KR20000060258A - Cooling cycle of air symmetry machine - Google Patents

Cooling cycle of air symmetry machine Download PDF

Info

Publication number
KR20000060258A
KR20000060258A KR1019990008398A KR19990008398A KR20000060258A KR 20000060258 A KR20000060258 A KR 20000060258A KR 1019990008398 A KR1019990008398 A KR 1019990008398A KR 19990008398 A KR19990008398 A KR 19990008398A KR 20000060258 A KR20000060258 A KR 20000060258A
Authority
KR
South Korea
Prior art keywords
refrigerant
evaporator
condenser
cooling
compressor
Prior art date
Application number
KR1019990008398A
Other languages
Korean (ko)
Inventor
송기섭
정동환
김영권
Original Assignee
지두환
주식회사 세일이엔지
김영권
정동환
송기섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지두환, 주식회사 세일이엔지, 김영권, 정동환, 송기섭 filed Critical 지두환
Priority to KR1019990008398A priority Critical patent/KR20000060258A/en
Publication of KR20000060258A publication Critical patent/KR20000060258A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE: An air conditioning cycle of an air conditioner is provided to reduce the power consumption and improve the cooling efficiency. CONSTITUTION: An air conditioning cycle of an air conditioner including a compressor(110) discharging a high-temperature and pressure refrigerant, a condenser(140) flowing in gas refrigerant discharged through a refrigerant pipe and forcedly cooling the refrigerant for liquefying by exchanging heat with air ventilated by a cooling fan, an expansion valve(150) decompressing the refrigerant condensed in the condenser, and an evaporator(170) cooling indoor air by taking heat from air ventilated by an indoor cooling fan when the decompressed refrigerant is evaporated, wherein the operation of the compressor is stopped in winter when the temperature deviation over a predetermined temperature is generated, and the refrigerant cooled by the cooling fan is condensed, liquefied, and thereafter provided to an evaporator by using sucking force, so that the refrigerant is evaporated by difference of the temperature with indoor temperature and the evaporated refrigerant is naturally cycled to the condenser by sucking operation.

Description

공기조화기의 냉방싸이클{Cooling cycle of air symmetry machine}Cooling cycle of air conditioner

본 발명은 공기조화기의 냉방싸이클에 관한 것으로서, 더욱 상세하게는 동절기에 압축기의 구동없이 실내외의 온도차를 이용하여 냉매를 자연순환시키므로서 전력낭비를 크게 절감할 수 있는 공기조화기의 냉방싸이클에 관한 것이다.The present invention relates to a cooling cycle of an air conditioner, and more particularly, to a cooling cycle of an air conditioner, which can greatly reduce power consumption by naturally circulating a refrigerant using an indoor / outdoor temperature difference without driving a compressor in winter. It is about.

일반적으로 공기조화기의 냉방싸이클은 도 1에 도시된 바와 같이, 실외기의 압축기(10)에 의해 고온고압의 기체상태로 압축된 냉매가 냉매관(20)을 통해 응축기(30)에 유입되면, 응축기(30)에서는 고온고압의 기체상태로 압축된 기체냉매를 냉각팬(40)에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화한다.In general, the cooling cycle of the air conditioner is a refrigerant compressed in a gaseous state of high temperature and high pressure by the compressor 10 of the outdoor unit as shown in FIG. 1, when the refrigerant flows into the condenser 30 through the refrigerant pipe 20. The condenser 30 heat-exchanges the gas refrigerant compressed in a gaseous state of high temperature and high pressure with air blown by the cooling fan 40 to forcibly cool the refrigerant to liquefy.

이어서, 상기 응축기(30)에서 약 35。∼40。로 온도가 저하된 고압의 액채냉매는 증발압력까지 팽창시키는 실내기의 팽창밸브(50)를 통과하면서 저온저압의 기체와 액체로 공존하는 냉매로 되어 증발기(60)에 유입된다.Subsequently, the high pressure liquid liquefied refrigerant whose temperature is lowered from about 35 ° to 40 ° in the condenser 30 is passed through the expansion valve 50 of the indoor unit which expands to the evaporation pressure as a refrigerant which coexists with gas and liquid at low temperature and low pressure. And flows into the evaporator 60.

한편, 상기 증발기(60)로 유입된 냉매는 이를 통과하면서 기화할 때 실내팬(70)에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨 다음, 그 냉각된 공기(냉풍)를 실내로 방출해서 냉방을 행하고, 상기 증발기(60)에서 상변화된 저온저압의 기체냉매는 다시 압축기(10)에 의해 흡입되어 반복순환하는 냉방싸이클을 형성한다.On the other hand, the refrigerant introduced into the evaporator 60 takes heat from the air blown by the indoor fan 70 when evaporating while passing through it to cool the indoor air, and then discharges the cooled air (cold air) into the room. Cooling is performed, and the low-temperature low-pressure gas refrigerant, which is phase-changed in the evaporator 60, is again sucked by the compressor 10 to form a cooling cycle that is repeatedly circulated.

그러나, 이와 같은 종래 공기조화기의 냉방싸이클은 언제나 압축기(10)를 동작시켜 냉매를 강제순환시키는 구조이기 때문에 사계절 구동시켜야 하는 장소에서는 많은 전력손실이 불가피하다는 문제점이 있었다.However, such a cooling cycle of the conventional air conditioner has a problem that a lot of power loss is inevitable in the place to be driven four seasons because the cooling cycle of the conventional air conditioner always operates the compressor (10).

또한 종래에는 도 2의 요부 확대 도면과 같이 응축기(30)와 증발기(60)에 냉매관(31)(61)이 수평으로 위치한 상태에서 냉각핀(32)(62)이 수직으로 설치되기 때문에 냉매가 냉매관(31)(61)의 내부에 충만되지 못한 상태로 순환되므로서 냉방효율이 크게 저하되는 문제점이 있었다.In addition, since the cooling fins 32 and 62 are vertically installed in the state where the refrigerant pipes 31 and 61 are horizontally positioned in the condenser 30 and the evaporator 60, as shown in the enlarged main part of FIG. There is a problem that the cooling efficiency is greatly reduced since the circulation is not filled in the inside of the refrigerant pipe (31) (61).

본 발명은 상기한 제반 문제점을 해결하기 위한 것으로서, 봄, 여름, 가을에는 일반적인 냉방싸이클과 동일하게 압축기를 가동시켜 냉매를 강제순환시키므로 소망하는 냉방을 행하고, 동절기에는 압축기의 구동없이 실외의 온도차를 이용하여 냉매를 자연순환시키므로서 전력낭비를 크게 절감시킨 공기조화기의 냉방싸이클를 제공하는데 그 목적이 있다.The present invention is to solve the above-mentioned problems, in the spring, summer and autumn, the compressor is forced to circulate the refrigerant by operating the compressor in the same way as the general cooling cycle, and the desired cooling is performed in winter, the outdoor temperature difference without driving the compressor The purpose of the present invention is to provide a cooling cycle of an air conditioner that greatly reduces power consumption by naturally circulating a refrigerant.

또한, 본 발명은 상기 응축기와 증발기에 냉매관을 수직으로 위치한 상태에서 냉각핀이 수평으로 설치시켜 냉매가 냉매관의 내부에 충만된 상태에서 순환되도록 하므로서 냉방효율을 크게 향상시킨 공기조화기의 냉방싸이클를 제공하는데 그 목적이 있다.In addition, the present invention is to provide a cooling fin horizontally installed in the state in which the refrigerant pipe is vertically positioned in the condenser and the evaporator so that the refrigerant is circulated in the state filled with the refrigerant inside the cooling of the air conditioner greatly improved the cooling efficiency The purpose is to provide a cycle.

도 1은 종래 기술에 따른 냉방싸이클의 개요도,1 is a schematic diagram of a cooling cycle according to the prior art,

도 2의 (a)는 도 1에 도시된 증발기의 요부 단면도이고,2 (a) is a sectional view of the main parts of the evaporator shown in FIG.

(b)는 도 1에 도시된 응축기의 요부단면도,(b) is a cross-sectional view of main parts of the condenser shown in FIG.

도 3은 본 발명에 따른 냉방싸이클의 개요도,3 is a schematic view of a cooling cycle according to the present invention;

도 4는 본 발명에 따른 증발기의 개략도,4 is a schematic view of an evaporator according to the invention,

도 5는 본 발명에 따른 응축기의 개략도.5 is a schematic view of a condenser in accordance with the present invention.

<도면의 주요 부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

110:압축기 120:냉매관110: compressor 120: refrigerant tube

121:제1분기관 122:전자변121: first branch engine 122: electron valve

123:역류방지변 124:제2분기관123: non-return valve 124: second branch

125:개폐밸브 130:냉각팬125: open / close valve 130: cooling fan

140:응축기 141:냉매관140: condenser 141: refrigerant pipe

142:냉각핀 150:팽창밸브142: cooling fin 150: expansion valve

170:증발기 171:냉매관170: evaporator 171: refrigerant tube

172:냉각핀 180a:냉매여과기172: cooling fin 180a: refrigerant filter

180b:전자변180b: Electron valve

상기한 목적을 달성하기 위해 본 발명은 고온고압의 냉매를 토출하는 압축기와; 이 압축기에서 냉매관을 통해 토출된 기체냉매를 유입하여 냉각팬에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화하는 응축기와; 이 응축기에서 응축된 냉매를 감압하는 팽창밸브와; 이 팽창밸브에서 감압된 냉매가 유입되어 기화할 때 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시키는 증발기 등을 포함하는 구성으로 이루어진 공기조화기의 냉방싸이클에 있어서, 실외기와 실내기에 소정의 온도 이상으로 온도편차가 발생하는 동절기에 압축기의 동작을 정지시키고, 냉각팬에 의해 냉각된 냉매를 응축, 액화시킨 다음 응축된 냉매액을 중력에 의한 흡인력을 이용하여 실내기의 증발기에 공급시켜 냉매가 실내와의 온도차에 의해 증발되도록하고, 상기 증발기에서 증발된 냉매는 흡인작용에 의해 응축기로 자연순환되도록 한 특징이 있다.The present invention to achieve the above object is a compressor for discharging a refrigerant of high temperature and high pressure; A condenser for introducing the gas refrigerant discharged through the refrigerant pipe from the compressor and heat-exchanging the air blown by the cooling fan to forcibly cool the liquid to liquefy it; An expansion valve for reducing the refrigerant condensed in the condenser; In the cooling cycle of the air conditioner comprising an evaporator for removing the heat from the air blown by the indoor fan when the refrigerant reduced in pressure from the expansion valve is evaporated to cool the indoor air. Stop the operation of the compressor in the winter when the temperature deviation occurs above a predetermined temperature, condensing and liquefying the refrigerant cooled by the cooling fan, and then supply the condensed refrigerant liquid to the evaporator of the indoor unit by using the suction force by gravity The refrigerant is evaporated by the temperature difference with the room, and the refrigerant evaporated in the evaporator is characterized in that the natural circulation to the condenser by the suction action.

또한, 본 발명은 증발기와 응축기 사이의 냉매관에 압축기의 구동시 차단되는 전자변을 설치함과 아울러 냉매관의 적소에 냉매의 역류를 방지하는 역류방지변을 설치하는 한편, 상기 응축기와 증발기 사이의 냉매관에 압축기의 구동시 냉매가 냉매여과기 및 전자변과 팽창밸브를 통해 증발기로 공급될 수 있게 개폐밸브를 설치한 특징이 있다.In addition, the present invention is installed in the refrigerant pipe between the evaporator and the condenser, while the electronic valve is cut off when the compressor is driven, while installing a non-return valve to prevent the backflow of the refrigerant in place of the refrigerant pipe, while between the condenser and the evaporator When the compressor is driven in the refrigerant pipe is characterized in that the opening and closing valve is installed so that the refrigerant can be supplied to the evaporator through the refrigerant filter and the electromagnetic valve and expansion valve.

본 발명은 또, 상기 응축기와 증발기의 냉매관을 수직으로 위치시킨 다음, 상기 냉매관에 냉각핀을 무수히 형성한 것을 특징으로 한다.In another aspect, the present invention is characterized in that after the refrigerant pipes of the condenser and the evaporator are vertically positioned, a number of cooling fins are formed in the refrigerant pipe.

이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 냉방싸이클의 개요도이다.3 is a schematic diagram of a cooling cycle according to the present invention.

먼저, 일반적인 냉방싸이클(100)은 고온고압의 냉매를 토출하는 압축기(110)와; 이 압축기(110)에서 냉매관(120)을 통해 토출된 기체냉매를 유입하여 냉각팬(130)에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화하는 응축기(140)와; 이 응축기(140)에서 응축된 냉매를 감압하는 팽창밸브(150)와; 이 팽창밸브(150)에서 감압된 냉매가 유입되어 기화할 때 실내팬(160)에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시키는 증발기(170); 등을 포함하는 구성으로 이루어진다.First, the general cooling cycle 100 includes a compressor 110 for discharging a refrigerant of high temperature and high pressure; A condenser 140 for introducing a gas refrigerant discharged through the refrigerant pipe 120 from the compressor 110 and exchanging heat with air blown by the cooling fan 130 to forcibly cool and liquefy the refrigerant; Expansion valve 150 for reducing the refrigerant condensed in the condenser 140; An evaporator 170 which cools indoor air by taking heat from the air blown by the indoor fan 160 when the refrigerant decompressed by the expansion valve 150 flows in and evaporates; It consists of a structure including the.

그런 다음, 증발기(170)에서 압축기(110)로 연통되는 냉매관(120)을 분기시켜 그 분기냉매관(121)을 응축기(140)로 연결하는 한편, 상기 제1분기관(121)의 적소에 냉매의 유통을 제어할 수 있는 전자변(122)과, 냉매의 역류를 방지하는 역류 방지변(123)이 순차적으로 설치된다.Then, by branching the refrigerant pipe 120 communicated from the evaporator 170 to the compressor 110 to connect the branch refrigerant pipe 121 to the condenser 140, while the place of the first branch pipe 121 The electronic valve 122 capable of controlling the circulation of the refrigerant and the non-return valve 123 for preventing the backflow of the refrigerant are sequentially installed.

그리고, 응축기(140)와 증발기(170) 사이의 냉매관(120)에 냉매여과기(180a) 및 전자변(180b)과 팽창밸브(150)이 설치되는데, 냉매가 이들을 거치지 않고 곧장 증발기(170)로 공급되도록 제2분기관(124)을 형성한 다음, 상기 제2분기관(124)의 적소에 개폐밸브(125)을 설치하여 압축기(110)의 정지시 상기 제2분기관(124)으로 냉매가 자연순환되도록 한다.In addition, a coolant filter 180a, an electron valve 180b, and an expansion valve 150 are installed in the coolant pipe 120 between the condenser 140 and the evaporator 170, and the coolant goes straight to the evaporator 170 without passing through them. After the second branch pipe 124 is formed to be supplied, an opening / closing valve 125 is installed in place of the second branch pipe 124 to cool the refrigerant to the second branch pipe 124 when the compressor 110 is stopped. Allow natural circulation.

한편, 제 4도 및 제 5도의 확대도면과 같이 상기 응축기(140)와 증발기(170)의 냉매관(141)(171)을 수직으로 위치시킨 다음, 이 냉매관(141)(171)에 등간격으로 냉각핀(142)(172)이 무수히 형성된다.Meanwhile, as shown in the enlarged views of FIGS. 4 and 5, the refrigerant pipes 141 and 171 of the condenser 140 and the evaporator 170 are vertically positioned, and then the coolant pipes 141 and 171 are disposed. The cooling fins 142 and 172 are formed innumerably at intervals.

부연하자면, 상기 응축기(140)와 증발기(170)의 냉매관(141)(171)를 수직으로 위치시킴으로써 냉매관(141)(171)의 내부에 냉매가 충만된 상태로 유통되어 결과적으로 냉방효율이 크게 향상된다.In other words, by placing the refrigerant pipes 141 and 171 of the condenser 140 and the evaporator 170 vertically, the refrigerant is circulated in the state filled with the refrigerant inside the refrigerant pipes 141 and 171, resulting in cooling efficiency. This is greatly improved.

상기와 같이 구성된 본 발명의 작용을 상세히 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above in detail.

외기와 실내의 온도차가 다소 작은 봄, 여름, 가을의 냉방싸이클은 도 3과 같이 실외기의 압축기(110)에 의해 고온고압의 기체상태로 압축된 냉매가 냉매관(120)을 통해 응축기(140)에 유입되면, 응축기(140)에서는 고온고압의 기체상태로 압축된 기체냉매를 냉각팬(130)에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화한다.In the cooling cycles of spring, summer, and autumn where the temperature difference between the outside and the room is slightly smaller, the refrigerant compressed in the gas state of high temperature and high pressure by the compressor 110 of the outdoor unit is condenser 140 through the refrigerant pipe 120 as shown in FIG. 3. When introduced into the condenser 140, the gas refrigerant compressed to a gaseous state of high temperature and high pressure is heat-exchanged with air blown by the cooling fan 130 to forcibly cool the refrigerant to liquefy.

이어서, 상기 응축기(140)에서 약 35˚ ~40˚ 로 온도가 저하된 고압의 액체냉매는 증발압력까지 팽창시키는 실내기의 팽창밸브(150)를 통과하면서 저온저압의 기체와 액체로 공존하는 냉매로 되어 증발기(170)에 유입된다.Subsequently, the high pressure liquid refrigerant having a temperature lowered from about 35 ° to 40 ° in the condenser 140 passes through the expansion valve 150 of the indoor unit which expands to the evaporation pressure as a refrigerant that coexists with the gas and liquid at low temperature and low pressure. And flows into the evaporator 170.

한편, 상기 증발기(170)로 유압된 냉매는 이를 통과하면서 기화할 때 실내팬(160)에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨 다음, 그 냉각된 공기(냉풍)를 실내로 방출해서 냉방을 행하고, 상기 증발기(170)에서 상변화된 저온저압의 기체냉매는 다시 압축기(110)에 의해 흡입되어 반복순환하는 냉방싸이클을 형성한다.On the other hand, the refrigerant hydraulically pressurized by the evaporator 170 takes heat from the air blown by the indoor fan 160 when evaporated while passing through it to cool the indoor air, and then discharges the cooled air (cold air) into the room. Cooling is performed, and the low-temperature low-pressure gas refrigerant phase-changed in the evaporator 170 is again sucked by the compressor 110 to form a repeated cycle of cooling.

외기와 실내의 온도차가 큰 겨울의 냉방싸이클은 도 3과 같이 압축기(110)의 동작을 정지시킴과 동시에 냉각팬(130)에 의해 냉각된 냉매를 응축, 액화시키게 되면, 도 4에 도시된 바와 같이 증발기(170)의 냉매관(171)이 수직으로 위치되어 냉매무게로 인한 중력이 발생되기 때문에 냉매관(171)의 내부에 냉매가 충만된 상태로 증발기(170)에 유통됨으로써 결과적으로 냉방효율이 크게 향상된다.When the cooling cycle in winter when the temperature difference between the outside and the room is large stops the operation of the compressor 110 as shown in FIG. 3 and condenses and liquefies the refrigerant cooled by the cooling fan 130, as shown in FIG. 4. As the refrigerant pipe 171 of the evaporator 170 is located vertically and gravity is generated due to the weight of the refrigerant, the refrigerant pipe 171 is distributed to the evaporator 170 in a state where the refrigerant is filled in the refrigerant pipe 171, resulting in cooling efficiency. This is greatly improved.

상기와 같이 냉매액을 중력으로 의한 흡인력을 이용하여 실내기의 증발기(170)에 공급시키게 되는데, 이때 제2분기관(124)의 개폐밸브(125)이 개발되어 냉매관(120)에 설치된 냉매여과기(180a) 및 전가변(180b)과 팽창밸브(150)을 거치지 않고 곧장 증발기(170)로 공급되며, 상기 증발기(170)로 공급된 냉매액은 냉매관(171)을 지나면서 증발된 다음 냉매의 온도차에 의한 냉매이동에 의해 응축기(140)로 자연순환된다.As described above, the refrigerant liquid is supplied to the evaporator 170 of the indoor unit by using the suction force by gravity. At this time, the opening / closing valve 125 of the second branch pipe 124 is developed and the refrigerant filter installed in the refrigerant pipe 120. 180a and the full variable 180b and the expansion valve 150 are supplied directly to the evaporator 170, and the refrigerant liquid supplied to the evaporator 170 is evaporated while passing through the refrigerant pipe 171 and then refrigerant The natural circulation to the condenser 140 by the refrigerant movement by the temperature difference of.

그리고, 증발기(170)를 거친 냉매가스는 압축기(110)가 차단되어 있으므로 제1분기관(121)으로 이동되며, 이때 전자변(122)이 개방되어 냉매의 역류를 방지하는 역류방지변(123)을 거쳐 응축기(140)로 재공급된다.In addition, the refrigerant gas passing through the evaporator 170 is moved to the first branch pipe 121 because the compressor 110 is blocked. At this time, the electron valve 122 is opened to prevent the backflow of the refrigerant. It is supplied back to the condenser 140 via.

한편, 상기 압축기(110)를 사용하지 않고 자연순환이 가능한 외기온도는 영상 7도 이하이기 때문에 우리나라의 경우 약 4개월 정도까지 자연순환을 이용한 냉방이 가능하므로 압축기(110)의 정지로 인한 전력손실을 크게 줄일 수 있게 된다.On the other hand, since the outside air temperature that can be naturally circulated without using the compressor 110 is 7 degrees or less in the image, in Korea, cooling is possible using natural circulation for about 4 months, so power loss due to the stop of the compressor 110 is caused. Can be greatly reduced.

이상에서와 같이, 본 발명은 봄, 여름, 가을에는 일반적인 냉방싸이클과 동일하게 압축기(110)를 가동시켜 냉매를 강제순환시키므로 소망하는 냉방을 행하고, 동절기에는 압축기(110)의 구동없이 실외의 온도차를 이용하여 냉매를 자연순환시키므로서 전력낭비를 크게 절감시킨 매우 유용한 발명이다.As described above, the present invention operates the compressor 110 in the spring, summer, and fall in the same manner as the general cooling cycle, thereby forcibly circulating the refrigerant, thereby performing desired cooling, and in winter, without the compressor 110, the outdoor temperature difference By using the natural circulation of the refrigerant is a very useful invention that greatly reduced the power consumption.

또한, 본 발명은 상기 응축기(140)와 증발기(170)에 냉매관(141)(171)을 수직으로 위치한 상태에서 냉각핀(142)(172)이 수평으로 설치시켜 냉매가 냉매관의 내부에 충만한 상태에서 순환되도록 하므로서 냉방효율을 크게 향상시킨 매우 유용한 발명이다.In addition, in the present invention, the cooling fins 142 and 172 are horizontally installed in the state in which the refrigerant pipes 141 and 171 are vertically positioned in the condenser 140 and the evaporator 170, so that the refrigerant is inside the refrigerant pipe. It is a very useful invention that greatly improves the cooling efficiency by allowing the circulation in a full state.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구 범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구 범위 기재의 범위내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (3)

고온고압의 냉매를 토출하는 압축기와; 이 압축기에서 냉매관을 통해 토출된 기체냉매를 유입하여 냉각팬에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화하는 응축기와; 이 응축기에서 응축된 냉매를 감압하는 팽창밸브와; 이 팽창밸브에서 감압된 냉매가 유입되어 기화할 때 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시키는 증발기 등을 포함하는 구성으로 이루어진 공기조화기의 냉방싸이클에 있어서,A compressor for discharging a high temperature high pressure refrigerant; A condenser for introducing the gas refrigerant discharged through the refrigerant pipe from the compressor and heat-exchanging the air blown by the cooling fan to forcibly cool the liquid to liquefy it; An expansion valve for reducing the refrigerant condensed in the condenser; In the cooling cycle of the air conditioner comprising a evaporator for removing heat from the air blown by the indoor fan when the refrigerant depressurized in the expansion valve is evaporated to cool the indoor air, 실외와 실내가 소정의 온도 이상으로 온도편차가 발생하는 동절기에 압축기(110)의 동작을 정지시키고, 냉각팬(130)에 의해 냉각된 냉매를 응축, 액화시킨 다음 응축된 냉매액을 중력에 의한 흡인력을 이용하여 실내기의 증발기(170)에 공급시켜 냉매가 실내와의 온도차에 의해 증발되도록 하고, 상기 증발기(170)에서 증발된 냉매는 흡인작용에 의해 응축기(140)로 자연순환되도록 한 것을 특징으로 하는 공기조화기의 냉방싸이클In winter, when the temperature difference occurs outside the predetermined temperature outside the indoor unit, the operation of the compressor 110 is stopped, and the refrigerant cooled by the cooling fan 130 is condensed and liquefied. The suction force is supplied to the evaporator 170 of the indoor unit so that the refrigerant is evaporated by the temperature difference with the room, and the refrigerant evaporated in the evaporator 170 is naturally circulated to the condenser 140 by suction. Cooling cycle of air conditioner 제 1 항에 있어서,The method of claim 1, 상기 증발기(170)와 응축기)(140) 사이의 냉매관(120)에 압축기(110)의 구동시 차단되는 전자변(122)을 설치함과 아울러 냉매관(120)의 적소에 냉매의 역류를 방지하는 역류방지변(123)을 설치하는 한편, 상기 응축기(140)와 증발기(170) 사이의 냉매관에 압축기의 정지시 냉매가 냉매여과기(180a) 및 전자변(180b)과 팽창밸브(150)을 거치지 않고 증발기(170)로 직접 공급될 수 있게 개폐밸브(125)을 설치한 것을 특징으로 하는 공기조화기의 냉방싸이클.In the refrigerant pipe 120 between the evaporator 170 and the condenser 140, the electromagnetic valve 122 is blocked while driving the compressor 110, and the back flow of the refrigerant is prevented in place of the refrigerant pipe 120. While installing the non-return valve 123, the refrigerant in the refrigerant pipe between the condenser 140 and the evaporator 170 when the refrigerant stops the refrigerant filter 180a, the electromagnetic valve 180b and the expansion valve 150 Cooling cycle of the air conditioner, characterized in that the on-off valve 125 is installed so that it can be supplied directly to the evaporator 170 without passing through. 제 1 항에 있어서,The method of claim 1, 상기 응축기(140)와 증발기(170)의 냉매관(141)(171)을 수직으로 위치시킨 다음, 상기 냉매관(141)(171)에 냉각핀(142)(172)을 무수히 형성한 것을 특징으로 하는 공기조화기의 냉방싸이클.After the coolant tubes 141 and 171 of the condenser 140 and the evaporator 170 are vertically positioned, the cooling fins 142 and 172 are formed in the coolant tubes 141 and 171. Cooling cycle of air conditioner.
KR1019990008398A 1999-03-12 1999-03-12 Cooling cycle of air symmetry machine KR20000060258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990008398A KR20000060258A (en) 1999-03-12 1999-03-12 Cooling cycle of air symmetry machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990008398A KR20000060258A (en) 1999-03-12 1999-03-12 Cooling cycle of air symmetry machine

Publications (1)

Publication Number Publication Date
KR20000060258A true KR20000060258A (en) 2000-10-16

Family

ID=19576453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990008398A KR20000060258A (en) 1999-03-12 1999-03-12 Cooling cycle of air symmetry machine

Country Status (1)

Country Link
KR (1) KR20000060258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689704B1 (en) * 2004-11-18 2007-03-08 (주) 일신티에이치이 Natural Circulation and Vapor Condensing Type Air Conditioning Apparatus Using Thermosyphon Principle
CN107986363A (en) * 2018-01-15 2018-05-04 江苏永昇空调有限公司 Couple the electronic equipment dissipating heat system and method for sea water desalination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689704B1 (en) * 2004-11-18 2007-03-08 (주) 일신티에이치이 Natural Circulation and Vapor Condensing Type Air Conditioning Apparatus Using Thermosyphon Principle
CN107986363A (en) * 2018-01-15 2018-05-04 江苏永昇空调有限公司 Couple the electronic equipment dissipating heat system and method for sea water desalination

Similar Documents

Publication Publication Date Title
JPH0814710A (en) Cooling and heating air conditioner
JP2003004321A (en) Refrigerating air conditioner
CN1156662C (en) Heat pump system
JP2000266368A (en) Air-conditioner system
CN112665226B (en) Air conditioning system and control method thereof
JP2004271166A (en) Refrigeration air conditioning system and its operation method
KR101814074B1 (en) Air-conditioning system using the outside air cold water
JP2007051788A (en) Refrigerating device
JP2007100987A (en) Refrigerating system
WO2002066908A1 (en) System and method in which co2 is used for defrost and as refrigerant during stand-still
KR20000060258A (en) Cooling cycle of air symmetry machine
JP4660334B2 (en) Refrigeration system
KR200163197Y1 (en) Cooling cycle of air symmetry machine
JP2007240040A (en) Refrigerating system and its control method
KR102260447B1 (en) Air conditioning system for refrigerating and freezing
JP4104519B2 (en) Refrigeration system
JP4108003B2 (en) Refrigeration system
CN221036246U (en) Gas-liquid hybrid power type heat pipe composite refrigerating system
CN219368027U (en) Fluorine pump refrigerating system
CN216244973U (en) Refrigeration and temperature regulation system
JP2004116930A (en) Gas heat pump type air conditioner
KR100279904B1 (en) Outdoor heat exchanger with condensate storage structure
KR200264555Y1 (en) The structure for improving efficiency by using auxiliary heat exchanger at air-conditioner
JP2000320908A (en) Refrigerating cycle circuit
KR20050102482A (en) Heat pump cycle for excessive low temperature

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application