KR0170072B1 - Method for manufacturing polyamide nano composite membrane - Google Patents

Method for manufacturing polyamide nano composite membrane Download PDF

Info

Publication number
KR0170072B1
KR0170072B1 KR1019960006279A KR19960006279A KR0170072B1 KR 0170072 B1 KR0170072 B1 KR 0170072B1 KR 1019960006279 A KR1019960006279 A KR 1019960006279A KR 19960006279 A KR19960006279 A KR 19960006279A KR 0170072 B1 KR0170072 B1 KR 0170072B1
Authority
KR
South Korea
Prior art keywords
solution
weight
membrane
polyfunctional
composite membrane
Prior art date
Application number
KR1019960006279A
Other languages
Korean (ko)
Other versions
KR970064697A (en
Inventor
임대우
김순식
김권일
윤영서
Original Assignee
박홍기
주식회사새한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박홍기, 주식회사새한 filed Critical 박홍기
Priority to KR1019960006279A priority Critical patent/KR0170072B1/en
Publication of KR970064697A publication Critical patent/KR970064697A/en
Application granted granted Critical
Publication of KR0170072B1 publication Critical patent/KR0170072B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/56Use of ultrasound

Abstract

본 발명은 액체내 존재하는 여러가지 불순물을 분리해서 효과적으로 음료수나 공업용수에 적합한 물을 얻을 수 있는 나노 복합막(Nano composite membrane)에 관한 것으로 역삼투 복합막과 같은 우수한 염배제율을 필요로하지 않고 역삼투 복합막보다 낮은 압력에서 더 많은 투과수량을 얻고자 하는 분야에서 효과적으로 이용되는 나노 복합막을 얻음을 그 목적으로 하는 것으로, 기술구성은 미세다공 기질 표면에 다관능성아민용액을 도포시키고 표면을 건조시킨 다음, 다관능성 산할로겐 화합물 용액으로 계면중합시켜서 얻은 가교 폴리피페라진 아미드계 나노복합막을 제조함에 있어서, 다관능성 아민혼합용액은 피페라진 0~75중량%, 메타-페닐렌디아민 25~100중량%로 구성되고, 다관능성 산할로겐 화합물 용액의 조성이 트리메조일클로라이드 0.01~1%의 혼합비율을 가지도록 하여 계면 중합시킴을 특징으로 하는 폴리아미드계 나노복합막의 제조방법으로서 본 발명에 의한 나노복합막은 용도에 맞게 염배제율과 투과수량을 조절해서 만들 수 있으므로 기존의 방법보다 더 넓은용도에 맞게 사용할 수 있는 잇점이 있다.The present invention relates to a nano composite membrane which can separate various impurities present in a liquid and effectively obtain water suitable for drinking or industrial water, and does not require an excellent salt rejection ratio such as a reverse osmosis composite membrane. The aim is to obtain a nanocomposite membrane which is effectively used in the field of obtaining more permeate water at a lower pressure than the reverse osmosis composite membrane, and the technical composition is to apply the polyfunctional amine solution to the surface of the microporous substrate and to dry the surface. In the preparation of the crosslinked polypiperazine amide nanocomposite membrane obtained by interfacial polymerization with a polyfunctional acid halide compound solution, the polyfunctional amine mixed solution is 0 to 75% by weight of piperazine and 25 to 100% by weight of meta-phenylenediamine. %, And the composition of the polyfunctional acid halide compound solution is 0.01-1% As a method for producing a polyamide-based nanocomposite membrane characterized in that it has an interfacial polymerization to have a rate, the nanocomposite membrane according to the present invention can be made by adjusting the salt excretion rate and permeate amount according to the use, and thus it is more widely used than the conventional method. There is an advantage to use.

Description

폴리아미드계 나노복합막의 제조방법Manufacturing Method of Polyamide Nanocomposite Membrane

본 발명은 액체내에 존재하는 여러가지 성분을 분리해서 효과적으로 음료수 또는 공업용수에 적합한 물을 얻을 수 있는 나노복합막(NANO COMPOSITE MEMBRANE)에 관한 것으로, 좀 더 자세하게는 미세다공기질표면에 아민 혼합용액을 도포시키고 표면을 건조시킨후 다관능성 산할로겐화합물용액을 계면중합시켜 얻은 가교 폴리피페라진아미드계 나노복합막에 관한 것이다.The present invention relates to a nano composite membrane (NANO COMPOSITE MEMBRANE) that can effectively separate the various components present in the liquid to obtain water suitable for drinking or industrial water, and more particularly, to apply the amine mixed solution to the surface of the microporous substrate. The present invention relates to a crosslinked polypiperazinamide nanocomposite membrane obtained by interfacial polymerization of a polyfunctional acid halogen compound solution after drying the surface.

나노복합막은 역삼투 복합막과 같은 높은 배제율(rejection coefficient)을 필요로 하지 않고, 역삼투 복합막 보다 낮은 압력에서 더 많은 투과수량을 얻고자 하는 분야, 즉 경수의 연수화, 의약품의 정제 및 분리, 식품제조공정등에 효과적이며, 나노 복합막의 주된 분리대상은 용질의 크기가 10Å보다 약간 큰 즉, 나노미터(nm)의 크기를 갖는 2가 이온, 각종 단당류와 저분자량의 유기물인 것이다.Nanocomposite membranes do not require the same high rejection coefficients as reverse osmosis composite membranes, and are intended to achieve higher permeability at lower pressures than reverse osmosis composite membranes, ie softening soft water, purification of pharmaceuticals, and Effective for separation and food manufacturing processes, the main separation targets of nanocomposite membranes are divalent ions having a solute size slightly larger than 10 microns, i.e. nanometers (nm), various monosaccharides and low molecular weight organic matter.

따라서 나노복합막은 그 여과 범위가 역삼투막과 한외여과막의 중간에 해당하는 것으로, 특히 오염도가 낮은 물 또는 우유 등의 낙농산업에서의 특수 가공, 항생물질 분리, 단당류 분리 등에서 탁월한 선택적 분리능력을 보인다. 물론 역삼투막도 이러한 물질을 분리할 수는 있지만 나노미터급의 용질에 대한 선택적 분리능력은 나노막보다 떨어지고 나노막보다는 더 높은 압력에서 작동시켜야 하는 단점이 있다. 역삼투막보다 더 낮은 압력에서 더 많은 양의 물질을 분리할 수 있기 때문에 나노막은 최근 들어 많은 각광을 받고 있는 분야이다.Therefore, the nanocomposite membrane has a filtration range between the reverse osmosis membrane and the ultrafiltration membrane. The nanocomposite membrane shows excellent selective separation ability in the special processing, antibiotic separation, and monosaccharide separation in the dairy industry such as water or milk with low pollution. Of course, reverse osmosis membranes can also separate these materials, but the selective separation ability of the nanometer-grade solutes has the disadvantage that they must be operated at a higher pressure than the nanomembrane. Nanomembrane is a hot spot recently because it can separate more material at lower pressure than reverse osmosis membrane.

1960년대초에 최초의 역삼투막인 비대칭형 셀룰로우즈디아세테이트막이 개발되었고, 이 셀룰로우즈디아세테이트막은 가격이 저렴하다는 장점은 있으나, 미생물에 대해 취약하고 강염기하에서 쉽게 가수분해되며 사용온도와 pH 의 범위가 좁다는 단점이 있었다. 그 후 셀룰로우즈아세테이트막의 단점을 보완하기 위해 폴리아미드계, 폴리우레탄계, 방향족 폴리술폰계, 방향족 폴리아미드계 등을 대상으로 연구가 활발히 진행되었다. 현재 이들 중에서 방향족 폴리술폰을 다공성 지지막으로 하고 폴리아미드를 지지충으로 하는 복합막이 개발되어 상업화가 이루어지고 있다. 즉 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어지고 있으며, 복합막의 제법으로는 박층분산법, 침지코팅법, 기상증착법, 랑뮤어-블로젯(Langmuir-Blodgett)법, 계면중합법 등이 알려져 있으며, 특히 나노막 혹은 역삼투 복합막은 미국특허 제4,277,344호에 의해 공지된 계면중합법이 주로 이용되고 있는데 이와같은 계면중합법에 의한 복합막은 처음에는 다공성 폴리술폰지지체에 폴리에틸렌 아민 수용액과 헥산중의 톨루엔디이소시아네이트를 반응시켜 제조하였으나, (미국의 노우스 스타 리서어치사 제조, 상품명 : NS100) 그 후에 각종 지방족 아민, 방향족 아민을 사용하여 다양한 특성의 계면중합에 의한 복합막이 개발되었다. 그러나 이들 복합막은 배제율과 투과수량면에서 기대에 미치지 못하였으나, 폴리 피페라진아미드 활성층을 갖는 NS300이 나오면서 비로서 계면중합법에 의한 복합막이 완성단계에 이르렀다.In the early 1960s, the first reverse osmosis membrane, an asymmetric cellulose diacetate membrane, was developed. The cellulose diacetate membrane has the advantage of being inexpensive. However, it is vulnerable to microorganisms and easily hydrolyzed under strong bases. The disadvantage was narrow range. Since then, studies have been actively conducted on polyamides, polyurethanes, aromatic polysulfones, aromatic polyamides, and the like to compensate for the disadvantages of the cellulose acetate film. Currently, among these, a composite membrane having an aromatic polysulfone as a porous support membrane and a polyamide support layer has been developed and commercialized. That is, the composite membrane is composed of a support layer for maintaining mechanical strength and an active layer having selective permeability, and the manufacturing method of the composite membrane is thin layer dispersion method, immersion coating method, vapor deposition method, Langmuir-Blodgett method, interface. The polymerization method and the like are known. In particular, the nano-membrane or reverse osmosis composite membrane is mainly used in the interfacial polymerization method known by US Patent No. 4,277,344. Such a composite membrane by the interfacial polymerization method is initially used in a porous polysulfone support. It was prepared by reacting an aqueous solution with toluene diisocyanate in hexane (North Star Research, Inc., trade name: NS100). Then, a composite membrane was developed by interfacial polymerization of various characteristics using various aliphatic amines and aromatic amines. It became. However, these composite membranes did not meet expectations in terms of rejection rate and permeation rate, but the composite membrane by interfacial polymerization reached the completion stage as NS300 with the polypiperazinamide active layer was released.

NS-300의 개발 당시에 폴리피페라진아미드는 2가 이온과 단당류에 대해 95%이상의 높은 배제율을 가지며 염화나트륨에 대해서도 40~96%의 비교적 넓은 범위의 배제율을 가진 막들이 개발되었으며 이같은 특성은 주로 폴리술폰계의 미세다공기질위에 피페라진과 알칼리성 촉매가 섞인 다관능성 아민용액을 함침시키고 그 위에 다관능성 산할로겐화합물을 계면중합시켜서 얻었다. 이런 복합막의 배제율 조정은 산할로겐화합물로써 테레프타로일클로라이드, 이소프타로일클로라이드, 트리메조일클로라이드를 적절한 비율로 혼합해서 이루어진다. 나노 복합막의 제조방법중 미국특허 제4,259,183호에는 피페라진과 촉매로는 N,N'-디메틸피페라진, 수산화나트룸 등을 사용하고 이소프타로일클로라이드와 트리메조일클로라이드를 혼합 사용해 계면중합시키고 산할로겐화합물의 용매로는 n-핵산을 사용하는 방법이 개시되었다. 한편, 미국특허 제4,619,767호에서는 폴리술폰위에 폴리비닐알코올을 먼저 코팅시키고 다시 피페라진 혹은 피페라진 구조를 포함한 디아민과 트리메조일클로라이드/이소프타로일클로라이드의 혼합물을 사용해 계면중합시키고 용매로 n-핵산을 사용하는 방법이 개시되어 있다.At the time of the development of NS-300, polypiperazineamides had a high exclusion rate of more than 95% for divalent ions and monosaccharides and a relatively wide range of exclusion ratios of 40-96% for sodium chloride were developed. It was obtained by impregnating a polyfunctional amine solution in which piperazine and an alkaline catalyst were mixed on a polysulfone microporous substrate and interfacially polymerizing the polyfunctional acid halogen compound thereon. The exclusion rate of the composite membrane is adjusted by mixing terephthaloyl chloride, isophthaloyl chloride, and trimesoyl chloride in an appropriate ratio as an acid halogen compound. US Pat. No. 4,259,183 of the method for preparing nanocomposite membranes uses piperazine and N, N'-dimethylpiperazine, sodium hydroxide as a catalyst, and interfacial polymerization by mixing isophthaloyl chloride and trimesoyl chloride. A method of using n-nucleic acid as a solvent of a halogen compound has been disclosed. On the other hand, U.S. Patent No. 4,619,767 first coats polyvinyl alcohol on polysulfone, and then interfacially polymerizes with a mixture of diamine and trimesoyl chloride / isophthalaroyl chloride containing piperazine or piperazine structure and n-nucleic acid as a solvent. A method of using is disclosed.

본 발명의 목적은 역삼투 복합막과 같은 높은 배제율을 필요로 하지 않고 역삼투 복합막 보다 낮은 압력에서 더 많은 투과수량을 얻고자 하는 분야 즉 오염도가 낮은 물의 분리 항생제 물질의 분리, 단당류 분리 등 용질의 크기가 나노미터급인 것을 분리하는데 적절한 나노복합막의 제조방법을 제공함에 있다.It is an object of the present invention to obtain more permeated water at a lower pressure than reverse osmosis composite membranes without requiring a high rejection rate such as reverse osmosis composite membranes, that is, to separate water of low pollutant antibiotics, to separate monosaccharides, and the like. The present invention provides a method for producing a nanocomposite membrane suitable for separating a solute having a nanometer size.

특히 본 발명에서는 디아민으로서 피페라진과 메타-페닐렌디아민을 혼합사용하고, 유량향상제도 폴리비닐 알코올을 같이 넣어서 트리메조일클로라이드로 계면중합시켜 활성층을 만들면 보다 정확하고 수월하게 배제율과 투과수량을 조절할 수 있다.Particularly, in the present invention, piperazine and meta-phenylenediamine are mixed as diamines, and the flow rate enhancer is also mixed with polyvinyl alcohol to interfacially polymerize with trimezoyl chloride to form an active layer. I can regulate it.

이하 본 발명은 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

미세 다공성 부직포를 아민혼합용액에 침지하여서 얻은 미세당고기질의 표면에 다관능성 아민 용액을 도포시키고 이를 건조시킨 다음 다관능성 산할로겐 화합물 용액을 계면 중합시켜 나노복합막을 제조한다.The nanoporous membrane is prepared by applying a polyfunctional amine solution to the surface of the microsaccharides obtained by dipping a microporous nonwoven fabric in an amine mixture solution, drying the mixture, and then interfacially polymerizing the polyfunctional acid halide compound solution.

미세다공성기질은 통상의 보강 폴리술폰 미세다공성 부직포이고, 다관능성아민용액은 피페라진 0~75중량%와 메타페닐렌디아민 25~100중량%로 구성된다. 아민혼합용액은 다관능성아민용액 이외에 첨가제로서 폴리비닐알코올과 수산화나트륨 또는 N,N'-디메틸피페라진을 포함한다.The microporous substrate is a conventional reinforced polysulfone microporous nonwoven fabric, and the polyfunctional amine solution is composed of 0 to 75% by weight of piperazine and 25 to 100% by weight of metaphenylenediamine. The amine mixed solution contains polyvinyl alcohol and sodium hydroxide or N, N'-dimethylpiperazine as an additive in addition to the polyfunctional amine solution.

폴리비닐알코올은 유량향상제이며, 수산화나트륨, N,N'-디메틸피페라진은 방향족 아민과 피페라진이 반응성에 차이가 있으므로 알카리성 촉매인 수산화나트륨 또는 N,N'-디메틸피페라진을 첨가하여 활성층의 구조를 조절해준다.Polyvinyl alcohol is a flow rate enhancer, and sodium hydroxide, N, N'-dimethylpiperazine is different in the reactivity between aromatic amine and piperazine. So, sodium hydroxide or N, N'-dimethylpiperazine, which is an alkaline catalyst, is added to the active layer. Adjust the structure.

피페라진의 함유량이 75중량%를 초과하면, 염배제물이 급격히 떨어지는 단점이 있고, 메타페닐렌디아민의 함유량이 25중량% 미만이면, 투과 수량이 떨어지는 단점이 있다.If the content of piperazine exceeds 75% by weight, there is a disadvantage in that the salt excretion falls rapidly, and if the content of metaphenylenediamine is less than 25% by weight, there is a disadvantage in that the permeation amount is lowered.

폴리비닐알코올은 분자량(Mw)이 5,000~100,000이고 가수분해정도가 88~99%인 것이 바람직하고, 다관능성아민용액 총량에 대하여 1~10%를 첨가하는 것이 바람직하다. 첨가략이 1% 미만인 경우 강염기하에서 쉽게 가수분해되어 사용온도와 pH의 범위가 좁아지는 단점이 있고, 10%를 초과하면 수투과율을 저하시키는 단점이 있다. 또 다관능성아민용액에 첨가하는 촉매는 다관능성아민용액 총량에 대하여 0.05~5중량% 첨가하는 것이 이상적이다. 또한 초음파를 사용하여 연속공정상의 아민 침지시간을 대폭 줄일 수 있으므로 미세다공성기질을 아민혼합용액에 침지시킬때 초음파를 사용하여 나노복합막의 생산량을 증대시킬수 있다. 또 초음파를 사용하므로서 폴리술폰다공질층에 아민을 함유한 폴리비닐알콜을 보다 더 균일하고 빠르게 침투시킬 수 있는 것이다.The polyvinyl alcohol preferably has a molecular weight (Mw) of 5,000 to 100,000 and a degree of hydrolysis of 88 to 99%, and preferably 1 to 10% based on the total amount of the polyfunctional amine solution. If the addition amount is less than 1%, there is a disadvantage in that the hydrolysis under a strong base is easy to narrow the range of use temperature and pH, and if it exceeds 10%, there is a disadvantage in decreasing the water permeability. Moreover, it is ideal to add 0.05-5 weight% of catalysts to a polyfunctional amine solution with respect to the total amount of a polyfunctional amine solution. In addition, since the amine immersion time in the continuous process can be greatly reduced by using ultrasonic waves, the production of nanocomposite membranes can be increased by using ultrasonic waves when the microporous substrate is immersed in the amine mixture solution. In addition, by using ultrasonic waves, polyvinyl alcohol containing amine can be more uniformly and quickly penetrated into the polysulfone porous layer.

다관능성 산할로겐화합물은 통상의 이소프타로일클로라이드, 트리메조일 클로라이드, 테레프타로일클로라이드 중에서 1종 또는 그 이상을 0.01∼1.0중량%로 혼합하여 사용할 수 있다.The polyfunctional acid halogen compound may be used by mixing one or more of 0.01 to 1.0% by weight in conventional isophthaloyl chloride, trimesoyl chloride and terephthaloyl chloride.

다관능성 산할로겐화합물의 용매로는 탄소수 5~12개의 n-알칸과 탄소수8개의 포화 또는 불포화 탄화수소의 구조 이성질체를 흔합 또는 판독사용하거나 탄소수 5~7개의 고리 탄화수소를 사용한다. 또한, 방향족 아민과 피페라진은 반응성에 차이가 있으므로 알카리성 촉매인 수산화나트륨 또는 N,N-디메틸피페라진을 넣어서 활성층의 구조를 조절해준다.As a solvent of the polyfunctional acid halogen compound, structural isomers of 5 to 12 carbon atoms of n-alkane and 8 saturated or unsaturated hydrocarbons are mixed or used, or 5 to 7 ring hydrocarbons are used. In addition, since the aromatic amine and piperazine have a difference in reactivity, the structure of the active layer is controlled by adding sodium hydroxide or N, N-dimethylpiperazine which is an alkaline catalyst.

이와 같은 방법으로 제조된 복합막의 성능은, 농도가 500ppm인 마그네슘설페이트(MgSO4)와 염화나트륨(NaCl) 수용액을 25℃,50psig에서 염배제율과 투과수량을 측정하여 평가하였다. 염배제율은 다음의 식에 의하여 계산된다.The performance of the composite membrane prepared in this manner was evaluated by measuring the salt excretion rate and the permeate amount of magnesium sulfate (MgSO 4 ) and sodium chloride (NaCl) in a concentration of 500 ppm at 25 ℃, 50 psig. The salt exclusion rate is calculated by the following equation.

염배제율(%) = (1-Cp/CF) × 100Salt Exclusion Rate (%) = (1-Cp / C F ) × 100

여기에서, Cp는 공급수중의 용질의 농도이며, CF는 투과수중의 용질의 농도를 나타낸다.Here, Cp is the concentration of the solute in the feed water, and C F is the concentration of the solute in the permeate.

이하, 실시예에 의거 본 발명을 좀 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail based on examples.

[실시예1~3][Examples 1-3]

폴리에스터 부직포상에 N-메틸-2-피롤리돈과 폴리술폰 25중량%, 폴리피롤리돈 10중량% 용액을 두께가 약 150㎛ 되도록 캐스트하고, 즉시 이것을 5℃ 온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후, 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 다음 표1에 기재된 조성의 아민혼합용액에 폴리비닐알콜 1중량%와 N,N-디메틸피페라진 0.1중량%를 첨가한 용액중에서 초음파로 10초간 침지시킨 후 0.5중량% 트리메조일 클로라이드 n-헥산 용액에 3분간 함침시켰다. 단 아민은 총 3중량%이다. 이렇게 제조된 복합막을 120'c에서 5분간 건조시킨 후 60'c 약알카리 수용액으로 충분히 수세한 후 남아 있는 미반응 아민 및 폴리비닐알코올을 제거하기 위해 24시간동안 에탄을에 담가둔다. 다음 표 1에 물성측정결과를 나타내었다. [표1]A 25% by weight solution of N-methyl-2-pyrrolidone, polysulfone, and 10% by weight polypyrrolidone was cast on a polyester nonwoven fabric to a thickness of about 150 μm, and immediately immersed in a distilled water bath at 5 ° C. to solidify. Subsequently, the nonwoven fabric-reinforced polysulfone microporous substrate was sufficiently washed with water to replace the solvent and water in the substrate, and then stored in pure water. The polysulfone microporous substrate thus obtained was immersed for 10 seconds by ultrasonic wave in a solution in which 1% by weight of polyvinyl alcohol and 0.1% by weight of N, N-dimethylpiperazine were added to an amine mixture solution having the composition shown in Table 1, and then 0.5% by weight. The solution was impregnated for 3 min in% trimezoyl chloride n-hexane solution. The total amine is 3% by weight in total. The composite membrane thus prepared was dried at 120'c for 5 minutes, washed with 60'c weak alkaline aqueous solution, and then immersed in ethane for 24 hours to remove remaining unreacted amine and polyvinyl alcohol. Table 1 shows the measurement results of the physical properties. Table 1

[비교예1-3]Comparative Example 1-3

폴리에스터 부직포상에 N-메틸-2-피를리돈과 폴리술폰 25중량%, 폴리피롤리돈 10중량% 용액을 두께가 약 150 m 되도록 캐스트하고, 즉시 이것을 5'c 온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후, 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 다음 표2에 기재된 조성의 아민혼합용액에 폴리비닐알콜 1중량%와 N,N-디메틸피페라진 0.1중량%를 첨가한 용액중에서 5분간 침지시킨 후 0.5중량% 트리메조일 클로라이드 n-헥산 용액에 3분간 함침시켰다. 단 아민은 총 3중량%이다. 이렇게 제조된복합막을 120℃에서 5분간 건조시킨 후 60℃ 약알카리 수용액으로 충분히 수세한 후 남아 있는 미반응 아민 및 폴리비닐알코올을 제거하기위해 24시간동안 에탄올에 담가둔다. 다음 표 2에 물성측정결과를 나타내었다.On a polyester nonwoven fabric, a 25% by weight solution of N-methyl-2-pyridone, polysulfone and 10% by weight polypyrrolidone was cast to a thickness of about 150 m and immediately immersed in a distilled water bath at 5'c to solidify. After the nonwoven fabric-reinforced polysulfone microporous substrate was washed with water sufficiently to replace the solvent and water in the substrate, it was stored in pure water. The polysulfone microporous substrate thus obtained was immersed for 5 minutes in a solution in which 1% by weight of polyvinyl alcohol and 0.1% by weight of N, N-dimethylpiperazine were added to an amine mixture solution having the composition shown in Table 2, followed by 0.5% by weight of tri The mesoyl chloride n-hexane solution was impregnated for 3 minutes. The total amine is 3% by weight in total. The composite membrane thus prepared was dried at 120 ° C. for 5 minutes, washed with 60 ° C. weak alkaline solution, and then immersed in ethanol for 24 hours to remove remaining unreacted amine and polyvinyl alcohol. Table 2 shows the measurement results of the physical properties.

[실시예 4~8]EXAMPLES 4-8

폴리에스터 부직포상에 디메틸아세트아미드와 폴리술폰 15중량%, 폴리피롤리돈 10중량% 용액을 두께가 약 200㎛ 되도록 캐스트하고, 즉시 이것을 5℃ 온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후, 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 피페라진 2중량%에 폴리비닐알콜 1중량%와 N,N-디메틸피페라진 0.1중량%를 첨가한 용액에서 초음파 존재하에서 (초음파의 조건) 다음의 표 3에 기재된 시간으로 침지시킨 후 0.5중량% 트리메조일클로라이드 n-헥산 용액에 3분간 함침시켰다. 이렇게 제조된 복합막을 100℃에서 5분간 건조시킨 후 60℃ 약알칼리 수용액으로 충분히 수세한 후 남아 있는 미반응 아민 및 폴리비닐알코을을 제거하기위해 24시간동안 에탄올에 담가둔다. 다음 표 3에 물성측정결과를 나타내었다.A 15% by weight solution of dimethylacetamide, polysulfone and 10% by weight of polypyrrolidone was cast on the polyester nonwoven fabric to a thickness of about 200 μm, immediately immersed in a distilled water bath at a temperature of 5 ° C., and solidified. The porous substrate was washed with water sufficiently to replace the solvent and water in the substrate, and then stored in pure water. The polysulfone microporous substrate thus obtained was added to 2% by weight of piperazine and 1% by weight of polyvinyl alcohol and 0.1% by weight of N, N-dimethylpiperazine in the presence of ultrasonic waves (ultrasound conditions) described in Table 3 below. After immersion in time, the solution was impregnated with 0.5 wt% trimezoyl chloride n-hexane solution for 3 minutes. The composite membrane thus prepared was dried at 100 ° C. for 5 minutes, washed with 60 ° C. weak alkaline solution, and then immersed in ethanol for 24 hours to remove remaining unreacted amine and polyvinyl alcohol. Table 3 shows the measurement results of the physical properties.

[비교예 4~8][Comparative Examples 4-8]

폴리에스터 부직포상에 디메틸아세트아미드와 폴리술폰 15중량%, 폴리피롤리돈 10중량% 용액을 두께가 약 200㎛ 되도록 캐스트하고, 즉시 이것을 5℃ 온도의 증류수욕중에 침지하여 고형화시킨 후 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질중의 용매와 물을 치환한 후, 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 피페라진 2중량%에 폴리비닐알콜 1중량%와 N,N-디메틸피페라진 0.1중량%를 첨가한 용액에서 다음의 표 4에 기재된 시간으로 침지시킨후 0.5중량% 트리메조일클로라이드 n-헥산 용액에 3분간 함침시켰다. 이렇게 제조된 복합막을 100℃에서 5분간 건조시킨 후 60℃ 약알칼리 수용액으로 충분히 수세한 후 남아 있는 미반응 아민 및 폴리비닐알코올을 제거하기위해 24시간동안 에탄올에 담가둔다. 다음 표4에 물성측정결과를 나타내었다.A 15% by weight solution of dimethylacetamide, polysulfone and 10% by weight of polypyrrolidone was cast on the polyester nonwoven fabric to a thickness of about 200 μm, immediately immersed in a distilled water bath at a temperature of 5 ° C., and solidified. The porous substrate was washed with water sufficiently to replace the solvent and water in the substrate, and then stored in pure water. The polysulfone microporous substrate thus obtained was immersed in a solution in which 1% by weight of polyvinyl alcohol and 0.1% by weight of N, N-dimethylpiperazine were added to 2% by weight of piperazine, and 0.5% by weight after immersion at the time shown in Table 4 below. The trimezoyl chloride n-hexane solution was impregnated for 3 minutes. The composite membrane thus prepared was dried at 100 ° C. for 5 minutes, washed with 60 ° C. weak alkaline solution, and then immersed in ethanol for 24 hours to remove remaining unreacted amine and polyvinyl alcohol. Table 4 shows the measurement results of the physical properties.

본 발명으로 제조된 나노복합막은 용도에 맞게 염배제율과 수투과량을 조절해서 만들 수 있으므로 기존의 방법보다 더 넓은 범위의 용도에 맞게 사용할 수 있다.Nanocomposite membrane prepared by the present invention can be made by adjusting the salt excretion rate and water permeability according to the use can be used for a wider range of applications than conventional methods.

Claims (2)

미세다공 기질 표면에 다관능성 아민 용액을 도포시키고 표면을 건조 시킨 다음, 다관능성 산할로겐 화합물용액으로 계면 중합시켜서 얻은 가교 폴리아미드계 나노 복합막을 제조함에 있어서 다관능성 아민 용액은 피페라진 0.1~75중량%, 메타페닐렌디아민 25~99중량%로 구성되고 다관능성 산할로겐 화합물의 용액으로는 0.05~1중량%농도의 트리메조일클로라이드 용액으로 하며 유량향상제로 폴리비닐알코올을 다관능성 아민 용액에 0.1~10중량%첨가하고 다공성지지체를 다관능성 아민 용액에 침지시 초음파 공진기에 의한 초음파 존재하에 1∼30초간 침지시켜 폴리비닐알코올과 다관능성 아민이 다공성 지지체에 균일하게 분산되어 다공성 지지체 표면위에 잘 분포되도록 한 후 표면을 건조시켜 다관능성 산할로겐 화합물 용액에 30초에서 2분간 침지시켜 계면 중합반응이 일어나도록 함을 특징으로 하는 고유량 폴리아미드계 나노 복합막의 제조방법.In preparing a crosslinked polyamide-based nanocomposite membrane obtained by applying a polyfunctional amine solution to the surface of a microporous substrate, drying the surface, and then interfacially polymerizing the solution with a polyfunctional acid halogen compound, the polyfunctional amine solution is 0.1 to 75 weight of piperazine. %, 25% to 99% by weight of metaphenylenediamine, and the solution of the polyfunctional acid halogen compound is 0.05 to 1% by weight of the trimezoyl chloride solution, and the polyvinyl alcohol is added to the polyfunctional amine solution as the flow increasing agent. When ˜10 wt% is added and the porous support is immersed in the polyfunctional amine solution, the polyvinyl alcohol and the polyfunctional amine are uniformly dispersed on the porous support and distributed well on the surface of the porous support by immersion for 1 to 30 seconds in the presence of ultrasonic waves by an ultrasonic resonator. After drying, the surface is dried and soaked in the polyfunctional acid halogen compound solution for 30 seconds to 2 minutes. Surface and method of manufacturing the flow polyamide-based nano-composite membrane, characterized in that a polymerization reaction to take place. 제1항에 있어서, 초음파 공진기의 진동수가 10~50kHz인 것을 특징으로 하는 나노 복합막의 제조방법.The method of manufacturing a nanocomposite membrane according to claim 1, wherein the frequency of the ultrasonic resonator is 10 to 50 kHz.
KR1019960006279A 1996-03-11 1996-03-11 Method for manufacturing polyamide nano composite membrane KR0170072B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960006279A KR0170072B1 (en) 1996-03-11 1996-03-11 Method for manufacturing polyamide nano composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960006279A KR0170072B1 (en) 1996-03-11 1996-03-11 Method for manufacturing polyamide nano composite membrane

Publications (2)

Publication Number Publication Date
KR970064697A KR970064697A (en) 1997-10-13
KR0170072B1 true KR0170072B1 (en) 1999-01-15

Family

ID=19452738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960006279A KR0170072B1 (en) 1996-03-11 1996-03-11 Method for manufacturing polyamide nano composite membrane

Country Status (1)

Country Link
KR (1) KR0170072B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457854B1 (en) * 2002-01-04 2004-11-18 김형수 Method for preparation of the nanocomposite having an exfoliated structure by using ultrasonic waves
KR100496982B1 (en) * 2002-02-27 2005-06-23 김형수 Preparation of the nanocomposite by using supercritical fluid and power ultrasonic wave
KR100817450B1 (en) * 2006-03-27 2008-03-27 한국화학연구원 Molecualr imprinted separation membrane for preparing optically pure compounds and method of preparing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371901B1 (en) * 1999-10-30 2003-02-11 한국화학연구원 Polyamide Nanofiltration Composite Membranes Having PVA Protecting Layers
KR100474170B1 (en) * 2000-04-14 2005-03-07 주식회사 새 한 Composite polyamide nano membrane and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457854B1 (en) * 2002-01-04 2004-11-18 김형수 Method for preparation of the nanocomposite having an exfoliated structure by using ultrasonic waves
KR100496982B1 (en) * 2002-02-27 2005-06-23 김형수 Preparation of the nanocomposite by using supercritical fluid and power ultrasonic wave
KR100817450B1 (en) * 2006-03-27 2008-03-27 한국화학연구원 Molecualr imprinted separation membrane for preparing optically pure compounds and method of preparing the same

Also Published As

Publication number Publication date
KR970064697A (en) 1997-10-13

Similar Documents

Publication Publication Date Title
EP1958685B1 (en) Selective membrane having a high fouling resistance
US6833073B2 (en) Composite nanofiltration and reverse osmosis membranes and method for producing the same
US4661254A (en) Chlorine-resistant semipermeable membranes
KR19990019008A (en) Manufacturing method of high flow rate reverse osmosis membrane
FR2487213A1 (en) COMPOSITE SEMI-PERMEABLE MEMBRANE AND PROCESS FOR PREPARING THE SAME
US9089820B2 (en) Selective membrane having a high fouling resistance
KR0170072B1 (en) Method for manufacturing polyamide nano composite membrane
KR20070013651A (en) Preparation method of highly permeable composite polyamide nanofiltration membranes
KR100211338B1 (en) Producing method of the polyamide type crosslinked reverse osmosis separation membrane
JP2000117074A (en) Production of reverse osmosis membrane
KR102129672B1 (en) Reverse osmosis membrane, manufacturing method thereof and membrane module containing the same
JP4563093B2 (en) Method for producing high salt rejection composite reverse osmosis membrane
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
KR102045108B1 (en) Reverse osmosis membrane and method manufacturing same
KR100666483B1 (en) Producing method of polyamide reverse osmosis membrane having high salt rejection property
KR102337164B1 (en) Excellent removing nitrate polyamide reverse osmosis membrane, Method of manufacturing the same and Membrane module comprising the same
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
US4919808A (en) Semipermeable membrane compositions
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR102035271B1 (en) A method for preparing membrane having nano-sized pore with good chemical resistance
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
EP1356856A1 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
KR19980068304A (en) Performance Improvement Method of Polyamide Reverse Osmosis Composite Membrane
KR100460011B1 (en) Post Treatment Process of Polyamide Reverse Osmosis Membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131002

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20151012

Year of fee payment: 18

EXPY Expiration of term