KR20010028403A - A non-oriented silicon steel with low core loss and a method for producing it - Google Patents
A non-oriented silicon steel with low core loss and a method for producing it Download PDFInfo
- Publication number
- KR20010028403A KR20010028403A KR1019990040623A KR19990040623A KR20010028403A KR 20010028403 A KR20010028403 A KR 20010028403A KR 1019990040623 A KR1019990040623 A KR 1019990040623A KR 19990040623 A KR19990040623 A KR 19990040623A KR 20010028403 A KR20010028403 A KR 20010028403A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- oriented electrical
- electrical steel
- temperature
- steel sheet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
본 발명은 모터, 변압기와 같은 전기기기의 철심용으로 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 철손이 낮은 무방향성 전기강판 및 이 같은 강판을 제조하는 방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used for iron cores of electrical equipment such as motors, transformers, and a manufacturing method thereof, and more particularly to a non-oriented electrical steel sheet having a low iron loss and a method for manufacturing such a steel sheet. .
모터와 변압기 등의 전기기기에서 철심으로 사용되는 무방향성 전기강판은 전기적 에너지가 기계적 에너지로 바뀔 때, 에너지손실이 가장 큰 부품이기 때문에, 에너지손실을 줄이기 위해서 철손이 낮은 전기강판을 사용해야 한다. 최근에는 에너지손실뿐 아니라 환경문제도 고려되어 저손실소재의 사용이 선호되는데, 그렇게 되면 그만큼 발전량이 줄어 발전소건설을 억제할 수 있다. 예를 들어, 전기손실을 10줄일 수 있다면, 현재 국내 발전소 200개를 기준으로 20개를 줄여도 된다는 계산이 된다.Non-oriented electrical steel sheets used as iron cores in electric equipment such as motors and transformers are the parts with the largest energy loss when electrical energy is converted into mechanical energy. Therefore, electrical steel sheets with low iron loss should be used to reduce energy loss. In recent years, the use of low-loss materials is preferred in consideration of environmental problems as well as energy loss, which can reduce the amount of power generation, thereby restraining the construction of power plants. For example, if the power loss can be reduced by 10, it is calculated that 20 can be reduced based on 200 domestic power plants.
이와 같은 무방향성 전기강판에서 철손을 낮추는 방법으로는 이력손실을 낮추는 방법과 와류손실을 낮추는 방법이 있다. 와류손실은 무방향성 전기강판의 첨가성분과 강판의 두께를 조정함에 의해 낮출 수 있는데, 비저항을 증가시키는 성분인 Si와 Al함량을 증가시키고, 두께를 얇게 함으로써 가능하다. 그러나 모든 개발강이 이러한 방법을 사용하고 있기 때문에, 관건이 되는 것은 이력손실을 줄이는 것이다. 이력손실은 강판의 재질특성에 관계하는 것으로, 결정립크기와 집합조직 및 청정도 등을 자성에 유리하게 발달시킴으로써 낮출 수 있는데, 전기강판에서 철손을 저감하는 가장 우수한 방법은 결정립의 크기를 크게 성장시키는 것이다.In order to reduce the iron loss in the non-oriented electrical steel sheet, there are a method of reducing hysteresis loss and a method of reducing vortex loss. The eddy current loss can be lowered by adjusting the thickness of the steel sheet and the additive component of the non-oriented electrical steel sheet, by increasing the Si and Al content, which increases the resistivity, and by reducing the thickness. But since all development rivers use this method, the key is to reduce hysteresis losses. The hysteresis loss is related to the material properties of the steel sheet, and can be lowered by advantageously developing the grain size, texture, and cleanliness for magnetism. The best method for reducing iron loss in electrical steel sheet is to greatly increase the grain size. will be.
이를 위하여 일본공개특허 60-17014호는 1차 냉간압연한 소재를 저온에서 소둔한 후, 3~15경압연하는 방법을 제공한다. 그러나, 경압연으로 인해 Si함량이 0.5이하로 낮아서 철손을 충분히 낮출 수 없는 단점이 있다.To this end, Japanese Laid-Open Patent Publication No. 60-17014 provides a method of rolling 3 to 15 light-rolled after annealing the primary cold-rolled material at a low temperature. However, due to light rolling, the Si content is lower than 0.5 so that the iron loss cannot be sufficiently lowered.
또한, U.S 4,293,336에서는 이력손실을 감소시키기 위해 Sn을 첨가하여, 자구의 이동을 원활하게 하고 불순물 제어로 청정강으로 제조하고 있으나, 효과가 적은 문제가 있다.In addition, in U.S. 4,293,336, Sn is added to reduce hysteresis loss, thereby making the movement of magnetic domains smooth and manufacturing it as a clean steel by controlling impurities, but there is a problem of less effect.
이에, 본 발명자들은 통상의 무방향성 전기강판에 Sn, Cr를 첨가하고, 단독 또는 복합으로 Ca,Ce를 첨가하므로써, 철손이 우수한 무방향성 전기강판을 제공하고, 또한 이러한 조성의 무방향성 전기강판으로의 제조공정 중 온도요소를 제어함으로써, 강을 청정하게 하고 철손을 낮출 수 있는 무방향성 전기강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Therefore, the present inventors provide a non-oriented electrical steel sheet having excellent iron loss by adding Sn and Cr to a conventional non-oriented electrical steel sheet, and adding Ca and Ce alone or in combination, and to a non-oriented electrical steel sheet having such a composition. The purpose of the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet that can clean the steel and lower the iron loss by controlling the temperature element during the manufacturing process of.
본 발명은 중량로, C: 0.01이하, Si: 3.5이하, Mn: 0.5이하, P: 0.15이하, S: 0.012이하, Al: 1.2이하, N: 0.006이하, Sn: 0.03~0.3, Cr: 0.05~1.0, Ca또는 Ce이 단독 또는 복합으로 0.001~0.010함유되고, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판에 관한 것이며, 또한 본 발명은 상기와 같이 조성되는 슬라브를 1100~1250℃ 온도로 재가열한 후 열간압연하고, 600~800℃ 온도로 권취하고, 산세 및 냉간압연하고, 700~1050℃ 온도에서 냉연판을 소둔하는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법에 관한 것이다.In the present invention, C: 0.01 or less, Si: 3.5 or less, Mn: 0.5 or less, P: 0.15 or less, S: 0.012 or less, Al: 1.2 or less, N: 0.006 or less, Sn: 0.03 to 0.3, Cr: 0.05 ˜1.0, Ca or Ce alone or in a combination of 0.001 to 0.010 containing, the remainder Fe and other inevitable non-oriented electrical steel sheet, characterized in that it is composed of impurities added, and the present invention also Re-heating the slabs formed together at a temperature of 1100 to 1250 ° C., then hot rolling, winding to 600 to 800 ° C., pickling and cold rolling, and annealing the cold rolled plate at 700 to 1050 ° C. A method for producing a low non-oriented electrical steel sheet.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명자들은 철손이 낮은 무방향성 전기강판을 제조하기 위하여 강을 가능한한 청정하게 제조하고자 하였다. 이를 위하여, 무방향성 전기강판의 성분을 조정하는데 있어서, 결정립계에 편석하여 N의 침입을 막는 Sn과 Cr을 첨가하였다. 또한, 강을 청정하게 제조하기 위해서 불순물로 함유되는 S및 N의 량이 가능한한 적게 첨가하였다. S는 미세한 석출물인 MnS를 형성하여 결정립성장을 억제하므로 가능한 낮게 관리되어야 하는데, 불가피하게 첨가되는 S는 Ca 및/혹은 Ce의 첨가로 S를 구상화 하고 조대화시켜서 강을 청정하게 하였다.The inventors have tried to make the steel as clean as possible in order to produce non-oriented electrical steel sheet having low iron loss. To this end, in adjusting the components of the non-oriented electrical steel sheet, Sn and Cr, which segregate at grain boundaries and prevent intrusion of N, were added. In addition, in order to make steel clean, the amount of S and N contained as an impurity was added as little as possible. S should be managed as low as possible because it forms fine precipitates MnS to suppress grain growth. Inevitably added S is made of S and spheroidized and coarsened by addition of Ca and / or Ce to make steel clean.
제조방법에 있어서는, 슬라브를 저온으로 재가열하여 S가 고용되는 것을 막고, 권취온도를 가능한 높여서 석출물이 크게 성장되도록 하여야 한다.In the production method, the slab should be reheated to a low temperature to prevent the solid solution of S, and the winding temperature should be as high as possible to allow the precipitate to grow large.
이와 같이 제조된 무방향성 전기강판에서는 결정립성장을 억제하는 미세한 석출물의 생성이 억제되기 때문에, 결정립의 성장에 의한 자성향상을 얻을 수 있다.In the non-oriented electrical steel sheet thus produced, since the formation of fine precipitates that suppress grain growth is suppressed, it is possible to obtain a magnetic improvement due to the growth of grains.
이하, 본 발명 성분계의 수치한정 이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation of the component system of this invention is demonstrated.
상기 C는 최종제품에서 자기시효를 일으켜 사용중 자기적 특성을 저하시키므로 슬라브에서는 0.01이하로 하고, 필요시 탈탄소둔을 실시하며, 최종제품에서는 0.003이하로 하는 것이 바람직하다. 탈탄소둔은 냉연판소둔시 추가할 수 있다.The above-mentioned C causes the magnetic aging in the final product to lower the magnetic properties during use, so the slab is less than 0.01, if necessary decarbonized annealing, it is preferable to be less than 0.003 in the final product. Decarbonization annealing can be added during cold annealing.
상기 Si는 비저항을 증가시켜서 철손중 와류손실을 낮추는 원소이지만, 본 발명의 강에서는 냉간압연성을 고려하여 3.5이하로 첨가한다.The Si is an element that increases the specific resistance to lower the eddy current loss during iron loss, but in the steel of the present invention is added below 3.5 in consideration of cold rolling properties.
상기 Mn은 S와 결합하여 미세한 석출물인 MnS를 형성하므로 0.5이하로 억제한다.Mn is combined with S to form MnS, which is a fine precipitate, and thus suppresses it to 0.5 or less.
상기 P는 비저항을 증가시키고, 자성에 유리한 집합조직을 형성하는 원소로, 냉간압연성을 고려하여 최대 0.15까지 첨가할 수 있다.P is an element that increases specific resistance and forms an aggregate structure favorable for magnetic, and may be added up to 0.15 in consideration of cold rolling property.
상기 S는 미세한 석출물인 MnS를 형성하여 자기특성에 나쁜 영향을 미치므로 가능한 낮게 함유되는 것이 유리한데, 본 발명에서는 최대 0.012가 함유되도록 한다.S is advantageously contained as low as possible because it forms a fine precipitate MnS adversely affects the magnetic properties, in the present invention is to be contained up to 0.012.
상기 Al은 비저항을 증가시켜 와류손실을 낮추는 역할을 하는 원소이나, 1.2이상 첨가되면 그 첨가량에 비해 자성의 향상정도가 작고 가격이 비싸기 때문에, 1.2이하로 제한한다.Al is an element that serves to increase the specific resistance and lower the eddy current loss, but when added to more than 1.2 is limited to less than 1.2, because the magnetic enhancement degree is small and expensive compared to the addition amount.
상기 N은 미세하고 긴 AlN 석출물을 형성하므로 가능한한 억제하여야 하며, 본 발명에서는 0.006이하로 한다.Since N forms fine and long AlN precipitates, it should be suppressed as much as possible, and in the present invention, it should be 0.006 or less.
상기 Sn은 결정립계에 편석하여 N의 확산을 억제하는 원소로, 0.03이하이면 그 효과가 적고, 0.3이상으로 하면 냉간압연성이 나빠지므로 본 발명에서는 0.03~0.3로 한다.Sn is an element that segregates at grain boundaries and suppresses diffusion of N. If Sn is 0.03 or less, the effect thereof is small, and if it is 0.3 or more, cold rolling is worsened. Therefore, the Sn is 0.03 to 0.3.
상기 Cr은 페라이트형성을 촉진하고 N과 결합하여 질화물을 형성하는 원소이다. 최소 0.05이상 첨가되어야 그 효과가 있으며, 1.0를 초과하면 첨가량에 비해 자성의 향상정도가 작기 때문에 0.05~1.0로 첨가한다.Cr is an element that promotes ferrite formation and combines with N to form nitride. It should be added at least 0.05 to have the effect. If it exceeds 1.0, it is added as 0.05 ~ 1.0 because the degree of improvement of magnetic is small compared to the added amount.
상기 Ca와 Ce은 용강중에서 S와 결합하여 개재물로 부상하여 제거된다. 즉, 용강중에 잔존하는 S는 Ca와 결합하여 구상화됨으로써 최종제품에 있어서 결정립 성장을 용이하게 한다. Ca와 Ce는 단독으로 그리고 복합적으로 첨가할 수 있으며, 최소 0.001이상 첨가되어야 그 효과가 있으나, 0.010를 초과하면 오히려 불순물로 작용할 수 있다.The Ca and Ce are removed by floating as inclusions in combination with S in the molten steel. In other words, S remaining in the molten steel is spherical in combination with Ca to facilitate grain growth in the final product. Ca and Ce may be added alone and in combination, and at least 0.001 or more may have an effect, but if it exceeds 0.010, it may act as an impurity.
이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.
상기와 같이 조성되는 강슬라브는, 제강에서 용강으로 된 후 연속주조공정으로부터 제조된 슬라브로서, 열간압연전 가열로로 장입되어 1100℃~1250℃의 온도범위에서 가열되는데, 열간압연을 용이하게 하기 위해서는 가능한 최저온도는 1100℃이상으로 한다. 최고온도가 1250℃ 를 초과하면 AlN과 MnS 등 자성에 해로운 석출물이 재용해되어 열간압연 후 미세하게 석출될 수 있으므로, 1100~1250℃ 범위로 재가열한 후 열간압연하는 것이 바람직하다.The steel slab formed as described above is a slab manufactured from a continuous casting process after being made of molten steel in steelmaking, charged into a heating furnace before hot rolling, and heated in a temperature range of 1100 ° C to 1250 ° C, to facilitate hot rolling. In order to achieve the lowest temperature possible, the temperature should be 1100 ℃ or higher. If the maximum temperature exceeds 1250 ℃, the precipitates harmful to the magnetic, such as AlN and MnS may be re-dissolved to be finely precipitated after hot rolling, it is preferable to hot-rolled after reheating to 1100 ~ 1250 ℃ range.
열간압연시 사상압연의 마무리 압연온도는 페라이트상에서 종료하는데, 형상이 양호한 열연판을 얻기 위해서, 가능한한 800℃ 이상의 페라이트상에서 실시하는 것이 바람직하다.The finish rolling temperature of the finishing rolling during hot rolling is finished on the ferrite phase. In order to obtain a hot rolled sheet having a good shape, it is preferable to carry out on a ferrite phase of 800 ° C. or higher as much as possible.
열연판의 권취는 600℃~800℃의 온도범위에서 실시하고, 공기중에서 코일상태로 냉각할 수 있다.The coiling of the hot rolled sheet is carried out at a temperature range of 600 ° C to 800 ° C, and can be cooled in a coil state in the air.
권취냉각된 열연판은 열연판소둔 혹은 열연판소둔없이 산세후 냉간압연한다. 열연판소둔을 행하는 경우 소둔온도는 800℃~1150℃로 하는 것이 바람직한데, 그 이유는 800℃ 미만에서 소둔할 경우 그 효과가 적으며, 1150℃이상에서 실시하면 판형상이 나빠질 수 있기 때문이다. 냉간압연은 통상의 방법으로 행할 수 있는데, 예를 들면, 70이상의 압하율로 1회압연한다. 다음, 냉간압연판의 소둔은, 700~1050℃ 범위의 온도에서 행하는데, 30초~5분 동안 연속으로 행하는 것이 바람직하다. 소둔온도가 700℃ 미만이면 결정립성장이 미흡하고, 1050℃보다 높으면 표면온도가 과다하게 높아서 판표면에 표면결함이 발생될 수 있으며 자기적 특성도 나빠질 수 있다. 이 때 소둔분위기는 수소, 질소 또는 그 혼합분위기로 할 수 있다. 슬라브 성분중에 C가 높은 경우에는 냉연판소둔시, 이슬점을 10~50℃로 하여 탈탄소둔을 할 수 있다. 탈탄소둔은 750~850℃의 온도범위에서 할 수 있다. 소둔판은 절연피막처리후 수요가로 출하되는데, 절연피막은 유기질 또는 무기질 및 유무기복합피막으로 처리할 수도 있으며, 기타 절연이 가능한 피막제를 입힐 수 있다.The wound-cooled hot rolled sheet is cold rolled after pickling without hot rolled sheet annealing or hot rolled sheet annealing. In the case of performing hot-rolled sheet annealing, the annealing temperature is preferably set to 800 ° C. to 1150 ° C., because the annealing temperature is less than 800 ° C. because the annealing temperature is less than that. Cold rolling can be performed by a conventional method, for example, rolling once with a rolling reduction of 70 or more. Next, the annealing of the cold rolled sheet is carried out at a temperature in the range of 700 to 1050 ° C., but is preferably performed continuously for 30 seconds to 5 minutes. If the annealing temperature is less than 700 ℃ grain growth is insufficient, if higher than 1050 ℃ the surface temperature is excessively high may cause surface defects on the surface of the plate and the magnetic properties may worsen. At this time, the annealing atmosphere may be hydrogen, nitrogen or a mixed atmosphere thereof. If C is high in the slab components, decarbonization can be carried out at cold rolling annealing at a dew point of 10 to 50 ° C. Decarbonization annealing can be carried out in the temperature range of 750 ~ 850 ℃. The annealing plate is shipped at the demand price after the insulation coating treatment. The insulation coating may be treated with organic or inorganic and organic / inorganic composite coating, and may be coated with other insulating coating.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
(실시예1)Example 1
하기 표1과 같은 성분을 갖는 강슬라브를 제조하고, 제조한 슬라브들을 1150℃에서 2시간 가열하고, 2.0mm로 열간압연한 후 공기중에서 권취하여 냉각하였다. 냉각된 열연판은 하기 표2에 나타낸 온도로 5분간 열연판소둔하거나 열연판 소둔을 행하지 않고, 산세후 냉간압연을 행하고 하기 표2에 보인 온도로 냉연판소둔하였는데, 소둔분위기는 수소 20와 질소 80였고 2분간 행해졌다. 다음, 소둔판을 절단하고 자기적 특성 및 결정립크기를 조사하여 그 결과를 하기 표2에 나타내었다.Steel slabs having the components shown in Table 1 below were prepared, and the prepared slabs were heated at 1150 ° C. for 2 hours, hot rolled to 2.0 mm, and then wound and cooled in air. The cooled hot rolled sheet was annealed for 5 minutes at the temperature shown in Table 2 or without hot rolled sheet annealing, but cold-rolled after pickling and cold rolled at the temperature shown in Table 2, where the annealing atmosphere was hydrogen 20 and nitrogen. It was 80 and done for 2 minutes. Next, the annealing plate was cut and the magnetic properties and grain size were investigated and the results are shown in Table 2 below.
상기 표1에서, 비교강(a)는 Mn이 본 발명의 성분범위보다 높고, 비교강(b)는 Sn함량이 낮으며, 비교강(c)는 Ca함량이 낮았다.In Table 1, the comparative steel (a) has a higher Mn than the component range of the present invention, the comparative steel (b) has a low Sn content, and the comparative steel (c) has a low Ca content.
상기 표2에 나타난 바와 같이, 비교재(1)은 열연판 권취온도가 너무 낮아서 결정립성장이 저조하였다. 비교재(2)는 냉연판소둔온도가 너무 낮은 반면, 비교재(3)은 냉연판소둔온도가 너무 높아서 표면이 불량하였는데, 이것은 자성에도 영향을 미쳤다. 비교재(4)~(6)은 발명의 성분범위를 벗어나서 자성이 저조하였다. 한편, 발명재는 발명의 범위로 작업되어, 철손 및 결정립크기가 우수하여 자성이 양호하였다.As shown in Table 2, the comparative material (1) has a low grain growth because the hot rolled sheet winding temperature is too low. The comparative material 2 had a cold rolled sheet annealing temperature too low, whereas the comparative material 3 had a cold rolled sheet annealing temperature too high, and the surface was poor, which also affected the magnetic properties. Comparative materials (4) to (6) out of the component range of the invention was poor in magnetic. On the other hand, the invention material worked in the scope of the invention, the iron loss and crystal grain size was excellent, the magnetic properties were good.
따라서, 발명의 성분범위와 제조조건에서 제조되면, 우수한 자기적 특성을 얻을 수 있는 것으로 조사되었다.Therefore, it was investigated that excellent magnetic properties can be obtained if manufactured in the component range and manufacturing conditions of the invention.
(실시예2)Example 2
중량로, C: 0.004, Si: 2.85, Mn: 0.16, P: 0.01, S: 0.002, Al: 0.82, N: 0.0014, Sn: 0.11, Cr: 0.25, 및 Ce : 0.0025이고 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 1150℃ 로 가열한 후 열간압연하여 1.8mm의 두께로 열간압연하고, 700℃온도에서 권취한 후 열연판을 1100℃에서 10분간 소둔하였다. 냉각된 열연판은 산세후 0.5mm의 두께로 냉간압연하였다. 냉연판은 1000℃에서 3분간 수소20와 질소 80의 분위기에서 소둔하였다. 소둔후 연속하여 유무기혼합의 절연피막을 입힌 후 절단하였다. 그 후, 자기적 특성 및 결정립크기를 조사한 결과, 자기적 특성중 철손(W15/50)은 2.45W/kg였으며, 결정립크기는 150㎛였다.By weight, C: 0.004, Si: 2.85, Mn: 0.16, P: 0.01, S: 0.002, Al: 0.82, N: 0.0014, Sn: 0.11, Cr: 0.25, and Ce: 0.0025 and the balance Fe and other impurities The resulting slab was heated to 1150 ° C., hot rolled, hot rolled to a thickness of 1.8 mm, wound at 700 ° C., and then annealed at 1100 ° C. for 10 minutes. The cooled hot rolled sheet was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled sheet was annealed at 1000 ° C. for 3 minutes in an atmosphere of hydrogen 20 and nitrogen 80. After annealing, the organic and inorganic mixture was coated continuously and then cut. Then, as a result of examining magnetic properties and grain size, the iron loss (W 15/50 ) of the magnetic properties was 2.45 W / kg, the grain size was 150㎛.
(실시예 3)(Example 3)
중량로, C: 0.003, Si: 2.15, Mn: 0.25, P: 0.011, S: 0.0015, Al: 0.45, N: 0.002, Sn: 0.09, Cr: 0.35, 및 Ce : 0.0013이고 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 1150℃ 로 가열한 후 2.0mm의 두께로 열간압연하고, 700℃ 온도로 권취한 후 1050℃로 가열된 질소분위기의 상소둔로에 넣어서 1시간 유지한 후 로냉하였다. 로냉된 열연판은 산세후 0.5mm 의 두께로 냉간압연하였다. 냉연판은 질소 80, 수소20의 건조한 분위기에서, 1000℃에서 2분간 소둔하였다. 소둔후 연속하여 유무기혼합의 절연피막을 입힌 후 절단하고 자기적 특성을 측정하였다. 또한, 790℃에서 1.1시간 동안 질소 100분위기에서 응력제거소둔한 후에는 결정립 크기를 조사하였다. 그 결과 열처리전 자기적 특성 중 철손(W15/50)은 2.7W/kg이었고, 열처리후 결정립크기는 135㎛였다.By weight, C: 0.003, Si: 2.15, Mn: 0.25, P: 0.011, S: 0.0015, Al: 0.45, N: 0.002, Sn: 0.09, Cr: 0.35, and Ce: 0.0013 and the balance Fe and other impurities The resulting slab was heated to 1150 ° C. and then hot rolled to a thickness of 2.0 mm, wound at 700 ° C., and placed in an annealing furnace of a nitrogen atmosphere heated to 1050 ° C. for 1 hour, followed by quenching. The furnace cooled hot rolled plate was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled sheet was annealed at 1000 ° C. for 2 minutes in a dry atmosphere of nitrogen 80 and hydrogen 20. After annealing, the organic and inorganic mixtures were coated successively, cut and measured for magnetic properties. In addition, the grain size was examined after stress relief annealing in a nitrogen atmosphere at 790 ℃ for 1.1 hours. As a result, the iron loss (W 15/50 ) of the magnetic properties before the heat treatment was 2.7W / kg, the grain size after the heat treatment was 135㎛.
상술한 바와 같이, 본 발명은 무방향성 전기강판의 첨가성분을 제어하고, 제조조건을 제어함으로써, 철손이 낮아서 자기적 특성이 우수한 무방향성 전기강판을 제조할 수 있는 효과가 있다.As described above, the present invention has the effect of controlling the additive component of the non-oriented electrical steel sheet and the manufacturing conditions, thereby producing a non-oriented electrical steel sheet having low iron loss and excellent magnetic properties.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0040623A KR100479991B1 (en) | 1999-09-21 | 1999-09-21 | A method for producing non-oriented silicon steel with low core loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0040623A KR100479991B1 (en) | 1999-09-21 | 1999-09-21 | A method for producing non-oriented silicon steel with low core loss |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010028403A true KR20010028403A (en) | 2001-04-06 |
KR100479991B1 KR100479991B1 (en) | 2005-03-30 |
Family
ID=19612416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1999-0040623A KR100479991B1 (en) | 1999-09-21 | 1999-09-21 | A method for producing non-oriented silicon steel with low core loss |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100479991B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053769A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property |
KR100544750B1 (en) * | 2001-12-26 | 2006-01-24 | 주식회사 포스코 | Method for magnetic annealing non- oriented electrical steel sheet |
KR20170092666A (en) * | 2015-01-07 | 2017-08-11 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
CN111155023A (en) * | 2020-01-17 | 2020-05-15 | 上海大学 | Preparation method of high-toughness high-strength non-oriented high-silicon steel |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102345001A (en) * | 2011-10-09 | 2012-02-08 | 内蒙古包钢钢联股份有限公司 | Method for preparing low-grade non-oriented electrical steel processed by rare earth |
KR101871224B1 (en) | 2016-12-02 | 2018-06-27 | 동신대학교 산학협력단 | Anus opening device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03215627A (en) * | 1990-01-19 | 1991-09-20 | Nippon Steel Corp | Production of nonoriented silicon steel sheet |
KR950003293B1 (en) * | 1992-10-09 | 1995-04-10 | 포항종합제철 주식회사 | Method of making non-oriented electromagnetic steel plate with excellent magnetic characteristic |
JP3430794B2 (en) * | 1996-05-27 | 2003-07-28 | Jfeスチール株式会社 | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same |
KR100340548B1 (en) * | 1997-11-26 | 2002-07-18 | 이구택 | A method for manufacturing non-oriented silicon steel sheet having superior magnetic property |
-
1999
- 1999-09-21 KR KR10-1999-0040623A patent/KR100479991B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030053769A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | A method for manufacturing non-oriented electrical steel sheet with excellent magnetic property |
KR100544750B1 (en) * | 2001-12-26 | 2006-01-24 | 주식회사 포스코 | Method for magnetic annealing non- oriented electrical steel sheet |
KR20170092666A (en) * | 2015-01-07 | 2017-08-11 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
US10822678B2 (en) | 2015-01-07 | 2020-11-03 | Jfe Steel Corporation | Non-oriented electrical steel sheet and method for producing the same |
CN111155023A (en) * | 2020-01-17 | 2020-05-15 | 上海大学 | Preparation method of high-toughness high-strength non-oriented high-silicon steel |
CN111155023B (en) * | 2020-01-17 | 2021-12-03 | 上海大学 | Preparation method of high-toughness high-strength non-oriented high-silicon steel |
Also Published As
Publication number | Publication date |
---|---|
KR100479991B1 (en) | 2005-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10152724A (en) | Manufacture of grain oriented silicon steel sheet with extremely low iron loss | |
KR19980063732A (en) | Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR100779579B1 (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density | |
KR100479991B1 (en) | A method for producing non-oriented silicon steel with low core loss | |
KR100395100B1 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment | |
KR101051743B1 (en) | Oriented electrical steel with excellent magnetic properties and manufacturing method thereof | |
KR101051744B1 (en) | Oriented electrical steel with excellent magnetic properties and manufacturing method thereof | |
KR101675318B1 (en) | Oriented electrical steel sheet and method for manufacturing the same | |
KR100345701B1 (en) | A Method for Manufacturing Non-Oriented Electrical Steel Sheets | |
KR100516458B1 (en) | A non-oriented silicon steel with excellent magnetic property and a method for producing it | |
KR100340548B1 (en) | A method for manufacturing non-oriented silicon steel sheet having superior magnetic property | |
KR950004933B1 (en) | Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic | |
KR100530069B1 (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing | |
KR100276341B1 (en) | The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating | |
KR100435480B1 (en) | A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property | |
KR20000043790A (en) | Method for producing non-oriented electric strip with low iron loss | |
KR960003174B1 (en) | Method for preparation of non-oriented electrical steel sheet having high flux-density | |
KR100890812B1 (en) | A electrical steel sheet manufacturing method having low iron loss and high magnetic property | |
KR101089302B1 (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction | |
KR100256356B1 (en) | The manufacturing method for non-oriented electrical steel sheet | |
KR960014510B1 (en) | Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic | |
KR100825560B1 (en) | Method for Manufacturing Nonoriented Electrical Steel Sheet | |
KR100466176B1 (en) | Method for Manufacturing non-oriented electrical steel sheet having low core loss | |
KR100276305B1 (en) | The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity | |
KR100345697B1 (en) | A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130304 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140321 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150316 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170321 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180314 Year of fee payment: 14 |
|
LAPS | Lapse due to unpaid annual fee |