KR20010053649A - Method for isolating semiconductor devices - Google Patents

Method for isolating semiconductor devices Download PDF

Info

Publication number
KR20010053649A
KR20010053649A KR1019990054085A KR19990054085A KR20010053649A KR 20010053649 A KR20010053649 A KR 20010053649A KR 1019990054085 A KR1019990054085 A KR 1019990054085A KR 19990054085 A KR19990054085 A KR 19990054085A KR 20010053649 A KR20010053649 A KR 20010053649A
Authority
KR
South Korea
Prior art keywords
trench
film
etching
silicon substrate
revealed
Prior art date
Application number
KR1019990054085A
Other languages
Korean (ko)
Inventor
임근식
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990054085A priority Critical patent/KR20010053649A/en
Publication of KR20010053649A publication Critical patent/KR20010053649A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure

Abstract

PURPOSE: An isolation method of a semiconductor memory device is provided to simplify a process by forming an auto-planarized isolation film, by using a deposition rate difference of an oxide between on a nitride film and on a silicon substrate around a trench by filling the trench with the oxide formed an APCVD. CONSTITUTION: A buffer oxide(21) is formed on a silicon substrate(20) by a thermal oxidation method, and a mask layer(22) is formed by depositing a silicon nitride on the buffer oxide by a CVD(Chemical Vapor Deposition) method. And, an etch mask(22) confining an isolation region and an active region is formed by patterning the mask layer and the buffer oxide. Then, a trench is formed by etching a revealed isolation region using a RIE(Reactive Ion Etching) or a plasma etching method. A high temperature thermal oxide is grown on the surface of the silicon substrate revealed by the formation of the trench. And, the surface of the silicon substrate is revealed again by wet-etching the high temperature thermal oxide to cure a defective part of the substrate. An insulation film(240) is deposited on the etch mask enough thick to fill the revealed trench using an APCVD(Atmospheric Pressure Chemical Vapor Deposition) method. Then, the surface of the etch mask is revealed by performing a CMP(chemical mechanical polishing) to planarize the insulation film where an isolation film is to be formed.

Description

반도체장치의 소자격리방법{Method for isolating semiconductor devices}Device isolation method for semiconductor devices {Method for isolating semiconductor devices}

본 발명은 반도체장치의 소자격리방법에 관한 것으로서, 특히, 소자격리를 위한 반도체기판의 트렌치의 표면에 고온산화막을 형성한 다음 이를 제거하고 트렌치를 고농도 오존을 사용하는 고온상압 화학기상증착(APCVD)으로 형성하는 산화막으로 매립하여 산화막의 질화막과 트렌치 부위의 실리콘기판에서의 증착속도 차이를 이용하는 방법으로 자동 평탄화된 소자격리막을 형성하여 공정을 단순화하도록 한 반도체장치의 자동 평탄화된 소자격리막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device isolation method for a semiconductor device, and in particular, to form a high temperature oxide film on the surface of a trench of a semiconductor substrate for device isolation, and then to remove the high temperature atmospheric pressure chemical vapor deposition (APCVD) using a high concentration of ozone. A method of forming an automatic planarized device isolation film for a semiconductor device to simplify the process by forming an automatic planarized device isolation film by burying the oxide film formed in the semiconductor layer and using a deposition rate difference between the nitride film of the oxide film and the silicon substrate in the trench region. will be.

반도체장치의 집적화가 거듭되면서 반도체장치의 상당한 면적을 점유하는 소자격리영역을 줄이기 위한 기술 개발이 활발히 진행되고 있다.As the integration of semiconductor devices continues, technology development for reducing the device isolation region occupying a considerable area of the semiconductor device is actively progressing.

반도체장치의 집적화가 거듭되면서 반도체장치의 상당한 면적을 점유하는 소자격리영역을 줄이기 위한 기술 개발이 활발히 진행되고 있다.As the integration of semiconductor devices continues, technology development for reducing the device isolation region occupying a considerable area of the semiconductor device is actively progressing.

일반적인 LOCOS(Local Oxidation of Silicon) 방법으로 소자를 격리하는 경우 발생하는 버즈 비크의 길이를 감소시키면서 소자격리를 하는 방법이 개발되었다. 버즈 비크의 길이를 감소시키면서 소자격리를 하는 방법으로는 스트레스 완충용 버퍼산화막의 두께를 낮추고 반도체기판과 질화막 사이에 다결정실리콘층을 개입시킨 PBLOCOS(Poly Si Buffered LOCOS), 버퍼산화막의 측벽을 질화막으로 보호하는 SILO(Sealed Interface LOCOS), 그리고, 반도체기판 내에 필드산화막을 형성시키는 리세스(Recessed) LOCOS 기술들이 있다.A method of device isolation while reducing the length of the buzz bee generated when the device is isolated by a general LOCOS method has been developed. As a method of isolation of the device while reducing the length of the buzz beak, the thickness of the stress buffer buffer oxide film is reduced, and the polysilicon buffer layer (PBLOCOS) and the sidewall of the buffer oxide film are interposed between the semiconductor substrate and the nitride film. There are shielded interface LOCOS (SILO) to protect, and recessed LOCOS techniques to form a field oxide film in a semiconductor substrate.

그러나, 상기 기술들은 격리 영역 표면의 평탄도와 정밀한 디자인 룰(Design Rule) 등의 이유로 256M DRAM급 이상의 집적도를 갖는 차세대 소자의 소자격리기술로 적합하지 않게 되었다.However, the above techniques are not suitable for device isolation technology of next-generation devices having an integration level of 256M DRAM or more due to the flatness of the isolation region surface and the precise design rule.

따라서, 기존의 여러 소자격리기술들의 문제점을 극복할 수 있는 BOX(buried oxide)형 얕은트렌치소자격리(shallow trench isolation) 기술이 개발되었다. BOX형 소자격리기술 반도체기판에 트렌치를 형성하고 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 산화실리콘 또는 불순물이 도핑되지 않은 다결정실리콘을 매립한 구조를 갖는다. 그러므로, 버즈 비크가 발생되지 않아 활성영역의 손실이 전혀 없으며, 또한, 산화막을 메립하고 에치 백(etch back)하여 평탄한 표면을 얻을 수 있다.Therefore, a BOX (buried oxide) type shallow trench isolation technology has been developed that can overcome the problems of various device isolation technologies. BOX type device isolation technology A trench is formed on a semiconductor substrate and has a structure in which silicon oxide or polycrystalline silicon which is not doped with impurities is embedded by chemical vapor deposition (hereinafter referred to as CVD). Therefore, no buzz beaking occurs, there is no loss of the active region, and a flat surface can be obtained by embedding and etching back the oxide film.

그러나, 트렌치형 소자격리막 형성방법은 트렌치를 매립하는 절연막의 증착부위 표면 의존성이 없기 때문에 트렌치의 토포그래피(topography)에 기인한 주변부위와의단차가 심하므로 절연막 증착 후 표면의 요철을 제거하기 위하여 일차로 포토리쏘그래피로 요철부위를 일차 평탄화 시킨 후, 화학기계적연마로 이차 평탄화를 본 발명에 비하여 상대적으로 장시간 실시하여 최종 소자격리막을 완성한다. 따라서, 공정이 복잡해진다.However, since the trench type device isolation film forming method has no dependence on the deposition region of the insulating layer filling the trench, the step difference between the peripheral region due to the topography of the trench is severe. The first planarization of the uneven portion is carried out by photolithography, and then the second planarization is performed by chemical mechanical polishing for a relatively long time to complete the final device isolation film. Therefore, the process becomes complicated.

도 1a 내지 도 1e는 종래 기술에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도이다.1A to 1E are process cross-sectional views showing a device isolation method of a semiconductor device according to the prior art.

도 1a를 참조하면, 반도체기판(10)인 실리콘기판(10) 상에 열산화 방법으로 버퍼산화막(11)을 형성하고, 이 버퍼산화막(11) 상에 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 질화실리콘을 증착하여 마스크층(12)을 형성한다. 이때, 버퍼산화막(11)은 질화막으로 이루어진 마스크층(12)과 실리콘기판(10)과의 열적 스트레스 등을 감소시키기 위하여 형성하며, 마스크층(12)은 소자격리영역인 트렌치 형성영역을 정의하는 식각마스크를 제조하기 위하여 형성한다.Referring to FIG. 1A, a buffer oxide film 11 is formed on a silicon substrate 10 that is a semiconductor substrate 10 by a thermal oxidation method, and chemical vapor deposition (hereinafter, referred to as chemical vapor deposition) is performed on the buffer oxide film 11. Silicon nitride is deposited by a CVD method to form a mask layer 12. In this case, the buffer oxide film 11 is formed to reduce thermal stress between the mask layer 12 made of a nitride film and the silicon substrate 10, and the mask layer 12 defines a trench formation region, which is an isolation region. It is formed to prepare an etching mask.

그리고, 마스크층(12) 및 버퍼산화막(11)을 포토리쏘그래피 방법으로 반도체기판(10)의 트렌치형성영역이 노출되도록 순차적으로 패터닝하여 소자격리영역과 활성영역을 한정하는 식각마스크(12)를 형성한다.Then, the mask layer 12 and the buffer oxide film 11 are sequentially patterned to expose the trench forming regions of the semiconductor substrate 10 by a photolithography method to form an etching mask 12 that defines the device isolation region and the active region. Form.

그 다음, 식각마스크(12)로 보호되지 않는 부위의 반도체기판(10)의 노출된 소자격리영역을 소정 깊이로 식각하여 트렌치를 형성한다. 상기에서 트렌치를 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함)이나 플라즈마 식각 등으로 이방성 식각하여 형성한다. 따라서, 트렌치 하부표면과 식각되지 않은 실리콘기판 표면과의 단차가 매우 크게된다.Next, an exposed device isolation region of the semiconductor substrate 10 in a portion not protected by the etching mask 12 is etched to a predetermined depth to form a trench. The trench is formed by anisotropic etching using reactive ion etching (hereinafter referred to as RIE) or plasma etching. Thus, the step between the trench lower surface and the unetched silicon substrate surface becomes very large.

도 1b를 참조하면, 트렌치 형성으로 노출된 실리콘기판(10) 표면에 고온에서 열산화막(도시안함)을 성장시켜 형성한 다음 이를 습식식각으로 제거한다. 이는 반응성식각으로 손상된 실리콘기판(10) 부위를 치유하기 위해서이다. 그리고, 다시 노출된 실리콘기판(10)의 트렌치 내부표면에 고온열산화막(13)을 성장시켜 형성한다. 이때, 고온열산화막(13)의 트렌치 하부 모서리(A1)에서의 프로파일은 둥근(round) 형태를 갖기 때문에 소자격리시 전계집중에 기인한 누설전류를 감소시킨다.Referring to FIG. 1B, a thermal oxide film (not shown) is grown on a surface of the silicon substrate 10 exposed by trench formation at high temperature, and then wet-etched. This is to heal the silicon substrate 10 damaged by the reactive etching. The high temperature thermal oxide film 13 is grown on the inner surface of the trench of the silicon substrate 10 again exposed. At this time, since the profile in the trench lower edge A1 of the high temperature thermal oxide film 13 has a round shape, the leakage current due to the field concentration during device isolation is reduced.

도 1c를 참조하면, 고온열산화막(13)이 형성된 트렌치를 충분히 매립할 수 있는 두께로 식각마스크(12) 상에 절연막(14)을 증착하여 형성한다. 이때, 절연막(14)은 산화막을 화학기상증착으로 증착하여 형성하고, 잔류한 질화막으로 이루어진 식각마스크(12) 상부와 트렌치 상부에서의 산화막의 증착 특성상 트렌치에 기인한 높은 단차 때문에 형성된 절연막(14)의 토포그래피가 크게 불균일해진다.Referring to FIG. 1C, an insulating film 14 is formed on the etch mask 12 to a thickness capable of sufficiently filling the trench in which the high temperature thermal oxide film 13 is formed. At this time, the insulating film 14 is formed by depositing an oxide film by chemical vapor deposition, and the insulating film 14 formed due to the high step due to the trench due to the deposition characteristics of the oxide film on the upper portion of the etching mask 12 and the upper trench formed of the remaining nitride film. Topography becomes largely nonuniform.

도 1d를 참조하면, 평탄화를 위한 화학기계적 연마 실시전 절연막의 돌출부위를 일차 제거하기 위하여 포토리쏘그래피로 돌출부위를 제거하여 나머지 절연막(140)을 기판상에 잔류시킨다. 이때, 절연막(140)의 돌출부위는 완전히 제거되지 못하고 얇은 두께를 갖는 기둥형태(P)로 잔류된다.Referring to FIG. 1D, in order to first remove the protruding portion of the insulating film before performing chemical mechanical polishing for planarization, the protruding portion is removed by photolithography to leave the remaining insulating layer 140 on the substrate. At this time, the protruding portion of the insulating layer 140 is not completely removed and remains in a pillar shape P having a thin thickness.

도 1e를 참조하면, 잔류한 돌출부위를 포함하는 절연막상에 화학기계적연마를 실시하여 식각마스크(120)의 표면을 노출시킨다. 이때, 화학기계적연마는 잔류 돌출부 때문에 평탄화에 장시간을 요하고, 또한 질화막으로 이루어진 식각마스크의 일부도 연마되어 제거되므로 도 1d에서의 식각마스크 두께(b1) 보다 얇은 두께(c1)를 갖는 식각마스크(120)가 잔류된다.Referring to FIG. 1E, the surface of the etching mask 120 is exposed by performing chemical mechanical polishing on the insulating film including the remaining protruding portion. At this time, the chemical mechanical polishing requires a long time for the planarization due to the residual protrusion, and also because a part of the etching mask made of the nitride film is polished and removed, the etching mask having a thickness c1 smaller than the etching mask thickness b1 in FIG. 120 remains.

또한, 주변보다 상대적으로 넓은 영역을 차지하는 트렌치에 잔류하는 절연막(141)은 디슁효과(dishing effect)에 의하여 다른 트렌치에 잔류하는 절연막 보다 소정 두께(d1)만큼 더 연마되어 기판 표면의 높이 보다도 낮아질 수 있음로 식각마스크(12)의 표면과의 평탄화가 더욱 불량해진다.In addition, the insulating film 141 remaining in the trench occupying a relatively wider area than the surrounding area may be polished by a predetermined thickness d1 than the insulating film remaining in other trenches by the dishing effect, and thus may be lower than the height of the substrate surface. As a result, the planarization with the surface of the etching mask 12 becomes more poor.

따라서, 잔류한 절연막(141)으로 이루어진 소자격리막(141)의 형성으로 반도체장치의 소자격리영역을 형성하였다.Therefore, the device isolation region of the semiconductor device is formed by forming the device isolation film 141 including the remaining insulating film 141.

그러나, 상술한 종래의 반도체장치의 소자격리방법은 소자격리막으로 사용되는 절연막의 증착 특성상 증착부위의 표면 의존성이 없기 때문에 절연막 성장후 상부의 요철이 심회되고, 이러한 요철 부위의 돌출부를 화학기계적 연마 전 단계에서 포토리쏘그래피로 일차 제거한 다음 다시 화학기계적연마를 장시간 실시하여야 하므로 공정이 복잡하며 식각마스크의 증착 두께가 필요 이상으로 두꺼워야 하며, 또한, 장시간의 연마에 기인하여 소자격리막의 모서리부위와 중앙부위의 표면 높이가 달라지므로 평탄화에 더욱 불리한 문제점이 있다.However, since the device isolation method of the conventional semiconductor device described above has no surface dependence on the deposition site due to the deposition characteristics of the insulating film used as the device isolation film, the unevenness of the upper part after the growth of the insulating film is deepened, and the protrusions of the uneven parts are formed before chemical mechanical polishing. Since the first step is performed by photolithography and then chemical mechanical polishing is performed again for a long time, the process is complicated and the deposition thickness of the etching mask must be thicker than necessary. Since the surface height of the site is different, there is a further disadvantage in flattening.

따라서, 본 발명의 목적은 소자격리를 위한 반도체기판의 트렌치의 표면에 고온산화막을 형성한 다음 이를 제거하고 트렌치를 고농도 오존을 사용하는 고온상압 화학기상증착(APCVD)으로 형성하는 산화막으로 매립하여 산화막의 질화막과 트렌치 부위의 실리콘기판에서의 증착속도 차이를 이용하는 방법으로 자동 평탄화된 소자격리막을 형성하여 공정을 단순화하도록 한 반도체장치의 자동 평탄화된 소자격리박 형성방법을 제공하는데 있다.Accordingly, an object of the present invention is to form a high temperature oxide film on the surface of the trench of the semiconductor substrate for device isolation and then to remove the oxide film and embed the trench into an oxide film formed by high temperature atmospheric pressure chemical vapor deposition (APCVD) using high concentration ozone. The present invention provides a method for forming an automatic planarized device isolation film of a semiconductor device to simplify the process by forming an automatic planarized device isolation film by using a deposition rate difference between a nitride film and a trench portion of a silicon substrate.

상기 목적을 달성하기 위해 본 발명에 따른 반도체장치의 소자격리방법은 소자격리영역과 활성영역이 정의된 소정의 두께를 식각마스크를 사용하여 반도체기판의 소정부위를 제거하여 트렌치를 형성하는 공정과, 트렌치의 내벽을 이루는 반도체기판의 표면에 열산화막을 형성한 다음 열산화막을 제거하는 단계와, 반도체기판에서 증착 속도가 식각마스크에서의 증착속도보다 빠른 절연물질층으로 트렌치를 충분히 매립하도록 식각마스크상에 형성하는 단계와, 절연물질층에 화학기계적연마를 실시하여 식각마스크의 표면을 노출시켜 트렌치에만 잔류한 절연물질층으로 이루어진 소자격리막을 형성하는 단계를 포함하여 이루어진다.In order to achieve the above object, a device isolation method of a semiconductor device according to the present invention includes a process of forming a trench by removing a predetermined portion of a semiconductor substrate using an etching mask having a predetermined thickness in which a device isolation region and an active region are defined; Forming a thermal oxide film on the surface of the semiconductor substrate forming the inner wall of the trench, and then removing the thermal oxide film, and filling the trench with an insulating material layer having a faster deposition rate than that of the etching mask on the semiconductor substrate. And forming a device isolation film made of an insulating material layer remaining only in the trench by exposing the surface of the etching mask by performing chemical mechanical polishing on the insulating material layer.

도 1a 내지 도 1e는 종래 기술에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도1A to 1E are process cross-sectional views showing a device isolation method of a semiconductor device according to the prior art.

도 2a 내지 도 2e는 본 발명에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도2A to 2E are process cross-sectional views showing a device isolation method for a semiconductor device according to the present invention.

일반적으로 트렌치를 이용하는 셀간의 격리방법으로 STI(shallow trench isolation)을 형성하는 경우, 트렌치 매립물질로 산화실리콘(silicon oxide)을 사용한다. 따라서, 트렌치의 물리적인 임계치수(critical dimension)에 의하여 소자격리(isolation) 특성이 좌우되고, 이후 소자형성공정을 원활하게 하기 위하여 소자격리막과 실리콘기판 상부 표면, 즉, 활성영역과 소자격리영역의 단차가 없는 표면이 평탄화된 기판 상부 구조를 구현하여야 한다.In general, when forming shallow trench isolation (STI) as a method of isolation between cells using trenches, silicon oxide is used as a trench filling material. Therefore, the isolation characteristics of the device depend on the physical critical dimension of the trench, and in order to facilitate the device formation process, the upper surface of the isolation layer and the silicon substrate, that is, the active and isolation regions The surface of the substrate having the flat surface without the step must be implemented.

따라서, 본 발명에서는 트렌치형 소자격리방법을 이용하되 트렌치 매립물질을 질화막 표면 상부에서와 트렌치의 노출된 실리콘기판 표면에서의 증착속도가 다르도록 형성하여 이들의 각각의 부위에서의 증착 속도 차이를 이용하여 소정의 평탄화가 자동적으로 이루어진, 다시 말하면, 종래 기술에서 형성되는 단차가 매우 큰 요철부위의 형성을 방지한 다음, 종래에 비하여 단축된 공정시간을 갖는 화학기계적연마를 실시하여 전체적인 기판 상부의 평탄화를이룬다.Therefore, in the present invention, a trench type device isolation method is used, but the trench buried material is formed to have a different deposition rate on the surface of the nitride film and on the exposed silicon substrate surface of the trench to use the difference in deposition rate at each of these sites. In other words, the planarization is automatically performed, that is, to prevent the formation of uneven portions having a very large step, which is formed in the prior art, and then, by performing chemical mechanical polishing with a shorter process time than in the prior art, flattening the entire substrate. To achieve.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2e는 본 발명에 따른 반도체장치의 소자격리방법을 도시하는 공정단면도이다.2A to 2E are process cross-sectional views showing a device isolation method of a semiconductor device according to the present invention.

도 2a를 참조하면, 반도체기판(20)인 실리콘기판(20) 상에 열산화 방법으로 버퍼산화막(21)을 형성하고, 이 버퍼산화막(21) 상에 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 질화실리콘을 증착하여 마스크층(22)을 형성한다. 이때, 버퍼산화막(21)은 질화막으로 이루어진 마스크층(22)과 실리콘기판(20)과의 열적 스트레스 등을 감소시키기 위하여 형성하며, 마스크층(22)은 소자격리영역인 트렌치 형성영역을 정의하는 식각마스크를 제조하기 위하여 형성하며 그 형성 두께는 종래 기술에서의 형성 두께보다 얇게 형성하여도 화학기계적연마시 그 연마시간이 종래 기술에서보다 단축되므로 공정마진을 충분히 확보할 수 있다.Referring to FIG. 2A, a buffer oxide film 21 is formed on a silicon substrate 20 that is a semiconductor substrate 20 by a thermal oxidation method, and chemical vapor deposition (hereinafter, referred to as chemical vapor deposition) is performed on the buffer oxide film 21. Silicon nitride is deposited by a CVD method to form a mask layer 22. In this case, the buffer oxide film 21 is formed to reduce thermal stress between the mask layer 22 made of a nitride film and the silicon substrate 20, and the mask layer 22 defines a trench formation region, which is an isolation region. It is formed to produce an etching mask and the forming thickness thereof is thinner than the forming thickness in the prior art, so that the polishing time during chemical mechanical polishing is shorter than that in the prior art, thereby ensuring sufficient process margin.

그리고, 마스크층(22) 및 버퍼산화막(21)을 포토리쏘그래피 방법으로 반도체기판(20)의 소자격리영역인 트렌치 형성영역이 노출되도록 순차적으로 패터닝하여 소자격리영역과 활성영역을 한정하는 식각마스크(22)를 형성한다.Then, the mask layer 22 and the buffer oxide film 21 are sequentially patterned to expose the trench formation region, which is an isolation region of the semiconductor substrate 20, by a photolithography method, thereby defining an isolation region and an active region. To form (22).

그 다음, 식각마스크(22)로 보호되지 않는 부위의 반도체기판(20)의 노출된 소자격리영역을 소정 깊이로 식각하여 트렌치를 형성한다. 상기에서 트렌치를 반응성이온식각(Reactive Ion Etching : 이하, RIE라 칭함)이나 플라즈마 식각 등으로 이방성 식각하여 형성한다. 따라서, 트렌치 하부표면과 식각되지 않은 실리콘기판 표면과의 단차가 매우 크게되지만, 이후 본 발명의 실시예에서는 이러한 단차를 충분히극복할 수 있도록 절연막을 형성하는 방법을 사용한다.Next, an exposed device isolation region of the semiconductor substrate 20 in a portion not protected by the etching mask 22 is etched to a predetermined depth to form a trench. The trench is formed by anisotropic etching using reactive ion etching (hereinafter referred to as RIE) or plasma etching. Therefore, although the step difference between the trench lower surface and the unetched silicon substrate surface is very large, an embodiment of the present invention uses a method of forming an insulating film so as to sufficiently overcome this step.

도 2b를 참조하면, 트렌치 형성으로 노출된 실리콘기판(20) 표면에 고온에서 고온열산화막(23)을 성장시켜 형성한다. 이는 반응성식각으로 손상된 트렌치의 실리콘기판(20) 부위를 치유하기 위해서이다. 이때, 고온열산화막(23)의 트렌치 하부 모서리(A2)에서의 프로파일은 둥근(round) 형태를 갖기 때문에 소자격리시 전계집중에 기인한 누설전류를 감소시킨다.Referring to FIG. 2B, the high temperature thermal oxide film 23 is grown at a high temperature on the surface of the silicon substrate 20 exposed by the trench formation. This is to heal the portion of the silicon substrate 20 of the trench damaged by the reactive etching. At this time, since the profile at the lower corner A2 of the high temperature thermal oxide film 23 has a round shape, the leakage current due to the field concentration during device isolation is reduced.

도 2c를 참조하면, 기판의 결함 부위를 치유하기 위하여 형성한 고온열산화막을 습식식각으로 제거하여 트렌치의 내벽을 이루는 실리콘기판(20) 표면을 다시 노출시킨다. 이는, 전술한 바와 같이 소자격리막 형성용 절연막 증착을 본 발명의 실시예에서는 상이한 증착면, 즉, 실리콘 부위와 질화막 부위에서의 절연막 증착 속도 차이를 이용하기 때문이다. 이때, 트렌치 하부의 모서리 부위(A3)의 프로파일은 역시 둥근형태를 갖는다.Referring to FIG. 2C, the surface of the silicon substrate 20 forming the inner wall of the trench is exposed again by removing the high temperature thermal oxide film formed by the wet etching to heal the defect site of the substrate. This is because, as described above, the insulating film deposition for forming the device isolation film uses the deposition rate difference between the different deposition surfaces, that is, the silicon portion and the nitride film portion, in the embodiment of the present invention. At this time, the profile of the corner portion A3 of the lower portion of the trench also has a round shape.

도 2d를 참조하면, 실리콘기판(20) 부위의 실리콘이 재노출된 트렌치를 충분히 매립할 수 있는 두께로 식각마스크(22) 상에 절연막(24)을 증착하여 형성한다. 이때, 절연막(24)은 산화막을 고농도의 오존을 이용하는 고온상압화학기상증착법(APCVD)으로 증착하여 형성한다. 이때, 증착되는 절연막(22)은 식각마스크(22)를 이루는 질화막과 기판의 실리콘 표면에서의 성질이 다르므로 그 성장속도가 실리콘 부위에서 빠르고 질화막상에서는 늦다. 따라서, 상이한 증착속도 때문에 전체적인 절연막(24)의 단차는 거의 없게 된다. 전술한 바와 같이, 자기 평탄화가 어느정도 달성된 본 발명의 실시예에서는 식각마스크(22) 형성용 질화막(22)의 두께(b2)를종래 기술에 비해 얇게 형성하여도 화학기계연마에서의 공정마진을 충분히 확보할 수 있다. 이는, 본 발명의 실시예에서 실시하는 화학기계적연마의 연마량이 종래에 비하여 적으므로 연마시 손실 또는 제거되는 질화막의 두께도 얇기 때문이다.Referring to FIG. 2D, an insulating film 24 is formed on the etch mask 22 to a thickness sufficient to fill a trench in which silicon of the silicon substrate 20 is re-exposed. At this time, the insulating film 24 is formed by depositing an oxide film by high temperature atmospheric chemical vapor deposition (APCVD) using a high concentration of ozone. At this time, the deposited insulating film 22 is different from the nitride film forming the etch mask 22 on the silicon surface of the substrate, so that its growth rate is fast in the silicon region and slow on the nitride film. Therefore, there is almost no step in the overall insulating film 24 because of the different deposition rates. As described above, in the embodiment of the present invention where the self-planarization is achieved to some extent, even if the thickness b2 of the nitride film 22 for forming the etch mask 22 is formed thinner than in the conventional art, the process margin in chemical mechanical polishing is reduced. We can secure enough. This is because the amount of the chemical mechanical polishing performed in the embodiment of the present invention is smaller than that of the conventional one, and the thickness of the nitride film lost or removed during polishing is also thin.

도 2e를 참조하면, 소자격리막이 될 절연막상에 평탄화를 위한 화학기계적연마를 실시하여 식각마스크(220)의 표면을 노출시킨다. 이때, 화학기계적연마는 절연막의 표면이 어느정도 자기평탄화(self-planarization)을 달성하였으므로 평탄화에 종래에 비하여 단시간을 요하고, 또한 질화막으로 이루어진 식각마스크의 일부도 연마되어 소정 두께(c2)를 갖지만 종래에 비하여 그 형성마진이 크다.Referring to FIG. 2E, the surface of the etching mask 220 is exposed by performing chemical mechanical polishing for planarization on the insulating film to be an isolation layer. At this time, the chemical mechanical polishing requires a shorter time than the conventional planarization because the surface of the insulating film has achieved some self-planarization, and a part of the etching mask made of the nitride film is also polished to have a predetermined thickness (c2). Compared with the formation margin.

또한, 주변보다 상대적으로 넓은 영역을 차지하는 트렌치에 잔류하는 절연막(240)인 소자격리막(240)은 연마시간이 짧으므로 디슁효과(dishing effect)의 영향을 덜 받으므로 다른 트렌치에 잔류하는 절연막과 동일한 수준의 소정 두께(d2)만큼만 더 연마되므로 전체적인 평탄화가 더욱 개선된다.In addition, the device isolation film 240, which is an insulating film 240 remaining in a trench that occupies a relatively wider area than the surrounding area, is shorter in the dishing effect since the polishing time is shorter, and thus is the same as the insulating film remaining in other trenches. Only further polishing by the predetermined thickness d2 of the level further improves the overall planarization.

따라서, 잔류한 절연막(240)으로 이루어진 소자격리막(240)의 형성으로 반도체장치의 소자격리영역을 형성하였다.Therefore, the device isolation region 240 is formed by the remaining insulating layer 240 to form the device isolation region of the semiconductor device.

따라서, 본 발명은 고온열산화막을 추가로 형성하는 공정이 필요하지 않고, 트렌치 매립시 절연막 자체의 증착 특성에 의하여 별도의 사진식각공정 없이도 자기평탄화를 어느정도 달성할 수 있으며, 증착된 절연막의 단차가 종래에 비하여 상대적으로 작으므로 연마시간이 단축되고, 또한, 디슁효과가 개선되어 동일 트렌치내에서의 평탄화도 균일한 소자격리막을 형성하여 이후 소자형성공정의 신뢰성을 높일 수 있는 장점이 있다.Therefore, the present invention does not require a process of additionally forming a high temperature thermal oxide film, and can achieve self leveling to some extent without a separate photolithography process by the deposition characteristics of the insulating film itself when the trench is buried. Since it is relatively small compared with the related art, the polishing time is shortened, and the dishing effect is improved, so that evenly planarization in the same trench is formed to form a uniform device isolation film, thereby increasing the reliability of the subsequent device formation process.

Claims (5)

소자격리영역과 활성영역이 정의된 소정의 두께를 식각마스크를 사용하여 반도체기판의 소정부위를 제거하여 트렌치를 형성하는 공정과,Forming a trench by removing a predetermined portion of the semiconductor substrate using an etching mask having a predetermined thickness where the device isolation region and the active region are defined; 상기 트렌치의 내벽을 이루는 상기 반도체기판의 표면에 열산화막을 형성한 다음 상기 열산화막을 제거하는 단계와,Forming a thermal oxide film on a surface of the semiconductor substrate forming the inner wall of the trench, and then removing the thermal oxide film; 상기 반도체기판에서 증착 속도가 상기 식각마스크에서의 증착속도보다 빠른 절연물질층으로 상기 트렌치를 충분히 매립하도록 상기 식각마스크상에 형성하는 단계와,Forming a trench on the etch mask to sufficiently fill the trench with an insulating material layer having a deposition rate higher than that at the etch mask in the semiconductor substrate; 상기 절연물질층에 화학기계적연마를 실시하여 상기 식각마스크의 표면을 노출시켜 상기 트렌치에만 잔류한 상기 절연물질층으로 이루어진 소자격리막을 형성하는 단계로 이루어진 반도체장치의 소자격리방법.And chemically polishing the insulating material layer to expose a surface of the etching mask to form a device isolation film made of the insulating material layer remaining only in the trench. 청구항 1에 있어서, 상기 식각마스크는 질화막으로 형성하고 상기 절연물질층은 고농도의 오존을 사용하는 상압화학기상증착법으로 증착하여 형성하는 것이 특징인 반도체장치의 소자격리방법.The method of claim 1, wherein the etching mask is formed of a nitride film, and the insulating material layer is formed by vapor deposition using atmospheric pressure chemical vapor deposition using a high concentration of ozone. 청구항 1에 있어서, 상기 트렌치는 반응성이온식각법으로 상기 반도체기판의 소정부위를 제거하여 형성하는 것이 특징인 반도체장치의 소자격리방법.The method of claim 1, wherein the trench is formed by removing a predetermined portion of the semiconductor substrate by a reactive ion etching method. 청구항 1에 있어서, 상기 식각마스크의 형성 두께는 상기 화학기계적연마의 공정시간을 고려하여 얇게 형성하는 것이 특징인 반도체장치의 소자격리방법.The method of claim 1, wherein the etching mask is formed thin in consideration of a process time of chemical mechanical polishing. 청구항 1에 있어서, 상기 반도체기판은 실리콘기판이고 상기 열산화막은 산화실리콘으로 형성하며 상기 식각마스크는 질화실리콘을 증착하고 패터닝하여 형성하는 것이 특징인 반도체장치의 소자격리방법.The method of claim 1, wherein the semiconductor substrate is a silicon substrate, and the thermal oxide layer is formed of silicon oxide, and the etching mask is formed by depositing and patterning silicon nitride.
KR1019990054085A 1999-12-01 1999-12-01 Method for isolating semiconductor devices KR20010053649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990054085A KR20010053649A (en) 1999-12-01 1999-12-01 Method for isolating semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990054085A KR20010053649A (en) 1999-12-01 1999-12-01 Method for isolating semiconductor devices

Publications (1)

Publication Number Publication Date
KR20010053649A true KR20010053649A (en) 2001-07-02

Family

ID=19622904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990054085A KR20010053649A (en) 1999-12-01 1999-12-01 Method for isolating semiconductor devices

Country Status (1)

Country Link
KR (1) KR20010053649A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665635A (en) * 1995-11-30 1997-09-09 Hyundai Electronics Industries Co., Ltd. Method for forming field oxide film in semiconductor device
US5811345A (en) * 1997-09-18 1998-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Planarization of shallow- trench- isolation without chemical mechanical polishing
KR19980065504A (en) * 1997-01-10 1998-10-15 김광호 Trench element isolation
JPH1126568A (en) * 1997-06-30 1999-01-29 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665635A (en) * 1995-11-30 1997-09-09 Hyundai Electronics Industries Co., Ltd. Method for forming field oxide film in semiconductor device
KR19980065504A (en) * 1997-01-10 1998-10-15 김광호 Trench element isolation
JPH1126568A (en) * 1997-06-30 1999-01-29 Fujitsu Ltd Semiconductor device and manufacture thereof
US5811345A (en) * 1997-09-18 1998-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Planarization of shallow- trench- isolation without chemical mechanical polishing

Similar Documents

Publication Publication Date Title
KR100312943B1 (en) A semiconductor device and fabricating method thereof
US20080206955A1 (en) Method of Forming an Isolation Film in a Semiconductor Device
KR20040056432A (en) Method for forming floating gate in flash memory device
US6391739B1 (en) Process of eliminating a shallow trench isolation divot
KR100568259B1 (en) Trench isolation type semiconductor device and fabrication method for the same
KR100344765B1 (en) Method for isolating semiconductor devices
KR100468681B1 (en) Method for isolating the devices by trench
KR100242526B1 (en) Method for isolating semiconductor device
KR100596876B1 (en) Method for forming device isolation film of semiconductor device
US6261966B1 (en) Method for improving trench isolation
KR20010053649A (en) Method for isolating semiconductor devices
KR100419754B1 (en) A method for forming a field oxide of a semiconductor device
KR20000015466A (en) Trench isolation method
KR100509846B1 (en) Method For Isolating Semiconductor Device
KR20000019068A (en) Method for isolating semiconductor devices
KR20050010161A (en) Method of forming well in semiconductor device
KR100700283B1 (en) Method of fabricating the trench for isolation in semiconductor device
KR20040054077A (en) Method for forming isolation of semiconductor device
KR20010004192A (en) Method for forming trench isolation
KR20030006425A (en) Field region of semiconductor device and the method of fabricating thereof
KR19990048259A (en) Device isolation method of semiconductor device
KR20000015298A (en) Isolation method of semiconductor device
KR20010068403A (en) Method for isolating semiconductor devices
KR20020054666A (en) A method for forming a field oxide of semiconductor device
KR20020051351A (en) Method for isolating semiconductor devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application