KR20010042710A - Turbocharged internal combustion engine - Google Patents

Turbocharged internal combustion engine Download PDF

Info

Publication number
KR20010042710A
KR20010042710A KR1020007011430A KR20007011430A KR20010042710A KR 20010042710 A KR20010042710 A KR 20010042710A KR 1020007011430 A KR1020007011430 A KR 1020007011430A KR 20007011430 A KR20007011430 A KR 20007011430A KR 20010042710 A KR20010042710 A KR 20010042710A
Authority
KR
South Korea
Prior art keywords
pressure turbine
pipe
high pressure
internal combustion
engine
Prior art date
Application number
KR1020007011430A
Other languages
Korean (ko)
Other versions
KR100815590B1 (en
Inventor
프랑크프뤼게어
Original Assignee
3케이-워너 터보시스템즈 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3케이-워너 터보시스템즈 게엠베하 filed Critical 3케이-워너 터보시스템즈 게엠베하
Publication of KR20010042710A publication Critical patent/KR20010042710A/en
Application granted granted Critical
Publication of KR100815590B1 publication Critical patent/KR100815590B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

본 발명은 터보과급되는 내연기관(10)에 관한 것으로, 이 내연기관은 적어도 하나의 고압 단계(20)와 상기 고압 단계(20)의 하류 방향으로 배치되는 적어도 하나의 저압 단계(30)와, 파이프 스위치(70,71)를 갖고 엔진(10)의 배기편(12)을 저압 터빈(31)의 입구편에 연결하는 바이패스 파이프(24a,24b)와, 엔진(10)의 작동 변수를 감지하기 위한 센서를 포함하여 구성된다. 상기 고압 터빈(21)은 항상 최저 배기량으로 작동하여 이는 연속적으로 순환하고, 중앙 처리 장치(CPU)가 구비되어 상기 센서의 신호를 받아들이며, 상기 CPU는 파이프 스위치(70,71)가 전체 배기량의 변화 가능한 부분이 고압 터빈(21)과 저압 터빈(31)과 엔진(10)의 새로운 공기편으로 분배되어 흐르도록 작동하게 하여 연료 소모와(또는) 배기량을 최소화할 수 있도록 엔진(10)의 작동 모드를 모두 최적화하도록 한다.The present invention relates to a turbocharged internal combustion engine (10), which comprises at least one high pressure stage (20) and at least one low pressure stage (30) disposed downstream of the high pressure stage (20), Bypass pipes 24a and 24b having pipe switches 70 and 71 connecting the exhaust piece 12 of the engine 10 to the inlet piece of the low pressure turbine 31 and the operating parameters of the engine 10 are sensed. It is configured to include a sensor for. The high pressure turbine 21 always operates at the lowest displacement, which continuously circulates, and is equipped with a central processing unit (CPU) to receive signals from the sensor, and the CPU allows the pipe switches 70 and 71 to change the total displacement. The operating mode of the engine 10 so that the possible parts are distributed and flow into the new air pieces of the high pressure turbine 21 and the low pressure turbine 31 and the engine 10 to minimize fuel consumption and / or displacement. Try to optimize all of them.

Description

터보 과급(過給)되는 내연기관{Turbocharged internal combustion engine}Turbocharged internal combustion engine

두 단계의 과급과정을 가지는 그러한 내연기관은 DE 195 14 572 A1에 개시되어 있는데, 고압의 단계와 저압의 단계가 내연기관의 저속 범위에 있는 터보 과급기(Turbocharger)에 연계 설정된다. 초기의 배기는 고압 터빈으로 그 다음 저압 터빈으로 흐른다. 터보과급된 공기는 먼저 저압 압축기에 의하여 압축된 후 고압압축기에 의하여 압축되고, 열 교환기에서 냉각된 후 내연기관의 새로운 공기 쪽으로 주입된다. 내연기관의 순환 속도가 증가됨에 따라 저압 압축기에서만 압축되는 단일 단계의 압축 과정으로 변환되는데, 따라서, 고압 터빈은 배기편 파이프 스위치에 의하여 완전히 바이패스되고, 고압 압축기는 터보과급하는 공기편 파이프 스위치에 의하여 완전히 바이패스될 수 있다.Such an internal combustion engine having a two-step supercharging process is disclosed in DE 195 14 572 A1, in which the high and low pressure stages are linked to a turbocharger in the low speed range of the internal combustion engine. The initial exhaust flows to the high pressure turbine and then to the low pressure turbine. The turbocharged air is first compressed by a low pressure compressor and then by a high pressure compressor, cooled in a heat exchanger and then injected into the new air of the internal combustion engine. As the circulation speed of the internal combustion engine increases, it is converted into a single stage compression process, which is compressed only in low pressure compressors, so that the high pressure turbine is completely bypassed by the exhaust pipe switch, and the high pressure compressor is connected to the turbocharged air pipe switch. Can be bypassed completely.

그러나 그러한 터보과급하는 과정에서의 변환은 자주 부하를 상승시키고 내연기관의 속도 변화를 발생시키며, 자주 그러한 변화가 터보과급하는 장치 작동의 하나의 단계와 두개의 단계 사이에서 발생되어야 하는 단점이 있었다. 따라서, 승차감의 손실과 연속적이지 못한 가속과 제동 파워 반응이 발생하는 것이다.However, the conversion in such turbocharging process often raises the load and produces a change in the speed of the internal combustion engine, and often such a change has to occur between one and two stages of turbocharging device operation. Thus, a loss of riding comfort and non-continuous acceleration and braking power reactions occur.

청구항 서론에 따른 내연기관은 또한 DE 39 03 563 C1에도 개시되어 있다. 그러나, 상기 특허에서도 터보과급함에 있어서 두 단계에서 한 단계로의 변환이 일어나는데, 이러한 변환은 출구편과 고압 터빈사이에 설치된 파이프 스위치에 의하여 일어나고, 따라서 여기서도 승차감의 손실이 발생한다.An internal combustion engine according to the introduction to the claims is also disclosed in DE 39 03 563 C1. However, in the above patent, the turbocharging takes place from two stages to one stage, which is caused by a pipe switch installed between the outlet piece and the high-pressure turbine, and thus also a loss of ride comfort.

본 발명은 청구항 1의 서론에 기술된 바와 같은 터보 과급(過給)된 내연기관에 관한 것으로, 특히 적어도 하나의 고압과 저압으로의 압력저하 단계를 가지는 터보 과급된 내연기관에 관한 것이다.이때 이 터빈은 싱글 플로(Single Flow),또는 더블 플로(Double Flow)형으로 형성될 수 있고, 또한 고압 터빈의 입구편은 엔진의 배기편에, 그리고 출구편은 저압터빈에 연결될 수 있으며, 입구편의 엔진 배기편을 저압터빈에 연결하는 파이프 스위치에 의하여 잠금가능한 적어도 하나의 바이패스 채널(Bypass Channel)을 포함할 수 있다.The present invention relates to a turbocharged internal combustion engine as described in the introduction of claim 1, and more particularly to a turbocharged internal combustion engine having at least one pressure reduction stage at high and low pressures. The turbine may be formed in a single flow or double flow type, and the inlet side of the high pressure turbine may be connected to the exhaust side of the engine, and the outlet side may be connected to the low pressure turbine. It may include at least one bypass channel (Bypass Channel) lockable by a pipe switch connecting the exhaust piece to the low pressure turbine.

도 1a는 쌍을 이루는 바이패스 흐름을 가지는 두 단계로 터보과급되는 디젤 내연기관의 배기 및 새로운 공기의 플로를 나타낸 순환 다이어그램,1A is a circulation diagram showing the exhaust and fresh air flow of a turbocharged diesel internal combustion engine in two stages with a paired bypass flow;

도 1b는 공통의 바이패스 흐름을 가지는 두 단계로 터보 과급되는 디젤 내연기관의 배기 플로 나타낸 순환 다이어그램,1B is a circulation diagram showing the exhaust flow of a diesel internal combustion engine turbocharged in two stages with a common bypass flow;

도 2는 이중 플로의 저압 터빈을 위한 쌍을 이루는 바이패스 흐름을 가지는 두 단계로 터보과급되는 디젤 내연기관의 배기 플로를 나타낸 순환 다이어그램,2 is a circulation diagram showing the exhaust flow of a turbocharged diesel internal combustion engine in two stages with a paired bypass flow for a dual flow low pressure turbine;

도 3은 저압 바이패스부를 가지는 도 1a에 따른 배기 및 새로운 공기의 플로를 나타낸 순환 다이어그램,3 is a circulation diagram showing the flow of exhaust and fresh air according to FIG. 1A with a low pressure bypass;

도 4는 두 단계로 터보 과급되는 V형 디젤 내연기관의 배기 및 새로운 공기의 플로를 나타낸 순환 다이어그램,4 is a circulation diagram showing the exhaust and fresh air flow of a V-type diesel internal combustion engine turbocharged in two stages;

도 5와 도 6은 고압 터빈으로 다양한 배열의 터빈이 사용되는 다른 순환 다이어그램,5 and 6 are different circulation diagrams in which various arrangements of turbines are used as high pressure turbines,

도 7은 특별한 바이패스 배치을 개시한 순환 다이어그램이다.7 is a circular diagram illustrating a particular bypass arrangement.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

10: 디젤 내연기관 11: 새로운 공기편10: diesel internal combustion engine 11: new air

12: 배기편 13a,b: 실린더열12: exhaust piece 13a, b: cylinder row

20: 고압 단계 21: 고압터빈20: high pressure stage 21: high pressure turbine

22: 고압 압축기 23a,b: 플로(flow)22: high pressure compressor 23a, b: flow

24,24a,b: 바이패스 채널 30: 저압 단계24, 24a, b: bypass channel 30: low pressure stage

31: 저압 터빈 32: 저압 압축기31 low pressure turbine 32 low pressure compressor

33a,b: 플로 34: 바이패스부33a, b: flow 34: bypass section

40: 터보과급공기 냉각기 50: 배기 회귀40: turbocharged air cooler 50: exhaust return

60,61,62,62a,b: 파이프 63,63a,b: 마우스 포인트(Mouth Point)60, 61, 62, 62a, b: pipe 63, 63a, b: mouse point

70,71,72: 파이프 스위치 80: 모터 제어기70, 71, 72: pipe switch 80: motor controller

86: 바이패스 라인 87:파이프 스위치86: bypass line 87: pipe switch

본 발명은 이러한 청구항 1항 서론에 따른 내연기관의 문제점을 해결하기 위한 것으로 급속한 부하에 대응하고, 연속적이고 제동 파워 반응을 일으키지 않는 변속을 위한 것이다. 터보과급 압력은 가속 즉, 차량이 가속될 때 지체되지 않고, 엔진 요구량에 무한하고 다양하게 적용될 수 있도록 하는 것이다.The present invention is to solve the problems of the internal combustion engine according to the introduction of claim 1 to respond to rapid load, and for a shift that does not cause a continuous braking power response. Turbocharge pressure is an acceleration, that is, it does not delay when the vehicle is accelerated, so that it can be applied infinitely and variously to the engine demand.

이러한 본 발명의 목적은 독립 청구항의 특징에 의하여 해결될 수 있다.This object of the invention can be solved by the features of the independent claims.

특히, 본 발명의 특징에 따르면 적어도 어떤 범위까지는 고압 터빈을 통한 연속 플로가 있고, 이 플로는 회전하기 때문에 가속할 때 최저의 터보과급 압력이 생기고, 특히 HP 로터의 회전 속도는 가장 바람직한 초기 수준에 있게 된다. 또한, 각각의 배기 플로는 중심 처리부와 파이프 스위치를 구비한 본 발명의 구성에 따라 고압 터빈, 저압 터빈 또는 새로운 공기편에 각 경우에 요구되는 정도로 공급될 수 있고, 따라서 엔진의 작동모드는 최저연료 소비와 최저 배기량을 갖도록 최적화될 수 있다.In particular, according to a feature of the invention there is a continuous flow through the high-pressure turbine at least to some extent, and because the flow rotates, the lowest turbocharge pressure occurs when accelerating, in particular the rotational speed of the HP rotor is at the most desirable initial level. Will be. In addition, each exhaust flow can be supplied to the high pressure turbine, the low pressure turbine or the new air piece to the extent required in each case according to the configuration of the present invention having a central processing unit and a pipe switch, so that the engine operating mode is the lowest fuel. It can be optimized to have a consumption and the lowest displacement.

부하에 적절히 대응하고 엔진의 회전속도를 증가시킬 수 있도록 고압 터빈은 신속하게 반응하는데, 이는 팽창동작이 고압 터빈 방향으로 이동하기 때문이다. 즉, 파이프 스위치에 의하여 바이패스 채널이 거의 클로즈되어 배기 플로의 대부분이 고압 터빈으로 주입되게 되는 것이다. 부하가 약하고 배기량이 적을때 적은 연료 소비와 낮은 부하, 무엇보다도 배기 대응 압력이 이 작동 범위에서 요구된다면, 배기의 팽창동작은 배기 회귀 후의 파이프 스위치를 적절히 위치시키고 바이패스 채널의 오픈으로 엔진의 회전 속도를 독립적으로 하여 저압 터빈에서 대부분 발생하게 할 수 있다.The high pressure turbine reacts quickly so that it can respond appropriately to the load and increase the engine's rotational speed because the expansion operation moves in the direction of the high pressure turbine. That is, the bypass channel is almost closed by the pipe switch so that most of the exhaust flow is injected into the high pressure turbine. If low fuel consumption, low load and, above all, exhaust response pressure are required in this operating range when the load is low and the displacement is small, the expansion operation of the exhaust is performed by properly positioning the pipe switch after exhaust return and by rotating the engine by opening the bypass channel. Independent speeds can cause most of the low pressure turbines.

상기 파이프 스위치는 회전 속도, 배기량, 터보과급 압력, 터보과급 공기 온도등의 엔진의 작동특성을 기록하는 모터 전자 시스템에 연결되어 엔진의 작동 상태에 따라 연료 소비량와 배기량을 최소화하는 작동 모드로 제어될 수 있다. 결과적으로, 최저 연료 소비량과 최저 배기량은 최적 상태를 위하여 조정되는 것이다. 대기 상태에 따라 부하 상태와 회전 속도, 최적화된 배기 플로의 분리는 새로운 공기편, 고압 터빈, 저압 터빈에서 형성되게 된다.The pipe switch is connected to a motor electronic system that records the operating characteristics of the engine, such as rotation speed, displacement, turbocharge pressure, turbocharge air temperature, and can be controlled in an operating mode that minimizes fuel consumption and displacement depending on the engine's operating conditions. have. As a result, the lowest fuel consumption and lowest displacement are adjusted for optimum conditions. Depending on the atmospheric conditions, the separation of load conditions, rotational speeds and optimized exhaust flows will be formed in new air planes, high pressure turbines and low pressure turbines.

배기량의 분배가 가능해짐에 따른 또 다른 잇점은 작동 라인이 고압과 저압 압축기의 작동특성에 따라 운행되어 한편으로는 고압축기 효율이 향상되고, 다른 한편으로는 펌핑이 실질적으로 극단의 상태 이하를 유지하게 된다.Another advantage of enabling the distribution of displacement is that the operating line runs according to the operating characteristics of the high and low pressure compressors, on the one hand, which improves the compressor's efficiency, while on the other hand the pumping remains substantially below extreme. Done.

이미 기술된 본 발명의 제 1의 주요 기술과는 달리 본 발명의 제 2의 주요 기술에 따르면 또한 이하의 효과를 얻을 수 있다.Unlike the first main technique of the present invention already described, according to the second main technique of the present invention, the following effects can also be obtained.

내연기관을 저압터빈의 입구편에 연결시키는 바이패스 채널은 절대적으로 필요한 것은 아니다. 두개의 터빈중 하나 - 바람직하게는 고압터빈 - 는 변화가능한 배열을 가질 수 있으며, 무엇보다도 적당한 베인(vane)을 가지는 분배수단을 구비할 수 있다. 예컨대, 고압터빈에 그러한 분배수단이 구비된다면 비록 전체 플로가 고압터빈을 통하더라도 이러한 플로의 비율은 커지거나 적어지도록 조절될 수 있다.The bypass channel connecting the internal combustion engine to the inlet side of the low pressure turbine is not absolutely necessary. One of the two turbines, preferably the high pressure turbine, can have a variable arrangement and, above all, can be provided with distribution means having suitable vanes. For example, if such a distribution means is provided in the high pressure turbine, even if the entire flow is through the high pressure turbine, the ratio of the flow can be adjusted to be larger or smaller.

또한, 파이프 스위치를 구비한 바이패스 파이프가 제공될 수 있는데, 이를 통하여 고압 터빈은 바이패스 되어질 수 있다. 이때 또한 분배수단은 항상 조금 열려 있어 적어도 최저 배기량이 고압 터빈을 통하여 확실히 흐르고, 따라서 항상 적어도 최저의 터보과급 압력이 존재하며, 특히 HP 로터의 회전 속도는 바람직한 초기 수준에 있게 된다. 파이프 스위치에 의하여 부가적인 제어를 할 수도 있다.In addition, a bypass pipe with a pipe switch can be provided, through which the high pressure turbine can be bypassed. The distribution means are also always slightly open so that at least the minimum displacement flows reliably through the high pressure turbine, so there is always at least the lowest turbocharge pressure, in particular the rotational speed of the HP rotor is at the desired initial level. Additional control may be provided by the pipe switch.

어떻든 상기한 두개의 주요 기술중 하나를 사용함에 있어 잇점은 내연기관의 작동 변수가 매우 민감하게 달라질 수 있는 것이다.In any case, the advantage of using one of the two major technologies described above is that the operating parameters of the internal combustion engine can be very sensitively varied.

이하에서는 본 발명의 바람직한 실시예가 첨부한 도면을 참조하여 보다 상세하게 기술된다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

도 1에 도시된 6-실린더 디젤 내연기관(10)은 터보 과급기에 의하여 두 단계로 터보과급된다. 그러기 위하여 고압단계(20)는 단일의 저압단계(30) 전에 배치된다. 고압 터빈(21)과 저압 터빈(31)에 의하여 구동되는 압축기(22,32)에 의하여 새로운 공기는 압축되고, 두개의 터보과급공기 냉각기(40)에서 냉각되며, 배기 회귀 플로(50)의 배기와 일정 퍼센트(_0)로 혼합되어 엔진(10)의 새로운 공기편(11)에 주입된다. 저압 터빈(32)의 로터 직경은 고압 터빈(21)의 로터 직경 보다 큰데, 저압과 고압 터빈의 사이의 로터 직경비(dL,ND/dL,HD)는 1.2 내지 1.8 정도이다. 고압 터빈(21) 이중 플로의 두개의 플로(23a,b)은 입구편에서 각각 파이프(60,61)에 의하여 엔진의 배기편(12)과 연결된다. 출구편에서는 플로(23a,b)은 출구편 파이프(63,64)를 통하여 차례로 단일 플로의 저압 터빈(31) 입구편에 연결되는 공통 파이프(62)에 연결된다. 두개의 터보과급공기 냉각기 중 하나는 물론 생략될 수 있다.The six-cylinder diesel internal combustion engine 10 shown in FIG. 1 is turbocharged in two stages by a turbocharger. To this end, the high pressure stage 20 is arranged before a single low pressure stage 30. The new air is compressed by the compressors 22 and 32 driven by the high pressure turbine 21 and the low pressure turbine 31, cooled in two turbocharged air coolers 40, and exhausted from the exhaust return flow 50. And a certain percentage (_0) is mixed into the new air piece 11 of the engine (10). The rotor diameter of the low pressure turbine 32 is larger than the rotor diameter of the high pressure turbine 21, and the rotor diameter ratio d L, ND / d L, HD between the low pressure and the high pressure turbine is about 1.2 to 1.8. The two flows 23a and b of the dual flow of the high pressure turbine 21 are connected to the exhaust piece 12 of the engine by pipes 60 and 61 at the inlet side, respectively. At the outlet piece, the flows 23a and b are connected to the common pipe 62 which in turn is connected to the inlet piece of the low pressure turbine 31 of a single flow via the outlet piece pipes 63 and 64. One of the two turbocharged air coolers can of course be omitted.

엔진(10)의 작동 상태에 따른 터보 과급기의 최적 적용 상태에서 바이패스 채널(24a,24b)는 고압 터빈(21)의 각각의 플로(23a,b)에 대하여 대칭적으로 배치된다. 그 각각은 배기 엘보우(elbow)의 분리된 파이프(60,61)로 흐르고, 고압 터빈(20)을 우회하여 단일 플로의 저압 터빈(30)에 단일 공급을 위한 공통 파이프(62)로 흐르게 된다. 각각의 바이패스 채널(24a,b)에는 흐름의 하류 방향으로 배치된 파이프 스위치(70,71)가 제공된다. 이러한 구조는 배기 엘보우 또는 고압 터빈의 하우징에 설치될 수도 있고, 슬라이드, 밸브, 플랩등의 유사한 장치의 형상을 가질 수도 있으며, 단일 또는 공통으로 CPU에 의하여 제어될 수도 있다.In the optimum application state of the turbocharger according to the operating state of the engine 10, the bypass channels 24a, 24b are arranged symmetrically with respect to the respective flows 23a, b of the high pressure turbine 21. Each flows into separate pipes 60, 61 of the exhaust elbow and bypasses the high pressure turbine 20 to a common pipe 62 for a single supply to the low pressure turbine 30 in a single flow. Each bypass channel 24a, b is provided with pipe switches 70,71 arranged in the downstream direction of the flow. Such a structure may be installed in the housing of an exhaust elbow or a high pressure turbine, may have the shape of a similar device such as a slide, a valve, a flap, or the like, or may be controlled by a CPU singly or in common.

또한, 배기 회귀 파이프(50)는 압축기(22)에 대하여 상대적으로 새로운 공기편(11)쪽 뒤로 떨어져서 연결된다. 배기중 회귀된 양은 또한 새로운 공기편의 어떤 다른 지점으로 주입될 수 있다. 한편의 파이프 스위치(70)에 의하여 바이패스 채널(24a)는 클로즈되도록 하고, 다른편은 바이패스 채널(24a)이 오픈되도록 하여 부분적인 흐름이 저압 터빈(30)과 배기 회귀 파이프(50)에 필요한 비율(배기 가스 회기 비율≥0)로 분배할 수 있다. 또한, 작동 특성 변수 a1-n 의 기능을 하는 파이프 스위치(70,71,50)의 제어를 위하여 이 파이프 스위치(70,71,50)는 전자 모터 제어기(80)에 연결되는데, 이 모터 제어기는 작동을 위한 배기량의 최적 분배를 가능하게 한다. 바이패스 비율(24a,b)은 달리 조정이 가능하여 전체 배기량 분배가 좀더 자유로울 수 있다.In addition, the exhaust return pipe 50 is connected to the compressor 22 relative to the new air piece 11 back. The amount returned in the exhaust can also be injected into any other point of the fresh air piece. The pipe switch 70 on the one hand allows the bypass channel 24a to be closed and on the other hand the bypass channel 24a to be opened so that a partial flow is applied to the low pressure turbine 30 and the exhaust return pipe 50. It can distribute in the required ratio (exhaust gas recycle ratio≥0). In addition, the pipe switches 70, 71, 50 are connected to the electronic motor controller 80 for the control of the pipe switches 70, 71, 50 functioning as the operating characteristic variables a1-n. Enables optimal distribution of displacement for operation. The bypass ratios 24a and b can be adjusted differently so that the total displacement distribution can be more free.

도 1b에는 내연기관(10)의 다른 실시예가 도시되어 있다. 이는 도 1a와는 터보 과급기의 형태를 달리하고 있다. 즉, 고압 터빈(21)의 출구편 연결이 두개의 바이패스 채널(24a,b)의 마우스 포인트(63)의 공통 파이프(62) 하류쪽에 제공되는데, 도 1a에서는 상류쪽에 제공되는 것이 다르다.1b shows another embodiment of the internal combustion engine 10. This is different from that of the turbocharger in FIG. 1A. That is, the outlet side connection of the high pressure turbine 21 is provided downstream of the common pipe 62 of the mouse point 63 of the two bypass channels 24a and b, which is different from that provided upstream in FIG.

도 2에는 내연기관(10)의 제 3 실시예가 도시되어 있다. 여기서는 저압 터빈(30)이 이중 플로로 형성되어 있다. 저압 터빈(31)의 두개의 채널(33a,b)은 각각 다른 파이프(62a,62b)로부터 제공되고, 따라서 저압 터빈에는 균일하지 않은 흐름이 제공될 수 있다. 바이패스 채널(24a,b)은 또한 각각 다른 플로(33a,33b)로 나누어 흐르게 되는데, 이는 고압 터빈(21)의 플로(23a,b)가 각각 다른 파이프(62a,62b)로 분리되어 연결되는 것과 같다.2 shows a third embodiment of an internal combustion engine 10. Here, the low pressure turbine 30 is formed in double flow. The two channels 33a, b of the low pressure turbine 31 are provided from different pipes 62a, 62b, respectively, so that the low pressure turbine can be provided with an uneven flow. Bypass channels 24a and b are also flowed separately into different flows 33a and 33b, which flows 23a and b of high-pressure turbine 21 into separate pipes 62a and 62b, respectively. Same as

도 3에 도시된 내연기관은 바이패스부(34)을 가지는 저압 터빈(31)을 구비하고 있는데, 상기 바이패스부는 작동 특성 a1-n으로 기능하는 예비압축의 최적화를 위한 파이프 스위치(72)에 의하여 제어될 수 있다. 이는 특히 예컨대, 공간적인 문제로 고압 압축기(22)와 저압 압축기(32) 사이의 압축기 공기의 냉각이 필요없도록 하기 위한 적용(승용차)에 적당하다. 이를 통하여, 예비압축은 저압 단계(30)에 의하여 엔진(10)의 가늠된 파워의 영역에서 의도하는 범위로 제한될 수 있다.The internal combustion engine shown in FIG. 3 has a low pressure turbine 31 having a bypass portion 34, which bypasses the pipe switch 72 for optimization of precompression functioning with operating characteristics a1-n. Can be controlled. This is particularly suitable for applications (passenger cars), for example, to avoid the need for cooling of the compressor air between the high pressure compressor 22 and the low pressure compressor 32 due to space problems. Through this, the precompression can be limited to the intended range in the region of the estimated power of the engine 10 by the low pressure step 30.

파이프 스위치(72)를 구비한 바이패스 파이프(34)을 통하여 아주 작은 저압(31)을 사용할 수 있다. 이는 엔진의 과운행시 제동 파워를 크게 한다. 따라서 엔진의 가속반응은 이와 함께 향상될 수 있다. 또한, 터보 과급과 배기의 대응압력은 어떤 작동 범위에서는 더 감소될 수 있는데,이는 내연기관의 효율을 더 증가시킬 수 있다.Very low pressure 31 can be used through the bypass pipe 34 with the pipe switch 72. This increases the braking power during overrun of the engine. The acceleration response of the engine can thus be improved with this. In addition, the corresponding pressures of the turbocharge and exhaust can be further reduced in some operating ranges, which can further increase the efficiency of the internal combustion engine.

도 4는 내연기관(10)의 제 5 실시예로서 V8형을 도시한 것이다. 각 실린더열(13a,b)은 다른 고압 단계(20)로 분리된다. 단일 플로의 고압 터빈(21)에는 파이프 스위치(70)를 포함하는 바이패스 채널(24)이 제공된다. 양 고압 터빈(21)의 배기편은 저압 터빈(31)의 입구에 공통으로 연결된다. 여기서 두개의 고압 단계(20)의 바이패스 비율은 달리 세팅할 수 있으므로 전체적인 배기량의 분배도 조절할 수 있다. 기술된 바와 같이 파이프 스위치(70)에 의한 배기 흐름의 분리는 고압 터빈(21)과 저압 터빈(31), 배기 회귀(50)에서 가능하다.4 shows the V8 type as the fifth embodiment of the internal combustion engine 10. Each cylinder row 13a, b is separated into another high pressure stage 20. The single flow high pressure turbine 21 is provided with a bypass channel 24 comprising a pipe switch 70. The exhaust piece of the high pressure turbine 21 is commonly connected to the inlet of the low pressure turbine 31. Here, the bypass ratios of the two high pressure stages 20 can be set differently so that the distribution of the overall displacement can also be adjusted. As described, separation of the exhaust flow by the pipe switch 70 is possible in the high pressure turbine 21, the low pressure turbine 31, and the exhaust return 50.

기본적으로 어떤 터빈이라도 단일 플로, 이중 플로로 또는 다양한 터빈 배열을 갖도록 형성될 수 있고, 특히 적당한 베인을 갖는 분배수단이 구비될 수 있다.Basically any turbine can be formed with a single flow, double flow or with a variety of turbine arrangements, in particular a distribution means having suitable vanes.

도 7에 도시된 다이어그램은 도 3의 다이어그램과 유사하다. 그러나, 이는 고압 압축기를 우회하는 바이패스 라인(86)을 포함하고 있다. 또한, 파이프 스위치(87)도 포함하고 있다. 상기 실시예는 특히 고속에서의 모터 효율과 연료 소모, 배기량에 있어 매우 향상되어 디젤 엔진에 유용한 것으로 판명되었다. 결과를 비교해 볼때 기술적 노력도 상대적으로 적게 소모된다.The diagram shown in FIG. 7 is similar to the diagram of FIG. 3. However, it includes a bypass line 86 that bypasses the high pressure compressor. The pipe switch 87 is also included. This embodiment has proved to be particularly useful for diesel engines, with a significant improvement in motor efficiency, fuel consumption and displacement at high speeds. In comparison, the technical effort is also relatively low.

본 발명의 구성은 디젤 내연기관의 모터 효율을 향상시키고 연료 소모와 배기량을 감소시키는데 유용하다.The configuration of the present invention is useful for improving the motor efficiency and reducing fuel consumption and displacement of a diesel internal combustion engine.

Claims (10)

적어도 하나의 고압 단계(20)와 상기 고압 단계(20)의 하류 방향으로 배치되는 적어도 하나의 저압 단계(30)를 구비하고, 고압 터빈(21)의 입구편과 엔진(10)의 배기편(12), 고압 터빈(21)의 출구편과 저압 터빈(31)은 파이프 (60,61;62,63,64)에 의하여 연결되며, 파이프 스위치(70,71)를 갖고 엔진(10)의 배기편(12)을 저압 터빈(31)의 입구편에 연결하는 바이패스 파이프(24,24a,24b)와 엔진(10)의 작동 변수를 감지하기 위한 센서를 더 포함하는 터보과급되는 내연기관에 있어서,At least one high pressure stage 20 and at least one low pressure stage 30 disposed downstream of the high pressure stage 20, the inlet piece of the high-pressure turbine 21 and the exhaust piece of the engine 10 ( 12, the outlet piece of the high pressure turbine 21 and the low pressure turbine 31 are connected by pipes 60, 61; 62, 63 and 64, and have pipe switches 70 and 71 to exhaust the engine 10. In a turbocharged internal combustion engine further comprising a bypass pipe (24, 24a, 24b) for connecting the piece 12 to the inlet piece of the low-pressure turbine 31 and a sensor for sensing the operating parameters of the engine (10). , 상기 고압 터빈(21)은 최저 배기량으로 항상 작동하여 이는 연속적으로 순환하고,The high pressure turbine 21 always operates at the lowest displacement, which continuously circulates, 중앙 처리 장치(CPU)가 구비되어 상기 센서의 신호를 받아들이며,A central processing unit (CPU) is provided to accept signals from the sensors, 상기 CPU는 파이프 스위치(70,71,50)가 전체 배기량의 변화 가능한 부분이 고압 터빈(21)과 저압 터빈(31)과 엔진(10)의 새로운 공기편으로 분배되어 흐르도록 작동하게 하여 연료 소모와 배기량을 최소화할 수 있도록 일정하거나 또는 일정하지 않은 엔진(10)의 작동 모드를 모두 최적화하도록 하는 것을 특징으로 하는 터보과급되는 내연기관.The CPU operates the pipe switches 70, 71, and 50 so that the changeable portion of the total displacement flows to the new air pieces of the high pressure turbine 21, the low pressure turbine 31, and the engine 10 to flow. Turbocharged internal combustion engine, characterized in that to optimize both the constant and non-constant operation mode of the engine (10) and to minimize the displacement. 제 1 항에 있어서, 상기 고압 터빈(21)은 이중 플로를 갖도록 형성되고, 각각의 플로(23a,b)는 서로 분리된 다른 파이프(60,61)에 의하여 배기편과 연결되며, 상기 파이프(60,61)에서 분기되는 하나의 바이패스 채널(24a,b)이 구비되는 것을 특징으로 하는 내연기관.The high pressure turbine (21) is formed to have a double flow, and each flow (23a, b) is connected to the exhaust piece by another pipe (60, 61) separated from each other, the pipe ( Internal combustion engine, characterized in that it is provided with one bypass channel (24a, b) branching from (60,61). 제 1 항 또는 제 2 항에 있어서, 상기 각각의 바이패스 채널(24a,b)에는 파이프 스위치(70,71)가 배치되는데, 상기 파이프 스위치는 저압 터빈(31)과 고압 터빈(21), 내연기관(10)의 새로운 공기편(11)으로 부분 플로를 분배시킬 수 있도록 형성되고, 단일하게 (그리고/또는) 공통으로 제어되어질 수 있는 것을 특징으로 하는 내연기관.3. A pipe switch (70, 71) is arranged in each of the bypass channels (24a, b), wherein the pipe switch comprises a low pressure turbine (31), a high pressure turbine (21), and an internal combustion. An internal combustion engine, characterized in that it is configured to distribute a partial flow to a new air piece (11) of the engine (10) and can be controlled singly (and / or) in common. 제 1 항 내지 제 3 항중 어느 한 항에 있어서, 상기 바이패스 채널(24,24a,b)과 출구편 파이프는 공통 파이프(62)로 이어지고, 상기 공통 파이프는 저압 터빈(31)으로 연결되는 것을 특징으로 하는 내연기관.4. The method according to any one of claims 1 to 3, wherein the bypass channels (24, 24a, b) and outlet pipes lead to a common pipe (62), which is connected to a low pressure turbine (31). Internal combustion engine characterized by the above. 제 1 항에 있어서, 상기 고압 및 저압 터빈(31)은 이중 플로로 형성되고, 파이프 스위치(70,71)를 갖춘 바이패스 채널(24a,b)과 하나의 출구편 파이프(63,64)가 각 고압편 플로를 위하여 제공되며, 상기 바이패스 채널(24a,b)과 출구편 파이프(63,64)의 각 플로는 다른 파이프(62)를 통하여 저압 터빈(31)의 플로(23a,23b)에 연결되는 것을 특징으로 하는 내연기관.2. The high pressure and low pressure turbine (31) according to claim 1, wherein the high and low pressure turbines (31) are formed in double flow, and the bypass channels (24a, b) with pipe switches (70, 71) and one outlet pipe (63,64) Provided for each high pressure piece flow, each flow of the bypass channels 24a, b and outlet pipes 63, 64 is a flow 23a, 23b of the low pressure turbine 31 through the other pipe 62; An internal combustion engine, characterized in that connected to. 제 1 항 내지 제 5 항중 어느 한 항에 있어서,상기 파이프 스위치(70,71)는 고압 터빈(21)의 입구편 파이프(60,61)와 바이패스 채널(24,24a,b) 사이의 연결 지점의 하류 방향으로 배치는 것을 특징으로 하는 내연기관The pipe switch (70, 71) is connected between the inlet pipe (60, 61) of the high-pressure turbine 21 and the bypass channels (24, 24a, b) according to any one of claims 1 to 5. An internal combustion engine, characterized in that it is arranged downstream of the point 적어도 하나의 고압 단계(20)와;At least one high pressure step (20); 상기 고압 단계(20) 다음에 배치되는 적어도 하나의 저압 단계(30)와;At least one low pressure step (30) disposed after said high pressure step (20); 고압 터빈(21)의 입구편과 엔진(10)의 배기편(12), 고압 터빈(21)의 출구편과 저압 터빈(31)을 연결하기 위한 파이프와;A pipe for connecting the inlet piece of the high pressure turbine 21, the exhaust piece 12 of the engine 10, the outlet piece of the high pressure turbine 21, and the low pressure turbine 31; 엔진(10)의 작동 변수를 감지하기 위한 센서를 포함하여 구성되고,It is configured to include a sensor for detecting an operating variable of the engine 10, 상기 두 터빈중 적어도 하나는 변화 가능한 터빈 배열과 특히 적당한 베인을 구비한 분배수단을 가지며,At least one of the two turbines has a distributing means having a variable turbine arrangement and particularly suitable vanes, 상기 고압 터빈(21)은 적어도 최저 배기량에 의하여 지속적으로 흐르고, 따라서 이는 연속적으로 순환하고,The high pressure turbine 21 continuously flows by at least the lowest displacement, so it circulates continuously, 중앙 처리 장치(CPU)가 구비되어 상기 센서의 신호를 받아들이며,A central processing unit (CPU) is provided to accept signals from the sensors, 상기 CPU는 연료 소모와(또는) 배기량을 최소화하는 최적화된 기관(10)의 작동 모드를 갖도록 터빈의 배열을 변화시키는 것을 특징으로 하는 터보 과급되는 내연기관.The CPU is a turbocharged internal combustion engine, characterized in that to change the arrangement of the turbine to have an optimized operating mode of the engine (10) to minimize fuel consumption and / or displacement. 제 7 항에 있어서, 상기 고압 터빈(21)을 우회하는 바이패스 파이프를 더 포함하고, 상기 바이패스 파이프에는 파이프 스위치가 구비되는 것을 특징으로 하는 내연기관.8. The internal combustion engine according to claim 7, further comprising a bypass pipe bypassing the high pressure turbine (21), wherein the bypass pipe is provided with a pipe switch. 제 1 항 내지 제 8 항중 어느 한 항에 있어서, 상기 저압 터빈(31)을 우회하는 바이패스 파이프를 더 포함하고, 상기 바이패스 파이프에는 파이프 스위치가 구비되는 것을 특징으로 하는 내연기관.9. The internal combustion engine according to any one of claims 1 to 8, further comprising a bypass pipe bypassing the low pressure turbine (31), wherein the bypass pipe is provided with a pipe switch. 제 1 항 내지 제 9 항중 어느 한 항에 있어서, 상기 고압 압축기를 우회하기 위한 바이패스 라인(86)을 더 포함하고, 상기 파이패스 라인(86)에는 파이프 스위치(87)가 구비되는 것을 특징으로 하는 내연기관.10. The method according to any one of claims 1 to 9, further comprising a bypass line (86) for bypassing the high pressure compressor, wherein the pipe line (86) is provided with a pipe switch (87). Internal combustion engine.
KR1020007011430A 1998-04-16 1999-04-09 Turbocharged internal combustion engine KR100815590B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19816778 1998-04-16
DE19837978A DE19837978B4 (en) 1998-04-16 1998-08-21 Air-flow controller in twin stage turbocharged internal combustion engine
DE19816778.4 1998-08-21
DE19837978.1 1998-08-21

Publications (2)

Publication Number Publication Date
KR20010042710A true KR20010042710A (en) 2001-05-25
KR100815590B1 KR100815590B1 (en) 2008-03-20

Family

ID=7864657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020007011430A KR100815590B1 (en) 1998-04-16 1999-04-09 Turbocharged internal combustion engine

Country Status (3)

Country Link
KR (1) KR100815590B1 (en)
BR (1) BR9909747A (en)
DE (2) DE19837978B4 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931507B2 (en) * 1999-11-17 2007-06-20 いすゞ自動車株式会社 Diesel engine turbocharger system
DE19961610A1 (en) * 1999-12-21 2001-04-05 Daimler Chrysler Ag Internal combustion engine with two exhaust gas turbochargers for motor vehicle, has control unit that increases/decreases variable geometry turbine cross-section for high/low engine speed
DE10019774A1 (en) * 2000-04-20 2001-11-22 Daimler Chrysler Ag Turbocharger device for an internal combustion engine
DE10023022A1 (en) 2000-05-11 2001-11-22 Borgwarner Inc Supercharged internal combustion engine
DE10144663B4 (en) * 2001-09-12 2005-11-03 Bayerische Motoren Werke Ag Internal combustion engine with two turbochargers with compressor bypass and method thereof
EP1375868B1 (en) 2002-06-26 2008-01-02 BorgWarner Inc. Engine brake apparatus for a turbocharged IC engine
DE10235531A1 (en) * 2002-08-03 2004-02-19 Daimlerchrysler Ag Method for charge pressure control of an internal combustion engine
DE50213429D1 (en) 2002-08-30 2009-05-20 Borgwarner Inc Charging system for an internal combustion engine
EP1396619A1 (en) 2002-09-05 2004-03-10 BorgWarner Inc. Supercharging system for an internal combustion engine
DE10319594A1 (en) 2003-05-02 2004-11-18 Daimlerchrysler Ag Turbocharger device and a method for operating a turbocharger device
DE102004038172A1 (en) * 2004-08-06 2006-02-23 Daimlerchrysler Ag Internal combustion engine
DE102004058371A1 (en) 2004-12-03 2006-06-14 Daimlerchrysler Ag Internal combustion engine with exhaust gas charging
DE102005008657A1 (en) 2005-02-25 2006-08-31 Daimlerchrysler Ag Internal combustion engine or Otto-engine braking method for vehicle, involves providing fixed geometry with constant turbine entrance cross section for each of two exhaust gas turbines
EP1710415A1 (en) * 2005-04-04 2006-10-11 ABB Turbo Systems AG Multiple step turbocharging
DE102005039012A1 (en) * 2005-08-18 2007-02-22 Volkswagen Ag Internal combustion engine with turbocharging
AT500458B1 (en) * 2005-09-27 2007-05-15 Avl List Gmbh INTERNAL COMBUSTION ENGINE, IN PARTICULAR OTTO INTERNAL COMBUSTION ENGINE
DE102005053977B4 (en) 2005-11-11 2017-03-30 Volkswagen Ag Internal combustion engine and method for operating an internal combustion engine
DE102005055996A1 (en) 2005-11-24 2007-05-31 Bayerische Motoren Werke Ag Drive device for motor vehicle, has exhaust-gas turbocharger devices assigned to outlet valves, such that exhaust gas channels assigned to valves are connected with turbine wheels of turbocharger devices, respectively
US7571608B2 (en) * 2005-11-28 2009-08-11 General Electric Company Turbocharged engine system and method of operation
DE102005061649A1 (en) 2005-12-22 2007-06-28 Volkswagen Ag Internal combustion engine with register charging
DE102006004725A1 (en) * 2006-02-02 2007-08-09 Bayerische Motoren Werke Ag Exhaust manifold for series-six cylinder-diesel internal combustion engine, has pipes provided for each cylinder, where exhaust gas mass flow from three cylinders is separated from gas flow from other cylinders by flow guiding ribs
DE102006011188B4 (en) 2006-03-10 2018-03-08 Bayerische Motoren Werke Aktiengesellschaft Two-stage turbocharger for an internal combustion engine
DE102007024527A1 (en) 2007-05-24 2008-09-25 Voith Patent Gmbh Turbocharger device for internal-combustion engine, has two turbochargers, in which every turbocharger has turbine and compressor, where every turbine is assigned with by-pass lines and compressors are connected parallel to each other
DE102007039217A1 (en) 2007-08-20 2009-02-26 Volkswagen Ag Internal combustion engine, particularly for motor vehicle, has actuators that are formed as pneumatic actuators with diaphragm, which separates two chambers from each other
DE102008030569A1 (en) * 2008-06-27 2009-12-31 Bayerische Motoren Werke Aktiengesellschaft Two-stage exhaust-gas turbocharger for internal combustion engine of vehicle, has low-pressure compressor with bypass line connected to high-pressure compressors in gas conducting manner, and low-pressure turbine with another bypass line
DE102008048035A1 (en) 2008-09-19 2010-03-25 Man Nutzfahrzeuge Ag Internal combustion engine with exhaust gas recirculation
DE102009030482A1 (en) 2009-06-24 2011-03-24 Benteler Automobiltechnik Gmbh exhaust assembly
DE102010010480A1 (en) * 2010-03-06 2011-09-08 Volkswagen Ag Internal combustion engine with two-stage supercharging
DE102010037186B4 (en) 2010-06-21 2022-07-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine with two rows of cylinders
DE102010043027B4 (en) 2010-10-27 2019-08-14 Mtu Friedrichshafen Gmbh Internal combustion engine
EP2466092A1 (en) * 2010-12-17 2012-06-20 Perkins Engines Company Limited Turbocharger System
DE102011079036B4 (en) 2011-07-12 2018-12-20 Mtu Friedrichshafen Gmbh Internal combustion engine system, watercraft and method for operating a marine supply network with an internal combustion engine
DE102011115296A1 (en) 2011-09-29 2013-04-04 Mtu Friedrichshafen Gmbh Two-stage charging device
DE102012016167A1 (en) 2012-08-14 2014-02-20 Daimler Ag Internal combustion engine for motor vehicle e.g. passenger car, has flow segments that are arranged for guiding exhaust gas to turbine wheel, and another turbine wheel to supply exhaust gas to flow segments through bypass line
DE102015203554A1 (en) * 2015-02-27 2016-09-01 Volkswagen Aktiengesellschaft Arrangement for an internal combustion engine with a plurality of cylinders, exhaust gas turbocharger with exhaust gas pressure transducer, mixing tube and wastegate and method for operating and for designing such an arrangement
US9903268B2 (en) 2015-04-02 2018-02-27 Ford Global Technologies, Llc Internal combustion engine with two-stage supercharging capability and with exhaust-gas aftertreatment arrangement, and method for operating an internal combustion engine
DE102015207545A1 (en) * 2015-04-24 2016-10-27 Ford Global Technologies, Llc Two-stage rechargeable internal combustion engine with exhaust aftertreatment and method for operating such an internal combustion engine
US10107180B2 (en) 2015-04-24 2018-10-23 Ford Global Technologies, Llc Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
DE102016200327A1 (en) * 2016-01-14 2017-07-20 Bayerische Motoren Werke Aktiengesellschaft Exhaust Turbo Charger for an Internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941104A (en) * 1974-07-01 1976-03-02 The Garrett Corporation Multiple turbocharger apparatus and system
DE2544471C3 (en) * 1975-10-04 1979-03-22 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln Internal combustion engine that forms a working space with two or more exhaust gas turbochargers connected in series
FR2478736A1 (en) * 1980-03-21 1981-09-25 Semt METHOD AND SYSTEM FOR POWER GENERATION BY SUPERIOR INTERNAL COMBUSTION ENGINE
US4674284A (en) * 1980-09-29 1987-06-23 Ab Volvo Turbocharging device for an internal combustion engine
JP2945024B2 (en) * 1989-03-09 1999-09-06 マツダ株式会社 Fuel control system for turbocharged engine
SE467634B (en) * 1990-05-15 1992-08-17 Volvo Ab TOUR REGULATION DEVICE
JPH0450433A (en) * 1990-06-20 1992-02-19 Toyota Motor Corp Exhaust gas recirculating device of serial two-step supercharge internal combustion engine
DE4446730C2 (en) * 1994-12-24 1998-03-19 Man Nutzfahrzeuge Ag Exhaust gas recirculation for an internal combustion engine with supercharging
SE511035C2 (en) * 1996-04-25 1999-07-26 Volvo Ab Supercharged internal combustion engine
DE19618160C2 (en) * 1996-05-07 1999-10-21 Daimler Chrysler Ag Exhaust gas turbocharger for an internal combustion engine

Also Published As

Publication number Publication date
DE69904928D1 (en) 2003-02-20
BR9909747A (en) 2000-12-19
DE19837978A1 (en) 1999-11-04
DE19837978B4 (en) 2006-05-18
DE69904928T2 (en) 2003-10-30
DE69904928T3 (en) 2012-07-12
KR100815590B1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
KR20010042710A (en) Turbocharged internal combustion engine
EP1071870B1 (en) Turbocharged internal combustion engine
US10107180B2 (en) Two-stage supercharging internal combustion engine having an exhaust-gas aftertreatment arrangement, and method for operating a two-stage supercharged internal combustion engine
US7426830B2 (en) Supercharged internal combustion engine
US8671682B2 (en) Multi-stage turbocharging system utilizing VTG turbine stage(s)
US6973787B2 (en) Motor brake device for a turbocharged internal combustion engine
US8522547B2 (en) Exhaust gas turbocharger for an internal combustion engine of a motor vehicle
JP2004092646A (en) Supercharging device for internal-combustion engine
CN102042076B (en) Turbocharger and air induction system incorporating the same and method of using the same
JP2004100694A (en) Supercharger for internal-combustion engine and internal-combustion engine provided with such supercharger
KR20110123286A (en) Internal combustion engine having sequential supercharging
EP1625292B1 (en) Turbo compressor system for internal combustion engine comprising two serially placed turbo units with their rotation axes essentially concentric
US20120240572A1 (en) Internal combustion engine equipped with wastegate turbines, and method for operating an internal combustion engine of said type
US20190178173A1 (en) Device and method for controlling the combined injection of air and exhaust gasses at the intake of a supercharged internal-combustion engine
EP1159524B1 (en) Internal combustion engine with exhaust recirculation
JP2002508049A (en) Turbocharger and how to equip it
GB2393759A (en) I.c. engine air intake cooling system with flow-restricted cooler bypass
US20070267002A1 (en) Internal Combustion Engine with Exhaust Gas Recirculation Device, and Associated Method
US10570822B2 (en) Exhaust manifold system for turbocharger device with plural volute members
WO2011152828A1 (en) Turbocharger bypass system
AU2020216212B2 (en) Turbocharging system
AU2019426487B2 (en) Supercharging system
AU2019383763B2 (en) Supercharging system
JPH1030446A (en) Supercharger for engine
JPS61164041A (en) Internal-combustion engine with turbo charger

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060719

Effective date: 20070628

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181227

Year of fee payment: 12

EXPY Expiration of term