KR20010046915A - Method for fabricating of semiconductor device - Google Patents

Method for fabricating of semiconductor device Download PDF

Info

Publication number
KR20010046915A
KR20010046915A KR1019990050885A KR19990050885A KR20010046915A KR 20010046915 A KR20010046915 A KR 20010046915A KR 1019990050885 A KR1019990050885 A KR 1019990050885A KR 19990050885 A KR19990050885 A KR 19990050885A KR 20010046915 A KR20010046915 A KR 20010046915A
Authority
KR
South Korea
Prior art keywords
alignment key
key pattern
alignment
trench
photo
Prior art date
Application number
KR1019990050885A
Other languages
Korean (ko)
Other versions
KR100558042B1 (en
Inventor
한문수
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990050885A priority Critical patent/KR100558042B1/en
Publication of KR20010046915A publication Critical patent/KR20010046915A/en
Application granted granted Critical
Publication of KR100558042B1 publication Critical patent/KR100558042B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Weting (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to reduce manufacturing cost by obviating the necessity of an additional mask process for guaranteeing stability of stepper alignment and overlay before a first gate(FG) photo process is performed, and to shorten total around time(TAT) by skipping a photo/wet-etch process. CONSTITUTION: A trench and an align key pattern(23) are formed in an isolating region of a semiconductor substrate(21). An oxide layer is formed on the entire surface of the substrate including the trench and the alignment key pattern to bury the trench. A target of a CMP process is decreased, and process time is increased by 10-20 seconds to induce a dishing phenomenon of an oxide layer in a wide field portion having the alignment key pattern so that roughness of the alignment key pattern is guaranteed and the isolating region is formed. A gate line is patterned by using the alignment key pattern.

Description

반도체 소자의 제조 방법{Method for fabricating of semiconductor device}Method for fabricating a semiconductor device

본 발명은 반도체 소자의 제조에 관한 것으로, 특히 포토/습식각 스텝을 스킵하여 단순화된 공정으로 스테퍼 얼라인 및 계측 안정성을 확보할 수 있도록한 반도체 소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of semiconductor devices, and more particularly, to a method of manufacturing a semiconductor device in which stepper alignment and measurement stability can be secured in a simplified process by skipping photo / wet etching steps.

도 1은 종래 기술의 반도체 소자의 구조 단면도이다.1 is a structural cross-sectional view of a semiconductor device of the prior art.

종래 기술의 반도체 소자의 제조 방법에서는 CMP(Chemical Mechnical Polishing)에 의한 PGI(Profiled Groove Isolation) 공정시에 PGI CMP ~ FG(First Gate) 포토 공정사이에 스테퍼 얼라인먼트(Stepper alignment) 안정성 및 오버레이(Overlay) 계측의 안정성을 확보하기 위하여 각 스테퍼 얼라인 키를 별도의 마스크를 사용하여 오프시키고 습식각을 통해 식각하는 방법을 사용하였다.In the manufacturing method of the semiconductor device of the prior art, stepper alignment stability and overlay between PGI CMP to FG (First Gate) photo process during PGI (Profiled Groove Isolation) process by CMP (Chemical Mechnical Polishing) In order to secure measurement stability, each stepper alignment key was turned off using a separate mask and etched through wet etching.

도 1은 습식각에 의한 얼라인 키 패턴의 확보 단면을 나타낸 것으로 이를 개략적으로 설명하면 다음과 같다.1 is a cross-sectional view illustrating a secured key pattern obtained by wet etching.

반도체 기판(1), 반도체 기판(1)의 그루브내에 매립되어 소자격리층으로 사용되는 HDP 산화막(2), 상기 반도체 기판(1)의 특정 부분(wide field)에 형성되는 얼라인 키 패턴(3)으로 구성된다.The semiconductor substrate 1, the HDP oxide film 2 embedded in the groove of the semiconductor substrate 1 and used as a device isolation layer, and the alignment key pattern 3 formed in a wide field of the semiconductor substrate 1. It is composed of

상기 HDP(High Density Plasma) 산화막(2)은 반도체 기판(1)의 소자 격리 영역에 그루브를 형성하고 전면에 고밀도 플라즈마 공정으로 산화막을 형성한후에 CMP 공정으로 평탄화하여 형성한다.The HDP (High Density Plasma) oxide film 2 is formed by forming a groove in the device isolation region of the semiconductor substrate 1 and forming an oxide film on the entire surface by a high-density plasma process and then planarizing it by a CMP process.

이와 같은 CMP 공정으로 얼라인 키 패턴(3)이 완전 평탄화되면 얼라인 키의 요철 상태 및 콘트래스트(contrast)가 감소하여 이후의 FG 포토 스텝에서 마스크 얼라인 및 오버레이 계측을 할 수 없다.When the alignment key pattern 3 is completely flattened by such a CMP process, the uneven state and contrast of the alignment key are reduced, so that mask alignment and overlay measurement cannot be performed in a subsequent FG photo step.

FG 포토 스텝에서 마스크 얼라인 및 오버레이 계측 가능성을 높이기 위해서는 별도의 포토/습식각을 통해 얼라인 키 패턴(3)의 요철을 확보한다.In order to increase the possibility of mask alignment and overlay measurement in the FG photo step, irregularities of the alignment key pattern 3 are secured through separate photo / wet etching.

그러나 이와 같은 종래 기술의 반도체 소자의 제조 방법은 다음과 같은 문제가 있다.However, such a conventional method of manufacturing a semiconductor device has the following problems.

PGI CMP 공정후에 얼라인 키 패턴의 요철을 확보하기 위하여 반드시 별도의 포토/습식각 공정을 수행하여야 하므로 포토 마스크수가 증가하게 되어 반도체 제조 원가 상승의 원인이된다.After the PGI CMP process, a separate photo / wet etching process must be performed in order to secure the unevenness of the alignment key pattern, thereby increasing the number of photo masks, which causes a rise in semiconductor manufacturing cost.

또한, 얼라인 키 패턴의 요철 확보를 위한 포토/습식각/PR 제거/세정 등의 추가되는 공정 스텝의 증가로 TAT 측면에서 불리하다.In addition, an increase in additional process steps such as photo / wet etching / PR removal / cleaning for securing irregularities of the alignment key pattern is disadvantageous in terms of TAT.

이와 같은 공정 스텝 추가는 웨이퍼의 오염을 초래할 수도 있다.Such process step addition may lead to contamination of the wafer.

본 발명은 이와 같은 종래 기술의 반도체 소자의 제조 방법의 문제를 해결하기 위하여 안출한 것으로, 포토/습식각 스텝을 스킵하여 단순화된 공정으로 스테퍼 얼라인 및 계측 안정성을 확보할 수 있도록한 반도체 소자의 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art semiconductor device manufacturing method, the semiconductor device of the step to ensure the stepper alignment and measurement stability in a simplified process by skipping the photo / wet etching step It is an object to provide a manufacturing method.

도 1은 종래 기술의 반도체 소자의 구조 단면도1 is a structural cross-sectional view of a semiconductor device of the prior art

도 2는 본 발명에 따른 반도체 소자의 구조 단면도2 is a structural cross-sectional view of a semiconductor device according to the present invention.

도 3a내지 도 3f는 본 발명에 따른 포토/습식각 스킵후의 스테퍼 얼라인 및 오버레이 계측 안정성 비교 그래프3A to 3F are graphs comparing stepper alignment and overlay measurement stability after photo / wet etching skipping according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

21. 반도체 기판 22. HDP 산화막21. Semiconductor substrate 22. HDP oxide film

23. 얼라인 키 패턴23. Align Key Pattern

이와 같은 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 제조 방법은 반도체 기판의 소자 격리 영역에 트렌치 및 얼라인 키 패턴을 형성하는 단계;상기 트렌치 및 얼라인 키 패턴을 포함하는 전면에 트렌치가 매립되도록 산화막을 형성하는 단계;상기 산화막을 CMP의 타겟을 낮추고 공정 시간을 10 ~ 20sec 증가시켜 얼라인 키 패턴이 형성된 부분(wide field)에서 산화막의 디싱(Dishing) 현상이 유발되도록하여 얼라인 키의 요철 확보하는 것과 동시에 소자 격리층을 형성하는 단계;상기 얼라인 키 패턴을 이용하여 게이트 라인을 패터닝하는 단계를 포함하여 이루어지는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, the method including: forming a trench and an alignment key pattern in an isolation region of a semiconductor substrate; a trench is embedded in a front surface of the trench and the alignment key pattern; Forming an oxide film so as to lower the target of the CMP and increase the process time by 10 to 20 sec to cause dishing of the oxide film in a wide field where an alignment key pattern is formed. Forming an isolation layer at the same time to secure the unevenness; and patterning the gate line using the alignment key pattern.

이하, 첨부된 도면을 참고하여 본 발명에 따른 반도체 소자의 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 반도체 소자의 구조 단면도이고, 도 3a내지 도 3f는 본 발명에 따른 AA 포토/습식각 스킵후의 스테퍼 얼라인 및 오버레이 계측 안정성 비교 그래프이다.2 is a cross-sectional view of a semiconductor device according to the present invention, and FIGS. 3A to 3F are graphs comparing stepper alignment and overlay measurement stability after AA photo / wet etching skip according to the present invention.

본 발명은 얼라인 키 패턴의 요철을 확보하기 위한 포토/습식각 공정을 스킵하고도 스테퍼 얼라인 및 오버레이 계측의 안정성을 확보할 수 있도록한 것이다.The present invention is to ensure the stability of the stepper alignment and overlay measurement even if the photo / wet etching process to secure the irregularities of the alignment key pattern.

그 구성은 반도체 기판(21), 반도체 기판(21)의 그루브내에 매립되어 소자격리층으로 사용되는 HDP 산화막(22), 상기 반도체 기판(21)의 특정 부분(wide field)에 형성되는 얼라인 키 패턴(23)으로 구성된다.Its configuration is an alignment key formed in the semiconductor substrate 21, the HDP oxide film 22 embedded in the groove of the semiconductor substrate 21 and used as a device isolation layer, and in a specific field of the semiconductor substrate 21. It consists of a pattern 23.

여기서, 얼라인 키 패턴(23)의 요철이 오버 폴리싱에 의해 충분히 확보되는 것을 단면에서 알 수 있다.Here, it can be seen from the cross section that the unevenness of the alignment key pattern 23 is sufficiently secured by over polishing.

공정 진행은 다음과 같은 순서로 진행한다.The process proceeds in the following order.

먼저, 반도체 기판(21)의 소자 격리 영역에 2000 ~ 4000Å의 깊이와 0.1 ~ 0.3㎛의 스페이스를 갖는 트렌치를 형성하고 HDP로 갭 필(Gap-Fill)공정을 진행하여 상기 트렌치를 매립하는 HDP 산화막(22)을 4000 ~ 7000Å 두께로 형성한다.First, a trench having a depth of 2000 to 4000 microns and a space of 0.1 to 0.3 µm is formed in the device isolation region of the semiconductor substrate 21, and a gap fill process is performed using HDP to fill the trench. (22) is formed to a thickness of 4000 ~ 7000Å.

그리고 상기 HDP 산화막(22)을 CMP 공정으로 평탄화하여 소자격리층을 형성한다.The HDP oxide film 22 is planarized by a CMP process to form an isolation layer.

이때, CMP 공정의 타겟을 낮추고 공정 시간을 10 ~ 20sec 증가시켜 50 ~ 150Å정도 오버 폴리싱한다.At this time, the target of the CMP process is lowered and the process time is increased by 10 to 20 sec to overpolish about 50 to 150 ms.

상기 CMP 공정의 구체적인 공정 조건은 다음과 같다.Specific process conditions of the CMP process are as follows.

플래튼 스피드(platen speed)를 70 ~ 100rpm로 하고, 헤드 스피드(head speed)를 60 ~ 90rpm으로 한다.The platen speed is 70 to 100 rpm and the head speed is 60 to 90 rpm.

폴리싱 압력은 3.0 ~ 5.0psi, 슬러리 플로우 레이트(Slurry flow rate)를 100 ~ 200ml/min, 리모벌 레이트(Removal rate)를 2000 ~ 2800Å/min으로 한다.Polishing pressure is 3.0 ~ 5.0psi, slurry flow rate (Slurry flow rate) 100 ~ 200ml / min, Removal rate (2000) 2800Pa / min.

이와 같은 공정 조건으로 CMP 공정을 진행하여 10 ~ 20%의 오버 폴리싱을 하는 경우 얼라인 키 패턴(23)이 형성된 부분(wide field)에서 산화막의 디싱(Dishing) 현상이 유발되어 얼라인 키의 요철이 확보된다.In the case of performing the CMP process under such a process condition and performing 10 to 20% over polishing, dishing of the oxide film occurs in the wide field where the alignment key pattern 23 is formed, thereby causing irregularities in the alignment key. This is secured.

이와 같은 본 발명에 따른 반도체 소자의 제조 공정은 얼라인 키 패턴의 요철 확보를 위하여 별도의 포토/습식각 공정을 하지 않고 PGI CMP공정시에 오버 폴리싱으로 얼라인 패턴의 요철 및 얼라인 패턴의 콘트래스트를 확보한다.The manufacturing process of the semiconductor device according to the present invention is the concave and convex pattern of the alignment pattern by over-polishing in the PGI CMP process without performing a separate photo / wet etching process to secure the irregularity of the alignment key pattern Secure the trace.

도 3a는 기존의 포토/습식각을 적용한후의 스테퍼 얼라인시의 X 방향의 오정렬도(misregistration)를 나타낸 것이고, 도 3b는 Y 방향의 오정렬도를 나타낸 것이다.FIG. 3A illustrates misregistration in the X direction during stepper alignment after applying a conventional photo / wet angle, and FIG. 3B illustrates misalignment in the Y direction.

그리고 도 3c는 포토/습식각을 적용한후의 오버레이 계측 결과를 나낸 것이다.3C shows the overlay measurement result after applying photo / wet angle.

그리고 도 3d는 본 발명에 따라 포토/습식각을 스킵하고 오버 폴리싱후의 스테퍼 얼라인시의 X 방향의 오정렬도(misregistration)를 나타낸 것이고, 도 3e는 Y 방향의 오정렬도를 나타낸 것이다.3D illustrates misregistration in the X direction during stepper alignment after skipping photo / wet angle according to the present invention, and FIG. 3E illustrates misalignment in the Y direction.

그리고 도 3f는 포토/습식각을 적용한후의 오버레이 계측 결과를 나낸 것이다.3F shows the result of overlay measurement after applying photo / wet angle.

상기 도 3a내지 도 3f의 그래프를 비교하면 포토/습식각 공정을 스킵한 본 발명에 따른 오버 폴리싱에 의한 방법 역시 스테퍼 얼라인 안정성 및 오버레이 계측 안정성이 충분히 확보되는 것을 알 수 있다.Comparing the graphs of FIGS. 3A to 3F, it can be seen that the method by overpolishing according to the present invention, which skips the photo / wet etching process, also sufficiently secures stepper alignment stability and overlay metrology stability.

상대적으로 넓은 필드(wide field) 지역인 얼라인 키 패턴부의 산화 디싱 효과를 이용하므로 실제 양산에 적용하는 경우 셀부에서의 산화 디싱 문제 및 전기적 특성의 열화 문제는 없다.Since the oxidizing dishing effect of the alignment key pattern portion, which is a relatively wide field area, is used, there is no problem of oxidizing dishing and degradation of electrical characteristics in the cell portion when applied to actual mass production.

이와 같은 본 발명에 따른 반도체 소자의 제조 방법은 다음과 같은 효과가 있다.Such a method of manufacturing a semiconductor device according to the present invention has the following effects.

첫째, FG 포토 공정을 진행하기 전에 스테퍼 얼라인의 안정성 및 오버레이 안정성의 확보를 위하여 별도의 마스크 공정을 진행하지 않으므로 제조 원가의 감소 효과가 있다.First, since the separate mask process is not performed to secure the stability of the stepper alignment and the overlay stability before the FG photo process, the manufacturing cost is reduced.

둘째, 포토/습식각 공정을 스킵할 수 있으므로 양산 TAT를 단축하는 효과가 있다.Second, since the photo / wet etching process can be skipped, there is an effect of shortening the mass production TAT.

셋째, 공정 스텝수의 감소에 따라 웨이퍼 오염 감소 효과가 있다.Third, wafer contamination is reduced by reducing the number of process steps.

넷째, CMP 공정시에 RPM, 압력, 슬러리 유입율등의 조건을 동일하게 하고 공정 시간 및 타겟 위치만을 달리하여 얼라인 요철을 확보하므로 공정 리스크가 적다.Fourth, in the CMP process, the conditions such as RPM, pressure, slurry inflow rate are the same, and the alignment irregularities are secured only by changing the process time and the target position, thereby reducing the process risk.

Claims (3)

반도체 기판의 소자 격리 영역에 트렌치 및 얼라인 키 패턴을 형성하는 단계;Forming trench and alignment key patterns in the device isolation region of the semiconductor substrate; 상기 트렌치 및 얼라인 키 패턴을 포함하는 전면에 트렌치가 매립되도록 산화막을 형성하는 단계;Forming an oxide layer on the entire surface of the trench including the trench and the alignment key pattern; 상기 산화막을 CMP의 타겟을 낮추고 공정 시간을 10 ~ 20sec 증가시켜 얼라인 키 패턴이 형성된 부분(wide field)에서 산화막의 디싱(Dishing) 현상이 유발되도록하여 얼라인 키의 요철 확보하는 것과 동시에 소자 격리층을 형성하는 단계;The oxide film is lowered to the target of the CMP and the process time is increased by 10 to 20 sec to cause dishing of the oxide film in the wide field where the alignment key pattern is formed, thereby securing the irregularities of the alignment key and at the same time, isolating the device. Forming a layer; 상기 얼라인 키 패턴을 이용하여 게이트 라인을 패터닝하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 제조 방법.And patterning a gate line using the alignment key pattern. 제 1 항에 있어서, 산화막을 CMP 공정으로 평탄화하는 공정에서 얼라인 키 패턴이 형성된 부분의 산화막을 50 ~ 150Å정도 오버 폴리싱하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of manufacturing a semiconductor device according to claim 1, wherein in the step of planarizing the oxide film by a CMP process, the oxide film of the portion where the alignment key pattern is formed is overpolished by about 50 to 150 kPa. 제 1 항에 있어서, 산화막을 HDP 공정으로 4000 ~ 7000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of manufacturing a semiconductor device according to claim 1, wherein the oxide film is formed to a thickness of 4000 to 7000 kPa by an HDP process.
KR1019990050885A 1999-11-16 1999-11-16 Method for fabricating of semiconductor device KR100558042B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990050885A KR100558042B1 (en) 1999-11-16 1999-11-16 Method for fabricating of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990050885A KR100558042B1 (en) 1999-11-16 1999-11-16 Method for fabricating of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010046915A true KR20010046915A (en) 2001-06-15
KR100558042B1 KR100558042B1 (en) 2006-03-07

Family

ID=19620340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990050885A KR100558042B1 (en) 1999-11-16 1999-11-16 Method for fabricating of semiconductor device

Country Status (1)

Country Link
KR (1) KR100558042B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593744B (en) * 2008-05-29 2011-07-06 中芯国际集成电路制造(北京)有限公司 Alignment mark and manufacture method thereof
CN109346419A (en) * 2018-12-05 2019-02-15 德淮半导体有限公司 Semiconductor devices and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165353B1 (en) * 1995-12-14 1999-02-01 김광호 Forming alignment key pattern in semiconductor apparatus
KR100248155B1 (en) * 1997-12-08 2000-03-15 김영환 Method for forming align key of field region
KR20010003670A (en) * 1999-06-24 2001-01-15 김영환 Method for forming alignment key of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593744B (en) * 2008-05-29 2011-07-06 中芯国际集成电路制造(北京)有限公司 Alignment mark and manufacture method thereof
CN109346419A (en) * 2018-12-05 2019-02-15 德淮半导体有限公司 Semiconductor devices and its manufacturing method

Also Published As

Publication number Publication date
KR100558042B1 (en) 2006-03-07

Similar Documents

Publication Publication Date Title
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
KR100225550B1 (en) Method for polishing of electronic device
KR100558042B1 (en) Method for fabricating of semiconductor device
US6387808B1 (en) Method of correcting topographical effects on a micro-electronic substrate
JP2002270688A (en) Manufacturing method of semiconductor device
KR100226728B1 (en) Method of forming a device isolation film of semiconductor device
US6303461B1 (en) Method for fabricating a shallow trench isolation structure
KR100454849B1 (en) Fabrication method of semiconductor
KR20050028618A (en) Method for forming isolation layer of semiconductor device
KR100561524B1 (en) Method for fabricating shallow trench isolation
KR20030002870A (en) Method for forming isolation in semiconductor device
KR100545179B1 (en) Method for forming isolation layer of semiconductor device
KR100567028B1 (en) Method for improving profole of shallow trench isolation by using oxidation
KR100586072B1 (en) Method for improving edge moat of sti corner
KR100451499B1 (en) Device Separating Method of Semiconductor Device
KR20050093159A (en) Manufacturing method for shallow trench isolation of cmos image sensor
KR100396792B1 (en) Method for chemical mechanical polishing isolation region of semiconductor device
JP2000311937A (en) Manufacture of semiconductor device
KR20050108196A (en) Method for forming align key of semiconductor device
KR20050006510A (en) Method for forming planarization element isolating film of semiconductor device
KR20030002884A (en) Method for forming isolation in semiconductor device
KR20020096466A (en) method for manufacturing of flash memory device
KR20040055445A (en) Method of forming isolating layer for semiconductor device
KR20010004309A (en) Method of fabricating alignment key of wafer
KR20050002014A (en) Method for fabricating semiconductor device capable of forming photoresist layer having uniform thickness

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110126

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee