KR20010064414A - Method of forming gate dielectric layer with TaON - Google Patents
Method of forming gate dielectric layer with TaON Download PDFInfo
- Publication number
- KR20010064414A KR20010064414A KR1019990064610A KR19990064610A KR20010064414A KR 20010064414 A KR20010064414 A KR 20010064414A KR 1019990064610 A KR1019990064610 A KR 1019990064610A KR 19990064610 A KR19990064610 A KR 19990064610A KR 20010064414 A KR20010064414 A KR 20010064414A
- Authority
- KR
- South Korea
- Prior art keywords
- taon
- gate insulating
- insulating film
- film
- forming
- Prior art date
Links
- 229910003071 TaON Inorganic materials 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000010408 film Substances 0.000 claims abstract description 96
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 150000004767 nitrides Chemical class 0.000 claims abstract description 19
- 238000000137 annealing Methods 0.000 claims abstract description 10
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims abstract description 6
- 238000002955 isolation Methods 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 150000001722 carbon compounds Chemical class 0.000 claims description 5
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 238000005121 nitriding Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000011066 ex-situ storage Methods 0.000 claims description 3
- 230000003071 parasitic effect Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims 2
- 230000001939 inductive effect Effects 0.000 claims 1
- 230000001546 nitrifying effect Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28176—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 반도체장치의 게이트절연막 형성방법에 관한 것으로서, 특히 SiO2보다 유전율이 높은 TaON를 사용하여 게이트절연막의 전기적 특성을 개선한 반도체장치의 TaON 게이트절연막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a gate insulating film of a semiconductor device, and more particularly to a method of forming a TaON gate insulating film of a semiconductor device using TaON having a higher dielectric constant than SiO 2 to improve electrical characteristics of the gate insulating film.
일반적으로, 모스 트랜지스터(MOSFET; metal oxide semiconductor field effect transistor)는 게이트전극이 게이트절연막인 얇은 산화실리콘막에 의해 기판으로부터 격리되어 있기 때문에 접합형 트랜지스터와 같이 임피던스가 저하되는 경우가 적고, 1회 확산 공정으로 그 제조 공정이 간단하므로 고집적화에 적합한 소자이다.In general, since the gate electrode is isolated from the substrate by a thin silicon oxide film, which is a gate insulating film, the MOS transistor has a low impedance and is once diffused like a junction transistor. Since the manufacturing process is simple with a process, it is an element suitable for high integration.
더욱이, 반도체 메모리장치의 집적도를 높이기 위해서는 단위 소자의 크기가 미세화될수록 셀 트랜지스터의 게이트절연막의 두께 및 폭 또한 축소되고 있는 실정이다. 예컨대, 차세대 256M DRAM 이상의 메모리장치는 통상의 게이트절연막 제조 공정과 동일하게 800℃∼900℃의 고온에서 습식 산화 공정을 실시하여 실리콘산화막(SiO2)을 성장함으로써 게이트절연막을 형성하였다. 이때, 게이트절연막의 두께는 50Å이하로 형성하여 원하는 소자의 항복(breakdown) 강도 특성과 게이트전극에 인가되는 전압에 대한 내성 시간을 확보하였다.Furthermore, in order to increase the degree of integration of the semiconductor memory device, as the size of the unit device becomes smaller, the thickness and width of the gate insulating film of the cell transistor are also reduced. For example, memory devices of next-generation 256M DRAM or more have formed a gate insulating film by growing a silicon oxide film (SiO 2 ) by performing a wet oxidation process at a high temperature of 800 ° C. to 900 ° C. in the same manner as a conventional gate insulating film manufacturing process. At this time, the thickness of the gate insulating film was formed to be 50 Å or less to ensure the breakdown strength characteristics of the desired device and to withstand the voltage applied to the gate electrode.
그리고, 최근에는 고집적 메모리장치의 게이트 절연막으로서 SiO2대신에 고유전율(ε=25)의 Ta2O5를 사용하고 있지만, 이 경우 Ta2O5자체가 불안정한 화학양론비(stoichiometry)를 갖고 있어 Ta와 O의 조성비 차이에 기인한 치환형 Ta원자가 박막내에 존재하기 때문에 게이트절연막 증착시 Ta2O5의 전구체인 Ta(OC2H5)5의 유기물과 O2(또는 N2O)가스의 반응으로 인해 불순물인 탄소원자와 탄소화합물(C, CH4,C2H4등) 및 물(H2O)이 생성되는 단점이 있었다. 이에 따라, Ta2O5의 게이트절연막내에 불순물로 존재하는 탄소원자, 이온과 라디칼로 인해서 게이트전극과 기판 사이에 누설전류가 증가하게 되고 그 절연특성이 열화된다. 이를 보상하기 위해서, Ta2O5를 증착한 후에 한번 이상의 저온 열처리(예를 들면, plasma N2O 또는 UV-O3) 공정과 고온의 열처리 공정을 실시해야만 하였다.In recent years, Ta 2 O 5 having a high dielectric constant (ε = 25) is used instead of SiO 2 as a gate insulating film of a high density memory device, but in this case Ta 2 O 5 itself has an unstable stoichiometry. Due to the presence of substituted Ta atoms in the thin film due to the difference in the composition ratio of Ta and O, the organic material of Ta (OC 2 H 5 ) 5 , which is a precursor of Ta 2 O 5 , and O 2 (or N 2 O) gas are deposited during the gate insulation film deposition. Due to the reaction, impurities such as carbon atoms, carbon compounds (C, CH 4 , C 2 H 4, etc.) and water (H 2 O) are generated. As a result, the leakage current increases between the gate electrode and the substrate due to the carbon atoms, ions, and radicals present as impurities in the gate insulating film of Ta 2 O 5 , and the insulating properties thereof deteriorate. To compensate for this, at least one low temperature heat treatment (eg, plasma N 2 O or UV-O 3 ) process and high temperature heat treatment process had to be performed after Ta 2 O 5 was deposited.
그러나, 이러한 열처리 공정은 제조 공정이 번거러우며 Ta2O5게이트절연막의 산화 저항성이 낮기 때문에 고온의 열처리 공정시 기판 표면에 산화 반응이 일어나 불균일한 기생 산화막이 형성되어 기판과 Ta2O5게이트절연막 사이의 계면 특성이 저하되면서 전체 게이트절연막 두께가 증가하게 되는 문제점이 있었다.However, since the heat treatment process is cumbersome and the oxidation resistance of the Ta 2 O 5 gate insulating film is low, an oxidation reaction occurs on the surface of the substrate during the high temperature heat treatment process, so that a nonuniform parasitic oxide film is formed to form the substrate and the Ta 2 O 5 gate. There was a problem in that the thickness of the entire gate insulating film was increased as the interface characteristics between the insulating films were lowered.
본 발명의 목적은 SiO2보다 유전율이 크고 Ta2O5보다 우수한 전기적 특성을 갖고 안정된 Ta-O-N 구조를 갖는 반도체장치의 TaON 게이트절연막 형성방법을 제공하는데 있다.An object of the present invention is to provide a TaON gate insulating film forming method of a semiconductor device having a dielectric constant greater than that of SiO 2 , an electrical property superior to that of Ta 2 O 5 , and a stable Ta-ON structure.
본 발명의 다른 목적은 실리콘 기판과의 계면 특성 향상과 비정질 TaON 증착시 형성되는 불균일한 SiO2가 형성되는 것을 방지하기 위해 플라즈마 분위기에서 반응 가스로서 NH3또는 NH3과 O2(또는 N2O)를 사용하여 기판 상부에 SiN 또는 SiON을 형성한 후에 비정질 TaON을 증착하는 반도체장치의 TaON 게이트절연막 형성방법을제공하는데 있다.Another object of the present invention is to improve the interfacial properties with the silicon substrate and to prevent the formation of non-uniform SiO 2 formed during amorphous TaON deposition, NH 3 or NH 3 and O 2 (or N 2 O as a reaction gas in a plasma atmosphere). The present invention provides a method for forming a TaON gate insulating film of a semiconductor device in which an amorphous TaON is deposited after SiN or SiON is formed on a substrate.
도 1 내지 도 5는 본 발명에 따른 고유전체 TaON을 갖는 반도체장치의 게이트절연막 형성방법을 설명하기 위한 공정 순서도.1 to 5 are process flowcharts for explaining a method for forming a gate insulating film of a semiconductor device having a high dielectric TaON according to the present invention.
*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
10: 실리콘기판 12: 필드 산화막10: silicon substrate 12: field oxide film
14: SiN 또는 SiON막 16: TaON 게이트절연막14: SiN or SiON film 16: TaON gate insulating film
18: 도프트 폴리실리콘막 18': 게이트전극18: doped polysilicon film 18 ': gate electrode
상기 목적을 달성하기 위하여 본 발명은 반도체장치의 게이트전극과 반도체 기판 사이에 내재된 게이트절연막을 형성함에 있어서, 소자의 활성 영역 및 분리 영역을 정의하는 필드산화막이 형성된 기판 표면에 질화박막 및 질산화박막 중에서 어느 하나를 형성하는 단계와, 기판 상부에 비정질 TaON을 증착하여 게이트절연막을 형성하는 단계와, 어닐링 공정을 통해서 비정질 TaON을 결정화하는 단계를 포함한다.In order to achieve the above object, according to the present invention, in forming a gate insulating film embedded between a gate electrode of a semiconductor device and a semiconductor substrate, a thin nitride film and a nitride oxide film are formed on a surface of a substrate on which a field oxide film defining an active region and an isolation region of a device is formed. Forming a gate insulating film by depositing amorphous TaON on the substrate, and crystallizing the amorphous TaON through an annealing process.
본 발명에 따르면, TaON의 게이트절연막은 유전상수가 25이상이므로 고유전율을 가지며 화학적 결합구조도 Ta2O5의 게이트절연막보다 안정하다. 그리고, TaON의 게이트절연막은 실리콘 기판과의 산화반응성도 작아서 외부로부터 인가되는 전기적 충격에도 강할 뿐만 아니라 절연파괴전압인 항복전압이 높고 누설전류도 낮은 특성을 갖는다.According to the present invention, since the TaON gate insulating film has a dielectric constant of 25 or more, it has a high dielectric constant and the chemical bonding structure is more stable than that of the Ta 2 O 5 gate insulating film. In addition, TaON gate insulating film has a low oxidation reactivity with a silicon substrate, which is not only resistant to electric shocks applied from the outside, but also has high breakdown voltage, which is an insulation breakdown voltage, and low leakage current.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 5는 본 발명에 따른 고유전체 TaON을 갖는 반도체장치의 게이트절연막 형성방법을 설명하기 위한 공정 순서도이다.1 to 5 are flowcharts illustrating a method of forming a gate insulating film of a semiconductor device having a high dielectric TaON according to the present invention.
본 발명의 게이트절연막 제조 공정은 우선, 도 1에 도시된 바와 같이, 반도체 기판으로서 실리콘기판(10)에 통상의 소자 분리 공정(예컨대, 로커스 또는 트렌치 공정)을 실시하여 소자의 활성 영역과 분리 영역을 정의하기 위한 필드산화막(12)을 형성한다.In the process of manufacturing a gate insulating film of the present invention, first, as shown in FIG. 1, the silicon substrate 10 as a semiconductor substrate is subjected to a conventional device isolation process (eg, a locus or a trench process), and thus an active region and a isolation region of the device. To form a field oxide film 12 for defining.
그 다음, 도 2에 도시된 바와 같이, 필드산화막(12)이 형성된 기판면에 HF, SC-1, H2SO4등의 케미컬을 이용한 세정 공정을 실시하여 기판 표면의 자연 산화막 및 파티클을 제거한다.Next, as shown in FIG. 2, a cleaning process using chemicals such as HF, SC-1, and H 2 SO 4 is performed on the substrate surface on which the field oxide film 12 is formed to remove natural oxide films and particles on the surface of the substrate. do.
그리고, 상기 기판(10)에 이후 비정질 TaON 증착시 기판 계면에 형성될 수 있는 불균일한 저유전 산화막(SiO2)이 형성되는 것을 방지하기 위해 질화박막(SiN) 및 질산화박막(SiON)(14) 중에서 어느 하나를 형성하도록 한다. 이때, 상기 질화박막(SiN)은 저압 화학기상증착 챔버에서 200℃∼600℃의 온도 범위에서 플라즈마를 이용하여 NH3내지 N2/H2가스를 공급해서 형성되고, 상기 질산화박막(SiON)은 저압 화학기상증착 챔버에서 200℃∼600℃의 온도 범위에서 플라즈마를 이용하여 NH3및 O2,또는 N2O를 10∼1000sccm으로 유량 조절기(mass flow controller)를 통해 정량 공급해서 형성된다.In addition, in order to prevent the formation of a non-uniform low-k dielectric layer (SiO 2 ) that may be formed at the substrate interface when the amorphous TaON is deposited on the substrate 10, a thin nitride film (SiN) and a thin nitride film (SiON) 14 may be formed. To form any one of them. In this case, the thin nitride film (SiN) is formed by supplying NH 3 to N 2 / H 2 gas in a low pressure chemical vapor deposition chamber using a plasma in a temperature range of 200 ℃ to 600 ℃, the thin nitride oxide (SiON) is In a low pressure chemical vapor deposition chamber, NH 3 and O 2, or N 2 O are formed at a temperature range of 200 ° C. to 600 ° C. by a quantitative supply of 10 to 1000 sccm through a mass flow controller.
바람직하게는, 상기 질화박막 또는 질산화박막 형성시, 기판 표면에 기생 산화막이 형성되지 않도록 플라즈마 분위기에서 NH3을 먼저 주입하고 O2또는 N2O 가스를 이후에 주입하도록 한다.Preferably, when forming the nitride film or the nitride oxide film, NH 3 is first injected in a plasma atmosphere so that parasitic oxide film is not formed on the surface of the substrate, and then O 2 or N 2 O gas is subsequently injected.
그러므로, 비정질 TaON을 증착하기 전에, 실시되는 기판의 질화(또는 질산화)처리는 종전보다 저온(200℃∼600℃)에서 실시되므로 이미 기판에 형성되어 있는 필드 산화막 또는 웰(well) 등의 다른 소자의 전기적 특성 열화를 방지한다.Therefore, prior to depositing amorphous TaON, nitriding (or nitrification) treatment of the substrate to be performed is performed at a lower temperature (200 ° C to 600 ° C) than before, so that other devices such as field oxide films or wells already formed on the substrate To prevent deterioration of electrical characteristics.
그 다음, 도 3에 도시된 바와 같이, 상기 기판(10)의 질화박막 또는 질산화박막(14) 상부에 비정질 TaON을 증착하여 게이트절연막(16)을 형성한다. 이때, 상기 비정질 TaON의 증착시, Ta 화학증기는 Ta계 화합물을 유량 조절기를 통해 정량 공급하고 150℃∼200℃의 온도 범위에서 증발시켜서 얻고, 300℃∼600℃의 저압 화학기상증착 챔버내에서 Ta의 화학증기와 반응 가스인 O2와 NH3를 유량조절기를 통해 공급한 다음, 표면 화학반응(surface chemical reaction)을 유도하여 비정질 TaON막을 증착한다.Next, as shown in FIG. 3, an amorphous TaON is deposited on the thin nitride film or the thin nitride oxide film 14 of the substrate 10 to form a gate insulating film 16. At this time, in the deposition of the amorphous TaON, Ta chemical vapor is obtained by quantitatively supplying Ta-based compound through a flow controller and evaporating in a temperature range of 150 ℃ to 200 ℃, in a low pressure chemical vapor deposition chamber of 300 ℃ to 600 ℃ Ta chemical vapor and reactant gases O 2 and NH 3 are supplied through a flow regulator, and then a surface chemical reaction is induced to deposit an amorphous TaON film.
그리고나서, 게이트절연막(16)의 고밀도화를 위해서 비정질의 TaON막이 형성된 기판에 어닐링 공정을 실시하여 비정질 TaON 증착과정에서 생성된 탄소화합물의 불순물과 막내에 존재하는 산소 공공을 제거하면서 결정화를 유도한다.Then, in order to increase the density of the gate insulating film 16, an annealing process is performed on the substrate on which the amorphous TaON film is formed to induce crystallization while removing impurities of the carbon compound generated during the amorphous TaON deposition process and oxygen vacancies present in the film.
이때, 어닐링 공정은 급속 열처리(rapid thermal processing) 공정을 이용하되, 650℃∼950℃의 온도조건에서 30초∼30분정도 진행하여 비정질 TaON 증착과정에서 생성된 탄소화합물의 불순물을 제거하면서 결정화를 유도한다. 또는, 전기로를 이용하여 650℃∼950℃ 온도 범위와 N2O, O2또는 N2분위기에서 1분∼30분간 진행하여 비정질 TaON의 결정화를 유도하는 것이 바람직하다. 이러한 어닐링 공정으로 인해, 비정질 TaON 게이트절연막(16)이 결정화되면서 증착과정에서 발생된 막내의 휘발성 탄소화합물(CO, CO2, CH4, C2H4)을 제거시켜 계면의 마이크로 크랙(micro crack) 및 핀 홀(pin hole)과 같은 구조 결함을 보강하고 균질도(homogeniety)를 향상시킨다.In this case, the annealing process uses a rapid thermal processing process, but proceeds for about 30 seconds to 30 minutes at a temperature condition of 650 ℃ to 950 ℃ to remove the crystallization of the carbon compound produced during the amorphous TaON deposition process Induce. Alternatively, it is preferable to induce crystallization of amorphous TaON by proceeding for 1 to 30 minutes in the temperature range of 650 ° C to 950 ° C and N 2 O, O 2 or N 2 atmosphere using an electric furnace. Due to this annealing process, the amorphous TaON gate insulating film 16 is crystallized and volatile carbon compounds (CO, CO 2 , CH 4 , C 2 H 4 ) generated in the deposition process are removed to remove micro cracks at the interface. Structural defects such as) and pin holes and reinforce homogeneity.
한편, 인시튜(in-situ) 또는 엑스시튜(ex-situ)에서 플라즈마를 이용하여 200∼600℃, NH3(또는 N2/H2) 분위기에서 TaON 게이트절연막(16) 표면을 질화시키거나 N2O(또는 O2) 분위기에서 질산화시키는 공정을 진행할 경우 700℃이상에서 진행되는 어닐링 공정을 스킵(skip)할 수 있다. 그 이유는 TaON 증착 후에 표면 처리가 되어 있기 때문에 게이트전극을 형성한 후에 진행되는 후속 열 공정에 의해 TaON 게이트절연막(16)이 결정화될 수 있기 때문이다.Meanwhile, the surface of the TaON gate insulating film 16 is nitrided in an in-situ or ex-situ atmosphere at 200 to 600 ° C. and NH 3 (or N 2 / H 2 ) atmosphere. Alternatively, when the nitrification process is performed in an N 2 O (or O 2 ) atmosphere, the annealing process performed at 700 ° C. or more may be skipped. The reason is that since the surface treatment is performed after TaON deposition, the TaON gate insulating film 16 can be crystallized by a subsequent thermal process performed after the formation of the gate electrode.
그 다음, 도 4에 도시된 바와 같이, 본 발명에 따른 TaON의 게이트절연막(16)이 형성된 결과물에 도전성을 갖는 게이트전극 제조 공정을 진행한다. 이에, 상기 게이트절연막(16) 상부에 도프트 폴리실리콘막(18)을 형성한다. 이때, 도프트 폴리실리콘막(18) 상부에는 고저항의 전기 특성을 위해서 금속 실리사이드 물질로서 텅스텐실리사이드막을 추가 적층할 수도 있다.Next, as shown in FIG. 4, a process of manufacturing a conductive gate electrode is performed on the resultant formed with the TaON gate insulating film 16 according to the present invention. Thus, a doped polysilicon layer 18 is formed on the gate insulating layer 16. In this case, a tungsten silicide film may be further stacked on the doped polysilicon film 18 as a metal silicide material for high electrical resistance.
그 다음, 도 5에 도시된 바와 같이, 게이트 마스크를 이용한 사진 및 식각 공정을 진행하여 상기 도프트 폴리실리콘막(18)을 패터닝하여 게이트전극(18')을 형성한다.Next, as shown in FIG. 5, the doped polysilicon layer 18 is patterned to form a gate electrode 18 ′ by performing a photolithography and an etching process using a gate mask.
그리고, 식각 공정으로 게이트전극(18') 하부의 TaON 게이트절연막(16)과 질화막(SiN) 또는 질산화막(SiON)(14)을 패터닝하여 본 발명에 따른 TaON 게이트절연막과 게이트전극의 제조 공정을 완료한다.The TaON gate insulating film 16 and the nitride film (SiN) or the nitride oxide film (SiON) 14 under the gate electrode 18 'are patterned by an etching process to manufacture the TaON gate insulating film and the gate electrode according to the present invention. To complete.
상술한 바와 같이, 본 발명에 따른 반도체장치의 TaON 게이트절연막 형성방법에 의하면, 본 발명의 게이트절연막 물질로 이용되는 TaON의 유전율(ε=20∼25)이 종래 게이트산화막인 SiO2(ε=4)보다 높기 때문에 이 게이트산화막보다 물리적 두께를 두껍게 하면서도 전기적 두께를 낮출 수 있어 고집적 반도체장치의 게이트 절연막 특성을 달성할 수 있고, 절연 항복 강도가 높아져 제품의 수명이 증대되는 이점이 있다.As described above, according to the TaON gate insulating film forming method of the semiconductor device according to the present invention, the dielectric constant (ε = 20 to 25) of TaON used as the gate insulating film material of the present invention is SiO 2 (ε = 4), which is a conventional gate oxide film. Higher than the gate oxide film, the electrical thickness can be lowered, and the electrical thickness can be lowered, so that the gate insulating film characteristics of the highly integrated semiconductor device can be achieved, and the insulation yield strength is increased, thereby increasing the service life of the product.
그리고, 본 발명의 TaON 게이트절연막은 최근에 게이트절연막으로 사용되는 Ta2O5보다 구조적으로 안정된 Ta-O-N 결합구조를 갖고 있어 실리콘 기판과의 산화 반응성도 작기 때문에 외부로 인가되는 전기적 충격에도 강하고 절연파괴전압이 높고 누설전류 수준이 낮은 전기적 특성을 얻을 수 있다.In addition, the TaON gate insulating film of the present invention has a more structurally stable Ta-ON coupling structure than Ta 2 O 5, which is recently used as a gate insulating film. Electrical characteristics with high breakdown voltage and low leakage current can be obtained.
또한, 본 발명은 TaON 게이트절연막을 증착하기에 앞서, 실리콘 기판 표면을 질화(또는 질산화)처리하여 후속 공정에서의 산화 저항성을 높임으로써 불균일한 산화막 생성이 억제되어 계면 특성이 향상된다. 또한, 기존의 급속열처리에 대한 질화 또는 질산화처리보다 저온(200∼600℃)에서 진행되기 때문에 다른 소자의 전기적 특성 열화를 방지한다. 그리고, 이러한 질화처리는 TaON 증착 장비에서 인시튜로도 진행가능하기 때문에 별도의 장비를 사용하지 않아 제조 공정을 단순화할수 있다.In addition, according to the present invention, prior to depositing the TaON gate insulating film, the surface of the silicon substrate is nitrided (or nitrified) to increase oxidation resistance in a subsequent process, thereby suppressing generation of non-uniform oxide film, thereby improving interface characteristics. In addition, since the process proceeds at a lower temperature (200 to 600 ° C.) than the nitriding or nitrification process for the conventional rapid heat treatment, the deterioration of electrical characteristics of other devices is prevented. In addition, since the nitriding treatment can be performed in-situ in the TaON deposition equipment, the manufacturing process can be simplified without using a separate equipment.
Claims (11)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990064610A KR100313091B1 (en) | 1999-12-29 | 1999-12-29 | Method of forming gate dielectric layer with TaON |
JP2000391982A JP4340830B2 (en) | 1999-12-29 | 2000-12-25 | Method for forming gate insulating film of semiconductor device |
TW089127924A TW525262B (en) | 1999-12-29 | 2000-12-27 | Method for forming a gate insulating film for semiconductor devices |
US09/750,226 US6303481B2 (en) | 1999-12-29 | 2000-12-29 | Method for forming a gate insulating film for semiconductor devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990064610A KR100313091B1 (en) | 1999-12-29 | 1999-12-29 | Method of forming gate dielectric layer with TaON |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010064414A true KR20010064414A (en) | 2001-07-09 |
KR100313091B1 KR100313091B1 (en) | 2001-11-07 |
Family
ID=19631881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990064610A KR100313091B1 (en) | 1999-12-29 | 1999-12-29 | Method of forming gate dielectric layer with TaON |
Country Status (4)
Country | Link |
---|---|
US (1) | US6303481B2 (en) |
JP (1) | JP4340830B2 (en) |
KR (1) | KR100313091B1 (en) |
TW (1) | TW525262B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100471405B1 (en) * | 2000-06-30 | 2005-03-08 | 주식회사 하이닉스반도체 | Method forming gate dielectric in semiconductor device |
US7911004B2 (en) | 2006-06-19 | 2011-03-22 | Nec Corporation | Semiconductor device and manufacturing method of the same |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7554829B2 (en) | 1999-07-30 | 2009-06-30 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
KR100504435B1 (en) * | 1999-12-23 | 2005-07-29 | 주식회사 하이닉스반도체 | Method of forming capacitor in semiconducotr device |
KR20010066386A (en) * | 1999-12-31 | 2001-07-11 | 박종섭 | Method of forming gate electrode of Flash memory |
KR100333375B1 (en) * | 2000-06-30 | 2002-04-18 | 박종섭 | Method for manufacturing gate in semiconductor device |
KR100333376B1 (en) * | 2000-06-30 | 2002-04-18 | 박종섭 | Method for manufacturing gate in semiconductor device |
US6548368B1 (en) * | 2000-08-23 | 2003-04-15 | Applied Materials, Inc. | Method of forming a MIS capacitor |
JP4184686B2 (en) | 2001-03-28 | 2008-11-19 | 株式会社東芝 | Manufacturing method of semiconductor device |
JP2002313966A (en) * | 2001-04-16 | 2002-10-25 | Yasuo Tarui | Transistor type ferroelectric non-volatile storage element and its manufacturing method |
US6498383B2 (en) * | 2001-05-23 | 2002-12-24 | International Business Machines Corporation | Oxynitride shallow trench isolation and method of formation |
US20020187651A1 (en) * | 2001-06-11 | 2002-12-12 | Reid Kimberly G. | Method for making a semiconductor device |
JP3746968B2 (en) * | 2001-08-29 | 2006-02-22 | 東京エレクトロン株式会社 | Insulating film forming method and forming system |
US6844203B2 (en) | 2001-08-30 | 2005-01-18 | Micron Technology, Inc. | Gate oxides, and methods of forming |
US8026161B2 (en) | 2001-08-30 | 2011-09-27 | Micron Technology, Inc. | Highly reliable amorphous high-K gate oxide ZrO2 |
US6953730B2 (en) | 2001-12-20 | 2005-10-11 | Micron Technology, Inc. | Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics |
US6900122B2 (en) | 2001-12-20 | 2005-05-31 | Micron Technology, Inc. | Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics |
US6767795B2 (en) | 2002-01-17 | 2004-07-27 | Micron Technology, Inc. | Highly reliable amorphous high-k gate dielectric ZrOXNY |
TW533534B (en) * | 2002-02-01 | 2003-05-21 | Macronix Int Co Ltd | Manufacturing method of interpoly dielectric layer |
CN100433271C (en) * | 2002-02-21 | 2008-11-12 | 旺宏电子股份有限公司 | Manufacture of dielectric layers between polycrystal silicon |
US6812100B2 (en) | 2002-03-13 | 2004-11-02 | Micron Technology, Inc. | Evaporation of Y-Si-O films for medium-k dielectrics |
US7160577B2 (en) | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US7045430B2 (en) | 2002-05-02 | 2006-05-16 | Micron Technology Inc. | Atomic layer-deposited LaAlO3 films for gate dielectrics |
US7205218B2 (en) | 2002-06-05 | 2007-04-17 | Micron Technology, Inc. | Method including forming gate dielectrics having multiple lanthanide oxide layers |
US7135421B2 (en) | 2002-06-05 | 2006-11-14 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
US7067439B2 (en) | 2002-06-14 | 2006-06-27 | Applied Materials, Inc. | ALD metal oxide deposition process using direct oxidation |
US6804136B2 (en) | 2002-06-21 | 2004-10-12 | Micron Technology, Inc. | Write once read only memory employing charge trapping in insulators |
US6970370B2 (en) * | 2002-06-21 | 2005-11-29 | Micron Technology, Inc. | Ferroelectric write once read only memory for archival storage |
US7847344B2 (en) | 2002-07-08 | 2010-12-07 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US7221017B2 (en) | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US7221586B2 (en) | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US6921702B2 (en) * | 2002-07-30 | 2005-07-26 | Micron Technology Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US6790791B2 (en) | 2002-08-15 | 2004-09-14 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films |
US6884739B2 (en) | 2002-08-15 | 2005-04-26 | Micron Technology Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US20040036129A1 (en) * | 2002-08-22 | 2004-02-26 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US6967154B2 (en) * | 2002-08-26 | 2005-11-22 | Micron Technology, Inc. | Enhanced atomic layer deposition |
US7199023B2 (en) | 2002-08-28 | 2007-04-03 | Micron Technology, Inc. | Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed |
US6713358B1 (en) * | 2002-11-05 | 2004-03-30 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric |
US6958302B2 (en) | 2002-12-04 | 2005-10-25 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US7101813B2 (en) | 2002-12-04 | 2006-09-05 | Micron Technology Inc. | Atomic layer deposited Zr-Sn-Ti-O films |
KR20040096377A (en) * | 2003-05-09 | 2004-11-16 | 삼성전자주식회사 | Method of formimg oxide layer and oxynitride layer |
US20050124121A1 (en) * | 2003-12-09 | 2005-06-09 | Rotondaro Antonio L. | Anneal of high-k dielectric using NH3 and an oxidizer |
US20050233477A1 (en) * | 2004-03-05 | 2005-10-20 | Tokyo Electron Limited | Substrate processing apparatus, substrate processing method, and program for implementing the method |
US8119210B2 (en) | 2004-05-21 | 2012-02-21 | Applied Materials, Inc. | Formation of a silicon oxynitride layer on a high-k dielectric material |
US7588988B2 (en) | 2004-08-31 | 2009-09-15 | Micron Technology, Inc. | Method of forming apparatus having oxide films formed using atomic layer deposition |
US7498247B2 (en) | 2005-02-23 | 2009-03-03 | Micron Technology, Inc. | Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
DE102006009822B4 (en) * | 2006-03-01 | 2013-04-18 | Schott Ag | Process for the plasma treatment of glass surfaces, their use and glass substrate and its use |
US7678710B2 (en) | 2006-03-09 | 2010-03-16 | Applied Materials, Inc. | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
US7837838B2 (en) | 2006-03-09 | 2010-11-23 | Applied Materials, Inc. | Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus |
US7645710B2 (en) | 2006-03-09 | 2010-01-12 | Applied Materials, Inc. | Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system |
US7563730B2 (en) | 2006-08-31 | 2009-07-21 | Micron Technology, Inc. | Hafnium lanthanide oxynitride films |
TWI435376B (en) | 2006-09-26 | 2014-04-21 | Applied Materials Inc | Fluorine plasma treatment of high-k gate stack for defect passivation |
JP4852400B2 (en) * | 2006-11-27 | 2012-01-11 | シャープ株式会社 | Semiconductor memory device, semiconductor device, display device, liquid crystal display device, and receiver |
US20080242012A1 (en) * | 2007-03-28 | 2008-10-02 | Sangwoo Pae | High quality silicon oxynitride transition layer for high-k/metal gate transistors |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2072418B (en) * | 1980-03-19 | 1984-03-14 | Olympus Optical Co | Ion sensor and method of manufacturing the same |
JPH05342635A (en) * | 1992-06-15 | 1993-12-24 | Matsushita Electric Ind Co Ltd | Optical information medium |
JP2786071B2 (en) * | 1993-02-17 | 1998-08-13 | 日本電気株式会社 | Method for manufacturing semiconductor device |
JP3334323B2 (en) * | 1994-03-17 | 2002-10-15 | ソニー株式会社 | Method of forming high dielectric film |
KR100207467B1 (en) * | 1996-02-29 | 1999-07-15 | 윤종용 | Fabricating method for capacitor in semiconductor device |
TW345742B (en) * | 1997-11-27 | 1998-11-21 | United Microelectronics Corp | Method for producing integrated circuit capacitor |
US20020009861A1 (en) * | 1998-06-12 | 2002-01-24 | Pravin K. Narwankar | Method and apparatus for the formation of dielectric layers |
JP4053241B2 (en) * | 1998-06-19 | 2008-02-27 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor device |
KR100286011B1 (en) * | 1998-08-04 | 2001-04-16 | 황철주 | Method for fabricating capacitor of semiconductor device |
KR100297628B1 (en) * | 1998-10-09 | 2001-08-07 | 황 철 주 | Method for manufacturing semiconductor devices |
JP3326718B2 (en) * | 1999-03-19 | 2002-09-24 | 富士通株式会社 | Method for manufacturing semiconductor device |
US6171900B1 (en) * | 1999-04-15 | 2001-01-09 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
KR100519514B1 (en) * | 1999-07-02 | 2005-10-07 | 주식회사 하이닉스반도체 | Method of forming capacitor provied with TaON dielectric layer |
KR100338110B1 (en) * | 1999-11-09 | 2002-05-24 | 박종섭 | Method of manufacturing a capacitor in a semiconductor device |
-
1999
- 1999-12-29 KR KR1019990064610A patent/KR100313091B1/en not_active IP Right Cessation
-
2000
- 2000-12-25 JP JP2000391982A patent/JP4340830B2/en not_active Expired - Fee Related
- 2000-12-27 TW TW089127924A patent/TW525262B/en not_active IP Right Cessation
- 2000-12-29 US US09/750,226 patent/US6303481B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100471405B1 (en) * | 2000-06-30 | 2005-03-08 | 주식회사 하이닉스반도체 | Method forming gate dielectric in semiconductor device |
US7911004B2 (en) | 2006-06-19 | 2011-03-22 | Nec Corporation | Semiconductor device and manufacturing method of the same |
KR101155364B1 (en) * | 2006-06-19 | 2012-06-19 | 닛본 덴끼 가부시끼가이샤 | Semiconductor device and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
TW525262B (en) | 2003-03-21 |
JP4340830B2 (en) | 2009-10-07 |
KR100313091B1 (en) | 2001-11-07 |
JP2001257208A (en) | 2001-09-21 |
US20010006843A1 (en) | 2001-07-05 |
US6303481B2 (en) | 2001-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100313091B1 (en) | Method of forming gate dielectric layer with TaON | |
US6355519B1 (en) | Method for fabricating capacitor of semiconductor device | |
US7521354B2 (en) | Low k interlevel dielectric layer fabrication methods | |
US7737511B2 (en) | Semiconductor device and method of manufacturing the same | |
US7226848B2 (en) | Substrate treating method and production method for semiconductor device | |
KR20010066386A (en) | Method of forming gate electrode of Flash memory | |
KR20060081660A (en) | Method for producing gate stack sidewall spacers | |
US20040011279A1 (en) | Method of manufacturing semiconductor device | |
JP4742867B2 (en) | Semiconductor device provided with MIS field effect transistor | |
KR100331270B1 (en) | Forming method of capacitor with TaON thin film | |
KR100519514B1 (en) | Method of forming capacitor provied with TaON dielectric layer | |
KR100331271B1 (en) | Method of forming capacitor with TaON dielectric layer | |
JP2008235397A (en) | Method of manufacturing semiconductor device | |
KR100327587B1 (en) | Method of forming capacitor provided with TaON dielectric layer | |
KR100680970B1 (en) | Method for forming gate of semiconductor device | |
KR100650756B1 (en) | Method for forming gate of semiconductor device | |
KR100351253B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR100532741B1 (en) | Method for forming an etch stop layer of semiconductor device | |
JP2006190801A (en) | Film formation method and manufacturing method of semiconductor device | |
KR100434709B1 (en) | Method for forming capacitor of semiconductor device | |
KR100650758B1 (en) | Method for forming gate of semiconductor device | |
KR100650757B1 (en) | Method for forming gate of semiconductor device | |
KR100338819B1 (en) | Method of forming gate dielectric layer with Ta2O5 | |
KR100521416B1 (en) | Capacitor with hafnium-nitride bottom electrode | |
KR100721203B1 (en) | Semiconductor device having ternary system oxide gate insulating layer and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120921 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20130925 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20140923 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20150921 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20160923 Year of fee payment: 16 |
|
LAPS | Lapse due to unpaid annual fee |