KR20010010241A - 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법 - Google Patents

고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법 Download PDF

Info

Publication number
KR20010010241A
KR20010010241A KR1019990029011A KR19990029011A KR20010010241A KR 20010010241 A KR20010010241 A KR 20010010241A KR 1019990029011 A KR1019990029011 A KR 1019990029011A KR 19990029011 A KR19990029011 A KR 19990029011A KR 20010010241 A KR20010010241 A KR 20010010241A
Authority
KR
South Korea
Prior art keywords
thin film
grown
ybco
ceo2
post
Prior art date
Application number
KR1019990029011A
Other languages
English (en)
Other versions
KR100338250B1 (ko
Inventor
이상영
이재훈
양우일
발랜틴카마시카
Original Assignee
이상영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상영 filed Critical 이상영
Priority to KR1019990029011A priority Critical patent/KR100338250B1/ko
Priority to PCT/KR2000/000778 priority patent/WO2001005726A2/en
Publication of KR20010010241A publication Critical patent/KR20010010241A/ko
Application granted granted Critical
Publication of KR100338250B1 publication Critical patent/KR100338250B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 CeO2-buffered r-cut Sapphire 기판(이하 "CbS"로 칭함)위에 고온초전도 YBa2Cu3O7-δ(이하 "YBCO"로 칭함) 박막 성장시 박막의 표면의 평활도를 크게 향상시키 위해서,
본 발명의 CbS 기판위에 고온초전도 YBCO 박막을 성장시키기 전에 CbS 를 950 ∼ 1050 ℃에서 후열처리(pre-annealing) 시키며 바람직하게는 980 ∼ 1020 ℃ 에서 후열처리한 후 YBCO 박막을 성장시키는 방법과 보다 나은 YBCO 박막을 얻기 위해서는 CeO₂ 증착률을 0.2 ∼ 1.2 nm/분 으로 하고, 바람직하게는 0.4 ∼ 0.9 nm/분 으로 하는 것을 특징으로 하며, 본 발명의 실시로 CbS 의 평탄화를 기함으로써 CbS 위에 성장된 고온초전도 YBCO 박막의 표면 거칠기를 종래 기술의 1/6 이하로 낮추며, 전기적인 특성인 표면저항이 현저하게 개선되어 송신기 모듈용의 마이크로파 소자 제작 등에 유용하게 사용할 수 있다.

Description

고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법{Method for improving the properties of the high-temperature YBa2Cu3O7-δsurface on the CeO2-buffered r-cut sapphire substrates}
본 발명은 CeO2-buffered r-cut Sapphire 기판(이하 "CbS"로 칭함)위에 고온초전도 YBa2Cu3O7-δ(이하 "YBCO"로 칭함) 박막 성장시 박막의 표면특성 향상방법에 관한 것으로, 더욱 상세하게는 본 발명은 CbS 위에 고온초전도 YBCO 박막 성장전 CbS 의 후열처리 또는 r-cut 사파이어 기판위의 CeO2 증착률 변화로 YBCO 박막의 표면의 평활도를 크게 향상시키는 방법에 관한 것이다.
현재 수신기용의 마이크로파 소자를 제작시 (100) LaAlO3(이하 "LAO"로 칭함) 기판위에 성장된 YBCO 박막이 주로 이용되고 있는 데, 이는 LAO 기판위에 성장된 YBCO 박막이 10 GHz, 77K 에서 200 μΩ정도의 적은 표면저항을 가지고, LAO기판의 loss tangent 가 비교적 작은 값을 지니고 있으며, LAO 기판의 유전율이 25 이상으로 크므로 YBCO를 이용한 회로의 집적화가 가능하기 때문이다.
그러나 송신기 모듈내의 마이크로파 소자의 경우처럼 마이크로파 소자가 처리하는 신호의 크기가 클 경우에는 LAO 처럼 열전도도가 낮은 경우 열이 쉽게 분산이 되지 않아 문제가 된다. 사파이어 기판위에 YBCO 박막을 성장시키는 경우는 사파이어 기판의 열전도도가 LAO 기판에 비해 20배 이상 높고, 사파이어의 loss tangent가 300 K 및 77 K 에서 각각 10-5와 10-7정도로 매우 낮으며, LAO 의 경우 직경 2인치 정도의 기판까지 준비가 가능한 데 비해 사파이어 기판의 경우 직경 4인치 이상의 기판까지도 만들 수 있으며, 또한 에피 성장이 가능하여 에피성장된 CeO2박막을 완충층(buffer layer)으로 하여 YBCO 박막이 r-cut 사파이어 기판위에 에피 성장될 수 있는 장점이 있다. 상기 CeO2완충층은 YBCO 와 격자상수가 잘 일치할 뿐만 아니라 YBCO 와 사파이어 간의 반응을 막아주며, r-plane (혹은 (1102) 평면)상의 격자배열은 거의 직사각형 모양을 띠고 있고 [1011] 및 [1210] 방향으로의 격자간격은 각각 0.512 nm 와 0.4759 nm 인 것으로 알려져 있다. 이러한 점에서 이 두방향으로의 사파이어와 CeO2의 격자상수의 차이가 각각 5.7%와 13.7%의 비교적 큰 차이를 보이고 있음에도 불구하고 CeO2와 YBCO 간의 격자상수의 차이는 1% 미만의 매우 작은 차이를 보이기 때문에 YBCO 의 CeO2위에서의 에피성장이 가능한 것으로 여겨지고 있다. 또한 YBCO 박막의 열팽창계수는 αYBCO=13 x 10-6K-1, 사파이어의 열팽창계수는 αAl2O3=6 x 10-6K-1인 반면 CeO의 열팽창계수는 αCeO₂=11.6 x 10-6K-1로서 αYBCO와 αAl2O3의 중간 값을 가지는 것도 buffer layer 로서의 효용성을 말해준다.
그러나, 상기와 같은 CbS 기판위에 고온초전도 YBCO 박막을 성장시키는 종래의 기술은 성장된 YBCO 박막의 표면이 거칠어 고주파용의 미세회로를 제작할 경우 신호의 손실이 커지는 문제점이 있었으며 조셉슨 접합을 이용한 초전도 양자간섭소자 (SQUID)를 제작하고자 할 경우에는 우수한 특성의 조셉슨 접합의 제작이 어려워지는 문제가 있었다. 이는 CbS 위에 성장된 YBCO의 표면 거칠기는 LAO 기판위에 성장된 YBCO 박막에 비해 일반적으로 큰 값을 지니는 데, LAO 기판자체의 표면 거칠기를 매우 작게 할 수 있음에 비해 CeO₂ 완충층 위에 YBCO 박막을 성장시키는 경우에는 CeO₂ 완충층의 거칠기 및 특성에 따라 CeO₂ 완충층 위에 성장된 YBCO 박막의 거칠기가 결정되기 때문이다.
따라서 본 발명은 상기의 문제점을 해결하기 위하여 이루어진 것으로서, 본 발명의 목적은 CbS 기판위에 고온초전도 YBCO 박막 성장시 박막의 표면특성을 향상시키는 방법을 제공하는 데 있다.
상기의 목적은, CbS 기판위에 고온초전도 YBCO 박막 성장시 YBCO 박막의 표면특성을 향상시키기 위하여 CbS 를 950 ∼ 1050 ℃에서 후열처리(pre-annealing) 시키며 바람직하게는 980 ∼ 1020 ℃ 에서 후열처리한 후 YBCO 박막을 성장시키는 방법과 보다 나은 YBCO 박막을 얻기 위해서 CeO₂ 증착률을 0.2 ∼ 1.2 nm/분 으로 하고, 바람직하게는 0.4 ∼ 0.9 nm/분 으로 한정함으로써 달성하였다.
이하, 본 발명의 구체적인 구성 및 작용을 실시예를 들어 상세히 설명한다.
도 1은 r-cut 사파이어 기판위에 성장된 30 nm 두께의 CeO2박막의 표면에 대한 post-annealing 전(도 1a)과 post-annealing 후(도 1b)의 원자현미경(AFM) 사진,
도 2는 r-cut 사파이어 기판위에 성장된 80 nm 두께의 CeO2박막의 표면에 대한 post-annealing 전(도 2a)과 post-annealing 후(도 2b)의 원자현미경 사진,
도 3은 r-cut 사파이어 기판위에 성장된 45 nm 두께의 CeO2박막의 표면에 대한 post-annealing 전(도 3a)과 post-annealing 후(도 3b)의 원자현미경 사진,
도 4는 r-cut 사파이어 기판위에 성장된 45 nm 두께의 CeO2박막을 성장시킨 후 post-annealing 전(도 4a)과 post-annealing 후(도 4b)의 CeO2박막에 대한 X선 회전분석 실험결과,
도 5는 780 ℃에서 r-cut 사파이어 기판위에 45 nm 두께의 CeO2박막을 성장시킨 후 이 박막에 대한 post-annealing 과정을 거친 후 측정한 ω-scan 결과,
도 6은 45 nm 두께의 CbS위에 성장된 300 nm 두께의 YBCO 박막에 대한 X선 회절분석결과,
도 7은 Post-annealed CeO2buffered r-cut 사파이어 기판위에 성장된 300 nm 두께의 YBCO 박막의 (005) peak 에 대한 ω-scan 결과,
도 8은 post-annealing 전(도 8a)과 post-annealing 후(도 8b)의 45 nm 두께의 CbS 위에 성장된 YBCO 박막의 저항측정결과,
도 9는 post-annealing 전(도 9a)과 post-annealing 후(도 9b)의 CbS 위에 성장된 140 nm 두께의 YBCO 박막의 표면에 대한 원자현미경 사진,
도 10은 post-annealing 전(도 10a)과 post-annealing 후(도 10b)의 CbS 위에 성장된 300 nm 두께의 YBCO 박막의 표면에 대한 원자현미경 사진,
도 11은 Post-annealed CbS 위에 성장된 300 nm 두께의 YBCO 박막을 endplate 로 이용한 rutile-loaded cavity 공진기의 TE011mode unloaded Q(Q0)의 온도의존성 측정결과.
본 발명은 CbS 기판위에 고온초전도 YBCO 박막의 표면특성을 향상시키기 위하여 CbS 기판을 950 ∼ 1050 ℃ 에서 후열처리한 후 YBCO 박막을 성장하는 방법과 r-cut 사파이어 기판에 0.2 ∼1.2 nm/분의 증착율로 CeO2를 증착시키는 방법으로 구성된다.
상기 CbS 기판은 on-axis rf-스퍼터링 방법으로 r-cut 사파이어 기판 위에 CeO2완충층이 성장되었으며 성장된 박막과 같은 조성의 타겟이 사용되었는 데, 타겟의 지름과 두께는 각각 50 nm와 4 nm 이다. 아르곤 가스와 산소 가스의 분압비는 3:1 에서 10:1의 값이 사용되었으며 박막 성장시 사용한 전체 기체압력은 40 ∼ 100 nm 이다. 박막 성장시 기판의 온도는 780 ℃ 로 하였으며 기판과 히터와의 열적 접촉을 좋게 하기 위하여 silver paste 가 사용되었다.
상기 YBCO 박막은 같은 조성을 가진 단일 타겟을 이용하여 dc-마그네트론 스퍼터링 법으로 성장되었는 데 이러한 YBCO 박막의 성장시 CbS 기판이 이용되었으며 기판의 온도는 730 ℃, 기체의 총압력은 100 mTorr, 아르곤과 산소의 분압비는 4 대 1 이었고, 성장된 YBCO 박막의 두께는 약 100 nm ∼ 300 nm 정도이다.
성장된 CeO₂ 와 YBCO 박막의 구조는 X선 회절분석과 원자현미경(AFM), 그리고 전자현미경(SEM) 등의 방법으로 분석되었으며 YBCO 박막에 대한 전기적 특성을 측정하기 위하여 직류저항과 마이크로 영역에서의 표면저항이 측정되었다.
이하, 본 발명의 구체적인 구성 및 작용을 첨부도면을 참조하여 실시예에 따라 상세히 설명한다. 본 발명의 실시예는 본발명의 단순한 예시에 불과하며 본 발명의 기술적 범위를 제한하는 것은 아니다.
실시예 1 : CbS 의 후열처리에 따른 표면특성
본 실시예에서는 on-axis rf-스퍼터링 방법으로 r-cut 사파이어 기판 위에 CeO2완충층이 성장되었으며 성장된 박막과 같은 조성의 타겟이 사용되었고, 아르곤 대 산소의 분압비는 3:1 이고 박막의 증착율이 분당 1.5 ∼ 4 nm 인 상태로 CeO₂ 박막을 성장시킨 후, 이 CbS 를 1000 ℃ 에서 후열처리 여부에 따른 CbS 박막의 표면상태의 변화를 표 1에 나타내었다. 표 1의 R-factor 는 AFM 을 이용한 표면측정 결과로 부터 구한 것인 데, 측정된 표면영역에서 가장 높은 점과 가장 낮은 점의 높이의 차를 의미하며 CeO₂ 박막의 두께가 30 nm 에서 80 nm 로 증가함에 따라 R-factor 의 크기도 17 nm 에서 44 nm 로 증가했다( 도 1a,도 2a 참조).
* : "O" 는 post-annealing 된 박막, "X" 는 in-situ 성장된 박막
그러나 성장된 CeO₂ 박막에 대해 1000 ℃ 의 산소분위기에서 후열처리(post-annealing) 과정을 거친 경우 CeO₂ 박막의 R-factor 는 17 nm 에서 7 nm 로 개선되었으며, 80 nm 의 CeO₂ 박막의 R-factor 는 44 nm 에서 1.3 nm 로 현저하게 개선 됨을 알 수 있었다 (그림 1b, 2b 참조). 또한 70 mTorr 의 총압력에서 분당 3 nm 의 증착율로 성장한 60 nm 두께의 CeO₂ 박막의 경우, 성장후 측정된 R-factor 가 38 nm 의 큰 값을 지녔지만 1000 ℃ 에서의 후열처리 후에는 0.57 nm 의 매우 작은 R-factor 를 지니게 됨을 확인할 수 있었다.
실시예 2 : 낮은 CeO2 증착율에서의 CbS 후열처리 여부에 따른 CbS 표면특성
본 실시예는 상기 실시예 1 과 같은 개스 분압비이고 기체의 총압력이 70 - 100 mTorr 에서 분당 0.75 nm 의 증착률로 성장된 CeO2박막의 R-factor 는 표 2 에서 보듯이 0.67 nm 정도의 작은 값을 가지며, 실시예 1과 같이 1000 ℃ 에서의 후열처리 후에는 0.28 nm 로 개선되었다 (도 3a,3b 참조).
CeO2 증착률 0.75 nm/분 으로 성장된 CbS 의 1000 ℃ 에서의 후열처리에 따른 CbS 거칠기의 변화
Sample No. Thickness(Å) Depositionrate(Å/min) TotalPressure(mTorr) Post-annealing* peak-to-peakroughness(Å)
Ce-5 450 7.5 70 X 6.7
O 2.8
Ce-6 450 7.5 100 X 3.3
O 4.1
* : "O" 는 post-annealing 된 박막, "X" 는 in-situ 성장된 박막
상기 표 2의 Ce-5 샘플의 성장된 CeO2박막의 구조에 대한 X선 회절분석 실험결과인 도 4a,4b 를 보면, post-annealing 여부에 관계없이 박막으로 부터 (00) peak 만이 관측된다. 이것은 cubic 구조의 CeO₂ 박막이 c축 방향으로 잘 에피성장이 되었음을 보여주며, 이러한 결과는 30 - 100 nm 의 두께로 in-situ 성장된 CeO₂ 박막의 경우에도 동일하게 나타났다. 도 4에서 (200) peak 에 대한(θ-2θ) reflex 의 full width half maximum (FWHM)은 0.2-0.26°정도의 작은 값을 지니며 (400) peak 에 대한 FWHM 은 약 0.4°정도로 나타났다. 또한 도 5에서 post-annealing 과정을 거친 CeO₂ 박막(Ce-5 샘플)의 (400) peak(cubic 구조의 경우 (004) peak 와 동일 함)에 대한 rocking curve data 로 부터 측정된ω 가 0.4 - 0.5°사이의 작은 값을 지님을 알 수 있다. 따라서ω와(θ-2θ)의 크기가 증착률과 스퍼터링 기체의 총압력의 변화에 대해 큰 차이를 보이지 않는 다는 것과 CeO₂ 박막에 대한 높은 온도에서의 후열처리과정이 CeO₂ 박막의 구조에는 큰 변화를 주지 않는다.
따라서 in-situ 성장된 CeO₂ 박막(여기서는 40 nm 이하)의 표면상태를 개선하는 방법으로는 CeO₂ 의 증착률을 낮추는 방법이 효과적임을 확인할 수 있었다.
실시예 3 : CbS 의 후열처리 여부에 따른 YBCO 박막의 특성
본 실시예에서는 CeO₂박막을 사파이어 기판위에 YBCO 박막을 성장시키기 위한 완충층(buffer layer)으로 사용한 경우 CeO₂ 완충층에 대한 산소분위기에서의 후열처리과정이 CeO₂ 완충층 위에 성장된 YBCO 박막의 구조적, 전기적 특성에 미치는 영향을 실험하였으며 그 표면특성 결과를 표 3 에 나타내었다. 박막성장장치(film growth chamber) 내에서 성장된 상태 그대로의 CbS (이하 "in-situ CbS"로 칭함) 와 in-situ CbS 를 산소 분위기에서 후열처리한 CbS (이하 "post-annealed CbS" 라 칭함) 가 사용되었으며 각각의 완충층의 R-factor 는 0.67 nm 와 0.28 nm 이다 (실시예 2의 Ce-5 샘플임). 각각의 CbS 위에 성장된 YBCO 박막의 두께는 140 nm 와 300 nm 였다.
450 nm 두께의 in-situ CbS 와 post-annealed CbS 위에 성장된 YBCO 박막의 거칠기 변화
SampleNo. Thickness(Å) Total pressure(mTorr) Post-Annealing*1 Roughness(RMS) *2(Å) peak-to-peakroughness(Å)
YBCO-1a 1400 100 X 207 480
YBCO_1b 1400 100 O 6.5 23
YBCO-2a 3000 100 X 305 1125
YBCO-2b 3000 100 O 11 32
*1 : "O" 는 post-annealing 된 박막, "X" 는 in-situ 성장된 박막
*2 : Root mean square 값
X선 회절분석결과 사용된 CbS 기판에 대한 후열처리 여부에 관계없이 YBCO 박막들이 모두 c축성장이 잘 된 것을 볼 수 있는 데, 도 6은 45 nm 의 post-annealed CbS 위에 성장된 300 nm 두께의 YBCO 박막(표 3에서 YBCO-2b 샘플)에 대한 X선 회절분석결과로서 (00) peak 만이 관측되고 있으며 YBCO 박막이 c축 방향으로 에피성장 되었음을 보여준다.
도 7에서 볼 수 있듯이 이 YBCO 박막에 대한 (005) peak 의ω는 0.47°이고(θ-2θ) reflex 에 대한 FWHM 은 0.16°이며 in-situ CbS 위에 성장된 YBCO 와 post-annealed CbS 위에 성장된 YBCO 의 저항 data 는 도 8 에서 보듯이 거의 차이가 없는 것으로 나타났다. 즉 post-annealed CbS 위에 성장된 YBCO 박막의 경우 in-situ CbS 위에 성장된 YBCO 박막에 비해 초전도상이 되기 시작하는 onset 온도와 저항이 완전히 zero 로 되는 영저항온도 (zero-resistance temperature) 간의 차이인 전이온도 (△T)가 상대적으로 약간 작고 또한 300 K 에서의 저항과 100 K 에서의 저항과의 비인 R(300 K)/R(100 K) 의 값이 약간 크나 그 차이는 별로 크지 않다. 이는 post-annealed CbS 위에 성장된 YBCO 박막과 in-situ CbS 위에 성장된 YBCO 박막의 결정구조와 dc 혹은 낮은 주파수에서 측정한 전기적 특성이 사용된 CbS 에 대한 후열처리에 관계없이 비슷하게 나타남을 의미한다.
그러나 도 9a 와 도 10a 에서 보듯이 in-situ CbS 위에 성장된 두께가 140 nm 와 300 nm 인 YBCO 박막의 표면에 대한 AFM data 로서 R-factor 가 각각 48 nm 와 112 nm 의 값을 나타내고, YBCO 박막을 post-annealed CbS 위에 성장한 경우 도 9b 와 도 10 b 에서 보듯이 R-factor 가 2.3 nm 와 3.2 nm 로 현저하게 개선되었음을 볼 수 있었다.
송신기 모듈용의 마이크로파 소자 제작시 유용하게 사용되는 가는 YBCO 박막의 표면저항 측정으로 알 수 있으며, 본 실험에서는 YBCO 박막이 endplate 로 사용된 rutile-loaded cavity 공진기를 이용하여 표면저항을 측정하였으며, 도 11은 TE011-mode cavity 공진기의 비부하 양호도 (unloaded Q)의 온도의존성 data 로서 측정된 공진 주파수는 40 K, 60 K, 75 K 에서 각각 8.575, 8.65, 8.72 GHz 이다. 상기 도 11에서 비부하 양호도는 40 K, 60 K, 75 K 에서 각각 360000, 155000, 70000 으로서 도면의 inset 에 나타난 바와 같이 YBCO 의 표면저항은 40 K, 60 K, 75 K 에서 각각 91, 169, 496 μΩ 으로 매우 우수한 특성을 나타내었다.
이상, 실시예에서 설명한 바와 같이 본 발명은 CbS 의 평탄화를 기함으로써 CbS 위에 성장된 고온초전도 YBCO 박막의 표면 거칠기를 종래 기술의 1/6 이하로 낮추며, 전기적인 특성인 표면저항이 현저하게 개선되어 송신기 모듈용의 마이크로파 소자 제작 등에 유용하게 사용할 수 있으므로 고온초전도체 산업상 매우 유용한 발명인 것이다.

Claims (2)

  1. CeO2-buffered r-cut Sapphire 기판위에 고온초전도 YBa2Cu3O7-δ박막의 표면특성 향상방법에 있어서, 고온초전도 YBa2Cu3O7-δ박막 성장전에 CeO2-buffered r-cut Sapphire 기판을 950 ℃ ∼ 1050 ℃ 에서 후열처리하는 것을 특징으로 하는 고온초전도 박막의 표면특성 향상방법.
  2. 제 1항에 있어서, 상기 CeO-buffered r-cut Sapphire 기판 제조시 r-cut Sapphire 기판에 0.2 ∼ 1.2 nm/분 의 증착율로 CeO2 를 증착시키는 것을 특징으로 하는 고온초전도 박막의 표면특성 향상방법.
KR1019990029011A 1999-07-16 1999-07-16 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법 KR100338250B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019990029011A KR100338250B1 (ko) 1999-07-16 1999-07-16 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법
PCT/KR2000/000778 WO2001005726A2 (en) 1999-07-16 2000-07-18 METHOD FOR IMPROVING THE SURFACE SMOOTHNESS, THE CRYSTAL STRUCTURE AND THE MICROWAVE SURFACE RESISTANCE OF YBa2Cu3O7-δ HIGH-TEMPERATURE SUPERCONDUCTOR FILMS GROWN ON CeO2-BUFFERED r-CUT SAPPHIRE SUBSTRATES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990029011A KR100338250B1 (ko) 1999-07-16 1999-07-16 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법

Publications (2)

Publication Number Publication Date
KR20010010241A true KR20010010241A (ko) 2001-02-05
KR100338250B1 KR100338250B1 (ko) 2002-05-27

Family

ID=19602533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990029011A KR100338250B1 (ko) 1999-07-16 1999-07-16 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법

Country Status (2)

Country Link
KR (1) KR100338250B1 (ko)
WO (1) WO2001005726A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008016257B4 (de) * 2008-03-29 2010-01-28 Zenergy Power Gmbh Hochtemperatursupraleiter-Schichtanordnung und Verfahren zur Herstellung einer solchen
US9159898B2 (en) * 2011-05-31 2015-10-13 Furukawa Electric Co., Ltd. Oxide superconductor thin film and superconducting fault current limiter
RU2481673C1 (ru) * 2011-10-27 2013-05-10 Закрытое акционерное общество "СуперОкс" Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала
WO2015039142A1 (en) * 2013-09-13 2015-03-19 Mt Systems, Inc. Sapphire thinning and smoothing using high temperature wet process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017926A (ja) * 1983-07-08 1985-01-29 Matsushita Electronics Corp サフアイアの結晶欠陥検出方法
JPS6489481A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd Manufacture of superconducting thin-film
JPH01133305A (ja) * 1987-11-18 1989-05-25 Matsushita Electric Ind Co Ltd 超電導受動素子
US5439877A (en) * 1990-12-07 1995-08-08 E. I. Du Pont De Nemours And Company Process for depositing high temperature superconducting oxide thin films
EP0584410A1 (en) * 1991-07-05 1994-03-02 Conductus, Inc. Superconducting electronic structures and methods of preparing same
CA2084264C (en) * 1991-12-02 1996-11-26 Takao Nakamura Josephson junction device formed of oxide superconductor material and process for preparing the same
US5527766A (en) * 1993-12-13 1996-06-18 Superconductor Technologies, Inc. Method for epitaxial lift-off for oxide films utilizing superconductor release layers
JP3015261B2 (ja) * 1994-09-12 2000-03-06 科学技術振興事業団 表面特性を改善するサファイア単結晶基板の熱処理方法

Also Published As

Publication number Publication date
WO2001005726A3 (en) 2002-03-28
WO2001005726A2 (en) 2001-01-25
KR100338250B1 (ko) 2002-05-27

Similar Documents

Publication Publication Date Title
EP0576633A1 (en) Grain boundary junctions in high temperature superconductor films
Solovpov et al. High rate deposition of 5/spl mu/m thick YBa/sub 2/Cu/sub 3/O/sub 7/films using the BaF/sub 2/ex-situ post annealing process
Zhai et al. Effect of interfacial strain on critical temperature of YBa 2 Cu 3 O 7− δ thin films
JPH03150218A (ja) 超電導薄膜の作製方法
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
US5906965A (en) Thin film superconductor-insulator-superconductor multi-layer films and method for obtaining the same
Hellman et al. Molecular‐beam epitaxy and deposition of high‐T c superconductors
WO1998018139A9 (en) Thin film superconductor-insulator-superconductor multi-layer films and method for obtaining the same
KR100338250B1 (ko) 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법
US20060172892A1 (en) Surface improvement method in fabricating high temperature superconductor devices
CA2194400A1 (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
KR970005158B1 (ko) 복합 산화물 초전도박막 또는 선재와 그 제작방법
KR20050118294A (ko) 산화물 초전도 선재용 금속 기판, 산화물 초전도 선재 및그 제조방법
Haugan et al. Microstructural and superconducting properties of (Y1− xEux) Ba2Cu3O7− δ thin films: x= 0–1
CA2043541C (en) Process for preparing high-temperature superconducting thin films
Lee et al. Significant improvements in the surface smoothness of YBa2Cu3O7-δ films on high-temperature annealed CeO2-buffered r-cut sapphire
US5314870A (en) Preparing thin film of oxide superconductor
Konishi et al. Homoepitaxial growth of a-axis oriented YBa2Cu3O7− δ thin films on single crystals
Ece et al. Microstructural characterization of YBaCuO thin films deposited by rf magnetron sputtering as a function of annealing conditions
Ye et al. Preparation of extremely smooth YBa2Cu3O7− δ thin films on the annealed MgO substrates
JPS63225599A (ja) 酸化物超伝導薄膜の作製方法
Tao et al. Thickness effect on the structural and electrical properties of sputtered YBCO coated conductors
Gao et al. Growth and characterization of Eu-Cu-O thin films on YSZ [100] substrates
Yang et al. Microstructural study of tilted epitaxial thin films of YBa2Cu3O7− δ with a (105) orientation
KR100287121B1 (ko) 고온초전도 박막의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070424

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee