ge and the film forming conditions for exhibiting the ability of Sn are greatly different, when Ge and Sn are simultaneously added, the Ge added I
It is difficult to select film-forming conditions for sufficiently exhibiting the capability of lowering the resistance of the n 2 O 3 film.
Is increased more than the electrical resistivity in the case of adding singly.

【0035】従って、250 ℃以下の成膜温度で、高い透
過率保持し、低電気抵抗率を有する透明導電膜を実現す
るためには、Ge単独添加、或いはGe添加及び悪影響を与
えない程度の量のSnの添加(Sn添加量:Sn量とIn量の合
計に対して2原子%以下)とすること、及び、前述の成
膜条件及びGe添加量を満足することが不可避となる。
Accordingly, in order to realize a transparent conductive film having a high transmittance and a low electric resistivity at a film formation temperature of 250 ° C. or less, it is necessary to add Ge alone or add Ge so as not to adversely affect the conductive film. It is inevitable that the amount of Sn added (Sn addition amount: 2 atomic% or less based on the total of Sn amount and In amount) and that the above-described film forming conditions and Ge addition amount are satisfied.

【0036】このように本発明に係る透明導電膜は優れ
た特性を有するので、LCD等のディスプレイ機器や太
陽電池等の透明電極として好適に用いることができる。
As described above, since the transparent conductive film according to the present invention has excellent characteristics, it can be suitably used as a transparent electrode for a display device such as an LCD or a solar cell.

【0037】[0037]

【実施例】(実施例1)スパッタリングターゲットとし
て、 In2O3ターゲット(純度 99.95%、相対密度95%)
上に5mm角のGeのチップ(純度 99.9 %)を所定量設置
した複合ターゲット、又は、Geを所定量含有するIn2O3
ターゲットを用い、ガラス基板上に厚さ:1500Å、Ge含
有量:7原子%のGe添加In2O3 膜をマグネトロンスパッ
タリング法によって成膜速度を制御しながら形成(成
膜)した。このときの成膜条件は下記の通りである。
EXAMPLES Example 1 In 2 O 3 target (purity 99.95%, relative density 95%) as a sputtering target
A composite target in which a predetermined amount of a 5 mm square Ge chip (purity 99.9%) is provided, or In 2 O 3 containing a predetermined amount of Ge
Using a target, a Ge-added In 2 O 3 film having a thickness of 1500 ° and a Ge content of 7 atomic% was formed (deposited) on a glass substrate while controlling the deposition rate by a magnetron sputtering method. The film forming conditions at this time are as follows.

【0038】 成膜温度(基板温度)----200 ℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.002mTorr 電力--------------------4.5 W/cm2 The film forming temperature (substrate temperature) ---- 200 ° C. ambient gas -------------- O 2 containing Ar partial pressure of oxygen ----------- ----- 0.002mTorr Electric power -------------------- 4.5 W / cm 2

【0039】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、4端子(探針)法により電気抵
抗率(比抵抗)を測定し、又、自記分光光度計で可視光
透過率(550nm )を測定した。この結果を図1に示す。
成膜速度:45Å/s以下の場合には電気抵抗率が10-4Ωcm
以上に増加し、成膜速度:100Å/s以上の場合には透過率
が80%以下に減少する。
The electrical resistivity (resistivity) of the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation was measured by a four-terminal (probe) method, and was measured by a self-recording spectrophotometer. The visible light transmittance (550 nm) was measured. The result is shown in FIG.
When the deposition rate is 45Å / s or less, the electrical resistivity is 10 -4 Ωcm
When the film formation rate is 100 mm / s or more, the transmittance decreases to 80% or less.

【0040】(実施例2)実施例1と同様の条件で成膜
して得られたGe添加In2O3 膜について、実施例1の場合
と同様の方法により電気抵抗率を測定し、又、ファンデ
ルポー法によりキャリア密度及びキャリア移動度を測定
した。この結果を図2に示す。成膜速度:45Å/s以下の
場合にはキャリア移動度が20cm3/Vs以下に減少し、その
ため電気抵抗率が10-4Ωcm以上に増加する。
Example 2 An electric resistivity of a Ge-added In 2 O 3 film obtained by forming a film under the same conditions as in Example 1 was measured in the same manner as in Example 1, and Carrier density and carrier mobility were measured by the van der Pauw method. The result is shown in FIG. When the film forming rate is 45 ° / s or less, the carrier mobility decreases to 20 cm 3 / Vs or less, and the electric resistivity increases to 10 −4 Ωcm or more.

【0041】(実施例3)スパッタリングターゲットと
して、 In2O3ターゲット(純度 99.95%、相対密度95
%)上に5mm角のGeのチップ(純度 99.9 %)を所定量
設置した複合ターゲット、又は、Geを所定量含有するIn
2O3 ターゲットを用い、ガラス基板上に厚さ:1500Åの
Ge添加In2O3 膜をマグネトロンスパッタリング法によっ
て成膜した。このときの成膜条件は下記の通りである。
Example 3 An In 2 O 3 target (purity: 99.95%, relative density: 95) was used as a sputtering target.
%) On which a 5 mm square Ge chip (purity 99.9%) is installed in a predetermined amount, or an In containing a predetermined amount of Ge
Using a 2 O 3 target, a thickness of 1500 mm on a glass substrate
A Ge-added In 2 O 3 film was formed by a magnetron sputtering method. The film forming conditions at this time are as follows.

【0042】 成膜温度(基板温度)----200 ℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.04mTorr 電力--------------------4.5 W/cm2 The film forming temperature (substrate temperature) ---- 200 ° C. ambient gas -------------- O 2 containing Ar partial pressure of oxygen ----------- ----- 0.04mTorr Electric power -------------------- 4.5 W / cm 2

【0043】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、実施例1、2の場合と同様の方
法により電気抵抗率、及び、可視光透過率(550nm )を
測定した。この結果を図3に示す。Ge含有量:2〜10原
子%の間で電気抵抗率:1.0×10-3Ωcm以下の透明導電
膜が得られる。Ge含有量:5〜7原子%の間で電気抵抗
率:1.5 ×10-4Ωcm以下の透明導電膜が得られる。Ge含
有量:6原子%の場合では電気抵抗率:1.2 ×10-4Ωcm
である。Ge含有量:0〜10原子%の間で80%以上の高い
可視光透過率を有している。Ge含有量:10原子%超では
透過率:80%以下となる。
With respect to the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation, the electric resistivity and the visible light transmittance (550 nm) were measured in the same manner as in Examples 1 and 2. It was measured. The result is shown in FIG. A transparent conductive film having an electric resistivity of 1.0 × 10 −3 Ωcm or less can be obtained when the Ge content is between 2 and 10 at%. A transparent conductive film having an electric resistivity of 1.5 × 10 −4 Ωcm or less can be obtained when the Ge content is between 5 and 7 at%. In the case of Ge content: 6 atomic%, electric resistivity: 1.2 × 10 -4 Ωcm
It is. Ge content: High visible light transmittance of 80% or more between 0 and 10 atomic%. If the Ge content exceeds 10 atomic%, the transmittance becomes 80% or less.

【0044】(実施例4)実施例3と同様の条件で成膜
して得られたGe添加In2O3 膜について、電気抵抗率、キ
ャリア密度、キャリア移動度を測定した。この結果を図
4に示す。Ge含有量:2〜10原子%の間で電気抵抗率:
1.0 ×10-3Ωcm以下の透明導電膜が得られる。Ge含有
量:2〜10原子%であると、キャリア密度:9×1020/c
m3以上、キャリア移動度:20cm3/Vs以上となり、電気抵
抗率:10×10-4Ωcm以下となる。
Example 4 The electrical resistivity, carrier density, and carrier mobility of a Ge-added In 2 O 3 film obtained under the same conditions as in Example 3 were measured. The result is shown in FIG. Ge content: between 2 and 10 at% electric resistivity:
A transparent conductive film of 1.0 × 10 −3 Ωcm or less is obtained. If the Ge content is 2 to 10 atomic%, the carrier density is 9 × 10 20 / c
m 3 or more, carrier mobility: 20 cm 3 / Vs or more, and electric resistivity: 10 × 10 −4 Ωcm or less.

【0045】(実施例5)スパッタリングターゲットと
して、 In2O3ターゲット(純度 99.95%、相対密度95
%)上に5mm角のGeのチップ(純度 99.9 %)を所定量
設置した複合ターゲット、又は、Geを所定量含有するIn
2O3 ターゲットを用い、厚さ0.5mm のガラス基板上に厚
さ:1500ÅのGe添加In2O3 膜をマグネトロンスパッタリ
ング法によって成膜した。このときの成膜条件は下記の
通りである。
Example 5 An In 2 O 3 target (purity: 99.95%, relative density: 95) was used as a sputtering target.
%) On which a 5 mm square Ge chip (purity 99.9%) is installed in a predetermined amount, or an In containing a predetermined amount of Ge
Using a 2 O 3 target, a Ge-added In 2 O 3 film having a thickness of 1500 ° was formed on a glass substrate having a thickness of 0.5 mm by a magnetron sputtering method. The film forming conditions at this time are as follows.

【0046】 成膜温度(基板温度)----20℃ 雰囲気ガス--------------O2含有Ar 酸素分圧----------------0.06mTorr 電力--------------------4.5 W/cm2 The film forming temperature (substrate temperature) ---- 20 ° C. ambient gas -------------- O 2 containing Ar partial pressure of oxygen ----------- ----- 0.06mTorr Electric power -------------------- 4.5 W / cm 2

【0047】上記成膜により得られた透明導電膜(Ge添
加In2O3 膜)について、電気抵抗率を測定した。その結
果、Ge含有量:3.8 原子%であり、電気抵抗率:3.6 ×
10-4Ωcmの透明導電膜が得られた。550nm の可視光透過
率は91%であった。
The electrical resistivity of the transparent conductive film (Ge-added In 2 O 3 film) obtained by the above film formation was measured. As a result, the Ge content was 3.8 atomic%, and the electrical resistivity was 3.6 ×
A transparent conductive film of 10 -4 Ωcm was obtained. The visible light transmittance at 550 nm was 91%.

【0048】[0048]

【発明の効果】本発明に係る透明導電膜は、以上の如き
構成を有し作用をなすものであり、成膜温度(基板温
度):250 ℃以下の成膜条件で成膜される場合において
も得られる膜の電気抵抗率が低く、10×10-4Ωcm以下で
あり、又、可視光透過率が高く、80%以上であり、その
ため、ディスプレイ機器の透明電極として好適に用いる
ことができ、特には今後のディスプレイの大型化、カラ
ー化、高精細化等の高機能化及び品質向上を図ることが
できるという顕著な効果を奏し得る。
The transparent conductive film according to the present invention has the above-mentioned structure and functions, and is used when the film is formed under a film forming temperature (substrate temperature): 250 ° C. or less. Also, the obtained film has a low electric resistivity of 10 × 10 −4 Ωcm or less, and a high visible light transmittance of 80% or more, so that it can be suitably used as a transparent electrode of a display device. In particular, it is possible to obtain a remarkable effect that it is possible to improve the functions and quality of the display, such as enlargement, colorization, and definition of the display, in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1に係る透明導電膜についての成膜速
度と抵抗率及び透過率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a film formation rate, a resistivity, and a transmittance of a transparent conductive film according to Example 1.

【図2】 実施例2に係る透明導電膜についての成膜速
度と抵抗率、キャリア密度及びキャリア移動度の関係を
示す図である。
FIG. 2 is a diagram showing a relationship among a film formation rate, a resistivity, a carrier density, and a carrier mobility for a transparent conductive film according to Example 2.

【図3】 実施例3に係る透明導電膜についてのGe添加
量(Ge/Ge+In)と抵抗率及び透過率の関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the amount of Ge added (Ge / Ge + In) and the resistivity and transmittance of a transparent conductive film according to Example 3.

【図4】 実施例4に係る透明導電膜についてのGe添加
量(Ge/Ge+In)と抵抗率、キャリア密度及びキャリア
移動度の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of Ge added (Ge / Ge + In) and the resistivity, carrier density, and carrier mobility of a transparent conductive film according to Example 4.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Inの酸化物を主成分とし、GeあるいはGe
酸化物を含有する透明導電膜であって、Geの含有量がGe
量とIn量の合計に対して2〜10原子%、キャリア密度が
9×1020/cm3以上、キャリア移動度が20cm3/Vs以上であ
ることを特徴とする低電気抵抗透明導電膜。
An oxide of In as a main component, Ge or Ge
A transparent conductive film containing an oxide, wherein the Ge content is Ge
A low electric resistance transparent conductive film, characterized in that the content is 2 to 10 atomic%, the carrier density is 9 × 10 20 / cm 3 or more, and the carrier mobility is 20 cm 3 / Vs or more based on the total of the amount of In and the amount of In.
【請求項2】 電気抵抗率が10×10-4Ωcm以下であると
共に、可視光透過率が80%以上である請求項1記載の低
電気抵抗透明導電膜。
2. The low electric resistance transparent conductive film according to claim 1, wherein the electric resistance is 10 × 10 −4 Ωcm or less and the visible light transmittance is 80% or more.
【請求項3】 Geの含有量がGe量とIn量の合計に対して
5〜7原子%、キャリア密度が15×1020/cm3以上、キャ
リア移動度が25cm3/Vs以上である請求項1記載の低電気
抵抗透明導電膜。
3. The method according to claim 1, wherein the content of Ge is 5 to 7 atomic% with respect to the sum of the amount of Ge and the amount of In, the carrier density is 15 × 10 20 / cm 3 or more, and the carrier mobility is 25 cm 3 / Vs or more. Item 4. A low electric resistance transparent conductive film according to Item 1.
【請求項4】 電気抵抗率が1.6 ×10-4Ωcm以下である
と共に、可視光透過率が80%以上である請求項3記載の
低電気抵抗透明導電膜。
4. The low electric resistance transparent conductive film according to claim 3, wherein the electric resistivity is 1.6 × 10 −4 Ωcm or less and the visible light transmittance is 80% or more.
【請求項5】 液晶ディスプレイの透明電極として用い
られる請求項1、2、3又は4記載の透明導電膜。
5. The transparent conductive film according to claim 1, which is used as a transparent electrode of a liquid crystal display.
JP13335198A 1998-05-15 1998-05-15 Low electric resistance transparent conductive film Expired - Fee Related JP3515688B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13335198A JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film
KR1019990016919A KR100323297B1 (en) 1998-05-15 1999-05-12 Transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13335198A JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film

Publications (2)

Publication Number Publication Date
JPH11329085A true JPH11329085A (en) 1999-11-30
JP3515688B2 JP3515688B2 (en) 2004-04-05

Family

ID=15102699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13335198A Expired - Fee Related JP3515688B2 (en) 1998-05-15 1998-05-15 Low electric resistance transparent conductive film

Country Status (1)

Country Link
JP (1) JP3515688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
JP2003517183A (en) * 1999-12-17 2003-05-20 インスティチュート オブ マテリアルズ リサーチ アンド エンジニアリング Transparent electrode material improved to improve the quality of OLED devices
JP2010202930A (en) * 2009-03-03 2010-09-16 Nippon Mining & Metals Co Ltd Sintered target of oxide, method for producing the target, transparent electroconductive film, and method for producing transparent electroconductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517183A (en) * 1999-12-17 2003-05-20 インスティチュート オブ マテリアルズ リサーチ アンド エンジニアリング Transparent electrode material improved to improve the quality of OLED devices
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
JP2010202930A (en) * 2009-03-03 2010-09-16 Nippon Mining & Metals Co Ltd Sintered target of oxide, method for producing the target, transparent electroconductive film, and method for producing transparent electroconductive film

Also Published As

Publication number Publication date
JP3515688B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
TWI412135B (en) A semiconductor thin film, and a method of manufacturing the same, and a thin film transistor, an active matrix driving display panel
US6351068B2 (en) Transparent conductive laminate and electroluminescence light-emitting element using same
KR100649838B1 (en) Transparent conductive laminate and process of producing the same
El Hajj et al. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
JPWO2004105054A1 (en) Amorphous transparent conductive film, raw material sputtering target, amorphous transparent electrode substrate, manufacturing method thereof, and color filter for liquid crystal display
JP6190847B2 (en) Low reflective electrode for flat display or curved display
US20110102722A1 (en) Indium tin oxide sputtering target and transparent conductive film fabricated using the same
JP4168689B2 (en) Thin film laminate
JPH11329085A (en) Low electrical resistant transparent conductive film
JP2005268616A (en) Transparent conductive film and manufacturing method
JPH07131044A (en) Transparent conductive substrate
JP3780100B2 (en) Transparent conductive film with excellent processability
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH0950711A (en) Transparent conductive film
JP3618546B2 (en) High transmittance transparent conductive film and manufacturing method thereof
CN101884006B (en) Process for producing liquid crystal display device
JP3943612B2 (en) Conductive transparent substrate and method for producing the same
JPH06160876A (en) Transparent electrode plate and its production
CN112209626A (en) High-resistance film and preparation method and application thereof
US10852601B2 (en) Display panel and method of manufacturing the same
KR19990088213A (en) Transparent conducting film
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
KR101317803B1 (en) Liquid Crystal Display Device, Organic Light Emitting Diode and Touch Screen Having Phase-Transition Indium Tin Oxide Transparent Conductive Film As Electrode
CN113767009B (en) Method for manufacturing substrate with transparent electrode
JPH0869981A (en) Transparent conductive film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees