KR20010039398A - Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers - Google Patents

Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers Download PDF

Info

Publication number
KR20010039398A
KR20010039398A KR1019990047767A KR19990047767A KR20010039398A KR 20010039398 A KR20010039398 A KR 20010039398A KR 1019990047767 A KR1019990047767 A KR 1019990047767A KR 19990047767 A KR19990047767 A KR 19990047767A KR 20010039398 A KR20010039398 A KR 20010039398A
Authority
KR
South Korea
Prior art keywords
polyamide
pva
membrane
solution
active layer
Prior art date
Application number
KR1019990047767A
Other languages
Korean (ko)
Other versions
KR100371901B1 (en
Inventor
이규호
제갈종건
오남운
박덕순
Original Assignee
김충섭
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구원 filed Critical 김충섭
Priority to KR10-1999-0047767A priority Critical patent/KR100371901B1/en
Publication of KR20010039398A publication Critical patent/KR20010039398A/en
Application granted granted Critical
Publication of KR100371901B1 publication Critical patent/KR100371901B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A polyamide nano separation membrane obtained by adding a polyvinyl alcohol layer as a protecting layer to a polyamide active layer having low chemical stability such as chlorine resistance is provided, which has excellent chemical stability in wide ranges of pH as well as high water permeability. CONSTITUTION: The nano separation membrane is characterized in that it comprises a cross linked polyvinyl alcohol as a protecting layer on a polyamide composite comprising a porous supporting body and a polyamide active layer, wherein the cross linked polyvinyl alcohol has a thickness of 0.01 to 0.1 micrometer. The membrane is prepared by adding a mixture solution of one or two or more ionomers selected from the group consisting of sodium alginate, chitosan and sulfonated polystyrene with polyvinyl alcohols to a polyamide active layer.

Description

PVA 보호막을 포함하는 폴리아미드 나노분리막{Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers}Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers

본 발명은 폴리아미드를 활성층으로 사용한 복합막 구조에서 폴리아미드 활성층상에 폴리비닐알코올 층을 부가하여 우수한 화학적 안정성을 갖는 신규 복합막 구조의 나노분리막를 제조하는 것에 관한 것이다.The present invention relates to the production of a nanocomposite membrane having a novel composite membrane structure having excellent chemical stability by adding a polyvinyl alcohol layer on a polyamide active layer in a composite membrane structure using polyamide as an active layer.

나노분리막은 한외여과막과 역삼투막의 중간성질을 지니고 있는 분리막으로서 1 가 이온들을 쉽게 통과시키고 다가 이온을 효과적으로 걸러내는 성질을 지니고 있다. 특히, 이들 분리막은 저분자 유기물 제거에 매우 효과적이다. 이러한 특성을 지닌 나노분리막은 넓은 활용도를 지니고 있다. 그 대표적인 예로서, 치즈 유장(Cheese Whey)의 제조, 해산물 가공, 물에서 미네랄의 제거, 오염된 지하수의 정수, 초순수 제조, 세척수에 포함된 중금속의 제거, 효모 제조공정, 섬유산업, 무전해 도금 산업, 저분자 유기물 제조 등을 들 수 있다.Nano-membrane is a membrane having an intermediate property between ultrafiltration membrane and reverse osmosis membrane, and has a property of easily passing monovalent ions and effectively filtering multivalent ions. In particular, these separators are very effective for removing low molecular weight organic matter. Nano-membrane having such characteristics has a wide range of applications. Typical examples include the manufacture of cheese whey, seafood processing, removal of minerals from water, purification of contaminated groundwater, ultrapure water, removal of heavy metals in wash water, yeast manufacturing process, textile industry, electroless plating Industry, the manufacture of low molecular weight organic substance, etc. are mentioned.

나노분리막은 현재 미국과 일본, 이스라엘에서 주로 제조·판매되고 있으며, 대표적인 제품에는 다음과 같은 것들이 있다: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kriyat Weizmann), CTA-LP; TFCS (Fluid Systems), BQ01; MX07; HG01; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES10 (Hoechst), WFN0505 (Stork Frosland).Nano-membrane membranes are currently manufactured and sold mainly in the US, Japan, and Israel, and representative products include the following: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kriyat Weizmann), CTA-LP; Fluid Systems (TFCS), BQ01; MX07; HG01; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES10 (Hoechst), WFN0505 (Stork Frosland).

이들은 대부분 다공성 지지체 표면에 박막의 활성층을 코팅하여 제조된 복합막들이다. 복합막 구조는 높은 투과도와 높은 배제율을 지니기에 가장 적합한 분리막 구조로 인식되고 있는 것이 일반적이다. 이들 분리막들은 주로 피페라진(Piperazine), 이소프탈로일 클로리드(Isophthaloyl chloride), 테트라프탈로일 클로리드(tetraphthaloyl chloride), 트리메조일 클로리드(trimesoyl chloride) 등을 단량체로 사용하여 계면중합법으로 박막의 활성층을 다공성 지지체 표면에 코팅하여 제조된 것들이다.These are mostly composite membranes prepared by coating an active layer of a thin film on the surface of a porous support. The composite membrane structure is generally recognized as the most suitable membrane structure having high permeability and high rejection rate. These membranes are mainly surface-polymerized using piperazine, isophthaloyl chloride, tetraphthaloyl chloride, and trimesoyl chloride as monomers. These are prepared by coating the active layer of the thin film on the surface of the porous support.

복합막 구조의 나노분리막의 화학적 안정성은 활성층 자체의 화학적 안정성에 크게 영향을 받는다. 활성층은 복합막에 있어서, 분리성능을 결정하는 중요한 부분으로서, 분리막의 가장 바깥부분에 위치하고 있기 때문에, 분리대상물질과 직접적인 접촉을 하고 있다. 따라서, 분리대상물질의 화학적 성질은 활성층에 직접적인 영향을 주게되고 분리대상물질이 강산이나 강염기와 같은 물질인 경우에는 활성층이 심하게 손상을 입을 수 있다. 활성층이 일단 손상을 받게되면, 그 분리막이 더 이상 제 성능을 발휘할 수 없게 된다. 이렇게 볼 때, 활성층 자체의 화학적 안정성은 화학적으로 안정한 나노분리막이 갖추어야 할 가장 중요한 성질이다.The chemical stability of the nano separator of the composite membrane structure is greatly affected by the chemical stability of the active layer itself. The active layer is an important part of determining the separation performance in the composite membrane, and is located in the outermost part of the separation membrane, so that the active layer is in direct contact with the material to be separated. Therefore, the chemical properties of the substance to be separated directly affect the active layer, and when the substance to be separated is a substance such as a strong acid or a strong base, the active layer may be severely damaged. Once the active layer is damaged, the separator can no longer perform well. In view of this, the chemical stability of the active layer itself is the most important property that the chemically stable nano-membrane should have.

현재 판매되고 있는 많은 제품들 중에서 가장 대표적인 것이 카돗테사(Cadotte)가 제조한 NS300이며, 이막은 피페라진(Piperazine)과 트리메조일 클로리드(Trimesoyl chloride)를 단량체로 사용하여 폴리설폰(Polysulfone) 지지체 표면에 계면중합으로 가교된 폴리아미드 망상 조직(Polyamide network)을 형성하여 제조된 것이다.Among the many products currently on sale, the most representative is the NS300 manufactured by Cadottte, and the membrane is a polysulfone support using piperazine and trimesoyl chloride as monomers. It was prepared by forming a polyamide network crosslinked by interfacial polymerization on the surface.

가교된 폴리아미드 층으로 형성된 나노분리막은 일반적으로 높은 투수율과 높은 저분자 유기물 제거능력을 지니고 있는 반면에, 상대적으로 낮은 내염소성과 화학적 안정성을 지니고 있다. 특히, 이들 분리막은 역삼투용 폴리아미드 분리막에 비해서 느슨한 가교구조를 지니고 있어서, 역삼투막 보다도 낮은 내염소성과 화학적 안정성을 나타내고 있다. 이들이 화학적으로 불안정한 이유는 이들의 코팅층인 폴리아미드의 아미드 결합 때문이고, 아미드 결합이 강산 강염기하에서 쉽게 가수분해된다는 것은 이미 잘 알려진 사실이다. 따라서, 폴리아미드로 제조된 나노분리막의 화학적 안정성을 보강하는 것이 시급한 문제이다.Nano-membranes formed of cross-linked polyamide layers generally have high permeability and high molecular weight removal ability, while having relatively low chlorine resistance and chemical stability. In particular, these membranes have a looser crosslinked structure than the polyamide membranes for reverse osmosis, and thus exhibit lower chlorine resistance and chemical stability than reverse osmosis membranes. It is well known that they are chemically unstable because of the amide bonds of their coating layers, polyamide, and the amide bonds are easily hydrolyzed under strong acid strong bases. Therefore, it is an urgent problem to reinforce the chemical stability of the nano separator made of polyamide.

따라서, 본 발명은 상기 종래 기술의 문제점을 일거에 해결하는 것을 목적으로 하고 있다.Therefore, an object of the present invention is to solve the problems of the prior art at once.

즉, 우수한 투수성과 이물질 제거율에도 불구하고 내염소성과 화학적 안정성이 현저히 떨어지는 폴리아미드의 물성적 한계를 해결하기 위하여 상보적인 보호층을 활성층 상에 부가하여 제조된 복합막 구조의 제조를 목적으로 하고 있다.In other words, the present invention aims to produce a composite membrane structure prepared by adding a complementary protective layer on the active layer in order to solve the physical limitation of the polyamide, which has a low chlorine resistance and chemical stability, despite excellent water permeability and foreign matter removal rate. .

따라서, 본 발명은 이러한 복합막 구조를 기초로 하여 높은 산도 뿐만 아니라 낮은 산도와 같이 화학적으로 극히 열악한 조건에서도 안정한 나노분리막의 제조를 목적으로 한다.Accordingly, the present invention aims to produce nanoseparation membranes that are stable even in extremely poor conditions such as high acidity as well as low acidity based on the composite membrane structure.

본 발명은 화학적으로 안정한 폴리아미드 나노분리막을 제조하기 위하여, 다공성 지지체 상의 폴리아미드 활성층에 보호층으로서 화학적으로 안정한 물질인 PVA(Polyvinyl alcohol)를 부가한다.The present invention adds a chemically stable material PVA (Polyvinyl alcohol) as a protective layer to the polyamide active layer on the porous support to produce a chemically stable polyamide nano separator.

PVA는 화학적으로 안정한 나노분리막의 활성층 물질로 사용될 수 있는 세가지 요건, 즉, 우수한 화학적 안정성, 우수한 기계적 강도와 박막형성의 용이성, 및 가교결합과 가교도 조절의 용이성 등을 만족시킨다.PVA satisfies three requirements that can be used as active layer materials of chemically stable nano-membrane: excellent chemical stability, good mechanical strength and ease of thin film formation, and easy control of crosslinking and crosslinking degree.

PVA는 주사실이 화학적으로 가장 안정한 구조중의 하나인 -C-C- 공유결합으로 형성되어 있고, 측쇄(Side group)로 -OH 기를 달고 있는 수용성 고분자이다. PVA는 화학적으로 안정한 주사슬 구조로 형성되어 있으므로, 분리대상물질에 의해서 화학적으로 영향을 받을 가능성이 거의 없는 매우 안정한 물질이다.PVA is a water-soluble polymer in which the scanning chamber is formed of -C-C- covalent bond, which is one of the chemically stable structures, and has -OH group as a side group. Since PVA is formed in a chemically stable main chain structure, PVA is a very stable substance with little possibility of being affected chemically by the substance to be separated.

PVA는 수용성이어서 유기고분자 지지체에 디핑(Dipping)이나 케스팅(Casting) 방법에 의한 필름형성이 용이하고, 형성된 필름의 기계적 강도가 우수하여 분리막 운전 중 손상을 입을 가능성이 적다.Since PVA is water soluble, it is easy to form a film by dipping or casting to an organic polymer support, and the mechanical strength of the formed film is excellent, so it is less likely to be damaged during operation of the membrane.

또한, PVA는 -OH 기를 주사슬에 달고 있으므로 알데히드 화합물을 이용한 가교결합이 용이하다. 일반적으로 산 촉매하에서 -OH 기와 알데히드 기의 반응속도는 매우 빠르며, 이러한 빠른 반응속도로 인하여 PVA 활성층의 가교도 조절이 용이하고 원하는 가교도를 단시간내에 만들 수 있다. 이러한 특성을 지닌 PVA를 본 발명에서는 폴리아미드 활성층의 보호막 형성을 위하여 사용한다. 이와 같은 구조의 나노분리막은 높은 투수성 및 이물질 제거율을 나타낼 뿐만 아니라 pH 1 - pH 13 범위에서 매우 안정하다.In addition, since PVA has a -OH group on the main chain, it is easy to crosslink using an aldehyde compound. In general, the reaction rate of the -OH group and the aldehyde group under an acid catalyst is very fast. Due to this rapid reaction rate, the degree of crosslinking of the PVA active layer can be easily controlled and the desired degree of crosslinking can be made within a short time. PVA having such characteristics is used in the present invention for forming a protective film of the polyamide active layer. Nano-membrane membrane having such a structure not only shows high permeability and foreign matter removal rate, but also is very stable in the range of pH 1-pH 13.

본 발명은 또한 폴리아미드 복합체 상에 보호층으로서 PVA 층을 갖는 나노분리막의 제조방법에 관한 것이다.The present invention also relates to a method for producing a nano separator having a PVA layer as a protective layer on a polyamide composite.

폴리아미드 복합체 상에 PVA 층을 보호층으로 갖는 나노분리막의 제조방법의 하나의 예를 들면, 우선 다공성 지지체에 활성층을 코팅하여 폴리아미드 복합막을 제조하고 복합막의 투과도의 감소를 최소화하면서 화학적 안정성을 최대화할 수 있을 정도의 두께를 지닌 PVA 층을 폴리아미드 활성층 표면에 코팅한다. 적합한 PVA 층의 두께는 0.01 - 0.1㎛ 정도이다. PVA 층의 두께가 0.01㎛ 보다 작으면 폴리아미드 활성층을 보호하는 기능이 떨어지고, 0.1㎛ 보다 크면 투수성이 떨어지게 된다.As an example of a method for producing a nano-separation membrane having a PVA layer as a protective layer on a polyamide composite, for example, an active layer is coated on a porous support to prepare a polyamide composite membrane and maximize chemical stability while minimizing a decrease in the permeability of the composite membrane. A PVA layer with a thickness of as much as possible is coated on the surface of the polyamide active layer. Suitable thicknesses of the PVA layer are on the order of 0.01-0.1 μm. If the thickness of the PVA layer is smaller than 0.01 mu m, the function of protecting the polyamide active layer is inferior, while if the thickness of the PVA layer is larger than 0.1 mu m, the water permeability is poor.

경우에 따라서는, 상기 PVA 이외에 이오노머(ionomer)를 혼합한 PVA/이오노머 혼합용액을 폴리아미드 활성층상에 부가하여 사용할 수도 있다. 상기 이오노머로는 알긴산 나트륨(Sodium alginate), 키토산(Chitosan) 및 설포네이티드 폴리스티렌(Sulfonated polystyrene)으로 구성된 군에서 선택된 1 또는 2 이상의 물질이 사용될 수 있고, 그 중 알긴산 나트륨이 특히 바람직하다. PVA/이오노머 혼합비는 부피 기준으로 99/1 내지 90/10 으로 하는 것이 바람직하다. 혼합비가 99/1 보다 크면 이온의 효과를 나타내기 힘들고, 90/10 보다 작으면 가교반응에 문제점이 있을 수 있다.In some cases, a PVA / ionomer mixed solution in which an ionomer is mixed in addition to the above PVA may be added to the polyamide active layer. As the ionomer, one or two or more substances selected from the group consisting of sodium alginate, chitosan, and sulfonated polystyrene may be used, and sodium alginate is particularly preferable. The PVA / ionomer mixing ratio is preferably 99/1 to 90/10 on a volume basis. If the mixing ratio is greater than 99/1, it is difficult to show the effect of ions, and if it is less than 90/10, there may be a problem in the crosslinking reaction.

코팅에 사용되는 PVA 용액 또는 PVA/이오노머 혼합용액의 농도는 0.01 내지 1.0 중량%인 것이 바람직하다. 상기 PVA 용액 또는 PVA/이오노머 혼합용액은 용매로서 물과 약산성 수용액으로 이루어진 군에서 선택된 1 또는 2 이상의 물질을 사용할 수 있다.The concentration of the PVA solution or PVA / ionomer mixed solution used for coating is preferably 0.01 to 1.0% by weight. The PVA solution or the PVA / ionomer mixed solution may use one or two or more substances selected from the group consisting of water and a weakly acidic aqueous solution as a solvent.

경우에 따라서는, PVA 용액층과 PVA/이오노머 용액층이 더 우수한 기계적 물성을 갖게 하기 위하여 이를 가교를 시키는 것이 필요하다. 예를 들어, HCl과 같은 산성 촉매하에서 글루타르 알데히드(Glutaraldehyde)나 포름알데히드, 또는 이들의 혼합 알데히드를 부가하여 1초 내지 10분간 처리하여 가교화시킨다. 경우에 따라서는, 과중한 가교화 반응을 방지하기 위하여 이소프로판올(Isopropanol: IPA), 에탄올(Ethanol: EtOH), 메탄올(Methanol: MeOH), 아세톤(Acetone) 등을 혼합할 수도 있다. 알데히드 화합물과 유기용매의 혼합용액(예를 들어, Acetone /Glutaraldehyde 혼합용액)의 혼합비는 99/1 내지 60/40으로 하는 것이 바람직하다. 용매로는 이소프로판올, 에탄올, 메탄올, 아세톤 등으로 이루어진 군에서 선택된 1 또는 2 이상의 물질을 사용한다.In some cases, it is necessary to crosslink the PVA solution layer and the PVA / ionomer solution layer in order to have better mechanical properties. For example, glutaraldehyde, formaldehyde, or a mixed aldehyde thereof is added under an acidic catalyst such as HCl, and crosslinked by treatment for 1 second to 10 minutes. In some cases, in order to prevent an excessive crosslinking reaction, isopropanol (IPA), ethanol (Ethanol: EtOH), methanol (Methanol: MeOH), acetone, or the like may be mixed. It is preferable that the mixing ratio of the mixed solution of the aldehyde compound and the organic solvent (for example, the mixed solution of Acetone / Glutaraldehyde) is 99/1 to 60/40. As the solvent, one or more substances selected from the group consisting of isopropanol, ethanol, methanol, acetone, and the like are used.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하지만, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by an Example.

하기 실시예에서 제조된 복합막들을 다음과 같은 투과실험조건에서 모두 테스트하였다.The composite membranes prepared in the following examples were all tested under the following transmission test conditions.

투과실험조건Permeation test condition

제조된 복합막들의 투과성능을 알아보기 위해서 일반적인 역삼투 투과 테스트 장치를 이용하여 투과실험을 행하였다. 사용된 공급(Feed) 용액은 1000 ppm 농도의 PEG 600 수용액이고, 사용된 압력은 200 psi 이다. 투수량을 측정하기 위해서 일정 시간동안 투과된 물질(Permeate)를 모아 무게를 재고, ㎥/㎡ day 단위로 나타내었다. 제거율(Rejection percentage)은 아래 식을 이용해서 계산하였으며, 공급용액 및 투과액의 농도는 HPLC를 이용하여 측정하였다.In order to determine the permeation performance of the prepared composite membranes, a permeation experiment was conducted using a general reverse osmosis permeation test apparatus. The feed solution used was a 1000 ppm aqueous PEG 600 solution and the pressure used was 200 psi. In order to measure the amount of permeate, permeate was collected for a certain time, and the weight was measured and expressed in units of ㎥ / ㎡ day. Rejection percentage was calculated using the following equation, and the concentrations of feed solution and permeate were measured using HPLC.

제거율(%) = [(Cf-Cp)/Cf] x 100% Clearance = [(C f -C p ) / C f ] x 100

위 식에서 Cf는 공급액의 농도, Cp는 투과액의 농도를 나타낸다.In the above formula, C f represents the concentration of feed liquid and C p represents the concentration of permeate.

또한, 제조된 복합막들의 화학적 안정성을 알아보기 위해서 이들 복합막을 pH 1 - pH 13 범위내에서의 안정성을 조사하였으며, 자세한 내용은 실시예에 나타나있다.In addition, in order to examine the chemical stability of the prepared composite membranes, these composite membranes were examined for stability in the range of pH 1 to pH 13, and the details are shown in the Examples.

[실시예]EXAMPLE

실시예 1 (복합막 I)Example 1 (composite membrane I)

분획 분자량 30,000을 지닌 폴리설폰 한외여과막(이하, 지지체라 함)을 1% 피페라진 수용액에 1분간 담구어 두었다. 이때 사용된 피페라진 수용액에는 1%의 트리에틸아민(Triethylamine)을 함께 섞었다. 피페라진 수용액으로부터 지지체를 꺼낸 다음 표면에 남아 있는 여분의 용액을 제거한 후 지지체에 코팅된 아민을 계면중합시키기 위해서 0.5 중량%의 트리메조일 클로리드(Trimesoyl chloride)가 녹아있는 헥산 용액에 약 10초간 담구어 두었다. 이렇게 하여 폴리설폰 한외여과막을 지지체로 한 폴리아미드(PA) 복합막을 제조하였다.A polysulfone ultrafiltration membrane (hereinafter referred to as a support) having a fractional molecular weight of 30,000 was immersed in an aqueous 1% piperazine solution for 1 minute. The piperazine aqueous solution used at this time was mixed with 1% triethylamine (Triethylamine). Remove the support from the piperazine aqueous solution, remove the excess solution remaining on the surface, and then use it for about 10 seconds in a hexane solution containing 0.5% by weight of trimesoyl chloride to interfacially polymerize the amine coated on the support. Soaked. In this way, a polyamide (PA) composite membrane having a polysulfone ultrafiltration membrane as a support was prepared.

제조된 폴리아미드 복합막의 표면에 다시 PVA 활성층을 형성하기 위해서, 제조된 폴리아미드 복합막을 미리 준비된 0.3 중량% PVA/Sodium alginate(SA) (95/5, 부피%) 용액에 1분간 담근 후 꺼내어 수직으로 매달아 공기 중 상온에서 건조하였다. 형성된 PVA 활성층을 가교시키기 위해서, 건조된 복합막을 가교용액인 이소프로판올/글루타알데히드 (90/10; 부피비) 혼합용액에 담그고 1분간 상온에서 침지하였다. 이렇게 제조된 PVA 복합막 I은 투과실험을 위하여 증류수속에 보관하였다. 투과실험 결과를 표 1에 나타내었다.In order to form the PVA active layer again on the surface of the prepared polyamide composite membrane, the prepared polyamide composite membrane was immersed in a 0.3 wt% PVA / Sodium alginate (SA) (95/5, volume%) solution prepared in advance for 1 minute and then taken out. It was hung and dried at room temperature in air. In order to crosslink the formed PVA active layer, the dried composite membrane was immersed in an isopropanol / glutaaldehyde (90/10; volume ratio) mixed solution as a crosslinking solution and immersed at room temperature for 1 minute. The PVA composite membrane I thus prepared was stored in distilled water for permeation experiment. The results of the permeation experiment are shown in Table 1.

실시예 2 (복합막 Ⅱ)Example 2 (Composite Membrane II)

복합막 Ⅱ는 실시예 1의 방법으로 제조되었으며, 이때 사용된 PVA/SA 수용액의 농도는 0.2 중량%이다. 투과시험 결과를 표 1에 나타내었다.Composite Membrane II was prepared by the method of Example 1, wherein the concentration of the PVA / SA aqueous solution used was 0.2% by weight. The permeation test results are shown in Table 1.

실시예 3 (복합막 Ⅲ)Example 3 (Composite Membrane III)

복합막 Ⅲ은 실시예 1의 방법으로 제조되었으며, 이때 사용된 PVA/SA 수용액의 농도는 0.1 중량%이다. 투과실험 결과를 표 1에 나타내었다.Composite membrane III was prepared by the method of Example 1, wherein the concentration of the PVA / SA aqueous solution used was 0.1% by weight. The results of the permeation experiment are shown in Table 1.

실시예 4 : 복합막 ⅣExample 4 Composite Membrane IV

복합막 Ⅳ는 실시예 3의 방법으로 제조되었으며, 이때 사용된 고분자 용액은 0.1 중량%의 PVA 수용액이다. 투과실험 결과를 표 1에 나타내었다.Composite membrane IV was prepared by the method of Example 3, wherein the polymer solution used was 0.1 wt% aqueous PVA solution. The results of the permeation experiment are shown in Table 1.

비교예 1 (복합막 Ⅴ)Comparative Example 1 (Composite Film V)

보호층이 코팅된 상기 복합막 Ⅰ, Ⅱ, Ⅲ의 화학적 안정성을 보호층이 코팅되지 않은 복합막과 비교하기 위하여, 일반적인 폴리아미드 복합막(복합막 Ⅳ)을 제조하였다. 복합막 Ⅳ의 제조조건은 실시예 1과 동일하지만, 이때는 PVA/SA를 코팅하지 않았다. 투과실험 결과를 표 1에 나타내었다.A general polyamide composite membrane (composite membrane IV) was prepared in order to compare the chemical stability of the composite layers I, II, and III coated with the protective layer with the composite membrane without the protective layer. The manufacturing conditions of the composite film IV were the same as in Example 1, but at this time, PVA / SA was not coated. The results of the permeation experiment are shown in Table 1.

실시예 4 (제조된 복합막의 화학적 처리)Example 4 (Chemical Treatment of Prepared Composite Membranes)

이상에서 제조된 복합막 Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ의 화학적 안정성을 확인하기 우하여, HCl, K2CO3, NaOH를 이용하여 pH 1, pH 12, pH 13을 지닌 수용액을 각각 제조하였다. 제조된 각각의 용액에다 제조된 복합막 Ⅰ, Ⅱ, Ⅲ을 모두 담구어 상온에서 17시간 동안 화학적 처리를 행하였다. 이후 이들 복합막들을 모두 꺼내어 과량의 증류수로 헹구고, 일정시간 동안 증류수에 보관함으로써 복합막내에 남아있는 잔류 화합물을 모두 제거한 후 투과실험을 실시하였다. 결과를 표 2에 나타내었다.In order to confirm the chemical stability of the composite membranes I, II, III, IV, and V prepared above, an aqueous solution having pH 1, pH 12, and pH 13 was prepared using HCl, K 2 CO 3 , and NaOH. . The prepared composite membranes I, II, and III were immersed in each of the prepared solutions, and subjected to chemical treatment at room temperature for 17 hours. Thereafter, all of the composite membranes were taken out, rinsed with excess distilled water, and stored in distilled water for a predetermined time to remove all residual compounds remaining in the composite membrane, followed by permeation experiment. The results are shown in Table 2.

표 1 : 복합막 Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ의 투과성능Table 1: Permeability of Composite Membranes I, II, III, IV and V

분리막Separator 처리 전Before treatment 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 분리막 ⅠMembrane Ⅰ 1.061.06 98.998.9 분리막 ⅡMembrane Ⅱ 1.321.32 98.098.0 분리막 ⅢMembrane Ⅲ 2.042.04 98.098.0 분리막 ⅣMembrane Ⅳ 1.681.68 97.597.5 분리막 ⅤSeparator Ⅴ 2.522.52 97.597.5

(운전압력 : 200 psi, Feed 용액 : 1000 ppm PEG 600 수용액)(Operating pressure: 200 psi, Feed solution: 1000 ppm PEG 600 aqueous solution)

표 2 : 화학적 처리 후 복합막 Ⅰ, Ⅱ, Ⅲ, Ⅳ의 투과성능Table 2: Permeability of Composite Membranes I, II, III, and IV after Chemical Treatment

분리막Separator 처리 후 (pH 1에서)After treatment (at pH 1) 처리 후 (pH 12에서)After treatment (at pH 12) 처리 후 (pH 13에서)After treatment (at pH 13) 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 분리막 ⅠMembrane Ⅰ 1.271.27 98.598.5 1.121.12 98.598.5 1.201.20 97.697.6 분리막 ⅡMembrane Ⅱ 1.421.42 98.098.0 1.501.50 98.498.4 1.551.55 97.597.5 분리막 ⅢMembrane Ⅲ 1.901.90 98.098.0 2.012.01 98.598.5 2.102.10 97.097.0 분리막 ⅣMembrane Ⅳ 1.701.70 97.697.6 1.691.69 98.098.0 1.701.70 97.297.2 분리막 ⅤSeparator Ⅴ 2.502.50 97.597.5 2.722.72 94.494.4 4.324.32 00

(운전압력 : 200 psi, Feed 용액 : 1000 ppm PEG 600 수용액)(Operating pressure: 200 psi, Feed solution: 1000 ppm PEG 600 aqueous solution)

실시예 5 : 복합막 Ⅵ, Ⅶ, ⅧExample 5 Composite Membrane VI, VI, VI

실시예 1의 방법으로 복합막을 제조하되 PVA/SA 용액 농도를 0.1 중량%로 하고, 가교용액인 이소프로판올/글루타알데히드 (90/10; 부피비) 혼합용액에의 침지시간을 각각 2분(복합막 Ⅵ), 3분(복합막 Ⅶ) 및 5분(복합막 Ⅷ)으로 변화시켰다. 이렇게 제조된 복합막들의 화학적 안정성을 확인하기 위하여 NaOH 용액(pH 13)을 이용하여 실시예 4에 언급된 방법으로 화학적 처리를 하고 투과실험을 행하였다. 그 결과를 하기 표 3에 나타내었다.A composite membrane was prepared by the method of Example 1, but the concentration of PVA / SA solution was 0.1% by weight, and the immersion time in the isopropanol / glutaaldehyde (90/10; volume ratio) mixed solution, which is a crosslinking solution, was respectively 2 minutes (composite membrane). VI), 3 minutes (composite membrane VII) and 5 minutes (composite membrane VII). In order to confirm the chemical stability of the composite membranes thus prepared, a chemical treatment and a permeation experiment were performed using the NaOH solution (pH 13) by the method described in Example 4. The results are shown in Table 3 below.

표 3 : 복합막 Ⅴ, Ⅵ, Ⅶ의 투과성능Table 3: Permeability of Composite Membranes Ⅴ, Ⅵ, Ⅶ

분리막Separator 처리 전Before treatment 처리 후 (pH 13에서)After treatment (at pH 13) 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 투과도 (㎥/㎡day)Permeability (㎥ / ㎡day) 제거율(%)% Removal 분리막 ⅥSeparation membrane Ⅵ 1.821.82 98.598.5 1.851.85 98.098.0 분리막 ⅦMembrane Ⅶ 1.601.60 98.798.7 1.631.63 98.198.1 분리막 ⅧMembrane Ⅷ 1.241.24 98.798.7 1.251.25 98.598.5

보호층으로서 PVA 층을 갖는 폴리아미드 복합체를 나노분리막으로서 사용하는 경우에 높은 투수성과 이물질 제거율을 나타낼 뿐만 아니라, 예를 들어, 광범위한 pH에서도 사용할 수 있는 등 우수한 화학적 안정성을 갖는다.When a polyamide composite having a PVA layer as a protective layer is used as a nano separation membrane, not only does it exhibit high water permeability and foreign matter removal rate, but also has excellent chemical stability, such as being usable at a wide range of pH, for example.

Claims (8)

다공성 지지체와 폴리아미드 활성층으로 구성된 폴리아미드 복합체 상에 보호층으로서 가교화 폴리비닐알코올 층을 구비한 것을 특징으로 하는 폴리아미드 나노분리막.A polyamide nanoseparation membrane comprising a crosslinked polyvinyl alcohol layer as a protective layer on a polyamide composite composed of a porous support and a polyamide active layer. 제 1항에 있어서, 가교화 폴리비닐알코올 층의 두께가 0.01 - 0.1㎛ 인 것을 특징으로 하는 폴리아미드 나노분리막.The polyamide nano separator of claim 1, wherein the crosslinked polyvinyl alcohol layer has a thickness of 0.01 μm to 0.1 μm. 다공성 지지체와 폴리아미드 활성층으로 구성된 폴리아미드 복합체 상에 폴리비닐알코올(PVA) 용액을 부가하여 제조하는 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.A method for producing a polyamide nanoseparation membrane, comprising adding a polyvinyl alcohol (PVA) solution onto a polyamide composite composed of a porous support and a polyamide active layer. 제 3항에 있어서, 상기 PVA 용액에 알긴산 나트륨(Sodium alginate), 키토산(Chitosan) 및 설포네이티드 폴리스티렌(Sulfonated polystyrene)으로 구성된 군에서 선택된 1 또는 2 이상의 이오노머(ionomer)를 혼합한 혼합용액을 폴리아미드 활성층 상에 부가하는 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.The polyvinyl alcohol solution of claim 3, wherein the PVA solution is mixed with one or two or more ionomers selected from the group consisting of sodium alginate, chitosan, and sulfonated polystyrene. Method for producing a polyamide nano separation membrane, characterized in that added to the amide active layer. 제 4항에 있어서, PVA/이오노머의 혼합비가 부피 기준으로 99/1 내지 90/10 이고, 혼합용액의 농도가 0.01 - 1.0 중량% 인 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.The method of claim 4, wherein the mixing ratio of PVA / ionomer is 99/1 to 90/10 based on the volume, and the concentration of the mixed solution is 0.01 to 1.0% by weight. 제 3항 내지 제 5항 중 어느 하나에 있어서, 코팅된 PVA 보호층에 산성 촉매하에서 글루타르 알데히드(Glutaraldehyde)나 포름알데히드(Formaldehyde) 또는 이들의 혼합 알데히드를 부가하여 1초 내지 10분간 처리하여 가교화시키는 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.The crosslinking according to any one of claims 3 to 5, wherein glutaraldehyde, formaldehyde, or a mixed aldehyde thereof is added to the coated PVA protective layer under an acidic catalyst and treated for 1 second to 10 minutes. Method for producing a polyamide nano separation membrane, characterized in that. 제 6항에 있어서, 상기 알데히드 화합물 용액에 이소프로판올, 에탄올, 메탄올, 아세톤 등 물과 섞이는 유기용매로 구성된 군에서 선택된 1 또는 2 이상의 유기용매를 혼합하는 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.The method of claim 6, wherein the aldehyde compound solution is mixed with one or two or more organic solvents selected from the group consisting of organic solvents mixed with water such as isopropanol, ethanol, methanol, acetone, and the like. 제 7항에 있어서, 상기 알코올과 알데히드 화합물의 혼합용액의 혼합비(알코올/알데히드 화합물: 부피비)가 99/1 내지 60/40인 것을 특징으로 하는 폴리아미드 나노분리막의 제조방법.The method of claim 7, wherein the mixing ratio (alcohol / aldehyde compound: volume ratio) of the mixed solution of the alcohol and the aldehyde compound is 99/1 to 60/40.
KR10-1999-0047767A 1999-10-30 1999-10-30 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers KR100371901B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047767A KR100371901B1 (en) 1999-10-30 1999-10-30 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0047767A KR100371901B1 (en) 1999-10-30 1999-10-30 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers

Publications (2)

Publication Number Publication Date
KR20010039398A true KR20010039398A (en) 2001-05-15
KR100371901B1 KR100371901B1 (en) 2003-02-11

Family

ID=19617857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0047767A KR100371901B1 (en) 1999-10-30 1999-10-30 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers

Country Status (1)

Country Link
KR (1) KR100371901B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359441A (en) * 2020-03-25 2020-07-03 青岛科技大学 Preparation method of chlorine-resistant reverse osmosis membrane filled with alkaline pH-responsive polymer nano container
KR20220000051A (en) * 2020-06-25 2022-01-03 경희대학교 산학협력단 An organic solvent nanofiltration membrane comprising molybdenum disulfide and a manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727102A (en) * 1980-07-28 1982-02-13 Nitto Electric Ind Co Ltd Composite semipermeable membrane and its production
US4769148A (en) * 1987-11-18 1988-09-06 The Dow Chemical Company Novel polyamide reverse osmosis membranes
US5755964A (en) * 1996-02-02 1998-05-26 The Dow Chemical Company Method of treating polyamide membranes to increase flux
KR0170072B1 (en) * 1996-03-11 1999-01-15 박홍기 Method for manufacturing polyamide nano composite membrane
KR19980015665A (en) * 1996-08-23 1998-05-25 한형수 Process for producing polyamide-based nanocomposite membrane
KR100239137B1 (en) * 1997-05-17 2000-01-15 김충섭 Preparation method of nanofilter membrane
JPH10314557A (en) * 1997-05-20 1998-12-02 Nitto Denko Corp Composite reverse osmosis membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111359441A (en) * 2020-03-25 2020-07-03 青岛科技大学 Preparation method of chlorine-resistant reverse osmosis membrane filled with alkaline pH-responsive polymer nano container
CN111359441B (en) * 2020-03-25 2022-02-15 青岛科技大学 Preparation method of chlorine-resistant reverse osmosis membrane filled with alkaline pH-responsive polymer nano container
KR20220000051A (en) * 2020-06-25 2022-01-03 경희대학교 산학협력단 An organic solvent nanofiltration membrane comprising molybdenum disulfide and a manufacturing method thereof

Also Published As

Publication number Publication date
KR100371901B1 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
US6162358A (en) High flux reverse osmosis membrane
US7490725B2 (en) Reverse osmosis membrane and process
EP0316525B1 (en) Polyamide reverse osmosis membranes
US4960517A (en) Treatment of composite polyamide membranes via substitution with amine reactive reagents
US4990252A (en) Stable membranes from sulfonated polyarylethers
EP1806174B1 (en) Process for producing semipermeable composite membrane
FR2487213A1 (en) COMPOSITE SEMI-PERMEABLE MEMBRANE AND PROCESS FOR PREPARING THE SAME
AU610557B2 (en) Stable membranes from sulfonated polyarylethers
EP2857088B1 (en) Method for manufacturing a reverse osmosis membrane
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
EP0112631B1 (en) Composite material, method of making it and its use in osmotic purification of liquids
CN108348869B (en) Composite semipermeable membrane and method for producing same
KR20170035814A (en) Water-treatment membrane and method for manufacturing the same
KR100813908B1 (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
KR100583136B1 (en) Silane-polyamide composite membrane and method thereof
KR100371901B1 (en) Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers
KR100322235B1 (en) Fabrication of high permeable reverse osmosis membranes
KR100239137B1 (en) Preparation method of nanofilter membrane
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR100460011B1 (en) Post Treatment Process of Polyamide Reverse Osmosis Membrane
EP1356856A1 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
KR101283738B1 (en) Asymmetric ultrafiltration and microfiltration membranes containing chitosan molecules and the method for preparation thereof
KR20080018599A (en) Method of manufacturing reverse osmosis composite membrane
JPH11226367A (en) Reverse osmosis composite membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee