KR20010060418A - 박물 열연코일을 이용한 방향성 전기강판의 제조방법 - Google Patents

박물 열연코일을 이용한 방향성 전기강판의 제조방법 Download PDF

Info

Publication number
KR20010060418A
KR20010060418A KR1019990059961A KR19990059961A KR20010060418A KR 20010060418 A KR20010060418 A KR 20010060418A KR 1019990059961 A KR1019990059961 A KR 1019990059961A KR 19990059961 A KR19990059961 A KR 19990059961A KR 20010060418 A KR20010060418 A KR 20010060418A
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
hot rolled
electrical steel
oriented electrical
Prior art date
Application number
KR1019990059961A
Other languages
English (en)
Inventor
천병효
이재원
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990059961A priority Critical patent/KR20010060418A/ko
Publication of KR20010060418A publication Critical patent/KR20010060418A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 저온재가열 방향성 전기강판의 제조방법에 관한 것으로, 열연판의 두께를 얇게 하고 최종 냉간압연후 적절히 탈탄처리함으로써 압연생산성을 높이고 표면산화층을 용이하게 제어할 수 있는 방향성 전기강판의 제조방법을 제공하고자하는데, 그 목적이 있다.
본 발명은 저온재가열 방향성 전기강판의 제조방법에 있어서,
중량%로 Si:2.8~3.2%, C: 0.025~0.050%, P:0.015%이하, 용존 Al: 0.008~0.025%, N: 0.007~0.011%, S:0.008%이하, Mn: 0.1~0.3%이하, Cu:0.6%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 재가열후 열간압연하여 1.5~2.5mm 두께의 열연판으로 하고 800~950℃의 온도에서 1~2분간 열연판소둔을 행하고 산세처리한 다음, 냉간압연하여 최종두께를 0.27~0.35mm로 하고, 그 후 830~900℃의 습윤분위기에서 2~3분간 탈탄소둔을 한 다음, 융착방지제를 도포하고 최종 마무리고온소둔을 하는 것을 특징으로 하는 박물 열연코일을 이용한 방향성 전기강판의 제조방법을, 그 기술적 요지로 한다.

Description

박물 열연코일을 이용한 방향성 전기강판의 제조방법{A METHOD FOR MANUFACTURING GRAIN ORIENTED ELECTRICAL STEEL SHEET USING THIN HOT COIL}
본발명은 전기설비의 철심에 적용되는 일방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는 열연판의 두께를 얇게 하여 1회압연-1회소둔을 실시함으로써, 우수한 자기적 특성을 제공할 수 있는 박물 열연코일을 이용한 방향성 전기강판의 제조방법에 관한 것이다.
일방향성 전기강판은 압연방향으로만 우수한 자기특성을 나타내도록 제조되는 것으로, 우수한 성능을 가진 변압기을 제조하는데 사용될 수 있다.
상기 일방향성 전기강판은 결정 성장의 관점에서 이차 재결정화입자를 특징으로 하는데, 이차 재결정화 입자의 성장을 촉진시키기 위해서는 매우 적은 양의 억제제 성분을 첨가시켜 일차 재결정화 입자의 성장을 조절할 필요가 있다.
예를 들어, 2단계 냉간압연공정에서는 많은 경우에 MnS가 억제제로서 사용된다. 일반적으로, 이 공정은 강을 제조하는 단계에서 Mn 또는 S를 첨가하고 강을 열간압연하고 냉간압연사이에 수행된 중간 아닐링과 함께 열간압연된 강을 최종 두께를 가진 강판(스트립)으로 2회 냉간 압연한 다음 탈탄소둔과 최종 마무리고온소둔을 수행하여 결정 입자를 성장시키는 것으로 이루어진다.
1단계 냉간압연 공정에서는 많은 경우에 억제제로서 AlN을 사용한다. 이 공정에서 억제제에 대한 조건은 중요하며, 이차 재결정화가 촉진되는 중에 일차 재결정화 입자의 성장을 방지하도록 조절한다. 즉, 냉간압연 공정에서 이차 재결정화 입자를 얻기 위하여 적절한 냉간압하율을 유지하고 이로써 야기된 작은 크기의 일차 재결정화 입자의 성장을 억제하는 동시에, 이차 재결정화 핵의 생성과 성장을 수행하기 위한 2단계 냉간압연 공정에서의 억제제보다 강한 억제력을 나타낸다고 알려져 있다.
한편, 일방향성 전기강판은 주로 변압기, 발전기 및 다른 전기 설비용 철심재로서 사용되는데, 높은 자속밀도, 와트손실 및 통상의 주파수에서 자기 변형은 일방향성 전기강판에 필요한 중요한 특성이다.
자속밀도는 {110}<001>배향의 강도로 측정된다. 또한, 일방향성 전기강판은 우수한 자기 특성, 즉 자화 특성과 와트 손실 특성이 있으며, 추가로 양호한 코팅특성을 가진다.
일방향성 전기강판은 이차 재결정화 현상을 이용함으로서 소위 "고스집합조직(goss texture)"를 가진 연신면에 {110}면을 연신방향에서 <001>축을 가진 결정입자를 선택적으로 발달시켜 제조될 수 있다.
일반적으로, 일방향성 전기강판은 2~4%의 규소를 함유한 강 슬라브를 재가열 및 열간압연하여 2.0~2.3mm의 두께를 가진 열연코일을 만들고 억제제의 제어 및 재석출을 위해 예비소둔 및 중간소둔, 탈탄소둔, 융착방지제 도포 및 최종 마무리 고온소둔등의 복잡한 공정을 거쳐서 최종 제품으로 완성되는데, 입성장 억제제로 대부분 MnS나 MnSe를 함유한다. 이러한 복잡한 제조공정중 가장 제조상의 어려움을 안고 있는 공정은 고온에서 열처리를 행하는 스라브 재가열공정으로, 이 공정은 입성장억제제로 사용되는 MnS나 AlN등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시켜야만 하는 것을 중심으로 하여 행해지는데, 이를 위해서는 1400℃ 정도의 고온에서 4시간 이상의 시간 유지가 불가피하게 된다.
이 때 고온의 슬라브 표면에서는 공기와의 산화반응으로 Si및 Fe성분의 산화물이 복합된 산화물로 되며 이는 융점이 1340℃정도로 낮아 표면에서 부터 녹아 내리게 된다. 이때 녹아 내리는 슬라그는 일부 바깥으로 흘러내리게 설계되어 있지만, 대부분은 로상부의 내화물등에 축적되어 작업종료와 동시에 완전 내부수리가 불가피하다. 따라서, 생산성이 저하되거나 2차 냉간압연시 표면산화층 형성에 의한 꼬임현상으로 압연롤의 피로현상이 야기되어 압연생산성이 나쁘고 근본적인 2회압연-2회소둔법이라 공정부담에 의한 원가가 상승하는 문제가 생긴다.
이에, 슬라브를 1300℃이하의 온도에서 가열하도록 하는 성분계를 설정하고제조공정중 석출물을 관리하는 기술들이 제안되고 있는데, 그 예로 대한민국 특허공개 제89-8334호, 제89-13200호, 제92-707278호, 제92-9999호, 제92-14941호 및특허공고 제89-882호 등이 있다.
그러나, 이 기술들은 통상재의 제조순서와 달리 1차 냉간압연후 통상 0.5~0.7mm의 중간두께에서 탈탄소둔을 하므로 장시간의 탈탄이 필요하여 생산성이 저하되고, 또한 최종제품에서의 잔류탄소량 관리한계인 30ppm이하 범위를 넘기도 하여, 수요가가 가공 사용시에 자기시효현상이 나타나 사용에 문제가 되기도 한다.또한, 표면의 산화층제어가 어렵고 표면의 베이스 코팅층이 균일하지 못한 문제점을 야기시켜 왔다.
이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 열연판의 두께를 얇게 하고 최종 냉간압연후 적절히 탈탄처리함으로써 압연생산성을 높이고 표면산화층을 용이하게 제어할 수 있는 방향성 전기강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.
본 발명은 저온재가열 방향성 전기강판의 제조방법에 있어서,
중량%로, Si:2.8~3.2%, C: 0.025~0.050%, P:0.015%이하, 용존 Al: 0.008~ 0.025%, N: 0.007~0.011%, S:0.008%이하, Mn: 0.1~0.3%이하, Cu:0.6%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 재가열후 열간압연하여 1.5~ 2.5mm 두께의 열연판으로 제조하고 800~950℃의 온도에서 1~2분간 열연판소둔을 행하고 산세처리한 다음, 냉간압연하여 최종두께를 0.27~0.35mm로 하고, 그 후 830~900℃의 습윤분위기에서 2~3분간 탈탄소둔을 한 다음, 융착방지제를 도포하고 최종 마무리고온소둔을 하는 것을 특징으로 하는 박물 열연코일을 이용한 방향성 전기강판의 제조방법에 관한 것이다.
이하, 본 발명에 대하여 상세히 설명한다.
일반적으로, 저온재가열 방향성 전기강판은 2회 압연-2회 소둔법으로 제조되는데, 그 이유는 자화용이의 2차 재결정을 형성하고 1차 재결정의 기본 성장억제력을 얻는데 있어서, 1회 냉간압연으로는 확보가 어렵기 때문이다. 그러나, 1차 재결정을 고온소둔공정시 천천히 안정적으로 완성시키면, 2차재결정 성장의 핵이 되는 고스방위의 조직들을 극도로 안정화 시킬수 있어서, 자화용이의 집합조직을 우선적으로 성장시킬 수 있다.
따라서, 공정단축을 위한 1회 압연소둔법을 적용하고도 요구되는 자기적 특성을 확보하기 위해서는, 강한 억제력의 성분계, 적정 냉간압하력 및 입성장억제력 확보를 위한 공정관리 등의 제반문제를 해결해야 한다.
이에, 본 발명자들은 상기한 바와 같은, 통상의 성분계를 바탕으로 최적의 자기적 특성을 얻을 수 있는 적정 냉간압하율을 조사한 결과, 81~88%임을 확인하고, 이 냉간압하율을 확보하기 위해서는 열연판의 두께를 1.5~2.5mm로 제어해야 한다는 것을 알아내었다.
또한, 불완전하게 석출된 억제자를 완성시키기 위해서는 열여연판소둔조건을 제어해야 한다는 것을 발견하고, 적정 시간 및 온도를 시험한 결과 800~950℃의 온도, 1~2분의 시간이 가장 유효한 조건임을 확인 할 수 있었다. 상기 열연판소둔시간이 2분을 초과할 경우에는 철손특성이 열화되는 경향이 나타났다.
한편, 방향성 제품은 수요가에서 가공조립하여 변압기등으로 사용시 소재중의 잔류 탄소성분이 많으면, 사용중 열에 의하여 탄소성분이 소재중의 Fe와 반응하여 석출물을 형성하므로 사용시간 경과에 따라 자기적 특성을 열화시킨다. 따라서, 탈탄소둔을 실시해야 하는데, 본발명은 1회압연-1회소둔법을 적용하므로 1회소둔이 바로 탈탄소둔공정이 되며, 이때 탈탄온도 및 시간은 830~900℃, 2~3분이 바람직하다. 그 이유를 살펴보면 다음과 같다.
상기 탈탄소둔은 AlN의 석출물 관리 및 집합조직의 관리에 의한 자기적 특성의 확보에 있어서 중요한 역할을 하기 때문에, 이공정에서는 탈탄성 확보 및 집합조직관리의 두가지 측면에서 관리되어야만 한다. 먼저, 집합조직 측면에서 고스핵을 확보하기에 가장 유리한 방위인 (110)면 강도는 870℃경에서 가장 강하게 된다.이와 동시에 탈탄성을 고려하면 830~900℃의 조업조건이 가장 유리한 온도조건임을 확인 할 수 있었다.
또한, 결정입도의 적정화 관리를 위하여 온도와 동시에 적정 탈탄소둔시간도 중요한데, 적정 탈탄시간은 2~3분이내로, 그 이외의 시간에서는 결정립의 불안정으로 자성 중 철손특성이 급격히 열화돠는 경향이 나타났다.
상기와 같은 탈탄소둔후에는 MgO를 주성분으로 하는 융착방지제를 도포하고, 권취하여 대형코일로 만든다음, 최종 마무리고온소둔을 통상적인 방법으로 행한다. 이 때, 최종 마무리고온소둔은 10~25%정도의 N2를 포함한 H2분위기에서, 700~1200℃구간의 승온율을 15~25℃/Hr사이로 제한하며 1150℃의 온도에서 10시간 이상 균열한 후 냉각하는 식으로 행하는 것이 바람직하다.
이하 실시예를 통하여 설명한다.
(실시예1)
중량%로 Si:3.01%, C:0.038%, P:0.010%, 용존 Al:0.017%, N:0.0095%, S:0.005%, Mn:0.2%, Cu:0.30%이고, 나머지는 Fe로 구성된 조성의 성분을 이용하여 200mm두께의 슬라브를 만들었다. 이것을 표면용융이 없는 1300℃의 온도에서 3.5시간 저온재가열후 열간압연을 행하였으며, 이때의 열연판의 두께를 하기 표1과 같이변화시켰다. 그후, 상기 열연판들에 대해서 980℃에서 열연판소둔을 시행하고 산세후 냉간압연을 행하여 0.30mm의 최종두께로 하였다. 이어서, 870℃에서 3분간 25%H2+75%N2의 이슬점 50℃의 습윤가스분위기에서 탈탄소둔하였다. 다음, MgO를 주성분으로 하는 융착방지제를 도포후 건조한 다음, 각각 권취하여 대형코일로 만들고, 최종 마무리소둔공정을 행하여, 최종제품을 만들었다. 이때 최종 마무리소둔은 전 구간을 10~25%의 질소를 함유한 수소분위기이며 ,700~1200℃구간의 승온율을 18℃/Hr로 유지하면서 1150℃의 온도에서 15시간 균열한 후 냉각하는 식으로 행하였다.
이 때 시편들의 자기적 특성을 조사하고, 그 결과를 하기 표1에 나타내었다.
구분 열연판두께(mm) 냉간압하율(%) 철손(W17/50) 자속밀도(B10)
비교재1 1.2 76 1.67 1.74
발명재1 1.5 81 1.32 1.84
발명재2 2.0 86 1.24 1.86
발명재3 2.5 88 1.25 1.87
비교재2 2.7 89 1.48 1.79
비교재3 3.0 90 1.62 1.73
상기 표1에 나타난 바와 같이, 열연판 두께가 본 발명범위를 벗어난 비교재들은 자기적 특성이 발명재 대비 상당히 열위함을 알 수 있다.
(실시예2)
실시예1의 성분을 갖는 슬라브를 1300℃의 온도에서 3.5시간 저온재가열후 열간압연을 행하여 1.8mm두께의 열연판을 만들었다. 이 열연판에 대하여 하기 표2와 같이 조건을 달리하여 열연판소둔을 행하고, 산세한 다음, 냉간압연하여 0.30mm의 최종 냉연판을 제조하였다. 이어서 870℃에서 3분간 25%H2+75%N2의 이슬점 50℃의 습윤가스분위기에서 탈탄소둔하였다. 이어서, 870℃에서 3분간 25%H2+75%N2의 이슬점 50℃의 습윤가스분위기에서 탈탄소둔하였다. 다음, MgO를 주성분으로 하는 융착방지제를 도포후 건조한 다음, 각각 권취하여 대형코일로 만들고, 최종 마무리소둔공정을 행하여, 최종제품을 만들었다. 이때 최종 마무리소둔은 전 구간을 10~25%의 질소를 함유한 수소분위기이며, 700~1200℃구간의 승온율을 18℃/Hr로 유지하면서 1150℃의 온도에서 15시간 균열한 후 냉각하는 식으로 행하였다.
이 때 시편들의 자기적 특성을 조사하고, 그 결과를 하기 표2에 나타내었다.
구분 열연판소둔조건 자기적 특성
온도(℃) 시간(분) 철손(W17/50) 자속밀도(B10)
비교재4 600 2 1.77 1.68
발명재5 800 1.28 1.85
발명재6 850 1.29 1.84
발명재7 950 1.22 1.87
비교재5 980 0.5 1.48 1.81
비교재6 1000 2 1.38 1.83
*W17/50: 50Hz에서 1.7Tesla가 얻어지도록 자화했을때의 철심의 손실값*자속밀도(B10): 1000A/m로 자화했을 때의 유도되는 자속의 값
상기 표2에 나타난 바와 같이, 800~950℃정도의 소둔온도에서 2분 열처리한 발명재가 980℃ 및 1000℃에서 열연판소둔을 행한 비교재(5),(6)보다 우수한 자성이 얻어짐을 알 수 있다.
(실시예3)
실시예1의 성분을 갖는 슬라브를 1300℃의 온도에서 3.5시간 저온재가열후 열간압연을 행하여 1.8mm두께의 열연판을 만들었다. 그 후, 열연판소둔하고 산세한 다음, 냉간압연을 행하여 0.30mm의 최종두께로 하였다. 이어서, 하기 표3과 같은 조건으로 25%H2+75%N2의 이슬점 50℃의 습윤가스분위기에서 탈탄소둔을 실시하였다. 이들의 소둔판을 MgO를 주성분으로 하는 융착방지제를 도포후 건조한 다음 각각 권취하여 대형코일로 만든다음 최종 마무리소둔공정을 행한다. 다음, MgO를 주성분으로 하는 융착방지제를 도포후 건조한 다음 각각 권취하여 대형코일로 만들고, 최종 마무리소둔공정을 행하여, 최종제품을 만들었다. 이때 최종 마무리소둔은 전 구간을 10~25%의 질소를 함유한 수소분위기이며, 700~1200℃구간의 승온율을 18℃/Hr로 유지하면서 1150℃의 온도에서 15시간 균열한 후 냉각하는 식으로 행하였다.
이 때 시편들의 자기적 특성을 조사하고, 그 결과를 하기 표3에 나타내었다.
구분 탈탄소둔조건 잔류탄소(ppm) 자기적 특성
온도(℃) 시간(분) 철손(W17/50) 자속밀도(B10)
비교재7 800 3 46 1.59 1.77
발명재8 840 35 1.24 1.86
발명재9 870 2 37 1.37 1.84
발명재10 870 3 27 1.19 1.88
비교재8 870 4 20 1.43 1.84
발명재11 900 3 21 1.38 1.82
비교재9 920 29 1.67 1.68
상기 표3에 나타난 바와 같이, 본 발명에 부합되는 탈탄소둔조건으로 탈탄소둔한 발명재(8)~(11)은 탈탄소둔온도가 830℃ 미만 또는 900℃보다 높은 비교재(7),(9)에 비하여 자기적 특성이 우수함을 알 수 있다.
상기한 바와 같이, 본 발명은 방향성 전기강판을 제조함에 있어서, 열연판의 두께를 제어하여 1회 냉간압연한 후 적절히 탈탄소둔함으로써, 우수한 자기적 특성을 갖는 방향성 전기강판을 보다 경제적으로 제조할 수 있는 효과가 있는 것이다.

Claims (1)

  1. 저온재가열 방향성 전기강판의 제조방법에 있어서,
    중량%로 Si:2.8~3.2%, C: 0.025~0.050%, P:0.015%이하, 용존 Al: 0.008~0.025%, N: 0.007~0.011%, S:0.008%이하, Mn: 0.1~0.3%이하, Cu:0.6%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 재가열후 열간압연하여 1.5~2.5mm 두께의 열연판으로 하고 800~950℃의 온도에서 1~2분간 열연판소둔을 행하고 산세처리한 다음, 냉간압연하여 최종두께를 0.27~0.35mm로 하고, 그 후 830~900℃의 습윤분위기에서 2~3분간 탈탄소둔을 한 다음, 융착방지제를 도포하고 최종 마무리고온소둔을 하는 것을 특징으로 하는 박물 열연코일을 이용한 방향성 전기강판의 제조방법
KR1019990059961A 1999-12-21 1999-12-21 박물 열연코일을 이용한 방향성 전기강판의 제조방법 KR20010060418A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990059961A KR20010060418A (ko) 1999-12-21 1999-12-21 박물 열연코일을 이용한 방향성 전기강판의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990059961A KR20010060418A (ko) 1999-12-21 1999-12-21 박물 열연코일을 이용한 방향성 전기강판의 제조방법

Publications (1)

Publication Number Publication Date
KR20010060418A true KR20010060418A (ko) 2001-07-07

Family

ID=19627765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990059961A KR20010060418A (ko) 1999-12-21 1999-12-21 박물 열연코일을 이용한 방향성 전기강판의 제조방법

Country Status (1)

Country Link
KR (1) KR20010060418A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079947A (ko) 2014-12-26 2016-07-07 주식회사 포스코 마무리압연기에서의 스트립 메탈 아웃 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930002524A (ko) * 1991-07-12 1993-02-23 정명식 자기특성이 우수한 방향성 전기강판 및 그 제조방법
KR100268855B1 (ko) * 1996-12-21 2000-10-16 이구택 1회압연소둔법의 저온재가열 방향성 전기강판의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930002524A (ko) * 1991-07-12 1993-02-23 정명식 자기특성이 우수한 방향성 전기강판 및 그 제조방법
KR100268855B1 (ko) * 1996-12-21 2000-10-16 이구택 1회압연소둔법의 저온재가열 방향성 전기강판의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079947A (ko) 2014-12-26 2016-07-07 주식회사 포스코 마무리압연기에서의 스트립 메탈 아웃 방법

Similar Documents

Publication Publication Date Title
KR101051744B1 (ko) 자기특성이 우수한 방향성 전기강판 및 그 제조방법
KR101051743B1 (ko) 자기특성이 우수한 방향성 전기강판 및 그 제조방법
WO2020149341A1 (ja) 方向性電磁鋼板の製造方法
KR100940718B1 (ko) 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법
KR101263842B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
KR100276341B1 (ko) 슬라브 저온가열에의한 고자속밀도 방향성 전기강판의 제조방법
KR100256342B1 (ko) 자성 및 탈탄성이 우수한 방향성전기강판의 제조방법
KR100514790B1 (ko) 자성이 우수한 저온 슬라브가열방식의 방향성 전기강판의제조방법
KR100276283B1 (ko) 자성 및 탈탄특성이 우수한 저온재가열 방향성 전기강판의 제조방법
KR20010060418A (ko) 박물 열연코일을 이용한 방향성 전기강판의 제조방법
KR100701195B1 (ko) 열연판 소둔 생략이 가능한 방향성 전기강판 제조방법
KR20020044243A (ko) 자기특성이 우수한 방향성 전기강판의 제조방법
KR100268855B1 (ko) 1회압연소둔법의 저온재가열 방향성 전기강판의 제조방법
KR101263841B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
KR100650554B1 (ko) 두께가 두꺼운 방향성 전기강판의 제조방법
KR20110075373A (ko) 저철손 고자속밀도 방향성 전기강판과 그 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
KR100345705B1 (ko) 안정된자기특성을갖는방향성전기강판의제조방법
KR100345697B1 (ko) 슬라브저온가열에의한고자속밀도방향성전기강판의제조방법
KR970007031B1 (ko) 안정화된 자기적 특성을 갖는 방향성 전기강판의 제조방법
KR100360096B1 (ko) 생산성이 우수한 저온재 가열방향성 전기강판의 제조방법
KR100359751B1 (ko) 슬라브 저온가열에 의한 고자속밀도 방향성 전기강판의 제조방법
KR970007161B1 (ko) 저철손 특성을 갖는 방향성 전기강판의 제조방법
KR100435455B1 (ko) 자기적특성이 우수한 저온재가열 방향성 전기강판과 그제조방법
KR101141281B1 (ko) 후물 방향성 전기강판의 제조방법
KR100876181B1 (ko) 두께가 얇은 방향성 전기강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application