KR20010068630A - method for growing Ⅲ-Ⅴ group nitride film - Google Patents

method for growing Ⅲ-Ⅴ group nitride film Download PDF

Info

Publication number
KR20010068630A
KR20010068630A KR1020000000642A KR20000000642A KR20010068630A KR 20010068630 A KR20010068630 A KR 20010068630A KR 1020000000642 A KR1020000000642 A KR 1020000000642A KR 20000000642 A KR20000000642 A KR 20000000642A KR 20010068630 A KR20010068630 A KR 20010068630A
Authority
KR
South Korea
Prior art keywords
buffer layer
layer
nitride film
gaasn
gan
Prior art date
Application number
KR1020000000642A
Other languages
Korean (ko)
Inventor
신종언
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1020000000642A priority Critical patent/KR20010068630A/en
Publication of KR20010068630A publication Critical patent/KR20010068630A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE: A method for growing the third and the fourth group nitride layers is provided to grow the third and the fourth group nitride layers of a blue color wavelength band by using an MOCVD(Metal Organic Chemical Vapor Deposition) method. CONSTITUTION: A buffer layer is formed by laminating two or more layers of a GaInAsN layer, a GaAsN layer, and a GaN layer. The buffer layer is formed on a substrate. A nitride layer is formed on the buffer layer. In the buffer layer, the GaN layer is located on the highest layer. The substrate is formed with one of a sapphire and SiC. The buffer layer is formed with one of a GaAsN/GaN layer and GaInAsN/GaAsN/GaN layer. The Ga of the buffer layer is formed with one of TMGa(TriMethylGallium) and TEGa(TriEthylGallium). The In is formed with one of TMIn(TriMethylIndium), EDMIn(Ethyl-DiMethylIndium), and TEIn(TriEthylIndium). The As is formed with one of AsH3, TBAs(TertiaryButylArsine), TDMAAs(TrisDiMethylAminoArsine), and TMAs(TriMethylArsine).

Description

Ⅲ-Ⅴ족 질화물 막 성장 방법{method for growing Ⅲ-Ⅴ group nitride film}Method for growing III-V group nitride film

본 발명은 화합물 반도체에 관한 것으로, 유기 금속 증착(MOCVD)을 이용한 청색 파장 대역의 Ⅲ-Ⅴ족 질화물 막 성장 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to compound semiconductors and to a method of growing a III-V nitride film in the blue wavelength band using organic metal deposition (MOCVD).

최근, Ⅲ-Ⅴ족 질화물 반도체를 이용한 광 소자 및 전자 소자는 이미 많은 개발이 되어 있고, 실제로 자외선 또는 가시광선 영역의 LD와 LED는 여러 분야에 응용되고 있으며, 앞으로도 그 사용 용도가 더 넓어지고 있다.In recent years, optical devices and electronic devices using III-V nitride semiconductors have already been developed, and in fact, LD and LEDs in the ultraviolet or visible light range have been applied to various fields, and their use has become wider in the future. .

한 동안 양질의 질화물 반도체 막의 성장과 소자의 제작이 어려웠던 것은 좋은 특성을 갖는 단결정의 질화물 기판을 얻기 힘들었다는 점 때문이다.The growth of high quality nitride semiconductor films and the fabrication of devices have been difficult for some time because of the difficulty in obtaining monocrystalline nitride substrates with good properties.

따라서, 사파이어, SiC, Si, GaAs, ZnO 등과 같은 이종 기판 위에 질화물을 성장하게 되었으며, 그 중에서 SiC와 사파이어에 성장된 질화물 막은 특성이 우수하여 소자 제작에 이용되고 있다.Therefore, nitrides are grown on heterogeneous substrates such as sapphire, SiC, Si, GaAs, ZnO, and the like, and nitride films grown on SiC and sapphire are used for device fabrication with excellent properties.

그러나, SiC의 경우, 전기적으로 도전성이 있어 장점이 있지만, 가격이 너무 비싸기 때문에 대부분의 소자는 사파이어 기판 위에 성장된 것을 이용하고 있다.However, SiC has advantages in that it is electrically conductive, but since the price is too expensive, most devices use those grown on sapphire substrates.

이렇게 질화물 반도체 막의 특성이 향상된 것은 성장 기술의 발전에 의한 것이다.The improved characteristics of the nitride semiconductor film are due to the development of growth technology.

즉, 도 1에서와 같이 사파이어 기판을 고온에서 열처리한 후, 낮은 온도(약 450∼500℃)에서 버퍼층을 성장한 다음, 다시 질화물 성장 온도인 고온에서 질화물 성장을 하게 된다.That is, as shown in FIG. 1, the sapphire substrate is heat-treated at a high temperature, the buffer layer is grown at a low temperature (about 450 to 500 ° C.), and then nitride is grown at a high temperature, which is a nitride growth temperature.

이 과정에서 중요한 것은 버퍼층이다.An important part of this process is the buffer layer.

사파이어와 질화물은 격자 상수의 차이가 크기 때문에 이것을 극복하기 위해서는 기존에는 GaN, AlN, InN, 또는 이들의 혼합물을 특정한 온도에서 일정한 두께로 성장하였다.Since sapphire and nitride have a large difference in lattice constant, in order to overcome this, GaN, AlN, InN, or a mixture thereof was grown to a certain thickness at a certain temperature.

이렇게 성장된 질화물 막은 단결정이 아니라 폴리머 혹은 다결정이 되며, 고온에서 성장될 질화물 막의 뉴클리에이션 사이트(nucleation site)를 제공한다.The nitride film thus grown is not single crystal but polymer or polycrystalline and provides a nucleation site of the nitride film to be grown at high temperature.

버퍼층을 사용하여 질화물 막의 결정학적 특징은 많이 향상되었지만, 도 2에서 보는 바와 같이 질화물이 c축 방향으로 더 빨리 성장하려는 특성 때문에 a와 b축으로는 결정 크기가 큰 막을 성장하기가 어렵다.Although the crystallographic characteristics of the nitride film are greatly improved by using the buffer layer, it is difficult to grow a film having a large crystal size on the a and b axes because of the property that the nitride is intended to grow faster in the c-axis direction as shown in FIG. 2.

이와 같은 사실은 엑스-레이(X-ray)의 (002)와 (102) 방향의 값으로도 알 수있다.This fact can also be seen from the values in the (002) and (102) directions of the X-ray.

즉, c축 방향인 (002) 값이 (102) 값보다 훨씬 작은 값을 나타낸다.That is, the value (002) in the c-axis direction is much smaller than the value of (102).

이것은 질화물 막의 전기적 성질에도 영향을 미치게된다.This also affects the electrical properties of the nitride film.

즉, 전자나 정공이 이러한 결정질 막의 경계에서 이동이 용이하지 못하기 때문에 상대적으로 작은 모빌리티(mobility) 값을 가지게 되고, 결국은 소자의 동작에도 영향을 주게 된다.That is, since electrons or holes are not easily moved at the boundary of the crystalline film, they have a relatively small mobility value, which in turn affects the operation of the device.

따라서, 보다 개선된 결정학적 특징을 갖는 질화물 막을 얻기 위하여 새로운 성장 방법이나 버퍼층의 개발이 필요하며, 이는 최종 소자의 동작 향상을 위하여 필수적이라고 하겠다.Therefore, it is necessary to develop a new growth method or a buffer layer to obtain a nitride film having more improved crystallographic characteristics, which is essential for improving the operation of the final device.

본 발명의 목적은 새로운 버퍼층을 도입하여 질화물의 결정학적, 전기적 특성을 향상시킬 수 있는 Ⅲ-Ⅴ족 질화물 막 성장 방법을 제공하는데 있다.An object of the present invention is to provide a III-V nitride film growth method that can introduce a new buffer layer to improve the crystallographic and electrical properties of the nitride.

도 1은 일반적인 질화물 막 성장시 시간에 따른 온도의 변화를 보여주는 그래프1 is a graph showing the change of temperature with time during growth of a typical nitride film

도 2는 일반적인 질화물 막의 결정학적 특성을 보여주는 도면2 shows the crystallographic properties of a typical nitride film

도 3 및 도 4는 본 발명 제 1, 제 2 실시예에 따른 버퍼층의 구조를 보여주는 도면3 and 4 show the structure of a buffer layer according to the first and second embodiments of the present invention.

본 발명에 따른 Ⅲ-Ⅴ족 질화물 막 성장 방법은 기판 위에 GaInAsN, GaAsN, GaN층 중 적어도 둘 이상의 층이 적층된 버퍼층을 형성하는 단계와, 버퍼층 위에 질화물 막을 형성하는 단계로 이루어진다.The III-V nitride film growth method according to the present invention comprises forming a buffer layer in which at least two or more layers of GaInAsN, GaAsN, and GaN layers are stacked on a substrate, and forming a nitride film on the buffer layer.

여기서, 질화물 막의 계면에는 버퍼층을 이루는 층들 중에서 GaN층이 위치하고, 버퍼층 성장 전에 기판을 열처리한다.Here, the GaN layer is positioned among the layers constituting the buffer layer at the interface of the nitride film, and the substrate is heat-treated before growth of the buffer layer.

그리고, 기판은 사파이어, SiC 중 어느 하나로 이루어지고, 버퍼층은 GaAsN/GaN, GaInAsN/GaAsN/GaN 중 어느 하나로 이루어진다.The substrate is made of any one of sapphire and SiC, and the buffer layer is made of any one of GaAsN / GaN and GaInAsN / GaAsN / GaN.

또한, 버퍼층의 Ga 재료는 TMGa(trimethylgallium), TEGa(triethylgallium) 중 어느 하나이고, In 재료는 TMIn(trimethylindium), EDMIn(ethyl-dimethylindium), TEIn(triethylindium) 중 어느 하나이고, As 재료는 AsH3, TBAs(tertiarybutylarsine), TDMAAs(trisdimethylaminoarsine), TMAs(trimethylarsine) 중 어느 하나를 사용할 수 있으며, N 재료로는 NH3또는 히드라진(H2N4)이 쓰일 수 있다.In addition, the Ga material of the buffer layer is any one of TMGa (trimethylgallium) and TEGa (triethylgallium), In material is any one of TMIn (trimethylindium), EDMIn (ethyl-dimethylindium), TEIn (triethylindium), As material is AsH 3 , TBAs (tertiarybutylarsine), TDMAAs (trisdimethylaminoarsine), TMAs (trimethylarsine) can be used, and N material may be used NH 3 or hydrazine (H 2 N 4 ).

이와 같이 성장된 본 발명의 질화물 막은 결정학적 특성을 향상시킬 수 있고, 결함이나 계면의 감소 인해 전자나 정공의 이동을 원활히 하여 전기적 특성도 개선시킬 수 있다.The nitride film of the present invention thus grown can improve the crystallographic properties, and can smooth the movement of electrons or holes due to the reduction of defects or interfaces, thereby improving the electrical properties.

본 발명의 다른 목적, 특징 및 잇점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해질 것이다.Other objects, features and advantages of the present invention will become apparent from the following detailed description of embodiments taken in conjunction with the accompanying drawings.

상기와 같은 특징을 갖는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the accompanying drawings, preferred embodiments of the present invention having the features as described above are as follows.

본 발명은 기존의 버퍼층과는 다른 새로운 버퍼층을 도입하여 도 2에서의 c축의 결정 특성은 물론 a와 b축의 크기를 최대화하여 결함이 적은 질화물을 성장시킬 수 있다.In the present invention, a new buffer layer different from the existing buffer layer may be introduced to grow nitrides having less defects by maximizing the size of the a and b axes as well as the crystal characteristics of the c-axis in FIG. 2.

이와 같이 결정질의 특성을 개선하면 전자와 정공이 이동할 수 있는 모빌리티(mobility)를 증가시킬 수 있으며, n형과 p형 질화물의 특성을 향상시켜 소자의 성능을 개선시킬 수 있다.In this way, improving the crystalline properties may increase the mobility (mobility) to move electrons and holes, and improve the performance of the device by improving the characteristics of the n-type and p-type nitride.

본 발명은 질화물 성장을 위한 기판으로 사파이어 또는 SiC가 사용되며, 도 1에서와 같은 열처리 과정이 버퍼층 성장 전에 이루어진다.In the present invention, sapphire or SiC is used as a substrate for nitride growth, and a heat treatment process as shown in FIG. 1 is performed before growth of the buffer layer.

본 발명의 버퍼층은 도 3 및 도 4에서와 같이 GaInAsN, GaAsN, GaN층의 조합으로 구성된다.The buffer layer of the present invention is composed of a combination of GaInAsN, GaAsN, GaN layers as shown in Figs.

여기서, Ga 재료로는 TMGa(trimethylgallium)이나 TEGa(triethylgallium)이 사용되고, In 재료로는 TMIn(trimethylindium), EDMIn(ethyl-dimethylindium), TEIn(triethylindium) 등이 사용되며, As 재료는 AsH3, TBAs(tertiarybutylarsine), TDMAAs(trisdimethylaminoarsine), TMAs(trimethylarsine) 등이 사용될 수 있다.Here, as Ga material, TMGa (trimethylgallium) or TEGa (triethylgallium) is used, In material is TMIn (trimethylindium), EDMIn (ethyl-dimethylindium), TEIn (triethylindium), etc., and As material is AsH 3 , TBAs (tertiarybutylarsine), TDMAAs (trisdimethylaminoarsine), TMAs (trimethylarsine) and the like can be used.

본 발명의 질화물 성장 과정은 도 1과 같이 사파이어 기판을 고온으로 열처리한 후, 암모니아를 흘려주면서 온도를 내리게 된다.In the nitride growth process of the present invention, as shown in FIG. 1, the sapphire substrate is heat-treated at a high temperature, and then the temperature is decreased while flowing ammonia.

버퍼 온도에 도달하면 성장을 원하는 물질에 따라 Ga, In, As를 흘려주게 된다.When it reaches the buffer temperature, Ga, In, As is flowed according to the material to be grown.

버퍼층 성장 후, 고온으로 온도를 올린 다음, 질화물 막을 성장하게 된다.After growing the buffer layer, the temperature is raised to high temperature, and then the nitride film is grown.

버퍼층의 성장에 사용되는 유기 금속의 Ga, In, Al은 그 분자 안에 C와 H를 포함하고 있으며, 이런 분자들은 고온의 기판 위에서 분해되어 Ga, In, Al만 남게 되어 성장에 이용된다.Ga, In and Al of the organic metal used for the growth of the buffer layer contain C and H in the molecule, and these molecules are decomposed on a high temperature substrate, leaving only Ga, In and Al to be used for growth.

그러나, C와 H 같은 물질들은 완전히 제거되기가 어려우며, 일부는 불가피하게 성장층에 포함되어 불순물이나 그 밖의 전위(dislocation)를 형성하여 막질의 특성을 저하시킨다.However, materials such as C and H are difficult to remove completely, and some are inevitably included in the growth layer to form impurities or other dislocations, thereby degrading film quality.

유기 금속에서 발생되는 불순물은 다른 유기물이나 H가 존재할 경우, 촉매반응에 의해서 더욱 빨리 제거될 수 있으며, 질화물 성장의 경우에 있어서는 암모니아가 분해시 발생되는 H가 이런 역할을 할 수 있게 된다.Impurities generated in the organic metal can be removed more quickly by the catalytic reaction in the presence of other organics or H, and in the case of nitride growth, H generated when decomposition of ammonia can play this role.

그러나, 버퍼층이 성장되는 낮은 온도에서는 암모니아가 분해되는 정도가 작기 때문에 상대적으로 많은 양의 불순물이 막에 포함되게 된다.However, since the ammonia is decomposed at a low temperature at which the buffer layer is grown, a relatively large amount of impurities are included in the film.

본 발명에서와 같이 낮은 온도에서도 분해가 가능한 AsH3또는 유기 금속 As를 사용하게 되면, 부산물인 유기물이나 H의 발생이 많아져 유기 금속의 Ga, In, Al에서 나온 유기물과 반응하여 제거될 확률이 높아지게 된다.When using AsH 3 or organometallic As, which can be decomposed at low temperature, as in the present invention, the generation of by-products or H is increased, and the probability of reacting and removing the organics from Ga, In and Al of the organic metals is high. Will be higher.

따라서, 질화물 성장시, 야기될 수 있는 불순물의 근원을 최소화할 수 있게 된다.Thus, during nitride growth, it is possible to minimize the source of impurities that may be caused.

또한, 상대적으로 크기가 다른 Ⅴ족의 As를 사용하여 베이컨트(vacant)가 많은 N의 위치를 대치할 수 있으며, GaAs가 GaN보다 물질적으로 연성이기 때문에 결정 계면 사이에서 발생될 수 있는 결함의 발생을 최소화할 수 있다.In addition, by using a relatively different size of group V, it is possible to replace the position of N having a lot of vacants, and because GaAs is materially softer than GaN, defects may occur between crystal interfaces. Can be minimized.

이 같은 효과는 GaInAsN를 사용하면 더 극대화할 수 있다.This effect can be further maximized with GaInAsN.

GaInAsN나 GaAsN는 고온에서 불완전하기 때문에 온도를 올리기 전에 GaN층을 낮은 온도에서 약 5∼10nm를 성장하고 온도를 올리게 된다.Since GaInAsN or GaAsN is incomplete at high temperature, the GaN layer is grown at a low temperature by about 5 to 10 nm at a low temperature before raising the temperature.

이와 같이 버퍼층에서 발생할 수 있는 불순물이나 결함을 최소화하여 성장될 질화물의 결정질이 향상될 수 있다.As such, the crystalline of the nitride to be grown may be improved by minimizing impurities or defects that may occur in the buffer layer.

본 발명의 제작과정을 좀 더 상세히 설명하면 다음과 같다.Referring to the manufacturing process of the present invention in more detail as follows.

본 발명 제 1 실시예는 도 3에 도시된 바와 같이, 먼저 사파이어 기판을 고온에서 열처리한 후, 암모니아를 흘려준다.As shown in FIG. 3, the first embodiment of the present invention first heat-treats the sapphire substrate at a high temperature, and then flows ammonia.

이어, 기판 위에 TMGa(또는 TEGa)와 AsH3(또는 TBAs, TDMAAs, TMAs), NH3(또는 H2N4)를 흘려서 GaAsN을 성장한다.Next, GaAsN is grown by flowing TMGa (or TEGa), AsH 3 (or TBAs, TDMAAs, and TMAs) and NH 3 (or H 2 N 4 ) onto the substrate.

이 때, 성장 온도는 약 400∼600℃의 범위에서 사용하며, 두께는 약 10∼30nm를 사용한다.At this time, the growth temperature is used in the range of about 400 ~ 600 ℃, the thickness is used about 10 ~ 30nm.

그리고, As의 조성은 0.001∼5%를 사용한다.As for the composition of As, 0.001 to 5% is used.

이어, 그 위에 TMGa(또는 TEGa)와 NH3(또는 H2N4)를 흘려서 GaN층을 약 5∼10nm 두께로 성장한다.Next, a GaN layer is grown to a thickness of about 5 to 10 nm by flowing TMGa (or TEGa) and NH 3 (or H 2 N 4 ) thereon.

이 때, 성장 온도는 GaAsN의 성장 온도보다 높은 온도를 사용한다.At this time, the growth temperature uses a temperature higher than the growth temperature of GaAsN.

그리고, 이와 같이 성장된 버퍼층 위에 온도를 고온의 질화물 성장 온도로 올려 질화물 막을 성장한다.Then, the nitride film is grown on the thus grown buffer layer by raising the temperature to a high temperature nitride growth temperature.

본 발명 제 2 실시예는 도 4에 도시된 바와 같이, 먼저 사파이어 기판을 고온에서 열처리한 후, 암모니아를 흘려준다.As shown in FIG. 4, the second embodiment of the present invention first heat-treats the sapphire substrate at a high temperature, and then flows ammonia.

이어, 기판 위에 TMGa(또는 TEGa)와 TMIn(또는 EDMIn, TEIn) 그리고 AsH3(또는 TBAs, TDMAAs, TMAs), NH3(또는 H2N4)를 흘려서 GaInAsN을 성장한다.Subsequently, GaInAsN is grown by flowing TMGa (or TEGa), TMIn (or EDMIn, TEIn), AsH 3 (or TBAs, TDMAAs, TMAs), NH 3 (or H 2 N 4 ) onto the substrate.

이 때, 성장 온도는 약 400∼600℃의 범위에서 사용하며, 두께는 약 10∼30nm를 사용한다.At this time, the growth temperature is used in the range of about 400 ~ 600 ℃, the thickness is used about 10 ~ 30nm.

그리고, As의 조성은 0.001∼5%를 사용하고, In의 조성은 0.1∼5%를 사용한다.The composition of As is used in 0.001 to 5%, and the composition of In is used in 0.1 to 5%.

그리고, 이 후의 공정은 상기 제 1 실시예와 동일한 조건으로 GaAsN 및 GaN을 순차적으로 성장시킨 다음, 이와 같이 성장된 버퍼층 위에 온도를 고온의 질화물 성장 온도로 올려 질화물 막을 성장한다.In the subsequent process, GaAsN and GaN are grown sequentially under the same conditions as in the first embodiment, and the nitride film is grown by raising the temperature to a high temperature nitride growth temperature on the thus grown buffer layer.

본 발명에 따른 Ⅲ-Ⅴ족 질화물 막 성장 방법에 있어서는 다음과 같은 효과가 있다.The III-V nitride film growth method according to the present invention has the following effects.

본 발명에서는 버퍼층에 As을 포함하여 기존에 사용하던 버퍼층에서 많이 발생하는 N결핍으로 인한 결함을 As가 대치함으로써, 결함의 수를 줄였으며 As의 원료인 AsH3와 유기 금속 As 원료에서 발생되는 유기물과 유기 금속 Ga, In, Al의 분해 불순물을 촉매 반응에 의해 결합시켜 제거하므로 질화물 막 내에서 불순물의 농도를 최소화시킬 수 있다.In the present invention, As replaces defects due to N deficiency, which are frequently used in the buffer layer, including As in the buffer layer, thereby reducing the number of defects and generating organic materials from AsH 3 , which is a raw material of As, and an organic metal As raw material. The decomposition impurities of the organic metals Ga, In, and Al are combined and removed by a catalytic reaction, thereby minimizing the concentration of impurities in the nitride film.

이렇게 하여 최종 성장된 질화물의 결정학적 특성을 향상시킬 수 있으며, 결함이나 계면의 감소로 인해 전자나 정공의 이동을 원활히 하여 전기적 특성도 개선시킬 수 있다.In this way, it is possible to improve the crystallographic properties of the finally grown nitride, and to improve the electrical properties by smoothing the movement of electrons or holes due to the reduction of defects or interfaces.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.Those skilled in the art will appreciate that various changes and modifications can be made without departing from the technical spirit of the present invention.

따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.Therefore, the technical scope of the present invention should not be limited to the contents described in the embodiments, but should be defined by the claims.

Claims (6)

기판 위에 GaInAsN, GaAsN, GaN층 중 적어도 둘 이상의 층이 적층된 버퍼층을 형성하는 단계;Forming a buffer layer having at least two layers of GaInAsN, GaAsN, and GaN layers stacked on the substrate; 상기 버퍼층 위에 질화물 막을 형성하는 단계로 이루어지는 Ⅲ-Ⅴ족 질화물 막 성장 방법.A III-V nitride film growth method comprising forming a nitride film on the buffer layer. 제 1 항에 있어서, 상기 버퍼층 중에서 GaN층이 가장 위에 위치하는 것을 특징으로 하는 Ⅲ-Ⅴ족 질화물 막 성장 방법.The method of growing a III-V nitride film according to claim 1, wherein a GaN layer is located at the top of the buffer layer. 제 1 항에 있어서, 상기 기판은 사파이어, SiC 중 어느 하나로 이루어지는 것을 특징으로 하는 Ⅲ-Ⅴ족 질화물 막 성장 방법.The method of growing a III-V nitride film according to claim 1, wherein the substrate is made of sapphire or SiC. 제 1 항에 있어서, 상기 버퍼층은 GaAsN/GaN, GaInAsN/GaAsN/GaN 중 어느 하나로 이루어지는 것을 특징으로 하는 Ⅲ-Ⅴ족 질화물 막 성장 방법.The method of claim 1, wherein the buffer layer is made of any one of GaAsN / GaN and GaInAsN / GaAsN / GaN. 제 1 항에 있어서, 상기 버퍼층의 Ga 재료는 TMGa(trimethylgallium), TEGa(triethylgallium) 중 어느 하나이고, In 재료는 TMIn(trimethylindium), EDMIn(ethyl-dimethylindium), TEIn(triethylindium) 중 어느 하나이고, As 재료는 AsH3, TBAs(tertiarybutylarsine), TDMAAs(trisdimethylaminoarsine),TMAs(trimethylarsine) 중 어느 하나가 사용되는 것을 특징으로 하는 Ⅲ-Ⅴ족 질화물 막 성장 방법.The method of claim 1, wherein the Ga material of the buffer layer is any one of TMGa (trimethylgallium), TEGa (triethylgallium), In material is any one of TMIn (trimethylindium), EDMIn (ethyl-dimethylindium), TEIn (triethylindium), As material is a group III-V nitride film growth method characterized in that any one of AsH 3 , TBAs (tertiarybutylarsine), TDMAAs (trisdimethylaminoarsine), TMAs (trimethylarsine) is used. 제 1 항에 있어서, 상기 버퍼층의 GaInAsN는 성장 온도가 400∼600℃이고 두께는 10∼30nm이며 As의 조성은 0.001∼5%, In의 조성은 0.1∼5%이고, 상기 버퍼층의 GaAsN는 성장 온도가 400∼600℃이고 두께는 10∼30nm이며 As의 조성은 0.001∼5%이고, 상기 버퍼층의 GaN층은 성장 온도가 상기 버퍼층의 GaInAsN 및 GaAsN보다 높은 온도이고 두께는 5∼10nm인 것을 특징으로 하는 Ⅲ-Ⅴ족 질화물 막 성장 방법.The GaInAsN of claim 1, wherein the GaInAsN has a growth temperature of 400-600 ° C., a thickness of 10-30 nm, an As composition of 0.001-5%, an In composition of 0.1-5%, and GaAsN of the buffer layer. The temperature is 400-600 ° C., the thickness is 10-30 nm, the composition of As is 0.001-5%, the GaN layer of the buffer layer has a growth temperature higher than that of GaInAsN and GaAsN of the buffer layer, and the thickness is 5-10 nm. Group III-V nitride film growth method.
KR1020000000642A 2000-01-07 2000-01-07 method for growing Ⅲ-Ⅴ group nitride film KR20010068630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000000642A KR20010068630A (en) 2000-01-07 2000-01-07 method for growing Ⅲ-Ⅴ group nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000000642A KR20010068630A (en) 2000-01-07 2000-01-07 method for growing Ⅲ-Ⅴ group nitride film

Publications (1)

Publication Number Publication Date
KR20010068630A true KR20010068630A (en) 2001-07-23

Family

ID=19636976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000000642A KR20010068630A (en) 2000-01-07 2000-01-07 method for growing Ⅲ-Ⅴ group nitride film

Country Status (1)

Country Link
KR (1) KR20010068630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822482B1 (en) * 2007-07-13 2008-04-29 (주)더리즈 Growing method for nitride based epitaxial layer and semiconductor device using the same
KR101027506B1 (en) * 2009-02-17 2011-04-06 퍼시픽 스피드 리미티드 Compound Semiconductor Epitaxial Wafer and Fabrication Method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144959A (en) * 1996-11-08 1998-05-29 Toshiba Corp Method for manufacturing semiconductor light-emitting element
JPH10242055A (en) * 1997-02-26 1998-09-11 Agency Of Ind Science & Technol Nitride semiconductor film forming method
JPH1174560A (en) * 1997-08-29 1999-03-16 Toshiba Corp Gan compound semiconductor light emitting element and its manufacture
JPH11103133A (en) * 1997-09-29 1999-04-13 Nec Corp Semiconductor layer using selective growth method and its growth method, nitride-based semiconductor layer using selective growth method and its growth method as well as nitride-based semiconductor light-emitting element and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144959A (en) * 1996-11-08 1998-05-29 Toshiba Corp Method for manufacturing semiconductor light-emitting element
JPH10242055A (en) * 1997-02-26 1998-09-11 Agency Of Ind Science & Technol Nitride semiconductor film forming method
JPH1174560A (en) * 1997-08-29 1999-03-16 Toshiba Corp Gan compound semiconductor light emitting element and its manufacture
JPH11103133A (en) * 1997-09-29 1999-04-13 Nec Corp Semiconductor layer using selective growth method and its growth method, nitride-based semiconductor layer using selective growth method and its growth method as well as nitride-based semiconductor light-emitting element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822482B1 (en) * 2007-07-13 2008-04-29 (주)더리즈 Growing method for nitride based epitaxial layer and semiconductor device using the same
KR101027506B1 (en) * 2009-02-17 2011-04-06 퍼시픽 스피드 리미티드 Compound Semiconductor Epitaxial Wafer and Fabrication Method thereof

Similar Documents

Publication Publication Date Title
JP2704181B2 (en) Method for growing compound semiconductor single crystal thin film
US7067401B2 (en) Fabrication method of nitride semiconductors and nitride semiconductor structure fabricated thereby
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
WO2010095550A1 (en) Method for forming epitaxial wafer and method for manufacturing semiconductor element
KR100674829B1 (en) Nitride based semiconductor device and method for manufacturing the same
US8017973B2 (en) Nitride semiconductor light-emitting device including a buffer layer on a substrate and method for manufacturing the same
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
KR100682272B1 (en) Manufacturing Process of Nitride Substrate And Nitride Substrate by the Process
CN114574959A (en) Preparation method of nitride epitaxial layer and semiconductor epitaxial wafer thereof
KR20040016724A (en) Nitride semiconductor and fabrication method for thereof
KR100604617B1 (en) Manufacturing Method of Group III-V Compound Semiconductor
CN115332407A (en) Light emitting diode epitaxial wafer and preparation method thereof
KR20010068630A (en) method for growing Ⅲ-Ⅴ group nitride film
KR100508141B1 (en) Method for fabricating a nitride film
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JPH0997921A (en) Manufacture of iii-v compd. semiconductor
CN116230824B (en) High-light-efficiency light-emitting diode epitaxial wafer, preparation method thereof and LED chip
JPH04212478A (en) Growth method for organic metal and semiconductor light-emitting element
KR100821220B1 (en) Light emitting device of a nitride compound semiconductor having multi buffer layers and the fabrication method thereof
KR20090030651A (en) A gallium nitride based light emitting device
KR100590444B1 (en) Growth method of nitride epitaxial layer using high temperature grown buffer layer
CN115881866A (en) Light emitting diode epitaxial wafer, preparation method thereof and LED
CN116207196A (en) LED epitaxial wafer, preparation method thereof and LED chip
KR100839224B1 (en) Method for manufacturing thick film of gan

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application