KR960003174B1 - Method for preparation of non-oriented electrical steel sheet having high flux-density - Google Patents

Method for preparation of non-oriented electrical steel sheet having high flux-density Download PDF

Info

Publication number
KR960003174B1
KR960003174B1 KR1019930031070A KR930031070A KR960003174B1 KR 960003174 B1 KR960003174 B1 KR 960003174B1 KR 1019930031070 A KR1019930031070 A KR 1019930031070A KR 930031070 A KR930031070 A KR 930031070A KR 960003174 B1 KR960003174 B1 KR 960003174B1
Authority
KR
South Korea
Prior art keywords
less
temperature
hot
slab
steel sheet
Prior art date
Application number
KR1019930031070A
Other languages
Korean (ko)
Other versions
KR950018542A (en
Inventor
박래은
배병근
Original Assignee
포항종합제철주식회사
조말수
재단법인 산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인 산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930031070A priority Critical patent/KR960003174B1/en
Publication of KR950018542A publication Critical patent/KR950018542A/en
Application granted granted Critical
Publication of KR960003174B1 publication Critical patent/KR960003174B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

reheating steel slab at 1050-1270 deg.C and hot rolling it at 850-930 deg.C; annealing the hot rolled steel plate at 800-1100 deg.C and acid-cleaning; and cold rolling it; and annealing the cold rolled steel plate at 800-1100 deg.C. The slab comprises (in wt.) C of below 0.02%, Si of below 3.5%, Mn of below 0.5%, S of below 0.01%, N of 0.008%, Cu of below 0.05-0.50% Al of below 0.5%, P of 0.05-0.15% and balance Fe with inevitable impurities.

Description

철손과 자속밀도가 우수한 무방향성 전기강판의 제조방법Manufacturing method of non-oriented electrical steel sheet having excellent iron loss and magnetic flux density

본 발명은 각종 모터 및 소형 변압기의 철심으로 사용되는 무방향성 전기강판에 관한 것으로서, 특히 철손이 낮고 자속밀도가 높아서 에너지 절감이 가능한, 그러한 철손과 자속밀도가 우수한 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used as iron cores of various motors and small transformers, and more particularly, to a method for manufacturing a non-oriented electrical steel sheet having excellent iron loss and magnetic flux density, which can save energy due to low iron loss and high magnetic flux density. will be.

무방향성 전기강판에 요구되는 주요자기 특성으로는, 철손과 자속밀도 그리고 투자율이 있다. 이러한 자기 특성중에 철손과 자속밀도는 Si의 함량에 따라 그 효율이 상반되는 관계에 있다. 즉, Si가 많을 때에는 철손은 낮아지나, 자속밀도 또한 낮아지고 Si가 적을 때에는 자속밀도는 높아지나 철손 역시 높아지는 그러한 상반관계에 있다. 따라서, 장시간 지속적으로 사용되거나 전력소비량이 큰 대형전동기용에는 에너지 절감의 측면에서 Si 함량을 증가시켜 철손감소를 중요시하는 반면에, 단시간 순간적으로 사용되는 소형모터나 가전기기용에는 Si 함량을 낮추어 자속밀도를 보다 중요시 하는등 용도에 따라 보다 경제적인 소재를 선택하는 방법을 취해 왔다.Major magnetic properties required for non-oriented electrical steel sheet include iron loss, magnetic flux density and permeability. Among these magnetic properties, the iron loss and the magnetic flux density have a relationship in which the efficiency thereof is in conflict with the Si content. That is, when there is much Si, iron loss becomes low, but magnetic flux density becomes low, and when there is little Si, magnetic flux density becomes high but iron loss also becomes high. Therefore, for large motors that are continuously used for a long time or have a high power consumption, the Si content is increased by increasing the Si content in terms of energy saving, while the Si content is lowered for small motors or home appliances that are used for a short time. Increasing density is the key to more economical material selection.

그러나, 인구증가 및 생활수준의 향상으로 전기에너지 소비율은 계속 증가하고 있는 반면, 에너지 수요에 대한 충분한 공급대책을 발전설비 증설로 대응하기에는 어려운 실정이므로, 여러철강 기업들은 에너지 절약형의 전기기기 보급이 가능하도록 전기기기의 핵심이 철심재료의 고효율화와 더불어 저소음화 및 고정밀화를 이루기 위해 철손이 낮으면서도 자속밀도가 높은 고효율의 무방향성 전기강판 소재의 개발을 위하여 많은 노력을 경주해 오고 있다.However, while the consumption rate of electric energy continues to increase due to population growth and improved living standards, it is difficult to respond to sufficient supply measures for energy demand through expansion of power generation facilities. Therefore, steel companies can supply energy-saving electric equipment. In order to achieve high efficiency of iron core material as well as low noise and high precision, the core of electric equipment has made great efforts to develop high efficiency non-oriented electrical steel sheet with low magnetic flux loss and high magnetic flux density.

이러한 노력의 일환으로, 80년대초 신일본 제철소에서는 New Core라 명명된 고급 무방향성 전기 강판을 개발하였는데, 이는 강의 성분중 S 성분을 낮추고 Sn이 0.1% 정도 그리고 Mn을 1.0% 이상 첨가하여 제조된 것이다.As part of this effort, in the early 80's, Nippon Steel Mill developed an advanced non-oriented electrical steel sheet called New Core, which was manufactured by lowering the S component, adding 0.1% Sn and 1.0% Mn. will be.

그러나, 이 전기강판은 자기적 특성에 있어서 철손은 3.0w/kg 이하로 우수하였으나 자속밀도가 1.69Tesla 이하 수준으로서 효율면에서 미흡하였다. 이후, 신일본제철소는 철손이 2.8w/kg 수준이며, 자속밀도가 1.69Tesla인 Fully-process로 제조되는 M43을 개발하였으나, 철손만 약간 개선되었을 뿐 투자율은 앞서 언급한 New Core와 마찬가지로 미흡한 수준을 벗어나지 못하는 것이다.However, the steel sheet had excellent iron loss of 3.0 w / kg or less in magnetic properties, but the magnetic flux density was 1.69 Tesla or less, which was insufficient in efficiency. Subsequently, Nippon Steel Mill developed M43, which is manufactured in a fully process with an iron loss of 2.8 w / kg and a magnetic flux density of 1.69 Tesla, but with only a slight improvement in iron loss. It can not escape.

한편, 일본특허공보(소) 63-23262에서는 Sn을 중량%로 0.02-0.20% 그리고 Cu를 0.1-1.0% 함유시킴에 의하여 철손을 낮추고 자속밀도를 높이는 방법이 제시되어져 있다. 그러나, 이러한 성분원소를 함유하는 무방향성 전기강판의 제조방법에 있어서는 Sn에 의해 결정립 성장이 억제되는 문제점과, 열연권취온도가 750℃ 이하로 낮은 경우에는 철손은 낮아도 자속밀도는 높아지지 아니하는 문제점이 있었다.On the other hand, Japanese Patent Laid-Open No. 63-23262 discloses a method for lowering iron loss and increasing magnetic flux density by containing 0.02-0.20% of Sn and 0.1-1.0% of Cu by weight. However, in the method of manufacturing non-oriented electrical steel sheet containing such component elements, grain growth is suppressed by Sn, and when the hot rolling temperature is lower than 750 ° C, the magnetic flux density does not increase even though the iron loss is low. There was this.

본 발명의 목적은 상기 종래 방법들의 결점을 해소하기 위한 것으로, 철손이 낮으면서도 자속밀도가 높은 무방향성 전기강판을 제조하는 방법을 제공하는데 있다.An object of the present invention is to solve the drawbacks of the conventional methods, to provide a method for manufacturing a non-oriented electrical steel sheet having a low magnetic flux and high magnetic flux density.

상기 목적 달성을 위한 본 발명은 중량%로 C:0.02% 이하, Si:3.5% 이하, Mn:0.5% 이하, S:0.01% 이하, N:0.008% 이하, Cu:0.05-0.50%, Al:0.5% 이하, 특히 주요 관리 원소 P:0.05-0.15%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 재가열 후 열가압연, 열연판소둔, 산세, 그리고 1회 냉간압연 혹은 중간소둔을 포함한 2회 냉간압연후에 최종 냉연판소둔을 실시하는 철손과 자속밀도가 우수한 무방향성 전기강판의 제조방법에 관한 것이다.The present invention for achieving the above object by weight% C: 0.02% or less, Si: 3.5% or less, Mn: 0.5% or less, S: 0.01% or less, N: 0.008% or less, Cu: 0.05-0.50%, Al: Slab composed of 0.5% or less, especially the main management element P: 0.05-0.15%, balance Fe and other unavoidable impurities, after reheating, including hot rolling, hot roll annealing, pickling, and one cold rolling or intermediate annealing The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent iron loss and magnetic flux density which are subjected to final cold-rolled sheet annealing after two cold rollings.

이하 상기 성분원소함량 및 가열온도의 수치한정에 대하여 설명한다.Hereinafter, numerical limitations of the component element content and heating temperature will be described.

C는 철손을 높이는 유해한 성분으로 자기시효의 원인이 되므로 0.02% 이하로 하고 탈탄공정의 생략을 위해서는 0.005% 이하로 하는 것이 바람직하다.C is a harmful component that increases the iron loss, so it may cause self-aging, so it is preferable to set it to 0.02% or less and 0.005% or less to omit the decarburization process.

Mn은 열연시의 취성파괴를 방지하고, Al 함량이 저하에 의한 강의 고유저항을 보상하여 철손을 저하시키기 위함이나 0.50% 이상이 되면 제품제조단가가 상승되므로 0.5% 이하로 한다.Mn is to prevent brittle fracture at the time of hot rolling and to reduce iron loss by compensating for the resistivity of steel caused by the decrease of Al content, but when it is 0.50% or more, the manufacturing cost of the product is increased to 0.5% or less.

S는 Mn 등을 적당량 함유시켜 슬라브 재가열시 가열온도가 비교적 저온으로 유지하여 MnS를 결정립성장에 무해한 형태로 하기 위해 0.01% 이하로 한다.S is contained in an appropriate amount of Mn and the like to be 0.01% or less in order to keep the heating temperature at a relatively low temperature when reheating the slab to form MnS harmless to grain growth.

N은 제강단계에서 함유되는 양을 낮게 하면 좋지만 규소강중의 질소함량 수준을 10ppm 이하고 관리하는 것은 곤란하고 통상 30ppm을 상회하게 되므로 0.008% 이하로 한다.N is good to lower the amount contained in the steelmaking step, but it is difficult to manage the nitrogen content level of silicon steel below 10ppm, and usually exceeds 30ppm, so it should be 0.008% or less.

Al은 N과 결합하여 AIN을 형성하고 Al 함유량이 0.005-0.15%에서는 결정성장에 유해한 형태로 되기 때문에 Si 함량이 1.0-1.5% 이하의 저급 무방향성 전기강판에선 Al을 가능한 0.005% 이하로 하고, Si함량이 1.0-1.5% 이상의 중고급 무방향성 전기강판에선 Al을 0.15% 이상 함유시켜 슬라브 재가열시 AlN이 결정성장에 무해한 형태로 석출하도록 Al의 함량을 조절해야 한다. 이에 더불어 제조단가와 상승요인도 고려하여 0.50% 이하로 한다.Al combines with N to form AIN, and at Al content of 0.005-0.15%, it becomes harmful form of crystal growth. Therefore, in low-oriented non-oriented electrical steel sheet having Si content of 1.0-1.5% or less, Al should be 0.005% or less as possible. In the medium-oriented non-oriented electrical steel sheet having a Si content of 1.0-1.5% or more, Al content of 0.15% or more should be adjusted so that AlN precipitates in a form that is harmless to crystal growth when the slab is reheated. In addition, manufacturing costs and rising factors should be 0.50% or less.

Cu는 내식성의 증가와 자성에 유리한 집합조직을 발달시키고 비저항을 증가시키는 원소이다. 그리고 미세한 석출물을 형성하여 결정립 성장과 자성에 유리한 집합조직의 발달을 저해하는 S를 조대한 Cu2S의 형태로 석출시킴으로써 자성이 향상되는 효과를 나타낸다. 0.05% 이하에서는 자성이 저조하며, 0.5% 이상에서는 열연전 표면균열을 발생할 수 있다. 따라서 Cu의 범위를 0.05-0.50%로 한다.Cu is an element that develops the texture and increases the resistivity in favor of increased corrosion resistance and magnetism. In addition, by forming a fine precipitate to precipitate S in the form of coarse Cu 2 S to inhibit grain growth and the development of a texture that is favorable for magnetism, the magnetic properties are improved. Less than 0.05% of magnetism is poor, and more than 0.5% may cause surface cracking before hot rolling. Therefore, the range of Cu is made 0.05-0.50%.

P는 본 발명에서 특히 중요한 원소로서 Cu가 첨가된 강에서 P를 0.05-0.15% 첨가함으로써 자성에 유리한 (110),(120)면의 집합조직이 특히 잘 발달된다. 0.05% 이하시에는 집합조직 형성에 불리하며, 0.15%를 초과하면 냉간압연이 곤란하고 결정립성장을 해치게 된다. 또한 비저항을 증가시켜 철손을 감소시키는 주요 원소이다.P is a particularly important element of the present invention, and the addition of 0.05-0.15% of P in Cu-added steels results in a particularly well-developed texture of the (110) and (120) faces. If it is less than 0.05%, it is disadvantageous in forming the aggregate. If it exceeds 0.15%, cold rolling is difficult and the grain growth is damaged. It is also a major element in reducing iron loss by increasing resistivity.

슬라브 재가열온도는 1050℃ 이하의 재가열온도에서 실시시에는 압연이 곤란하고, 1270℃ 이상 가열시에는 미세한 CuS를 형성하므로 자성에 악영향을 미치므로 1050-1270℃로 재가열한다.The slab reheating temperature is difficult to roll when carried out at a reheating temperature of 1050 ° C. or lower, and when heated to 1270 ° C. or higher, fine CuS is formed.

열간압연은 페라이트의 전형적인 열간압연조적인 {200}<110> 집합조직이 발달하도록 850-930℃에서 압연종료하고 700-750℃에서 권취한다.Hot rolling is finished rolling at 850-930 ° C. and wound at 700-750 ° C. to develop a typical hot rolled {200} <110> texture of ferrite.

열연판소둔을 800-1100℃에서 3-5분 처리한 후에 산세한다. 냉간압연은 1회 혹은 800-1050℃에서 중간 소둔을 포함하는 2회 냉간압연을 한다.After hot-rolled sheet annealing for 3-5 minutes at 800-1100 ℃, pickling. Cold rolling is performed either once or two times cold rolling, including intermediate annealing at 800-1050 ℃.

최종 냉연판소둔은 냉간압연된 강판을 800℃ 이상 1100℃ 이하에서 10분 이하 소둔하여 결정립을 성장시키고 집합조직을 발달시킨다.Final cold rolled annealing is for cold rolled steel sheet 800 ℃ or more and 1100 ℃ After annealing for 10 minutes or less, the grains are grown and aggregates are developed.

이하 본 발명은 실시예에 의거 상세히 설명한다.Hereinafter, the present invention will be described in detail based on examples.

[실시예 1]Example 1

표 1과 같은 성분범위와 잔부 Fe 및 불가피 불순물로 조성되는 슬라브를 표 2의 슬라브 재가열 온도로 가열하고 열간압연한 후, 질소 분위기로 1050℃에서 3분간 열연판소소둔하여 산세 처리후 0.5mm 두께로 냉간압연하였다. 냉간압연한 소재는 수소와 질소의 혼합가스 분위기로 하여 1030℃에서 2분간 소둔하였다.The slabs composed of the component ranges as shown in Table 1 and the balance of Fe and unavoidable impurities are heated to the slab reheating temperature of Table 2 and hot rolled, followed by hot-rolling annealing at 1050 ° C. for 3 minutes in a nitrogen atmosphere, and then 0.5 mm thick. Cold rolled. The cold rolled material was annealed at 1030 ° C. for 2 minutes in a mixed gas atmosphere of hydrogen and nitrogen.

본 발명의 제조방법으로 제조된 소재의 자기특성을 표 2에 나타냈다.Table 2 shows the magnetic properties of the material produced by the production method of the present invention.

[표 1]TABLE 1

(단위 : 중량%)(Unit: weight%)

발명강의 성분범위와 비교강의 성분범위를 비교할때 대부분의 화학성분의 조성비는 거의 비슷하나, P의 조성비에서 많은 차이가 있다. 즉, 발명강 A의 P는 0.08중량%이나, 비교강의 P는 0.04중량%이다.When comparing the composition range of the invention steel and the composition range of the comparative steel, the composition ratio of most chemical components is almost similar, but there are many differences in the composition ratio of P. That is, P of invention steel A is 0.08 weight%, but P of comparative steel is 0.04 weight%.

[표 2]TABLE 2

* B50: 자장의 세기가 5000A/m일때의 자속밀도 값* B 50 : Magnetic flux density value when the magnetic field strength is 5000A / m

W15/50:자속밀도 1.5Tesla, 50Hz에서의 절속 값W 15/50 : Velocity value at magnetic flux density 1.5Tesla, 50Hz

표 2로부터 알 수 있듯이, 발명강 A를 1240℃와 1050℃로 온도를 달리하여 재가열한 후 자기특성을 비교하였을 때, 자속밀도는 모두 동일하나, 철손에 있어서는 1050℃로 재가열하였을 때가 보다 우수하였다. 이러한 결과는 슬라브 재가열온도가 낮을때 Cu와 S를 형성하여 철손이 최저로 되는 적정 결정립도(약 80㎛)로 성장시키기 때문이라 하겠다.As can be seen from Table 2, the magnetic flux density was the same when the inventive steel A was reheated at 1240 ° C and 1050 ° C at different temperatures, but the magnetic flux density was the same, but it was better when reheated to 1050 ° C in iron loss. . This result is due to the formation of Cu and S when the slab reheating temperature is low to grow to an appropriate grain size (about 80㎛) to the minimum iron loss.

한편, 발명강 A와 비교강을 비교하면, 철손 및 자속밀도 모두에 있어서, 발명강 A의 경우가 비교강 보다 우수하였다. 이러한 결과는 P의 첨가효과로 집합조직의 발달정도가 개선되는 동시에 비저항을 증가시켜 자기특성이 향상되었기 때문이다.On the other hand, when the inventive steel A was compared with the comparative steel, the invention steel A was superior to the comparative steel in both iron loss and magnetic flux density. These results are due to the fact that the magnetic properties are improved by increasing the resistivity while improving the degree of development of the texture by the addition effect of P.

[실시예 2]Example 2

표 3과 같은 성분범위와 잔부 Fe 및 불가피 불순물로 조성되는 슬라브를 1150℃와 1270℃에서 재가열후 열간압연하고, 열연판을 1050℃ 질소분위기에서 3분간 열연판소둔하여 산세한 후, 0.5mm 두께로 냉간압연하였다. 냉간압연판은 수소와 질소의 혼합가스 분위기로 하여 1030℃에서 2분간 소둔하였다. 이와같은 제조방법에 의하여 제조된 소재의 자기특성 측정 결과를 표 4에 나타내었다.The slab composed of component ranges as shown in Table 3 and the balance of Fe and unavoidable impurities is re-heated at 1150 ° C and 1270 ° C, hot rolled, and the hot rolled plate is annealed by hot-rolling annealing for 3 minutes in a nitrogen atmosphere of 1050 ° C, and then 0.5 mm thick. Cold rolled. The cold rolled sheet was annealed at 1030 ° C. for 2 minutes in a mixed gas atmosphere of hydrogen and nitrogen. Table 4 shows the measurement results of the magnetic properties of the materials manufactured by such a manufacturing method.

[표 3]TABLE 3

(단위 : 중량%)(Unit: weight%)

[표 4]TABLE 4

표 4에서 보듯이, 슬라브 가열온도가 낮은 경우가 높은 경우보다, 철손 및 자속밀도 모두가 우수하였다.As shown in Table 4, both the iron loss and the magnetic flux density were superior to the case where the slab heating temperature was low.

이러한 결과는 P가 첨가되고 슬라브 재가열 온도가 낮음으로써 Cu와 S가 조대한 Cu2S를 형성하여 결정립도가 철손이 최저값으로 되는 크기로 성장하고, 집합조직이 자기특성에 유리하게 발달됨으로써 자성이 향상되었기 때문이다.These results show that Cu and S form coarse Cu 2 S due to the addition of P and the low slab reheating temperature, and the grain size grows to the minimum value of iron loss. Because

본 발명은 슬라브의 구성성분중 P의 양을 조절하고, 또 재가열 온도를 1050-1250℃로 하여 무방향성 전기 강판을 제조하는 방법에 관한 것으로서, 종래의 기술에 의한 전기강판과 비교할때 보다 경제적으로 철손과 자속밀도가 우수한 무방향성 전기강판을 제조할 수 있는 것이다.The present invention relates to a method for manufacturing a non-oriented electrical steel sheet by adjusting the amount of P in the components of the slab and reheating temperature of 1050-1250 ℃, more economically compared to the electrical steel sheet according to the prior art The non-oriented electrical steel sheet excellent in iron loss and magnetic flux density can be manufactured.

Claims (2)

강 슬라브를 재가열하고, 재가열된 슬라브를 850-930℃의 온도에서 열간압연을 종료한 후, 열연판을 800-1100℃의 온도에서 열연소둔한 다음 산세하고, 이어서 1회 냉간압연후에 냉간압연판을 800-1100℃의 온도에서 최종 냉연판 소둔을 실시하는 공정을 포함하는 무방향성 전기강판의 제조방법에 있어서, 상기 강슬라브는 그 조성이 중량%로, C:0.02% 이하, Si:3.5% 이하, Mn:0.5% 이하, S:0.01% 이하, N:0.008% 이하, Cu:0.05-0.50%, Al:0.5% 이하, P:0.05-0.15%, 잔부 Fe 및 불가피한 불순물로 조성되며 ; 그리고 상기 슬라브의 재가열온도가 1050-1270℃임을 특징으로 하는 철손과 자속밀도가 우수한 무방향성 전기강판의 제조방법.After reheating the steel slab, the hot-rolled slab is finished hot-rolled at a temperature of 850-930 ° C, the hot rolled plate is hot-annealed at a temperature of 800-1100 ° C and then pickled, and then cold rolled plate after one cold rolling In the method for producing a non-oriented electrical steel sheet comprising the step of performing a final cold-rolled sheet annealing at a temperature of 800-1100 ℃, the composition of the steel slab in weight%, C: 0.02% or less, Si: 3.5% Or less than Mn: 0.5% or less, S: 0.01% or less, N: 0.008% or less, Cu: 0.05-0.50%, Al: 0.5% or less, P: 0.05-0.15%, residual Fe and inevitable impurities; And a reheating temperature of the slab is 1050-1270 ° C., wherein the iron loss and magnetic flux density are excellent. 강 슬라브를 재가열하고, 재가열된 슬라브를 850-930℃의 온도에서 열간압연을 종료한 후, 열연판을 800-1100℃의 온도에서 열연소둔한 다음 산세하고, 이어서 800-1050℃의 온도에서 중간소둔함을 포함한 2회 냉간압연후에 냉간압연판을 800-1100℃의 온도에서 최종 냉연판 소둔을 실시하는 공정을 포함하는 무방향성 전기강판의 제조방법에 있어서, 상기 강슬라브는 그 조성이 중량%로, C:0.02% 이하, Si:3.5% 이하, Mn:0.5% 이하, S:0.01% 이하, N:0.008% 이하, Cu:0.05-0.50%, Al:0.5% 이하, P:0.05-0.15%, 잔부 Fe 및 불가피한 불순물로 조성되며 ; 그리고 상기 슬라브의 재가열온도가 1050-1270℃임을 특징으로 하는 철손과 자속밀도가 우수한 무방향성 전기강판의 제조방법.After reheating the steel slab, hot-rolling the reheated slab at a temperature of 850-930 ° C., hot-rolling the hot rolled plate at a temperature of 800-1100 ° C. and then pickling, followed by an intermediate at a temperature of 800-1050 ° C. In the method for producing a non-oriented electrical steel sheet comprising the step of performing the final cold roll annealing cold rolled sheet at a temperature of 800-1100 ℃ after two cold rolling including annealing, the steel slab is composed of weight percent , C: 0.02% or less, Si: 3.5% or less, Mn: 0.5% or less, S: 0.01% or less, N: 0.008% or less, Cu: 0.05-0.50%, Al: 0.5% or less, P: 0.05-0.15 %, Balance Fe and inevitable impurities; And a reheating temperature of the slab is 1050-1270 ° C., wherein the iron loss and magnetic flux density are excellent.
KR1019930031070A 1993-12-29 1993-12-29 Method for preparation of non-oriented electrical steel sheet having high flux-density KR960003174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031070A KR960003174B1 (en) 1993-12-29 1993-12-29 Method for preparation of non-oriented electrical steel sheet having high flux-density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031070A KR960003174B1 (en) 1993-12-29 1993-12-29 Method for preparation of non-oriented electrical steel sheet having high flux-density

Publications (2)

Publication Number Publication Date
KR950018542A KR950018542A (en) 1995-07-22
KR960003174B1 true KR960003174B1 (en) 1996-03-06

Family

ID=19374084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031070A KR960003174B1 (en) 1993-12-29 1993-12-29 Method for preparation of non-oriented electrical steel sheet having high flux-density

Country Status (1)

Country Link
KR (1) KR960003174B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141278B1 (en) * 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782762B1 (en) * 2001-12-22 2007-12-05 주식회사 포스코 A method for manufacturing non-oriented silicon steel with excellent magnetic property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141278B1 (en) * 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties

Also Published As

Publication number Publication date
KR950018542A (en) 1995-07-22

Similar Documents

Publication Publication Date Title
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
AU632876B2 (en) Non-oriented electrical strip and process for its production
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR960003174B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density
KR100479991B1 (en) A method for producing non-oriented silicon steel with low core loss
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
KR920005619B1 (en) Making process for electrical steel sheet
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR101141278B1 (en) method for manufacturing Non-Oriented Electrical steel sheet having good magnetic properties
KR930011407B1 (en) Method and product of manufacturing silicon steel sheet having improved magnetic flux density
EP0452122A2 (en) Method of producing grain oriented silicon steel sheets having less iron loss
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR101119960B1 (en) Method for manutacturing non-Oriented Electrical steel sheet having good properties
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
KR100276307B1 (en) The manufacturing method of oriented electric steelsheet with thick plate
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR20010039572A (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100237157B1 (en) The manufacturing method for non orient electric steel sheet with excellent high frequency property
KR960014510B1 (en) Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic
KR960003175B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee