KR20010019750A - Method for Repairing Unshaped Refractories for Ladle - Google Patents
Method for Repairing Unshaped Refractories for Ladle Download PDFInfo
- Publication number
- KR20010019750A KR20010019750A KR1019990036326A KR19990036326A KR20010019750A KR 20010019750 A KR20010019750 A KR 20010019750A KR 1019990036326 A KR1019990036326 A KR 1019990036326A KR 19990036326 A KR19990036326 A KR 19990036326A KR 20010019750 A KR20010019750 A KR 20010019750A
- Authority
- KR
- South Korea
- Prior art keywords
- slip casting
- alumina
- ladle
- casting castable
- magnesia
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/02—Linings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
본 발명은 래들용 부정형 내화물의 보수 방법에 관한 것으로, 보다 상세하게는 제강 설비인 래들(ladle)의 내장 내화물로 사용되는 알루미나-마그네시아계 부정형 내화물의 유입재 보수 방법에 관한 것이다.The present invention relates to a method for repairing amorphous refractory materials for ladle, and more particularly, to a method for repairing inflow materials of alumina-magnesia-based amorphous refractory materials used as internal refractory materials of ladles, which are steel making facilities.
일반적으로 래들용 내장 내화물로는 시공상의 이점과 높은 사용 수명을 가진 알루미나-스피넬(Al2O3-spinel)계 부정형 내화물(unshaped refractories)이나 알루미나-마그네시아(Al2O3-MgO)계 부정형 내화물을 사용하고 있다.Built in refractory material for a ladle generally is alumina having a construction on the advantages and the high useful life-spinel (Al 2 O 3 -spinel) based monolithic refractory material (unshaped refractories) and alumina-magnesia (Al 2 O 3 -MgO) based monolithic refractory material I'm using
이 중에서, 알루미나-마그네시아계 유입재는 시공의 기계화 및 자동화, 원단위 절감, 작업환경 개선 등의 장점이 있으나, 사용 말기에 변질 층의 박리 손상이 빈번하고 용강 및 슬래그를 배제할 때 접촉되는 부위 및 슬래그 라인(slag line) 직하부에서 부분적인 침식이 심하므로 유입재 수명의 전체적인 균형을 유지하기 위해서는 부분적인 보수가 필수적이다.Among them, the alumina-magnesia inflow material has advantages such as mechanization and automation of construction, reduction of raw units, and improvement of working environment.However, at the end of use, deterioration of the deteriorated layer is frequent, and parts and slag contacted when excluding molten steel and slag are excluded. Partial erosion is severely beneath the slag line, so partial repairs are necessary to maintain the overall balance of influent life.
이러한 배경에서 개발되고 있는 수리 방법으로 덧붙임(patching) 보수, 습식 분무(wet-spray, shotcreting) 보수, 연속 시공(endless lining) 보수 등이 있다.Repair methods developed against this background include patching repair, wet-spray and shotcreting repair, and endless lining repair.
이 중에서, 연속 시공법은 잔존 유입재 위에 형틀(중자)을 이용하여 새로운 유입재를 덧시공하고, 형틀을 제거한 후, 건조하여 수리하는 방법으로, 다른 보수법에 비해 시공 시간은 길지만, 보수재로 사용하는 내화물의 비용이 저렴하고 설비 투자가 필요 없다는 장점이 있다.Among these, the continuous construction method is to use a mold (middle) on the remaining inflow material to coat a new inflow material, remove the form, and dry and repair it. Although the construction time is longer than other repair methods, it is used as a repair material. Refractories have the advantage of low cost and no equipment investment.
일본특허공보 평9-268077호에서는 잔존하는 유입재와 그 위에 형틀을 이용하여 덧시공한 유입재간의 계면 결합력을 높이기 위해서, 조업직후에 잔존하는 유입재의 표면에 알루미나계 내화 분말을 취부 시공하여 요철부를 형성시킴으로써 유입재간의 접촉 면적을 증가시키는 방법과, 잔존 유입재에서 변질 층의 융점을 저하시킬 목적으로 이산화규소(SiO2)계 슬러리를 도포하는 방법 등을 제시한 바 있다.In Japanese Patent Application Laid-Open No. 9-268077, in order to increase the interfacial bonding force between the remaining inflow material and the inflow material overlaid by using a mold on it, alumina-based refractory powder is mounted on the surface of the remaining inflow material immediately after the operation. A method of increasing the contact area between inflow materials by forming a part and a method of applying a silicon dioxide (SiO 2 ) slurry for the purpose of lowering the melting point of the deteriorated layer in the remaining inflow material has been proposed.
그러나, 상기 방법들은 취부 시공하는 단계가 추가되므로 보수 시간이 길고, 이에 따른 재료비 증가 및 설비 투자가 필요한 단점이 있다.However, the above methods have a disadvantage in that the repair time is long because additional mounting construction steps are required, and thus material costs and facility investment are required.
본 발명은 이와 같은 문제점을 해결하기 위하여 안출한 것으로, 그 목적은 취부 시공 단계를 생략함으로써 보수 시간과 재료비 및 설비 투자를 절약하는 것이다.The present invention has been made to solve the above problems, the object of which is to reduce the maintenance time, material costs and equipment investment by eliminating the installation construction step.
상기와 같은 목적을 달성하기 위하여, 본 발명은 제강 설비인 래들의 내장 내화물로 사용되는 알루미나-마그네시아계 부정형 내화물의 유입재에 있어서, 조업 중에 유입재의 가동면과 배면사이에 온도 구배가 발생하였을 때 잔존 유입재와 그 위에 덧시공한 유입재간의 계면 온도가 1200℃ ~ 1500℃ 범위에 속하도록 덧시공하는 유입재의 시공 두께를 한정하며, 알루미나의 함량이 85중량이상이고, 이산화규소의 함량이 0.5 ~ 3중량이며, 마그네시아(MgO)의 함량이 2 ~ 10중량인 부정형 내화물을 형틀을 이용하여 잔존 유입재 위에 덧시공하는 것을 특징으로 하는 유입재의 보수 방법에 관한 것이다.In order to achieve the above object, the present invention, in the inlet of the alumina-magnesia-based amorphous refractory used as the internal refractories of the ladle steel manufacturing equipment, when a temperature gradient occurs between the operating surface and the back of the inlet during operation To limit the construction thickness of overflowing inflow materials so that the interface temperature between the remaining inflow materials and inflow materials overlaid on it is in the range of 1200 ℃ ~ 1500 ℃, the alumina content is 85 weight or more, and the silicon dioxide content is 0.5 It relates to a repair method of the influent material, characterized in that to form a refractory refractory material having a weight of 3 to 3, the content of magnesia (MgO) of 2 to 10 over the remaining influent using a mold.
여기서, 유입재의 가동면이란 용강과 접촉하는 유입재의 표면을 의미하고, 유입재의 배면이란 영구장 내화물과 접촉하는 유입재의 표면을 의미한다.Here, the movable surface of the inflow material means the surface of the inflow material in contact with the molten steel, and the back surface of the inflow material means the surface of the inflow material in contact with the permanent field refractory material.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
조업 중에 잔존하는 유입재와 새로이 시공한 유입재간의 계면 온도가 1200℃ 보다 낮을 경우에는 소결이나 화학 반응에 의한 고상 결합이 이루어지지 않으므로 계면 결합력이 낮아 간헐 작업에 의한 열충격 발생시 덧시공한 유입재의 박리 및 탈락이 일어나기 쉽다.If the interface temperature between the inflow material remaining and the newly constructed inflow material is lower than 1200 ℃ during operation, the solid phase bonding by sintering or chemical reaction is not performed. And dropout are likely to occur.
반면에 계면 온도가 1500℃ 보다 높을 경우에는 잔존 유입재의 변질층에 존재하는 산화칼슘(CaO) 성분과 덧시공한 유입재 내의 알루미나간의 반응에 의해 CaOㆍ2Al2O3, CaOㆍ6Al2O3등이 과다하게 생성되고, 이 때 수반되는 부피 팽창으로 계면 부근에서 미세 균열이 생성됨으로써 계면 결합력이 낮아지므로 바람직하지 않다.On the other hand, when the interfacial temperature is higher than 1500 ° C, CaO · 2Al 2 O 3 and CaO · 6Al 2 O 3 are caused by the reaction between the calcium oxide (CaO) component present in the altered layer of the remaining inflow material and the alumina in the overlying inflow material. It is not preferable because excessive amounts of the back are produced, and the interfacial bonding force is lowered because fine cracks are generated in the vicinity of the interface due to the accompanying volume expansion.
상기 조업 중의 잔존 유입재와 새로운 유입재간의 계면 온도()는, 아래 식을 이용하여 잔존 유입재 위에 덧시공한 새로운 유입재의 두께를 통해 구할 수 있다.The interface temperature between the remaining inlet and the new inlet during the operation ( ) Can be found from the thickness of the new influent overlaid on the remaining influent using the equation below.
상기 식에서은 래들 중앙으로 부터 임의의 반경지점에서의 온도,는 용강의 온도,는 유입재의 배면 온도,은 임의의 반경(계면 위치),는 유입재의 외경,는 유입재의 내경이다. 따라서, 실측되는,,,를 각각 대입하면 임의의 반경에서의 계면 온도()을 구할 수 있다.In the above formula Is any radius from the center of the ladle Temperature at the point, Is the temperature of molten steel, Is the back temperature of the influent, Is any radius (interface location), Is the outer diameter of the incoming material, Is the inner diameter of the incoming material. Thus, measured , , , Each of which is a random radius Interfacial temperature at ( ) Can be obtained.
여기서, 유입재의 내경은 유입재의 가동면까지의 반지름이고, 유입재의 외경은 유입재의 내경에 잔존 유입재와 덧시공 유입재를 합한 값, 즉, 유입재의 배면까지의 반지름을 의미한다.Here, the inner diameter of the inflow material is the radius to the movable surface of the inflow material, and the outer diameter of the inflow material means the value of the sum of the remaining inflow material and the overhaul inflow material, that is, the radius up to the back surface of the inflow material.
그리고, 덧시공한 유입재에 있어서 알루미나의 함량이 85중량미만이면 슬래그 및 용강에 대한 내식성이 잔존하는 유입재에 비해 낮으므로 보수재로서의 역할을 기대할 수 없고, 계면 영역에서 액상 생성이 과다하여 계면 결합력이 낮아지므로 바람직하지 않다.In addition, if the content of alumina in the overlying inflow material is less than 85 wt%, the corrosion resistance to slag and molten steel is lower than that of the remaining inflow material. Therefore, it cannot be expected to serve as a repair material. It is not preferable because it becomes low.
한편, 덧시공한 유입재에 있어서 이산화규소의 함량이 0.5중량미만일 경우에는 계면 영역에서 액상의 생성량이 충분하지 않으므로 소결 과정에 의한 강고한 결합이 이루어지지 않으며, 이산화규소의 함량이 3 중량보다 많을 경우에는 계면 영역에서 저융점의 CaO-Al2O3-SiO2계 액상이 과다하게 생성되어 계면 결합력이 낮아지고 슬래그에 대한 내식성이 저하되므로 바람직하지 않다.On the other hand, when the content of silicon dioxide is less than 0.5 wt% in the overfilled input material, since the amount of liquid phase is not generated at the interface region, firm bonding is not achieved by the sintering process, and the content of silicon dioxide is more than 3 wt%. In this case, the low melting point CaO-Al 2 O 3 -SiO 2 -based liquid phase is excessively generated in the interface region, so that the interfacial bonding strength is lowered and the corrosion resistance to slag is deteriorated.
그리고, 마그네시아의 함량이 2중량미만일 경우에는 슬래그에 대한 내침윤성이 낮고, 또한 10중량보다 많을 경우는 내침식성이 낮아지므로 바람직하지 않다.In addition, when the content of magnesia is less than 2 wt%, it is not preferable because the penetration resistance to slag is low, and when the magnesia content is more than 10 wt%, the erosion resistance is low.
이하, 실험 데이터를 참조로 하여 본 발명에 따른 바람직한 일 실시예를 설명한다.Hereinafter, a preferred embodiment of the present invention will be described with reference to experimental data.
실시예Example
잔존 유입재를 40×40×80mm의 형태로 가공한 다음 새로운 유입재를 40×40×80mm의 형태로 덧붙임 시공하여 막대 형태의 시험용 시편을 제조하였다. 덧붙임 시공하는 유입재는 알루미나 함량이 85중량이상, 이산화규소의 함량이 0.5 ∼ 3중량, 마그네시아의 함량이 2 ∼ 10중량가 되므로 알루미나, 스피넬, 실리카, 그리고 알루미나 시멘트 골재를 혼합하고, 수분을 6.5중량첨가한 다음 5분간 훈련하여 준비하였다.The remaining influent was processed in the form of 40 × 40 × 80 mm and then the new influent was added in the form of 40 × 40 × 80 mm to prepare a test specimen in the form of a rod. In addition, the inflow material to be constructed has alumina content of 85 weight or more, silicon dioxide content of 0.5 to 3 weight, and magnesia content of 2 to 10 weight, so that alumina, spinel, silica, and alumina cement aggregate are mixed and water is added 6.5 weight. And then trained for 5 minutes to prepare.
그리고, 사용 원료로는 순도 99의 소결 알루미나와 마그네시아의 함량이 28중량인 화학 양론적 조성의 스피넬 골재를 이용하였다.In addition, a spinel aggregate having a stoichiometric composition having a purity of 99 wt% of sintered alumina and magnesia was used as a raw material.
또한, 알루니마 시멘트는 알루미나 함량이 78중량이상이며 0.075mm 이하의 입도를 가지는 것을 사용하였고, 실리카는 순도 98급의 석영(quartz) 및 실리카 플라워(silica flour)를 이용하였다.In addition, alumina cement was used having an alumina content of 78 weight or more and a particle size of 0.075 mm or less, and used silica and silica flour of purity 98 grade.
그리고, 상기 제조한 시험용 시편을 대기 중에서 12시간 양생한 다음, 110℃에서 24시간 건조한 후, 건조한 시편을 1000 ∼ 1600℃에서 3시간 소성한 다음에 상온에서 꺾임 강도를 측정하여 잔존 유입재와 새로운 유입재간의 계면 결합력을 평가하였다.The cured test specimen was cured in air for 12 hours, dried at 110 ° C. for 24 hours, and then dried for 3 hours at 1000 to 1600 ° C., followed by measurement of bending strength at room temperature. The interfacial bond between influents was evaluated.
단, 상기 강도 측정시 1400℃ 보다 높은 온도에서 열간 강도를 측정할 후 없어서 1000 ∼ 1600℃에서 발현되는 시편의 열간 강도 대신에 1000 ∼ 1600℃에서 소성한 시편의 상온 강도를 측정하였다.However, at the time of the strength measurement, after measuring the hot strength at a temperature higher than 1400 ℃, the room temperature strength of the specimen fired at 1000 ~ 1600 ℃ was measured instead of the hot strength of the specimen expressed at 1000 ~ 1600 ℃.
한편, 시편의 내식성은 내화물의 침식 시험에 통상적으로 사용되는 회전 침식기를 이용하여 평가하였으며, 침식제로는 CaO/SiO2비가 5.5이고, CaO/Al2O3비가 1.5이며, Fe2O3함량이 12.5인 제강 슬래그를 사용하였다.On the other hand, the corrosion resistance of the specimen was evaluated using a rotary erosion machine commonly used in the erosion test of the refractory, the erosion agent CaO / SiO 2 ratio is 5.5, CaO / Al 2 O 3 ratio is 1.5, Fe 2 O 3 content Steelmaking slag of 12.5 was used.
그리고, 시험 후 시편의 침식 면적을 측정한 후 시험전의 면적에 대한 백분율을 계산함으로써 내식성을 비교하였고, 강도 측정 결과를 표 1에 나타내었다.In addition, after measuring the erosion area of the specimen after the test, the corrosion resistance was compared by calculating the percentage of the area before the test, and the strength measurement results are shown in Table 1.
* 비교예Comparative Example
상기 표 1에서와 같이, 유입재 조성이 본 발명의 범위를 벗어난 비교예 1 내지 5는 꺾임 강도가 낮거나 내식성이 열위임을 알 수 있다.As shown in Table 1, Comparative Examples 1 to 5 in which the influent composition is outside the scope of the present invention can be seen that the bending strength is low or the corrosion resistance is inferior.
상술하면, 비교예 1은 알루미나의 함유량을 80중량로 한 경우로 꺾임 강도와 내식성 모두 좋지 않았고, 비교예 2는 이산화규소의 함유량을 0.1중량로 한 경우로 꺾임 강도가 낮았으며, 비교예 3은 이산화규소의 함유량을 5.0중량로 한 경우로 꺾임 강도와 내식성 모두 좋지 않았다. 그리고, 비교예 4와 5는 각각 마그네시아 함유량은 1.0중량와 14중량로 한 경우로 모두 내식성이 좋지 않았다.Specifically, in Comparative Example 1, when the content of alumina was 80 weights, both the bending strength and the corrosion resistance were not good. In Comparative Example 2, when the content of silicon dioxide was 0.1 weight, the bending strength was low. When the content of silicon dioxide was 5.0 weight, both the bending strength and the corrosion resistance were poor. In Comparative Examples 4 and 5, the magnesia content was 1.0 weight and 14 weight, respectively.
한편, 본 발명의 조건 범위로 제조된 실시예 6 내지 8은 꺾임 강도와 내식성 모두 우수함을 알 수 있다.On the other hand, it can be seen that Examples 6 to 8 manufactured under the condition range of the present invention are excellent in both bending strength and corrosion resistance.
그리고, 소성 온도를 본 발명의 범위인 1200℃와 1400℃로 한 시편이 본 발명의 범위를 벗어난 1000℃와 1600℃로 한 시편에 비해 꺾임 강도가 우수함을 알 수 있다.In addition, it can be seen that the specimens having the firing temperature of 1200 ° C and 1400 ° C, which are the scope of the present invention, have superior bending strength as compared to the specimens of 1000 ° C and 1600 ° C, which are outside the range of the present invention.
이와 같이 본 발명은 조업 후 잔존하는 알루미나계 유입재 위에 별도의 전처리 작업을 하지 않고, 알루미나, 이산화규소 그리고 마그네시아 함유량을 갖는 알루미나계 부정형 내화물을 형틀을 이용하여 두께를 조절하면서 유입 시공함으로써 잔존 유입재의 재활용과 부수 비용의 절감을 가능하게 한다.As described above, the present invention does not perform a separate pretreatment on the remaining alumina inflow material after operation, and injects alumina-based amorphous refractory material having alumina, silicon dioxide and magnesia content while adjusting the thickness using a mold to provide a residual inflow material. Enables reduction of recycling and incidental costs.
또한, 본 발명은 래들 설비의 내장재로 사용하는 유입재의 사용 수명을 연장하며 원단가 절감을 가능하게 한다.In addition, the present invention extends the service life of the inflow material used as the interior material of the ladle facility and enables the fabric to be saved.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990036326A KR20010019750A (en) | 1999-08-30 | 1999-08-30 | Method for Repairing Unshaped Refractories for Ladle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990036326A KR20010019750A (en) | 1999-08-30 | 1999-08-30 | Method for Repairing Unshaped Refractories for Ladle |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20010019750A true KR20010019750A (en) | 2001-03-15 |
Family
ID=19609246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990036326A KR20010019750A (en) | 1999-08-30 | 1999-08-30 | Method for Repairing Unshaped Refractories for Ladle |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20010019750A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100515600B1 (en) * | 2000-12-22 | 2005-09-16 | 재단법인 포항산업과학연구원 | Recycling Method of Residual Castables for Teeming Ladle |
KR100515601B1 (en) * | 2000-12-22 | 2005-09-16 | 재단법인 포항산업과학연구원 | Recycling Method of Residual Castables for Teeming Ladle |
KR100522347B1 (en) * | 2001-12-22 | 2005-10-18 | 주식회사 포스코 | Recycling method of residual castables using dolomite and slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191312A (en) * | 1984-10-12 | 1986-05-09 | Nippon Kokan Kk <Nkk> | Operating method of ladle refining furnace |
JPH0976056A (en) * | 1995-09-11 | 1997-03-25 | Harima Ceramic Co Ltd | Ladle for molten steel and its repairing method |
JPH10152380A (en) * | 1996-11-15 | 1998-06-09 | Sumitomo Metal Ind Ltd | Amorphous refractory material for repairing by putting piece to alumina-magnesia-based pouring ladle |
JPH11300467A (en) * | 1998-04-20 | 1999-11-02 | Nippon Steel Corp | Method for executing repair of monolithic refractory lining |
-
1999
- 1999-08-30 KR KR1019990036326A patent/KR20010019750A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6191312A (en) * | 1984-10-12 | 1986-05-09 | Nippon Kokan Kk <Nkk> | Operating method of ladle refining furnace |
JPH0976056A (en) * | 1995-09-11 | 1997-03-25 | Harima Ceramic Co Ltd | Ladle for molten steel and its repairing method |
JPH10152380A (en) * | 1996-11-15 | 1998-06-09 | Sumitomo Metal Ind Ltd | Amorphous refractory material for repairing by putting piece to alumina-magnesia-based pouring ladle |
JPH11300467A (en) * | 1998-04-20 | 1999-11-02 | Nippon Steel Corp | Method for executing repair of monolithic refractory lining |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100515600B1 (en) * | 2000-12-22 | 2005-09-16 | 재단법인 포항산업과학연구원 | Recycling Method of Residual Castables for Teeming Ladle |
KR100515601B1 (en) * | 2000-12-22 | 2005-09-16 | 재단법인 포항산업과학연구원 | Recycling Method of Residual Castables for Teeming Ladle |
KR100522347B1 (en) * | 2001-12-22 | 2005-10-18 | 주식회사 포스코 | Recycling method of residual castables using dolomite and slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Refractories: Controlled microstructure composites for extreme environments | |
JP2596681B2 (en) | Castable refractories containing zirconia and mullite | |
KR20010019750A (en) | Method for Repairing Unshaped Refractories for Ladle | |
WO2011058811A1 (en) | Sliding nozzle plate | |
JP2874831B2 (en) | Refractory for pouring | |
JP2001302364A (en) | Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining | |
JP4408552B2 (en) | Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source | |
JPH0633179B2 (en) | Irregular refractory for pouring | |
JP3212856B2 (en) | Irregular cast refractories and their moldings | |
JPH0952169A (en) | Refractory for tuyere of molten steel container | |
JP3673961B2 (en) | Lined structure of vacuum degassing equipment vacuum chamber | |
KR930011274B1 (en) | Unshaped refractories of alumina-spinel | |
JP3238592B2 (en) | Irregular cast refractory moldings | |
JP4347952B2 (en) | Basic amorphous refractories using magnesia calcia clinker | |
JP2795805B2 (en) | Ladle brick | |
JPH0671422A (en) | Method for lining bottom part in ladle | |
KR100373702B1 (en) | Block Molding Using Alumina-Spinel Waste Castable | |
KR101066573B1 (en) | Precast well block and fireproof composition thereof | |
KR100286663B1 (en) | Basic flame retardant for timing ladle | |
KR100505110B1 (en) | Unshaped refractories composition | |
JP3354213B2 (en) | Highly durable non-ferrous metal refractories | |
KR100265002B1 (en) | Refractory material of magnesia-spinel type | |
KR100590712B1 (en) | Graphite-containing amorphous refractory | |
JPH07291748A (en) | Executing method of monolithic refractory | |
JP2001030047A (en) | Immersion nozzle having sliding surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E801 | Decision on dismissal of amendment | ||
E601 | Decision to refuse application |