JP2004271166A - Refrigeration air conditioning system and its operation method - Google Patents

Refrigeration air conditioning system and its operation method Download PDF

Info

Publication number
JP2004271166A
JP2004271166A JP2003408715A JP2003408715A JP2004271166A JP 2004271166 A JP2004271166 A JP 2004271166A JP 2003408715 A JP2003408715 A JP 2003408715A JP 2003408715 A JP2003408715 A JP 2003408715A JP 2004271166 A JP2004271166 A JP 2004271166A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air
refrigeration
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003408715A
Other languages
Japanese (ja)
Other versions
JP4258363B2 (en
Inventor
Koji Yamashita
浩司 山下
Fumio Matsuoka
文雄 松岡
Masao Kawasaki
雅夫 川崎
Mitsunori Kurachi
光教 倉地
Hajime Fujimoto
肇 藤本
Hiroyuki Morimoto
裕之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003408715A priority Critical patent/JP4258363B2/en
Publication of JP2004271166A publication Critical patent/JP2004271166A/en
Application granted granted Critical
Publication of JP4258363B2 publication Critical patent/JP4258363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration air conditioning system requiring a small space and having simple construction permitting stable operation and reducing energy without using wasteful energy in any operating condition, and its operating method. <P>SOLUTION: The refrigeration air conditioning system comprises a first heat exchanger for heat exchange between room-temperature air and a first refrigerant, a second heat exchanger for heat exchange between low-temperature air and a second refrigerant, a third heat exchanger where refrigerants are heat exchangeable with each other passing through mutually independent flow paths, a first flow path connected to the first heat exchanger and a second flow path connected to the second heat exchanger, and a bypass flow path provided in the second flow path for bypassing the second refrigerant to the third heat exchanger. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、コンビニエンスストア等の店舗等に使用する冷凍空調装置に関するものである。   The present invention relates to a refrigeration / air-conditioning apparatus used for a store such as a convenience store.

従来の冷凍装置は、店内に設置されたショーケースや冷凍機などと接続され、店内の空調を行う空調装置とは完全に独立して設けられていた。また、圧縮機を複数設け、空調、冷蔵、冷凍を同じ冷媒を循環させる1つの冷凍サイクルで構成する冷凍空調装置が特許文献1に示されている。   A conventional refrigeration system is connected to a showcase or a refrigerator installed in a store, and is provided completely independently of an air conditioner for performing air conditioning in the store. Patent Document 1 discloses a refrigerating air conditioner in which a plurality of compressors are provided, and air conditioning, refrigeration, and freezing are configured by one refrigeration cycle in which the same refrigerant is circulated.

また、圧縮機、凝縮器、蒸発器をそれぞれ備えた2つの独立した流路を持ちその流路を通る冷媒が流路の途中で互いに熱交換をするように第三の熱交換器を構成することは特許文献2に示されている。また、圧縮機と一つ熱交換器をそれぞれ備えた2つの独立した流路を持ち、それぞれの冷媒が第三の熱交換器で熱交換しながら周囲の空気と熱交換している構成が特許文献3に示されている。   Further, the third heat exchanger has two independent flow paths each having a compressor, a condenser, and an evaporator, and the refrigerant passing through the flow paths exchanges heat with each other in the middle of the flow paths. This is shown in Patent Document 2. In addition, the patent has a structure that has two independent flow paths each equipped with a compressor and one heat exchanger, and each refrigerant exchanges heat with surrounding air while exchanging heat with a third heat exchanger. Reference 3 shows.

特開平2002−357367号公報(図1)JP-A-2002-35767 (FIG. 1) 特開平2003−4321号公報(図1)JP-A-2003-4321 (FIG. 1) 特開平2001−289532号公報(図12)JP-A-2001-289532 (FIG. 12)

従来の冷凍空調装置は、空調、冷蔵、冷凍が完全に独立した冷凍サイクルにて運転されており、熱の有効利用による省エネ化が図られていないという問題点があった。また空調、冷蔵、冷凍などの設備を増強する場合、更に別の独立した冷凍サイクルを追加するためスペース上などの制約があり費用もかかるという問題点があった。   The conventional refrigeration / air-conditioning system has a problem that air conditioning, refrigeration, and freezing are operated in completely independent refrigeration cycles, and energy is not saved by effectively utilizing heat. In addition, when equipment such as air conditioning, refrigeration, and freezing is strengthened, there is a problem in that additional independent refrigeration cycles are added, so that space is limited and costs are increased.

また、特許文献1に示す従来の冷凍空調装置は、空調、冷蔵、冷凍が1つの冷凍サイクルで構成されているため、危険分散がなされていないという問題点があった。すなわち、空調用として使用している圧縮機や膨張弁やその他の冷凍サイクルを構成している部品が壊れた場合に、たとえ圧縮機が複数設けられていても、その修理の間冷凍サイクルを停止させざるを得ず、システムが独立していれば影響のないはずの店内のショーケース内にある冷凍食品や生鮮食品の冷却を維持することができなくなってしまう。更に設備の拡張が出来ないという問題点があった。   Further, the conventional refrigeration and air-conditioning apparatus disclosed in Patent Literature 1 has a problem in that dangerous dispersion is not performed because air-conditioning, refrigeration, and refrigeration are constituted by one refrigeration cycle. In other words, if the compressor, expansion valve, and other components that make up the refrigeration cycle used for air conditioning are broken, even if multiple compressors are installed, the refrigeration cycle is stopped during repair. Inevitably, it will not be possible to maintain the cooling of frozen or fresh food in showcases in stores that would otherwise have no effect if the system were independent. Further, there was a problem that the equipment could not be expanded.

また、同一の冷媒を熱源側の熱交換器一つに循環させているため、暖房をフルに運転している特定の時期のみ効率が良くなる効果が得られるが、それ以外では冷媒量の少ない方や、デフロストなど特殊な運転をする際は無駄な損失が大きいという問題があったり、冷蔵側の冷凍効果(冷却能力)が空調側の影響を受けてしまい、高圧が高くなると冷蔵側の冷凍効果が小さくなり、十分な冷却能力が得られないという問題点があった。   In addition, since the same refrigerant is circulated to one heat exchanger on the heat source side, the effect that the efficiency is improved only at a specific time when the heating is fully operated is obtained, but in other cases, the amount of the refrigerant is small. However, when performing special operations such as defrosting, there is a problem that wasteful loss is large, and the refrigeration effect (cooling capacity) on the refrigeration side is affected by the air conditioning side. There is a problem that the effect is reduced and a sufficient cooling capacity cannot be obtained.

特許文献2に示す構成では、空調側冷凍サイクルと冷凍機側冷凍サイクルがそれぞれ独立して運転可能であり、特許文献1のような問題はないが、空調機暖房時に冷凍機の排熱を回収する熱交換器を設けたので、コストが高く、且つ、余計なスペースが必要となるという問題がある。特許文献3に示す構成では、同一の冷媒を使用するという問題は無く、且つ、熱交換器が増えるという問題もないが、熱源側の熱交換器は常に相互に熱交換しており、暖房時期以外はせっかくの組み合わせの効果が得られないという問題があった。また簡単に設備拡張が出来ないという問題があった。   In the configuration shown in Patent Literature 2, the air-conditioning-side refrigeration cycle and the refrigerator-side refrigeration cycle can be operated independently of each other, and there is no problem as in Patent Literature 1. However, there is a problem that the cost is high and an extra space is required because the heat exchanger is provided. In the configuration shown in Patent Document 3, there is no problem that the same refrigerant is used, and there is no problem that the number of heat exchangers increases, but the heat exchangers on the heat source side always exchange heat with each other. Other than that, there was a problem that the effect of the combination could not be obtained. There was also a problem that the equipment could not be easily expanded.

本発明はスペースの小さい簡単な装置で安定した運転、且つエネルギーを低減できる冷凍空調装置を得ることが目的である。また本発明はどのような運転状態でもエネルギーに無駄のない運転が可能な冷凍空調装置およびその方法を得ることが目的である。また既設機などに対して安価に、簡単な構造で設備の変更を行うとともにその変更時にエネルギー低減が可能な装置を得ることが目的である。   An object of the present invention is to provide a refrigeration / air-conditioning apparatus that can operate stably with a simple device having a small space and reduce energy. It is another object of the present invention to provide a refrigeration / air-conditioning apparatus and a method thereof capable of operating without waste of energy in any operation state. It is another object of the present invention to provide a device that can change equipment with a simple structure at a low cost with respect to an existing machine or the like and can reduce energy when the change is made.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と前記第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な第三の熱交換器と、第二の流路に設けられ第三の熱交換器に流れる第二の冷媒の量を調整可能な第二冷媒調整手段と、を備えたものである。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And, the refrigerant that passes through the independent flow paths of the first flow path connected to the first heat exchanger and the second flow path connected to the second heat exchanger can exchange heat with each other. And a second refrigerant adjustment means provided in the second flow path and capable of adjusting the amount of the second refrigerant flowing through the third heat exchanger.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な複数の第三の熱交換器と、第一の流路もしくは前記第二の流路に接続され第三の熱交換器の複数の内の少なくとも一つに対し冷媒をバイパスさせるバイパス流路と、を備えたものである。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And, a plurality of refrigerants that can exchange heat with each other through the independent flow paths of the first flow path connected to the first heat exchanger and the second flow path connected to the second heat exchanger. A third heat exchanger, comprising a bypass flow path connected to the first flow path or the second flow path and bypassing the refrigerant to at least one of the plurality of third heat exchangers. It is something.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の圧縮機を有する第一の流路と第二の熱交換器に接続される第二の圧縮機を有する第二の流路のそれぞれ独立した流路を通る各冷媒が互いに熱交換可能な第三の熱交換器と、第三の熱交換器と周囲空気との熱交換量を調整する送風機と、を備え、第一の圧縮機の駆動による所定の空調運転および第二の圧縮機の駆動による所定の冷蔵もしくは冷凍運転を行うとともに、両方の圧縮機入力を低減する方向に送風機の送風量を変化させるものである。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And a first flow path having a first compressor connected to the first heat exchanger and a second flow path having a second compressor connected to the second heat exchanger, respectively. A third heat exchanger in which each refrigerant passing through the flow path that can exchange heat with each other, and a blower that adjusts the amount of heat exchange between the third heat exchanger and ambient air, A predetermined air-conditioning operation by driving and a predetermined refrigeration or freezing operation by driving of the second compressor are performed, and the air blowing amount of the blower is changed in a direction to reduce the input of both compressors.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに直接の熱交換可能な第三の熱交換器と、第一の流路および第二の流路の少なくとも一方に接続され第三の熱交換器と並列に設けられ周囲空気との熱交換量を調整する送風機を有する補助熱交換器と、を備えたものである。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And, refrigerant passing through independent flow paths of the first flow path connected to the first heat exchanger and the second flow path connected to the second heat exchanger can directly exchange heat with each other. An auxiliary having a third heat exchanger and a blower connected to at least one of the first flow path and the second flow path and provided in parallel with the third heat exchanger to adjust the amount of heat exchange with ambient air And a heat exchanger.

本発明の冷凍空調装置は、冷媒が循環する複数設けられた第一の冷凍サイクルの負荷側にて室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ負荷側にて冷蔵もしくは冷凍を行う第二の熱交換器と、複数の第一の冷凍サイクルの内少なくとも一つの冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルを通る第二の冷媒と熱源側にて熱交換する第三の熱交換器と、を備え、冷房時は第三の熱交換器と熱交換をしない第一の冷凍サイクルの流路への冷媒の流れを行う運転を優先し、暖房時は第三の熱交換器と熱交換を行う第一の冷凍サイクルの流路への冷媒の流れを行う運転を優先するものである。   The refrigeration air conditioner of the present invention has a first heat exchanger for performing room air conditioning on the load side of a plurality of first refrigeration cycles in which a refrigerant circulates, and a first heat exchanger in which a second refrigerant is circulated. A second heat exchanger that is provided in a second refrigeration cycle independent of the refrigeration cycle and performs refrigeration or freezing on the load side, and a first refrigerant that passes through at least one of the plurality of first refrigeration cycles. And a third heat exchanger that exchanges heat on the heat source side with a second refrigerant passing through the second refrigeration cycle, and a first refrigeration cycle that does not exchange heat with the third heat exchanger during cooling. The priority is given to the operation of flowing the refrigerant to the flow path of the first refrigerant, and the priority is given to the operation of flowing the refrigerant to the flow path of the first refrigeration cycle performing heat exchange with the third heat exchanger during heating. is there.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一および第二の2つの流路であって独立した各流路を持ちその各流路を通る冷媒が互いに熱交換をするように一体に設けられた第三の熱交換器と、第一の熱交換器と第三の熱交換器の第一の流路とを配管で接続してなる第一の冷凍サイクルと、第二の熱交換器と第三の熱交換器の第二の流路とを配管で接続してなる第二の冷凍サイクルと、第一および第二の冷凍サイクルの少なくとも一方に接続されこの冷凍サイクルを流れる冷媒の一部もしくは全部を第三の熱交換器をバイパス可能なバイパス流路と、第一および第二の冷凍サイクルの少なくとも一方に設けられバイパス流路へ流す冷媒流量を調整する流路制御手段と、を備えたものである。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And a third heat exchanger integrally provided so that the first and second two flow paths have independent flow paths and the refrigerant passing through the respective flow paths exchange heat with each other, A first refrigeration cycle in which the first heat exchanger and the first flow path of the third heat exchanger are connected by piping, and a second refrigeration cycle of the second heat exchanger and the third heat exchanger. A second refrigeration cycle, which is connected to the flow path of the refrigeration cycle by a pipe, and a third heat exchanger that is connected to at least one of the first and second refrigeration cycles and partially or wholly flows through the refrigeration cycle. Flow path, and a refrigerant that is provided in at least one of the first and second refrigeration cycles and flows to the bypass flow path And the flow path control means for adjusting the amount, those having a.

本発明の冷凍空調装置の運転方法は、冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、第一の冷凍サイクルおよび第二の冷凍サイクルに圧縮機などを設け、第一および第二の冷凍サイクルの運転を少なくとも圧縮機などをオンオフしもしくは回転速度を調整して行う運転状況調整手段と、を備えた冷凍空調装置に対し、運転状況調整手段を調整して第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第三の熱交換器に設けた送風機により第三の熱交換器の熱交換量を調整するステップと、第二の冷凍サイクルに設けられ第三の熱交換器に対し冷媒をバイパスさせる、又は第二の冷凍サイクルに循環する冷媒を短時間停止させることにより冷蔵もしくは冷凍を継続させるステップと、を備えたものである。   The operation method of the refrigeration / air-conditioning apparatus of the present invention includes a first heat exchanger provided in the first refrigeration cycle in which the refrigerant is circulated to perform room air conditioning, and a first refrigeration cycle in which the second refrigerant is circulated. And a second heat exchanger provided for independent refrigeration cycle and performing refrigeration or freezing, and heat exchange between the refrigerant passing through the first refrigeration cycle and the second refrigerant passing through the flow path of the second refrigeration cycle. Provide a third heat exchanger and a compressor in the first refrigeration cycle and the second refrigeration cycle, and turn on or off at least the compressor or adjust the rotation speed of the operation of the first and second refrigeration cycles Operating condition adjusting means for performing the air conditioning operation in the first refrigeration cycle by adjusting the operating condition adjusting means, and refrigeration or freezing operation in the second refrigeration cycle. Steps to do Adjusting the heat exchange amount of the third heat exchanger by a blower provided in the third heat exchanger, and bypassing the refrigerant to the third heat exchanger provided in the second refrigeration cycle, or Stopping the refrigerant circulating in the second refrigeration cycle for a short time to continue refrigeration or freezing.

本発明の冷凍空調装置の運転方法は、第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換するとともに送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と第一の冷媒と第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能な前記第三の熱交換器と、を備えた冷凍空調装置に対し、第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第一の冷凍サイクルに対し冷房時には空冷一体型熱交換器を主体に運転を行い、暖房時には冷媒冷媒一体型熱交換器を主体に運転を行うステップと、を備えたものである。   The operation method of the refrigeration / air-conditioning apparatus of the present invention includes a first heat exchanger provided in the first refrigeration cycle in which the first refrigerant is circulated to perform room air conditioning, and a first heat exchanger in which the second refrigerant is circulated. A second heat exchanger provided in the second refrigeration cycle independent of the refrigeration cycle and performs refrigeration or freezing, and the first refrigerant passing through the first refrigeration cycle passes through the flow path of the second refrigeration cycle. An air-cooled integrated heat exchanger that exchanges heat with the second refrigerant and adjusts the amount of heat exchange with the surrounding air by the blower, and a refrigerant-cooled integrated type that mainly performs direct heat exchange between the first refrigerant and the second refrigerant A heat exchanger and the third heat exchanger that can be connected in parallel or in series or switchable, and air conditioning operation in the first refrigeration cycle for a refrigeration air conditioner equipped with the second refrigeration cycle Performing a refrigeration or freezing operation; Performs operation mainly of air-cooled integrated heat exchanger during cooling to one refrigeration cycle, during heating is obtained and a step of driving the main refrigerant refrigerant integrated heat exchanger.

本発明の冷凍空調装置の運転方法は、第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と第一の冷媒と第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを直列接続可能とする第三の熱交換器と、第一の冷凍サイクルに設けられ冷媒冷媒一体型熱交換器か空冷一体型熱交換器かの流路を切りかえる開閉手段と、を備えた冷凍空調装置に対し、第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第一の冷媒を開閉手段を開閉させて冷媒冷媒一体型熱交換器に流し空冷一体型熱交換器には流さないステップと、空冷一体型熱交換器には第二の冷媒のみを流すステップと、を備えたものである。   The operation method of the refrigeration / air-conditioning apparatus of the present invention includes a first heat exchanger provided in the first refrigeration cycle in which the first refrigerant is circulated to perform room air conditioning, and a first heat exchanger in which the second refrigerant is circulated. A second heat exchanger that is provided in a second refrigeration cycle independent of the refrigeration cycle and performs refrigeration or freezing, and a first refrigerant that passes through the first refrigeration cycle passes through the flow path of the second refrigeration cycle. Direct heat exchange between the first refrigerant and the second refrigerant, and a third heat exchanger that exchanges heat with the second refrigerant, an air-cooled integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower And a third heat exchanger that can be connected in series with the refrigerant-refrigerant integrated heat exchanger, and a flow of the refrigerant-refrigerant integrated heat exchanger or the air-cooled integrated heat exchanger provided in the first refrigeration cycle. A first refrigeration cycle for a refrigeration air conditioner having Performing the air-conditioning operation and performing the refrigeration or freezing operation in the second refrigeration cycle, and opening and closing the first refrigerant by opening and closing the opening / closing means and flowing the refrigerant into the refrigerant-cooled integrated heat exchanger to the air-cooled integrated heat exchanger. Has a step of not flowing, and a step of flowing only the second refrigerant to the air-cooling integrated heat exchanger.

本発明の冷凍空調装置は、スペースが小さく、簡単な装置で、且つ、エネルギーを低減できる装置が得られる。また本発明はどのような運転状態でも安定した制御が行えるとともにエネルギーに無駄のない運転が可能な冷凍空調装置およびその方法が得られる。また本発明はフレキシブルな設備変更などの使いやすい装置が得られ、更に、どのような状況に対してもエネルギーが少ない運転方法を行うことができる。   ADVANTAGE OF THE INVENTION The refrigerating air-conditioner of this invention is a space-saving, simple apparatus, and the apparatus which can reduce energy is obtained. Further, according to the present invention, a refrigeration / air-conditioning apparatus and a method thereof capable of performing stable control in any operation state and operating without waste of energy are obtained. In addition, the present invention can provide an easy-to-use device such as flexible equipment change, and can perform an operation method with low energy in any situation.

実施の形態1.
図1はコンビニエンスストア等の店舗の空調・冷蔵機器接続図で、店舗14内に空調用室内機12と冷蔵用ショーケース13がそれぞれ複数台配置され、空調用室内機12は空調用室外機10および冷蔵空調一体機11に、冷蔵用ショーケース13は冷蔵空調一体機11にそれぞれ接続されている。図1にて空調用室外機10と接続される空調用室内機12bが2台で、冷蔵空調一体機11と接続される空調用室内機12aが1台の例を説明したがそれぞれ何台であってもかまわない。冷蔵ショーケース13で食品や飲料を常時冷蔵したり冷凍したりしている一方、空調機では外気温度に応じて室内を冷房したり暖房したりしている。
Embodiment 1 FIG.
FIG. 1 is a connection diagram of air conditioning and refrigeration equipment of a store such as a convenience store, in which a plurality of air conditioning indoor units 12 and a plurality of refrigeration showcases 13 are arranged in a store 14, and the air conditioning indoor unit 12 is an air conditioning outdoor unit 10 The refrigeration showcase 13 is connected to the refrigeration / air-conditioning integrated machine 11, respectively. FIG. 1 illustrates an example in which two air conditioning indoor units 12b are connected to the air conditioning outdoor unit 10 and one air conditioning indoor unit 12a is connected to the refrigeration / air-conditioning integrated unit 11. It doesn't matter. While the refrigerated showcase 13 constantly refrigerates and freezes food and beverages, the air conditioner cools and heats the room according to the outside air temperature.

図2は図1の冷蔵用又は冷凍用ショーケースに接続されている熱源である室外熱交換器が一体の冷凍サイクルの構成で冷蔵空調一体機の冷媒回路図である。この回路においては、空調用の冷媒回路と冷蔵用の冷媒回路の2つの独立した冷媒回路があり、その双方が一体型熱交換器42に接続され、そこで双方の冷媒が混じることなく、熱交換をするように構成されている。図2にても空調用室内機が1台の例で説明しているが複数でよいことは当然である。空調用の冷媒回路では、暖房時に圧縮機21aから吐出された高温高圧の冷媒が室内熱交換器22aで凝縮するとともに室内空気と熱交換し室内を暖めている。庫の凝縮された冷媒は膨張手段23aにて膨張し、一体型熱交換器42の流路24aにて送風ファン25cにより外気と熱交換して蒸発し再び圧縮機に吸引されている。冷房時の場合は四方弁31が切り替えられ冷媒が逆に流れ、一体型熱交換器42は凝縮機の役割を果たす。   FIG. 2 is a refrigerant circuit diagram of a refrigeration / air-conditioning integrated machine having a refrigeration cycle configuration in which an outdoor heat exchanger as a heat source connected to the refrigeration or freezing showcase of FIG. In this circuit, there are two independent refrigerant circuits, an air conditioning refrigerant circuit and a refrigeration refrigerant circuit, both of which are connected to the integrated heat exchanger 42, where both refrigerants are mixed without heat exchange. It is configured to be. Although FIG. 2 illustrates an example in which one indoor unit for air conditioning is used, it is obvious that a plurality of indoor units may be used. In the air-conditioning refrigerant circuit, high-temperature and high-pressure refrigerant discharged from the compressor 21a during heating is condensed in the indoor heat exchanger 22a and exchanges heat with indoor air to warm the room. The condensed refrigerant in the refrigerator is expanded by the expansion means 23a, exchanges heat with the outside air by the blower fan 25c in the flow path 24a of the integrated heat exchanger 42, evaporates, and is sucked into the compressor again. In the case of cooling, the four-way valve 31 is switched and the refrigerant flows in the reverse direction, and the integrated heat exchanger 42 plays the role of a condenser.

空調用の冷媒回路の動作について説明する。空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31によって暖房運転の場合と冷房運転の場合に流路を切り替えられる。暖房運転の場合、冷媒は四方弁31を通った後、空調用室内熱交換器22aへ送られて凝縮し、空調用膨張弁23aにて膨張して低温低圧冷媒になり、一体型熱交換器42にて空調用流路24aを通る間に冷蔵用流路24bの内部を流れる冷蔵側冷媒とおよび放熱フィン41を介して周囲空気と熱交換をして蒸発し、四方弁31を通って空調用圧縮機21aへ戻る。また、冷房運転の場合は、冷媒は四方弁31を通った後、一体型熱交換器42へ送られ、空調用流路24aを通る間に放熱フィン41を介して周囲空気と熱交換をして凝縮し、空調用膨張弁23aにて膨張し低温低圧冷媒になり、空調用室内熱交換器22aにて蒸発し、四方弁31を通って空調用圧縮機21aへ戻る。   The operation of the refrigerant circuit for air conditioning will be described. The refrigerant that has been compressed by the air conditioning compressor 21a to have a high temperature and a high pressure can be switched by the four-way valve 31 between a heating operation and a cooling operation. In the case of the heating operation, the refrigerant passes through the four-way valve 31, is sent to the air conditioning indoor heat exchanger 22a, is condensed, and expands at the air conditioning expansion valve 23a to be a low-temperature low-pressure refrigerant. At 42, the refrigerant exchanges heat with the refrigeration-side refrigerant flowing inside the refrigeration channel 24b while passing through the air conditioning channel 24a and the surrounding air via the radiating fins 41 to evaporate. Return to the compressor 21a. In the case of the cooling operation, the refrigerant passes through the four-way valve 31 and is sent to the integrated heat exchanger 42, and exchanges heat with the surrounding air through the radiation fins 41 while passing through the air conditioning flow path 24a. The refrigerant condenses and expands at the air conditioning expansion valve 23a to become a low-temperature low-pressure refrigerant, evaporates at the air conditioning indoor heat exchanger 22a, and returns to the air conditioning compressor 21a through the four-way valve 31.

次に冷蔵用の冷媒回路の動作について説明する。冷蔵用圧縮機21bにより圧縮され高温高圧になった冷媒は、高圧維持手段32を介して、一体型熱交換器42へ送られ、冷蔵用流路24bを通る間に放熱フィン41を介して周囲空気と熱交換をして凝縮し、過冷却手段33および液溜26を経て、冷蔵用膨張弁23bにて膨張し低温低圧冷媒になり、冷蔵用室内(ショーケース)熱交換器22bにて蒸発し、冷蔵用圧縮機21bへ戻る。なお、空調側冷媒回路が冷房運転を行っている場合、すなわち一体型熱交換器42内の空調用冷媒流路24aに低温低圧の冷媒が流れるように空調側冷媒回路が構成されている場合は、冷蔵側冷媒は一体型熱交換器42において、周囲空気との熱交換の他に空調用流路24aを流れる空調側冷媒とも熱交換を行う。   Next, the operation of the refrigeration refrigerant circuit will be described. The refrigerant compressed to a high temperature and a high pressure by the refrigeration compressor 21b is sent to the integrated heat exchanger 42 through the high-pressure maintaining means 32, and is passed through the radiating fins 41 while passing through the cooling passage 24b. It condenses by exchanging heat with air, passes through the supercooling means 33 and the liquid reservoir 26, expands at the refrigeration expansion valve 23b to become a low-temperature low-pressure refrigerant, and evaporates at the refrigeration room (showcase) heat exchanger 22b. Then, the process returns to the refrigerator compressor 21b. When the air-conditioning-side refrigerant circuit is performing the cooling operation, that is, when the air-conditioning-side refrigerant circuit is configured such that the low-temperature and low-pressure refrigerant flows through the air-conditioning refrigerant flow path 24a in the integrated heat exchanger 42. The refrigeration side refrigerant exchanges heat with the air conditioning side refrigerant flowing through the air conditioning flow path 24a in addition to the heat exchange with the ambient air in the integrated heat exchanger 42.

なお空調用室内熱交換器22aには空調用室内熱交換器用ファン25aが設けられ室内14へ主に暖房用空気を吹き出す役割を果たしている。室内用熱交換器などは図1のごとく天井に埋め込まれたり壁掛けや床面据え付けタイプでも良い。空調用膨張手段23aは室内側、すなわち天井内に設けるとするが、場合によっては熱源側に設けても良い。空調よりも低温である冷蔵もしくは冷凍用の室内熱交換器22bは室内に配置されたショーケースや冷凍装置内に膨張手段23bとともに収納されている。室外に据え付けられる冷蔵空調一体機11には空調用流路24aと冷蔵用又は冷凍用流路24bが一体型熱交換器用放熱フィンにより熱的に一体に結合されてそれぞれ独立の流路を形成し一体型熱交換器となっている。この結果、各流路を流れる冷媒は別々であるが、相互の熱交換がフィンを伝熱して可能になる。更にこの一体型熱交換器42のフィン41の間に送風ファン25cが回転し外気を送風することにより外気と各流路内を流れる冷媒との間で熱交換を可能にしている。   The air-conditioning indoor heat exchanger 22a is provided with an air-conditioning indoor heat exchanger fan 25a and plays a role of mainly blowing out heating air to the room 14. The indoor heat exchanger or the like may be embedded in the ceiling as shown in FIG. 1, or may be a wall-mounted or floor-mounted type. Although the air-conditioning expansion means 23a is provided on the indoor side, that is, on the ceiling, it may be provided on the heat source side in some cases. The indoor heat exchanger 22b for refrigeration or freezing, which is lower in temperature than air conditioning, is housed together with the expansion means 23b in a showcase or a refrigeration apparatus arranged indoors. In the refrigeration / air-conditioning integrated machine 11 installed outdoors, the air-conditioning flow path 24a and the refrigeration or freezing flow path 24b are thermally integrally connected by radiation fins for an integrated heat exchanger to form independent flow paths. It is an integrated heat exchanger. As a result, although the refrigerant flowing through each flow path is separate, heat exchange between the fins is enabled by mutual heat exchange. Furthermore, the blower fan 25c rotates between the fins 41 of the integrated heat exchanger 42 to blow outside air, thereby enabling heat exchange between the outside air and the refrigerant flowing in each flow path.

また空調機と冷蔵機の熱源装置である冷蔵空調一体機11には、空調用圧縮機21a、冷蔵用又は冷凍用圧縮機21b、空調機を冷房と暖房の流路に切り替える四方弁31、冷蔵又は冷凍側冷凍サイクルの熱源側熱交換器42流路24bをバイパスし流路24bへの冷媒の流したり流さなかったりを行うバイパス流路24c、このバイパス流路24cへの流れを圧縮機21bが吐出する冷媒の圧力値で調整する高圧維持手段又は流路制御手段32、冷蔵又は冷凍側冷凍サイクルの過冷却制御を行うために設けられた過冷却冷媒流路24d、過冷却用熱交換器22c、過冷却冷媒流路24dの冷媒量を調整する過冷却用膨張手段23c、余剰冷媒をためる液溜26などが一つの箱体の中に空調用と冷蔵又は冷凍用に区分けされて収納されている。あるいは空調用と冷蔵又は冷凍用の箱体を分けたり、更に第三の熱交換器である一体型熱交換器42の構成部を含む箱体を独立させて3つの箱体を後で一体に組み合わせても良い。このような場合は各箱体の外部で箱体間の配管や配線を接続する構成を採用すれば組み立てやメンテナンスが簡単になるばかりか、設備の拡張や変更に簡単に対処できる。   The refrigeration / air-conditioning integrated machine 11, which is a heat source device of the air conditioner and the refrigerator, includes a compressor 21a for air conditioning, a compressor 21b for refrigeration or freezing, a four-way valve 31 for switching the air conditioner to a cooling and heating flow path, Alternatively, the heat source side heat exchanger 42 of the refrigerating side refrigeration cycle bypasses the flow path 24b and passes or does not flow the refrigerant to the flow path 24b. The compressor 21b controls the flow to the bypass flow path 24c. High pressure maintaining means or flow path control means 32 for adjusting the pressure value of the refrigerant to be discharged, a supercooled refrigerant flow path 24d provided for performing supercooling control of the refrigeration or freezing side refrigeration cycle, a supercooling heat exchanger 22c The supercooling expansion means 23c for adjusting the amount of refrigerant in the supercooled refrigerant flow path 24d, the liquid reservoir 26 for storing excess refrigerant, and the like are separately stored in one box for air conditioning and refrigeration or freezing. IsAlternatively, the box for air conditioning and the box for refrigeration or freezing are separated, or the box including the components of the integrated heat exchanger 42 as the third heat exchanger is made independent, and the three boxes are integrated later. They may be combined. In such a case, by adopting a configuration in which piping and wiring between the boxes are connected outside each box, not only the assembling and maintenance are simplified, but also the expansion or change of the equipment can be easily dealt with.

なお図1、図2ではショーケース2台の例を示したがショーケースである冷蔵装置とこれよりより低温度の蒸発器を必要とする冷凍装置でもよいし、1台あるいは3台以上でもかまわない。また冷蔵又は冷凍装置の熱源側熱交換器をバイパスするバイパス流路24cは冷凍サイクルの運転を制御している、すなわち冷蔵又は冷凍用室内熱交換器22bの温度調整を流路に流れる冷媒を調整して行っている膨張手段23bを正常に動作させ冷凍サイクルの運転をスムースに行う。膨張手段23bは適度の差圧がないと動作せず冷蔵又は冷凍装置が運転を行わない。真冬において空調機が暖房時に外気が低温になると冷蔵用冷凍機の圧縮機の吐出圧力が低くなり膨張手段23bの差圧が確保できなくなる。この差圧が確保できる最低限の圧力を得るように凝縮器42の流路24bへの冷媒量をバイパスさせて減らしていく。従って流路制御手段である最低限の圧力を維持する高圧維持手段32の開度を調整することで膨張手段23bによる精度の良い温度制御を維持できるので、真冬空調暖房時における空調装置と冷蔵又は冷凍装置一体での高効率を維持したまま装置の温度調整が可能な実用的で有効な装置が得られる。例えば冬期の空調側冷凍サイクルが暖房運転を行っているとき、熱回収による使用エネルギーの低減が行える。また中間期の空調側冷凍サイクルが停止もしくは微弱運転を行っているとき、一体型熱交換器42の放熱フィン41を冷蔵側流路24bの冷媒の放熱に使用できるため冷蔵側冷凍サイクルの伝熱面積が拡大し省エネルギーになる。更に送風機25cにより運転状態にあわせた最適化が行えるのでエネルギーの無駄がない。また冷蔵側冷凍サイクルに過冷却回路を設けるので液溜26に流入する冷媒を液化することが出来、動作が不安定になることを防止できる。   Although FIGS. 1 and 2 show an example of two showcases, a refrigeration unit which is a showcase and a refrigerating device requiring a lower temperature evaporator may be used, or one or three or more showcases may be used. Absent. The bypass flow path 24c that bypasses the heat source side heat exchanger of the refrigeration or refrigeration apparatus controls the operation of the refrigeration cycle, that is, regulates the temperature of the refrigeration or freezing indoor heat exchanger 22b to regulate the refrigerant flowing through the flow path. The operation of the expansion means 23b is performed normally, and the operation of the refrigeration cycle is performed smoothly. The expansion means 23b does not operate unless there is an appropriate differential pressure, and the refrigeration or freezing device does not operate. If the outside air temperature becomes low when the air conditioner is heated in the middle of winter, the discharge pressure of the compressor of the refrigerating refrigerator becomes low, and the differential pressure of the expansion means 23b cannot be secured. The amount of the refrigerant to the flow path 24b of the condenser 42 is bypassed and reduced so as to obtain the minimum pressure at which the differential pressure can be secured. Therefore, by controlling the opening degree of the high-pressure maintaining means 32 that maintains the minimum pressure, which is the flow path control means, accurate temperature control by the expansion means 23b can be maintained, so that the air conditioner and the refrigeration or A practical and effective device capable of adjusting the temperature of the device while maintaining high efficiency of the refrigeration device is obtained. For example, when the air-conditioning side refrigeration cycle is performing a heating operation in winter, energy consumption can be reduced by heat recovery. Further, when the air conditioning refrigeration cycle in the intermediate period is stopped or is performing a weak operation, the radiating fins 41 of the integrated heat exchanger 42 can be used for radiating the refrigerant in the refrigeration side channel 24b, so that the heat transfer of the refrigeration side refrigeration cycle is performed. The area increases and energy is saved. Further, since optimization can be performed in accordance with the operation state by the blower 25c, there is no waste of energy. Further, since the supercooling circuit is provided in the refrigeration side refrigeration cycle, the refrigerant flowing into the liquid reservoir 26 can be liquefied, and the operation can be prevented from becoming unstable.

空調、冷蔵単体の場合と一体機との動作の違いを、空調機が暖房運転をしている場合について、図3に示すモリエル線図にて説明する。なお、以下の説明において、店舗内の空気の温度は20゜C程度、外気温度は10゜C程度、ショーケース内の空気温度は5゜C程度であるものとする。また、空調機および冷蔵用冷凍機の配管内を流れている冷媒にはR410Aを使用しているものとし、冷媒の飽和圧力は、社団法人 日本冷凍空調学会が1998年5月26日に発行したThermodynamic Properties of Pure and Blended Hydrofluorocarbon(HFC)Refrigerantsに基づき算出した。   The difference between the operation of the air conditioner and the refrigerator alone and the operation of the integrated device will be described with reference to the Mollier diagram shown in FIG. 3 in the case where the air conditioner performs the heating operation. In the following description, it is assumed that the temperature of the air in the store is about 20 ° C., the temperature of the outside air is about 10 ° C., and the temperature of the air in the showcase is about 5 ° C. The refrigerant flowing in the piping of the air conditioner and the refrigerator was R410A, and the saturation pressure of the refrigerant was issued by the Japan Refrigeration and Air Conditioning Society on May 26, 1998. Calculated based on Thermodynamic Properties of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants.

空調機において、暖房運転時に室内熱交換器22a内に流れる冷媒の凝縮温度(CT)は店内空気温度と十分な温度差を確保するため50゜C程度、室外熱交換器24aに流れる冷媒の蒸発温度(ET)は外気温度と十分な温度差を確保するため−6゜C程度となる。この時、空調用圧縮機21aの高圧および低圧はそれぞれ凝縮温度、蒸発温度の飽和圧力として求まり、高圧3.0535MPa、低圧0.65558MPaとなる。従って、圧縮機の高圧と低圧の比である圧縮比は、3.0535MPaと低圧0.65558MPaの比で求められ、4.66となる。   In the air conditioner, the condensing temperature (CT) of the refrigerant flowing in the indoor heat exchanger 22a during the heating operation is about 50 ° C. in order to secure a sufficient temperature difference with the in-store air temperature, and the refrigerant flowing in the outdoor heat exchanger 24a is evaporated. The temperature (ET) is about −6 ° C. to secure a sufficient temperature difference from the outside air temperature. At this time, the high pressure and the low pressure of the air conditioning compressor 21a are obtained as the saturation pressures of the condensing temperature and the evaporating temperature, respectively, and become a high pressure of 3.0535 MPa and a low pressure of 0.65558 MPa. Therefore, the compression ratio, which is the ratio between the high pressure and the low pressure of the compressor, is obtained from the ratio of 3.0535 MPa to the low pressure 0.65558 MPa, and is 4.66.

また、冷蔵用冷凍機において、室外熱交換器24b内を流れる冷媒の凝縮温度(CT)は外気温度と十分な温度差を確保するため30゜C程度、ショーケース内熱交換器22bに流れる冷媒の蒸発温度(ET)はショーケース内の空気温度と十分な温度差を確保するため−10℃程度となる。この時、冷蔵用圧縮機21bの高圧および低圧はそれぞれ凝縮温度、蒸発温度の飽和圧力として求まり、高圧1.8797MPa、低圧0.57228MPaとなる。また、圧縮比は、1.8797MPaと0.57228MPa の比で求められ、3.28となる。   In the refrigerating refrigerator, the condensing temperature (CT) of the refrigerant flowing in the outdoor heat exchanger 24b is about 30 ° C. in order to secure a sufficient temperature difference from the outside air temperature, and the refrigerant flowing in the showcase heat exchanger 22b. Is about −10 ° C. in order to secure a sufficient temperature difference from the air temperature in the showcase. At this time, the high pressure and the low pressure of the refrigeration compressor 21b are obtained as the saturation pressures of the condensing temperature and the evaporating temperature, respectively, and become a high pressure of 1.8797 MPa and a low pressure of 0.57228 MPa. The compression ratio is determined by the ratio of 1.8797 MPa to 0.57228 MPa, and is 3.28.

一方、冷蔵空調一体機においては、空調側回路が暖房運転を行う際、室内熱交換器22a内に流れる冷媒の凝縮温度(CT)は店内空気温度と十分な温度差を確保するため50゜C程度となる。また、冷蔵用冷凍機において、ショーケース内熱交換器22bに流れる冷媒の蒸発温度(ET)はショーケース内の空気温度と十分な温度差を確保するため−10゜C程度となる。   On the other hand, in the refrigeration / air-conditioning integrated machine, when the air-conditioning side circuit performs the heating operation, the condensing temperature (CT) of the refrigerant flowing in the indoor heat exchanger 22a is 50 ° C. in order to secure a sufficient temperature difference from the in-store air temperature. About. In the refrigeration refrigerator, the evaporation temperature (ET) of the refrigerant flowing through the heat exchanger 22b in the showcase is about -10 ° C in order to secure a sufficient temperature difference from the air temperature in the showcase.

また、一体型室外熱交換器42の空調用流路24a内を流れる空調側冷媒と冷蔵側回路24b内を流れる冷蔵側冷媒とは熱交換を行うため、24a内を流れる冷媒の蒸発温度(ET1)は24b内を流れる冷蔵側冷媒の凝縮温度(CT2)と24a・24b間での熱交換性能によって決まる。今、24a・24b間の熱交換性能が単体の場合の空冷熱交換器よりも大きいものとすると、単体の場合よりもET1とCT2の温度差が近づくことになり、仮にET1が4゜C、CT2が26゜Cなったとする。すると、空調側圧縮機21bの高圧および低圧はそれぞれ凝縮温度CT1、蒸発温度ET1の飽和圧力として求まり、高圧Pd1=3.0535MPa、低圧Ps1=0.90396MPa、圧縮比Pd1/Ps1=3.38となる。また、冷蔵用圧縮機21bの高圧および低圧はそれぞれ凝縮温度CT2、蒸発温度ET2の飽和圧力として求まり、高圧Pd2=1.6935MPa、低圧Ps2=0.57228MPa、圧縮比Pd2/Ps2=2.966となる。   In addition, since the air-conditioning-side refrigerant flowing in the air-conditioning flow path 24a of the integrated outdoor heat exchanger 42 and the refrigeration-side refrigerant flowing in the refrigeration-side circuit 24b perform heat exchange, the evaporation temperature (ET1) of the refrigerant flowing in the 24a. ) Is determined by the condensation temperature (CT2) of the refrigeration-side refrigerant flowing inside 24b and the heat exchange performance between 24a and 24b. Now, assuming that the heat exchange performance between 24a and 24b is larger than that of the air-cooled heat exchanger in the case of a single unit, the temperature difference between ET1 and CT2 becomes closer than in the case of the single unit. Assume that CT2 becomes 26 ° C. Then, the high pressure and the low pressure of the air-conditioning-side compressor 21b are obtained as the saturation pressure of the condensation temperature CT1 and the evaporation temperature ET1, respectively. Become. The high pressure and low pressure of the refrigeration compressor 21b are obtained as the saturation pressure of the condensation temperature CT2 and the evaporation temperature ET2, respectively. Become.

この時、空調側圧縮機の圧縮比3.38は単体の場合の圧縮比4.66に比べ27%、冷蔵側圧縮機の圧縮比2.96は単体の場合の圧縮比3.28に比べ10%小さい値になっている。圧縮機の入力は圧縮比と冷媒流量に依存し、冷媒流量が同じであれば圧縮比の小さい方が入力が少なくなる。従って、一体型熱交換器42をここで示した圧力関係を実現できる仕様に設計すれば、冷蔵空調一体機は単体に対し、空調側で27%、冷蔵側で10%の省エネになる。圧縮比すなわち圧縮機前後の冷媒のエンタルピー差を少なくすると、圧縮機の仕事量はエンタルピー差×冷媒流量であり、入力が小さくなりエネルギーを減らすことができる。   At this time, the compression ratio 3.38 of the air-conditioning side compressor is 27% as compared with the compression ratio 4.66 of the single unit, and the compression ratio 2.96 of the refrigerator side compressor is compared with the compression ratio 3.28 of the single unit. The value is 10% smaller. The input of the compressor depends on the compression ratio and the refrigerant flow rate. If the refrigerant flow rate is the same, the smaller the compression ratio, the smaller the input. Therefore, if the integrated heat exchanger 42 is designed so as to realize the pressure relationship shown here, energy saving of 27% on the air conditioning side and 10% on the refrigeration side can be achieved for the refrigeration / air-conditioning integrated machine alone. If the compression ratio, that is, the enthalpy difference between the refrigerants before and after the compressor is reduced, the work of the compressor is the enthalpy difference × the flow rate of the refrigerant, and the input becomes small and the energy can be reduced.

先に述べた通り、空調側と冷蔵側の熱交換量が大きいと、空調側の低圧が上がり、冷蔵側の高圧が下がる。しかし、冷蔵側の高圧が下がり過ぎると、膨張手段23b前後での圧力差が確保できなくなり、膨張手段23bが正常に動作しなくなる。そこで、冷蔵側の高圧があらかじめ設定された下限値より低くなると、高圧維持手段32の作用によって、冷媒の一部は熱交換器42を通さずに液溜26の手前にバイパスして、高圧が下限値以下に下がり装置の温度コントロールが聞かなくなることを防ぐ。   As described above, when the heat exchange amount between the air conditioning side and the refrigeration side is large, the low pressure on the air conditioning side increases and the high pressure on the refrigeration side decreases. However, when the high pressure on the refrigeration side drops too much, a pressure difference between before and after the expansion means 23b cannot be secured, and the expansion means 23b does not operate normally. Therefore, when the high pressure on the refrigeration side becomes lower than the preset lower limit, a part of the refrigerant bypasses the liquid reservoir 26 without passing through the heat exchanger 42 by the action of the high pressure maintaining means 32, and the high pressure is reduced. This prevents the temperature control of the device from being heard below the lower limit.

次に季節により空調機の動作が異なるときの冷蔵空調一体機11の運転状態および省エネルギー対策について説明する。夏期においては、空調機は冷房運転を行うため一体型熱交換器42での冷媒同士の熱交換はなく、空調機も冷凍機も空気との熱交換を最大に行うため、一体型熱交換器の送風ファン25cはフル運転させる。春や秋において空調機が停止している場合も、冷凍機は空気との熱交換を最大に行うため、一体型熱交換器の送風ファン25cはフル運転させる。この時一体型熱交換器の放熱フィン41の寸法が大きいこと、即ち2流路分の存在が冷凍機の運転に放熱に有効に働く。初春や晩秋のように空調機が暖房運転をしていて空調負荷が小さい場合は、一体型熱交換器42内での空調側と冷蔵側の冷媒同士の熱交換はなされるが熱交換量としてはあまり大きくないため、空調機も冷凍機も空気と十分に熱交換をする必要があり一体型熱交換器の送風ファン25cはフル運転させる。冬期になって暖房負荷が増え冷蔵側の高圧が下限値に近づいてくると、冷蔵側の凝縮熱量を減らす必要があるため、一体型熱交換器の送風ファン25cの回転数を下げ、空調側冷媒と冷蔵側冷媒の熱交換量を最大限に確保したまま空気との熱交換量を減らして、冷蔵側の高圧が下がり過ぎないようにする。そして、空調機の暖房負荷が更に増加すると、最終的には一体型熱交換器の送風ファン25cを停止させる。この時、空調側冷媒の蒸発熱量および冷蔵側冷媒の凝縮熱量は空調側と冷蔵側の冷媒同士の熱交換だけでまかなわれ省エネルギーに有効である。そして、真冬時空調の暖房負荷が過大になり冷凍機の吐出圧力が低く膨張手段23bの差圧が維持できる最低限の圧力に到達した場合、冷凍機の高圧維持のため高圧維持手段32の作用によりバイパス流路24cを介して冷媒をバイパスさせ、一体型熱交換器の冷蔵用流路24bへ流れる冷媒量を減らし、空調機の排熱を回収したまま冷蔵側高圧を維持した運転を行う。以上のとおり一体型熱交換器を有する独立した流路間で熱交換を行い省エネルギーを図る冷凍空調装置において、冷房時のように熱交換よりもそれぞれ単体の冷凍サイクルの運転をフルに行う場合と、一体型熱交換器で熱交換を有効に行うため空調側の蒸発温度と冷蔵又は冷凍側の凝縮温度をできるだけ近づけて少なくとも片側、望むらくは両側の圧縮比を小さくする方向に送風機25cなどにより調整すればよい。   Next, the operation state of the refrigeration / air-conditioning integrated unit 11 and the energy saving measures when the operation of the air conditioner differs depending on the season will be described. In summer, since the air conditioner performs cooling operation, there is no heat exchange between the refrigerants in the integrated heat exchanger 42, and both the air conditioner and the refrigerator perform the maximum heat exchange with air. Blower fan 25c is operated at full capacity. Even when the air conditioner is stopped in spring or autumn, the blower fan 25c of the integrated heat exchanger is operated at full speed so that the refrigerator exchanges heat with air to the maximum. At this time, the large size of the radiating fins 41 of the integrated heat exchanger, that is, the presence of the two flow passages effectively acts on the operation of the refrigerator for heat radiation. When the air conditioner is performing a heating operation and the air conditioning load is small as in early spring or late autumn, heat exchange between the air conditioning side and the refrigeration side refrigerant is performed in the integrated heat exchanger 42, but the heat exchange amount is Since it is not so large, both the air conditioner and the refrigerator need to sufficiently exchange heat with air, and the blower fan 25c of the integrated heat exchanger is operated at full capacity. In winter, when the heating load increases and the high pressure on the refrigeration side approaches the lower limit, it is necessary to reduce the amount of heat condensed on the refrigeration side. Therefore, the rotation speed of the blower fan 25c of the integrated heat exchanger is reduced, and The amount of heat exchange between the refrigerant and the air is reduced while the maximum amount of heat exchange between the refrigerant and the refrigeration side refrigerant is ensured so that the high pressure on the refrigeration side does not drop too much. Then, when the heating load of the air conditioner further increases, the blower fan 25c of the integrated heat exchanger is finally stopped. At this time, the amount of heat of evaporation of the air-conditioning-side refrigerant and the amount of heat of condensation of the refrigeration-side refrigerant are provided only by heat exchange between the air-conditioning-side and refrigeration-side refrigerants, which is effective for energy saving. When the heating load of the air conditioner in winter becomes excessive and the discharge pressure of the refrigerator reaches a minimum pressure at which the differential pressure of the expansion means 23b can be maintained, the operation of the high-pressure maintenance means 32 for maintaining the high pressure of the refrigerator. By this, the refrigerant is bypassed through the bypass flow path 24c, the amount of the refrigerant flowing to the cooling flow path 24b of the integrated heat exchanger is reduced, and the operation is performed while maintaining the high pressure on the refrigeration side while recovering the exhaust heat of the air conditioner. As described above, in a refrigeration air conditioner that performs heat exchange between independent flow paths having an integrated heat exchanger and saves energy, there is a case where the operation of each single refrigeration cycle is performed more fully than a heat exchange such as during cooling. In order to effectively perform heat exchange in the integrated heat exchanger, the air temperature on the air conditioning side and the condensation temperature on the refrigeration or freezing side are brought as close as possible to at least one side, and preferably a blower 25c in a direction to reduce the compression ratio on both sides. Adjust it.

なお通常、空調側圧縮機21aは店内の設定温度と室内吸い込み温度との温度差に基づき周波数制御しているが、この制御のない一定速の誘導電動機のようなモーターを使用した圧縮機を使用しても良い。圧縮機の制御が無くても室内熱交換器用ファン25aや膨張弁23aや圧縮機21aのON/OFFにより店内の空調負荷に合わせた動作をする。冷蔵側圧縮機21bは冷蔵側低圧を維持すべく周波数制御を行うが、ショーケース内などの温度調整は冷蔵又は冷凍用ファン25bや膨張弁23bで行っても良い。従って、空調と同様に冷蔵側圧縮機21bも周波数制御のない一定速の圧縮機を使用しても良い。一体型熱交換器の送風ファン25cの送風機回転数は空調動力が冷蔵動力などより小さい場合最大回転数で運転させ、空調動力が冷蔵動力等よりも大きくなるにつれて回転数を下げていき、冷蔵凝縮熱などがほぼ空調排熱を回収する段階以上に空調動力が大きくなると送風機を停止させる。また冷蔵もしくは冷凍側冷凍サイクルのバイパス流路24cのバイパス冷媒量は冷蔵側高圧の最低限設定量まではバイパスさせず、空調動力が更に大きくなって、冷蔵側高圧が設定値以下になるような場合バイパス量を徐々に増やしていき冷凍サイクルの回路より決まる最大バイパス量まで上げることになる。   Normally, the air-conditioning-side compressor 21a controls the frequency based on the temperature difference between the set temperature in the store and the indoor suction temperature. However, a compressor using a motor such as a constant speed induction motor without this control is used. You may. Even if there is no control of the compressor, the operation according to the air conditioning load in the store is performed by turning on / off the fan 25a for the indoor heat exchanger, the expansion valve 23a, and the compressor 21a. The refrigerating-side compressor 21b performs frequency control so as to maintain the refrigerating-side low pressure, but the temperature adjustment in the showcase or the like may be performed by the refrigerating or freezing fan 25b or the expansion valve 23b. Therefore, as in the case of the air conditioning, the refrigeration-side compressor 21b may use a constant-speed compressor without frequency control. When the air-conditioning power is smaller than the refrigeration power, the fan speed of the blower fan 25c of the integrated heat exchanger is operated at the maximum rotation speed when the air-conditioning power is smaller than the refrigeration power. If the air-conditioning power becomes larger than the stage where heat or the like recovers the exhaust heat of the air conditioning, the blower is stopped. In addition, the amount of bypass refrigerant in the bypass passage 24c of the refrigeration or freezing side refrigeration cycle is not bypassed to the minimum set amount of the refrigeration side high pressure, and the air conditioning power is further increased so that the refrigeration side high pressure becomes equal to or less than the set value. In this case, the bypass amount is gradually increased to the maximum bypass amount determined by the circuit of the refrigeration cycle.

次に図4乃至6にて一体型熱交換器の詳細構造である熱交換部構造を説明する。図4は空調用流路24aと冷蔵用又は冷凍用流路24bを分離して同一の放熱フィン41に貫装させフィンと一体化し熱伝達による各流路を流れる冷媒間の熱の移動を行う構造であり、図のように一方の入り口を他方の出口にし、空調冷房時には両方の凝縮熱が部分的に集中しないようにし、且つ、空調暖房時の空調冷凍サイクルの蒸発熱と冷蔵冷凍サイクルの凝縮熱の温度差が得られるようにして熱交換性能を上げている。また熱交換器のチューブをクロスさせないので製造が簡単になる。図5は空調用流路24aと冷蔵用又は冷凍用流路24bをクロスさせてフィン41を介しての両者の熱伝達をより一層向上させる構造である。図4において送風ファン42は冷蔵用又は冷凍用流路24b側から送風を行っているが、これは高温高圧の冷蔵側冷媒は流路24bにおいて放熱するため温度の低い空気と熱交換させた方が熱交換量が多く、低温低圧の空調側冷媒は流路24aにおいて吸熱するため温度の高い空気と熱交換させた方が熱交換量が多くなるため、冬期の温度の低い外気をまず冷蔵用流路24bを通る冷蔵側冷媒と熱交換させ、少し昇温された外気を空調用流路24aを通る空調側冷媒と熱交換させることで、熱交換量を多くし、効率を良くするためである。ただしこれは図5のような構造ではどちら側から送風してもよいことは当然である。図6は2重管構造の熱交換器を使用した構造例で、2重管内の外部を冷蔵用又は冷凍用流路24bとして使用し、その中の内部を空調側流路24aとして使用する構造とし、空調側冷媒は冷蔵側冷媒のみと熱交換し、冷蔵側冷媒は空調側冷媒との熱交換の他に一体型熱交換器外部よりファン25cにて送風し周囲空気との熱交換も行うもので、暖房時に有効である。なお内外両方の流路24a、24bの冷媒を流す方向は図のように反対にすると上記説明のごとく性能が向上する。この2重管構造の熱交換器により両者の流路間の熱伝達は一層良好になる。なお、このように空調側流路24aと冷蔵用又は冷凍用流路24b間の熱交換のために2重管にしなくとも、冷蔵用又は冷凍用流路24bを箱体にして空調側流路24aの配管を内部に収納し、更に別途水管を内部に配置するなどによる冷却することで、大型の設備にも効率の良い冷凍空調装置が得られることになる。   Next, a heat exchange unit structure, which is a detailed structure of the integrated heat exchanger, will be described with reference to FIGS. FIG. 4 shows that the air-conditioning flow path 24a and the refrigeration or freezing flow path 24b are separated and inserted into the same radiating fin 41 and integrated with the fin to transfer heat between the refrigerant flowing through each flow path by heat transfer. As shown in the figure, one inlet is set to the other outlet as shown in the figure, so that both condensed heat is not partially concentrated at the time of air conditioning and cooling. The heat exchange performance is improved by obtaining a temperature difference of the heat of condensation. Further, since the tubes of the heat exchanger are not crossed, the production is simplified. FIG. 5 shows a structure in which the air conditioning flow path 24a and the refrigeration or freezing flow path 24b are crossed to further improve the heat transfer between the two via the fins 41. In FIG. 4, the blower fan 42 blows air from the refrigeration or freezing passage 24b side. This is because the refrigeration-side refrigerant having a high temperature and a high pressure dissipates heat in the passage 24b and exchanges heat with low-temperature air. Has a large amount of heat exchange, and the low-temperature and low-pressure air-conditioning-side refrigerant absorbs heat in the flow path 24a, so that heat exchange with the high-temperature air increases the amount of heat exchange. Heat exchange with the refrigeration side refrigerant passing through the flow path 24b and heat exchange of the slightly heated outside air with the air conditioning side refrigerant passing through the air conditioning flow path 24a increase the amount of heat exchange and improve efficiency. is there. However, it goes without saying that air may be sent from either side in the structure shown in FIG. FIG. 6 shows an example of a structure using a heat exchanger having a double pipe structure, in which the outside of the double pipe is used as a cooling or freezing flow path 24b, and the inside thereof is used as an air conditioning-side flow path 24a. The air-conditioning refrigerant exchanges heat only with the refrigeration refrigerant, and the refrigeration refrigerant sends heat from the outside of the integrated heat exchanger with the fan 25c and exchanges heat with the ambient air in addition to heat exchange with the air-conditioning refrigerant. It is effective at the time of heating. If the directions of flowing the refrigerant in the inner and outer flow paths 24a and 24b are reversed as shown in the figure, the performance is improved as described above. The heat transfer between the two flow paths is further improved by the double-tube heat exchanger. It is to be noted that the refrigeration or freezing flow path 24b is formed as a box without using a double pipe for heat exchange between the air conditioning side flow path 24a and the refrigeration or freezing flow path 24b. By storing the pipe 24a inside and cooling it by further arranging a separate water pipe inside, an efficient refrigeration and air-conditioning system can be obtained even for large-scale equipment.

図7は暖房時の省エネルギー対策のみならず冷房時にも有効な構成を示す図で、図2の構成のバイパス流路24cに冷蔵用又は冷凍用サブ熱交換器22dを設けている。図7において、上記で説明したように冬期の外気温が低く暖房負荷も過大の時に冷蔵側の高圧が下がり過ぎないように、流路制御手段32の作用でバイパス流路24cへ流す冷媒量を調整する。この時、バイパス流路24cへ流入した高温高圧のガス冷媒は熱交換することなしに一体型熱交換器42の出口側へバイパスされ、一体型熱交換器42にて凝縮された液冷媒と合流する。この時バイパスされたガス冷媒よりも凝縮された液冷媒の方が多ければ、過冷却手段33の作用により液溜26へ至る前に冷媒を完全な液にすることができる。しかし、外気温が特に低くなった時あるいは暖房負荷が特に過大になった場合はほとんど全量に近い冷媒がバイパス流路24cを通ることになり、過冷却手段33へ至る冷媒のガスの割合が多く、過冷却手段33にて十分に液化することができず、液溜にガス混じりの冷媒が供給され冷凍サイクルが不安定になってしまう。そこで、冷蔵用又は冷凍用サブ熱交換器22dおよび送風ファン25dの作用によりバイパス流路24cを通る冷媒を周囲空気と熱交換させて液冷媒もしくは過冷却手段33で液化できる程度の気液二相冷媒にし冷凍サイクルが不安定になるのを防ぐ。なおこの冷蔵用又は冷凍用サブ熱交換器22d用ファン25dは一体熱交換器42用送風ファン25cを使用し特別なファンを設けなくともよいことは当然である。   FIG. 7 is a diagram showing a configuration that is effective not only for energy saving during heating but also for cooling. A refrigeration or freezing sub-heat exchanger 22d is provided in the bypass passage 24c of the configuration in FIG. In FIG. 7, as described above, the amount of refrigerant flowing to the bypass flow passage 24c by the operation of the flow passage control means 32 is controlled so that the high pressure on the refrigeration side does not drop too much when the outside air temperature in winter is low and the heating load is too large. adjust. At this time, the high-temperature and high-pressure gas refrigerant that has flowed into the bypass passage 24c is bypassed to the outlet side of the integrated heat exchanger 42 without exchanging heat, and merges with the liquid refrigerant condensed in the integrated heat exchanger 42. I do. At this time, if the condensed liquid refrigerant is more than the bypassed gas refrigerant, the refrigerant can be completely liquid before reaching the liquid reservoir 26 by the operation of the supercooling means 33. However, when the outside air temperature is particularly low or when the heating load is particularly large, almost the entire amount of the refrigerant passes through the bypass passage 24c, and the ratio of the refrigerant gas reaching the supercooling means 33 is large. However, the liquid cannot be sufficiently liquefied by the supercooling means 33, and the refrigerant containing gas is supplied to the liquid reservoir, and the refrigeration cycle becomes unstable. Therefore, the refrigerant passing through the bypass passage 24c is heat-exchanged with the surrounding air by the operation of the sub-heat exchanger 22d for refrigeration or freezing and the blower fan 25d, and is a gas-liquid two-phase enough to be liquefied by the liquid refrigerant or the supercooling means 33. Use refrigerant to prevent the refrigeration cycle from becoming unstable. The fan 25d for the sub-heat exchanger 22d for refrigeration or freezing uses the blower fan 25c for the integrated heat exchanger 42, and need not be provided with a special fan.

図8は図7の暖房時の省エネルギー対策のみならず冷房時にもより一層熱交換量をふやし年間を通し熱交換性能を良好にする構成図で、図1の構成のバイパス流路24cに冷蔵用又は冷凍用サブ熱交換器22dを設けるだけでなく、空調側冷凍サイクルにも空調用サブ熱交換器22eを、一体熱交換器42に並列に直列の膨張手段とともに設置したものである。この場合一体熱交換器42はプレート熱交換器や2重管熱交換器のように通風を行わず、空調用流路24aと冷蔵用又は冷凍用流路24bの熱交換を行うだけでよく小型なものにできる。空調側が暖房時のような熱交換が有効なときは流路制御手段32で一体熱交換器42に冷媒を流す、即ち冷蔵用又は冷凍用流路を流れる温度の異なる冷媒との熱伝達が装置の省エネルギーに有効な時には一体熱交換器42に冷媒を流すとともに、空調が冷房時のように単体運転をフルに行いたいときは流路制御手段32にてバイパス流路に設けた冷蔵用又は冷凍用サブ熱交換器22dを活用したり、空調用流路24aに設けた膨張手段などで空調用サブ熱交換器22eを直列の膨張手段とともにフル活用すればよい。このとき空調側では空調用サブ熱交換器22eをフルに使用するため空調用膨張手段23aを閉して流路24aには冷媒を流さない様にすることも出来る。なお圧縮比の低減はそれぞれのサブ熱交換器に設けた送風ファン25d、25eにて調整することができる。もちろん、省スペースの効果はなくなるが一体型熱交換器42を送風機付きの熱交換器にしても圧縮比低減等の効果は同様である。図8の構成から冷凍用サブ熱交換器22dを除く構成でも良いことは以上の説明からも明らかである。また空調に一体熱交換器42を冷凍側と熱交換させずに活用することも可能である。即ち流路制御手段32を操作して冷蔵側の流路24bには冷媒を流さないで空調用膨張手段23aを制御して冷媒を一体型熱交換器42へ流しこのとき一体型熱交換器42に熱交換機用ファンを設けてあると、空調用サブ熱交換器22eとともに大きな冷房負荷に対応できることになる。   FIG. 8 is a configuration diagram of not only energy saving measures at the time of heating as shown in FIG. 7 but also increasing the amount of heat exchange at the time of cooling to improve the heat exchange performance throughout the year. Alternatively, not only is the refrigeration sub-heat exchanger 22d provided, but also the air-conditioning refrigeration cycle is provided with the air-conditioning sub-heat exchanger 22e in parallel with the integral heat exchanger 42 together with expansion means in series. In this case, the integrated heat exchanger 42 does not perform ventilation as in the plate heat exchanger or the double tube heat exchanger, but only needs to exchange heat between the air-conditioning flow passage 24a and the refrigeration or freezing flow passage 24b. It can be something. When heat exchange is effective, such as when the air-conditioning side is heating, the refrigerant flows into the integrated heat exchanger 42 by the flow path control means 32, that is, heat transfer with the refrigerant having a different temperature flowing through the refrigeration or freezing flow path is performed by the apparatus. When the air conditioner is effective for energy saving, the refrigerant flows through the integrated heat exchanger 42, and when the air conditioner wants to perform a single operation as in the case of cooling, the refrigeration or refrigeration provided in the bypass flow path by the flow path control means 32. The air conditioning sub heat exchanger 22e may be fully utilized together with the serial expansion means by utilizing the air conditioning sub heat exchanger 22d or expanding means provided in the air conditioning flow path 24a. At this time, on the air-conditioning side, the air-conditioning sub-heat exchanger 22e is fully used, so that the air-conditioning expansion means 23a may be closed so that the refrigerant does not flow through the flow path 24a. The reduction of the compression ratio can be adjusted by the blowing fans 25d and 25e provided in the respective sub heat exchangers. Of course, the effect of saving space is lost, but the effect of reducing the compression ratio and the like is the same even when the integrated heat exchanger 42 is a heat exchanger with a blower. It is clear from the above description that a configuration excluding the refrigeration sub heat exchanger 22d from the configuration in FIG. 8 may be employed. It is also possible to utilize the integrated heat exchanger 42 for air conditioning without exchanging heat with the freezing side. That is, by operating the flow path control means 32 and controlling the air-conditioning expansion means 23a without flowing the refrigerant into the refrigeration side flow path 24b, the refrigerant is caused to flow to the integrated heat exchanger 42. At this time, the integrated heat exchanger 42 If a fan for a heat exchanger is provided in the air conditioner, it is possible to cope with a large cooling load together with the sub heat exchanger 22e for air conditioning.

図9は図2の暖房時の省エネルギー対策のみならず冷房時にも有効な構成より一層熱交換量を増やし年間を通し熱交換性能を良好にする構成図で、図2の構成の一体熱交換器42を設けるだけでなく、空調側冷凍サイクルに一体熱交換器42と並列に、一体熱交換器42と同じ構成、すなわち第2の空調用流路24a(2)と第2の冷蔵用又は冷凍用流路24b(2)に相互に熱交換可能なサブ一体型熱交換器42(2)を設ける構成である。一体熱交換器42とサブ一体型熱交換器42(2)にて双方の流路の熱交換量を増やすことができ、更にサブ一体型熱交換器42(2)に直列に設けた膨張手段23a(2)と空調側冷凍サイクルの膨張手段23aによる冷媒圧力と冷媒量の調整により空調が冷房時の運転能力もフルに行うことができるようになる。この場合サブ一体熱交換器42(2)はプレート熱交換器や2重管熱交換器のように通風を行わず、空調用流路24a(2)と冷蔵用又は冷凍用流路24b(2)の熱交換だけを行うものにすると小型なものにできる。図7、8は補助熱交換器を図2における一体熱交換器42に並列に設けるもので、図9は図2における一体熱交換器42を複数に分けて並列に設けたものであり、これにより室外機として複数設けた熱交換器の内、複数の一体熱交換器に冷媒を流したり、片側の一体熱交換器のみに冷媒を流したり、補助熱交換器のみに流して省エネルギーを図りながら冷蔵冷凍装置を常時運転し、且つ、空調を快適に行うことが出来ることが上記説明の様に可能である。言いかえると暖房時は両方にフルに流す方向で省エネルギーを図り、冷房時はそれぞれの冷凍サイクルを単独で一体型熱交換器の放熱面積を生かした活用等の運転が可能になる。   FIG. 9 is a configuration diagram that increases the amount of heat exchange and improves the heat exchange performance throughout the year as compared with the configuration that is effective not only during energy saving during heating but also during cooling in FIG. 2. The integrated heat exchanger having the configuration in FIG. In addition to providing the air conditioning-side refrigeration cycle, the air conditioning side refrigeration cycle has the same configuration as the integrated heat exchanger 42 in parallel with the integrated heat exchanger 42, that is, the second air conditioning channel 24a (2) and the second refrigeration or freezing. In this configuration, a sub-integrated heat exchanger 42 (2) capable of mutually exchanging heat is provided in the use channel 24b (2). The integral heat exchanger 42 and the sub-integrated heat exchanger 42 (2) can increase the amount of heat exchange in both flow paths, and the expansion means provided in series with the sub-integrated heat exchanger 42 (2) Adjustment of the refrigerant pressure and the refrigerant amount by the expansion means 23a of the air conditioning side refrigeration cycle and the air conditioning side refrigeration cycle enables the air conditioning to perform its cooling operation fully. In this case, the sub-integrated heat exchanger 42 (2) does not perform ventilation as in the plate heat exchanger and the double tube heat exchanger, and the air conditioning flow path 24a (2) and the refrigeration or freezing flow path 24b (2). If only the heat exchange is performed, the size can be reduced. 7 and 8 show the auxiliary heat exchanger provided in parallel with the integrated heat exchanger 42 in FIG. 2, and FIG. 9 shows the integrated heat exchanger 42 in FIG. Of the plurality of heat exchangers provided as outdoor units, while flowing refrigerant to a plurality of integrated heat exchangers, flowing refrigerant only to one integrated heat exchanger, or flowing only to the auxiliary heat exchanger while saving energy As described above, it is possible to operate the refrigerating and refrigerating apparatus at all times and to comfortably perform the air conditioning. In other words, during heating, energy can be saved in the direction of full flow to both sides, and during cooling, each refrigeration cycle can be operated independently utilizing the heat radiation area of the integrated heat exchanger.

なお図1から図9までに説明してきた一体熱交換器42やサブ一体型熱交換器42(2)、或いは他のサブ熱交換器はプレートフィンタイプの熱交換器にしてフィン間を送風ファンにて通風しフィンと空気との間の熱交換を積極的に行うタイプにしてもよいし、プレートタイプ、すなわち二つの流路間の熱交換を主体にすべく板状の両側に違う流れを設けるなどのタイプや2重管、あるいは一方の流路に他方の流路を収納するなど、各種タイプとしても良い。この場合は送風機による送風は一方の流路への送風にとどまるか、或いは送風機を設けない構造となる。又は空冷一体型などのプレートフィンタイプの熱交換器への送風と同時に2重管熱交換器やプレート熱交換器への送風を行うように配置することもでき、この場合後者を風下側に置くと空冷熱交換器への気流を乱さなくて良く、省エネルギーで熱交換性能を上げることができる。更に2重管のような冷媒−冷媒熱交換器を空冷熱交換器と断熱し空気の流れと遮断しても良い。ただし断熱しなくとも冷蔵側冷媒が多少空気により凝縮するだけである。   The integrated heat exchanger 42 and the sub-integrated heat exchanger 42 (2) described above with reference to FIGS. 1 to 9 or other sub heat exchangers are plate-fin type heat exchangers, and the fan between the fins is a fan. It may be of a type that ventilates at and actively exchanges heat between the fins and the air, or a plate type, that is, a different flow flows on both sides of the plate to mainly perform heat exchange between the two flow paths. It may be of various types, such as a type provided, a double pipe, or one channel containing the other channel. In this case, the blowing by the blower is limited to the blowing to one flow path, or the blower is not provided. Alternatively, it can be arranged so that air is simultaneously sent to a double-tube heat exchanger or a plate heat exchanger at the same time as air is sent to a plate fin type heat exchanger such as an air-cooling integrated type. In this case, the latter is placed on the leeward side The air flow to the air-cooled heat exchanger does not need to be disturbed, and the heat exchange performance can be improved with energy saving. Further, a refrigerant-refrigerant heat exchanger such as a double pipe may be insulated from the air-cooled heat exchanger and cut off from the flow of air. However, the refrigeration-side refrigerant is only slightly condensed by air without heat insulation.

図10は冷凍空調装置構成図であって、図2の冷凍空調装置で一体型熱交換器42の熱交換量調整に必要な検出手段を記載している。検出手段として空調用室内熱交換器22aに室内空気温度検出手段51と空調用室内熱交換器22aの管温を計測する空調側熱交換器温度検出手段52が設けられている。なお、空調側熱交換器温度検出手段52は空調用圧縮機21aの吐出側もしくは吸入側に設けた圧力検出手段でも良い。一体型熱交換器42には冷蔵側又は冷凍側凝縮温度検出手段62が設けられている。凝縮温度検出手段62は冷蔵用または冷凍用圧縮機21bの吐出側に設けた高圧検出手段でも良い。既に冷蔵側又は冷凍側冷凍サイクルの高圧である圧縮機21bの吐出圧力を検出して流路制御手段32を調整しあらかじめ設定されている最低限の圧力以下になったときにバイパス24cへ冷媒を流す説明をしているが、この動作は凝縮温度もしくは高圧検出手段62の検出値によって行う。なお、高圧維持手段32として機構的に一体型熱交換器42側の圧力を一定値以上に保つようになっているものを使用してもよい。また、冷蔵用冷媒低圧検出手段61も設ける。ただしこの検出手段として同じ意味を有するこの回路の蒸発温度を検出しても、或いは、負荷側熱交換器22bの周囲空気温度を検出して置き換えても良い。次に一体型熱交換器の熱交換量を増大させるとともに各運転条件に対し効果的な省エネルギー運転を行うことができる構成を図11以下にて説明する。   FIG. 10 is a configuration diagram of the refrigeration / air-conditioning apparatus, in which the detection means necessary for adjusting the heat exchange amount of the integrated heat exchanger 42 in the refrigeration / air-conditioning apparatus of FIG. 2 is described. As the detection means, an indoor air temperature detection means 51 and an air conditioning-side heat exchanger temperature detection means 52 for measuring the tube temperature of the air conditioning indoor heat exchanger 22a are provided in the air conditioning indoor heat exchanger 22a. The air conditioner-side heat exchanger temperature detecting means 52 may be a pressure detecting means provided on the discharge side or the suction side of the air conditioning compressor 21a. The integrated heat exchanger 42 is provided with a refrigeration-side or freezing-side condensation temperature detecting means 62. The condensing temperature detecting means 62 may be a high pressure detecting means provided on the discharge side of the refrigerating or freezing compressor 21b. Detecting the discharge pressure of the compressor 21b, which is already the high pressure of the refrigeration side or freezing side refrigeration cycle, adjusts the flow path control means 32, and when the pressure becomes equal to or less than the preset minimum pressure, the refrigerant is supplied to the bypass 24c. Although the flow is described, this operation is performed based on the condensation temperature or the detection value of the high-pressure detection unit 62. The high pressure maintaining means 32 may be configured to mechanically maintain the pressure on the side of the integrated heat exchanger 42 at a predetermined value or more. Further, a refrigeration refrigerant low pressure detecting means 61 is also provided. However, the evaporating temperature of this circuit having the same meaning as the detecting means may be detected, or the ambient air temperature of the load side heat exchanger 22b may be detected and replaced. Next, a configuration capable of increasing the heat exchange amount of the integrated heat exchanger and performing an effective energy-saving operation under each operation condition will be described with reference to FIG.

図11は一体型熱交換器42を複数に分け直列に接続して熱源機として室外熱交換器の箱体にそれぞれの圧縮機21a、21bや各弁類などと一緒に収納したものである。図9の様に一体型熱交換器42を分離し空調用冷媒サイクルと冷蔵冷凍用冷媒サイクルの冷媒の流れに対し並列に熱伝達する様に設置する代わりに、両方の冷媒サイクルの冷媒の流れに対し直列に熱伝達するもので、この一体型熱交換器の2つは空調用流路24aと冷蔵用又は冷凍用流路24bとの相互熱交換をそれぞれ行うとともに、一方はプレート熱交換器や2重管熱交換器のように送風ファンなどによる積極的な周囲空気との熱交換を行わない一体型熱交換器42(1)、すなわち冷媒冷媒一体型熱交換器である。これと直列接続される一体型熱交換器42(2)は、送風機25cにより周囲の空気との熱交換も行い、且つ、送風機25cの回転数を変えて熱交換量の調整も可能で、すなわち空冷一体型熱交換器である。その他の構成は図2の構成などと同じで、これにより双方の流路間の熱交換量を増やすことができる。しかも熱交換量が増え省エネルギー対策が一層効果的になった室外機である冷凍空調装置の熱源機は空調用および冷蔵又は冷凍用冷凍サイクルがそれぞれ独立して分離した状態で、一体型熱交換器42(1)、42(2)は直列に配管接続するため、一つの箱体に中央に一体型熱交換器を配置し両側部にそれぞれ空調側冷凍サイクルと冷蔵用などの冷凍サイクルを順序良く配置でき、外部との配管接続部も両側部や上部もしくは下部中央部付近の接続しやすい位置に纏められる。一体型熱交換器42を複数に分け並列や直列に接続して熱源機として室外熱交換器を構成する場合、以上の説明の様に主と補助の熱交換器2つだけにするにとどまることなく、もっと多くの熱交換器を用いても良いことは当然であるし、主と補助、あるいは、送風ファンによる外気への熱伝達量制御ありと無し、などのくわけだけでなく、例えば両方の一体型熱交換器に送風ファンを設けても良いことは当然である。   FIG. 11 shows a case where the integrated heat exchanger 42 is divided into a plurality of units and connected in series, and housed in the box of the outdoor heat exchanger together with the compressors 21a and 21b and the respective valves as a heat source unit. Instead of separating the integrated heat exchanger 42 as shown in FIG. 9 and installing it so as to transfer heat in parallel to the refrigerant flows of the air conditioning refrigerant cycle and the refrigeration refrigeration refrigerant cycle, the refrigerant flow of both refrigerant cycles Two of the integrated heat exchangers perform mutual heat exchange between the air-conditioning flow path 24a and the refrigeration or freezing flow path 24b, and one of the plate-type heat exchangers It is an integrated heat exchanger 42 (1) that does not actively exchange heat with the surrounding air by a blower fan or the like like a double-tube heat exchanger, that is, a refrigerant-coolant integrated heat exchanger. The integrated heat exchanger 42 (2) connected in series with this also exchanges heat with the surrounding air by the blower 25c, and can also adjust the amount of heat exchange by changing the rotation speed of the blower 25c. It is an air-cooled integrated heat exchanger. The other configuration is the same as the configuration in FIG. 2 and the like, whereby the amount of heat exchange between both flow paths can be increased. In addition, the heat source unit of the refrigeration and air conditioning system, which is an outdoor unit that has increased the amount of heat exchange and made energy saving measures more effective, is an integrated heat exchanger in which the air conditioning and refrigeration or refrigeration refrigeration cycles are separated independently from each other. Since 42 (1) and 42 (2) are connected in series with pipes, an integrated heat exchanger is arranged in the center of one box, and an air conditioning side refrigeration cycle and a refrigeration cycle for refrigeration etc. are arranged in order on both sides in order. It can be arranged, and the pipe connection part with the outside is put together at a position where it is easy to connect near both sides and near the upper or lower center. When the outdoor heat exchanger is configured as a heat source unit by dividing the integrated heat exchanger 42 into a plurality of units and connecting them in parallel or in series, as described above, only two main and auxiliary heat exchangers are used. It is natural that more heat exchangers may be used, and not only the main and auxiliary, or with or without control of the amount of heat transfer to the outside air by the blower fan, but also both It is natural that a blower fan may be provided in the integrated heat exchanger.

図12、13は図11と同様一体型熱交換器42を熱交換量を増大させるとともに、各運転状態に効率よく対応できるように分離した2つは空調用流路24aと冷蔵用又は冷凍用流路24bとの相互熱交換をそれぞれ行うとともに、一方はプレート熱交換器や2重管熱交換器のように送風ファンなどによる積極的な周囲空気との熱交換を行わない冷媒冷媒一体型熱交換器42(1)である。これと直列接続される空冷一体型熱交換器42(2)は、送風機25cにより周囲の空気との熱交換も行い、且つ、送風機25cの回転数を変えて熱交換量の調整も可能である。これにつき、制御動作の説明を行う。図において、34は一体熱交流路切替手段でA、Bは流路を表す記号、図13に示す35(1)、35(2)は逆止弁、42(1)は一体型熱交換器で空調側冷媒と冷蔵側冷媒の熱交換のみを行うため送風機は付属しておらず、42(2)は一体型熱交換器で空調側冷媒と冷蔵側冷媒の熱交換の他に周囲空気との熱交換も行うために送風機が付属している。なお他の構成は先に説明してきた図2乃至図11の構成と同様で、動作も同じように運転される。   FIGS. 12 and 13 show an integrated heat exchanger 42 as shown in FIG. 11 in which the amount of heat exchange is increased and two parts which are separated so as to efficiently cope with each operation state are provided with an air-conditioning passage 24a and a refrigeration or freezing passage. While performing mutual heat exchange with the flow path 24b, one is a refrigerant-refrigerant integrated heat that does not actively exchange heat with the surrounding air by a blower fan or the like like a plate heat exchanger or a double tube heat exchanger. The exchanger 42 (1). The air-cooling integrated heat exchanger 42 (2) connected in series with this also exchanges heat with the surrounding air by the blower 25c, and can adjust the amount of heat exchange by changing the rotation speed of the blower 25c. . In this regard, the control operation will be described. In the figure, 34 is an integrated thermal AC path switching means, A and B are symbols representing flow paths, 35 (1) and 35 (2) shown in FIG. 13 are check valves, and 42 (1) is an integrated heat exchanger. Since only heat exchange between the air-conditioning-side refrigerant and the refrigeration-side refrigerant is performed, no blower is attached. Reference numeral 42 (2) is an integrated heat exchanger that exchanges heat between the air-conditioning-side refrigerant and the refrigeration-side refrigerant and also communicates with ambient air. A blower is attached to also perform heat exchange. The other configuration is the same as the configuration of FIGS. 2 to 11 described above, and the operation is the same.

まずは、図12の構成で中間期および冬期の空調側が停止もしくは暖房運転を行っている場合について説明する。空調負荷がなく空調側の冷媒循環が停止している場合、一体型熱交換器42(2)への冷媒の凝縮を防止するため、一体熱交流路切替手段34はBの位置に設定する。冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、一体型熱交換器42(1)の冷蔵用流路24b(1)を経て一体型熱交換器42(2)の冷蔵用流路24b(2)へ至る。この際、空調側の冷媒循環が停止しているため一体型熱交換器42(1)においては熱交換をなされない。一体型熱交換器42(2)において、送風ファン25cの作用により周囲空気と熱交換を行って凝縮し、過冷却手段33、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、負荷である食品などを定められた低温で冷却する冷気を生成する冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。なお、外気温度が低過ぎ、冷蔵側冷凍サイクル内の高圧が低下し過ぎる場合は、膨張手段23bの差圧を維持し正常動作を保障するため、高圧維持手段32により冷媒の一部をバイパス流路24cへ流すことで、高圧が低くならないようにする。それでも、高圧が下がりすぎる場合は、送風機25cの回転数を低下させる。   First, a description will be given of a case where the air-conditioning side in the intermediate period and the winter period is stopped or performs the heating operation in the configuration of FIG. When there is no air conditioning load and the refrigerant circulation on the air conditioning side is stopped, the integrated heat AC path switching means 34 is set to the position B in order to prevent the refrigerant from condensing into the integrated heat exchanger 42 (2). The refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, and passes through the refrigeration flow path 24b (1) of the integrated heat exchanger 42 (1). The flow reaches the refrigerating channel 24b (2). At this time, since the circulation of the refrigerant on the air conditioning side is stopped, heat is not exchanged in the integrated heat exchanger 42 (1). In the integrated heat exchanger 42 (2), the heat is exchanged with the surrounding air by the action of the blower fan 25c to condense. And evaporates in the refrigeration heat exchanger 22b that generates cold air for cooling the load, such as food, at a predetermined low temperature, and returns to the compressor 21b. If the outside air temperature is too low and the high pressure in the refrigeration side refrigeration cycle is too low, a part of the refrigerant is bypassed by the high pressure maintaining means 32 in order to maintain the differential pressure of the expansion means 23b and ensure normal operation. By flowing to the path 24c, the high pressure is prevented from lowering. If the high pressure is still too low, the rotation speed of the blower 25c is reduced.

次に空調負荷が少しある場合について説明する。あまり大きくない空調負荷がある場合、すなわち、空調側冷媒蒸発熱量<冷蔵側冷媒凝縮熱量、が成り立つ場合、一体熱交流路切替手段34はBの位置に設定する。この状態での運転をモードBと呼称する。空調側の冷媒は空調用圧縮機21aで圧縮されて高温高圧冷媒になり、負荷である空調側室内熱交換器22aへ送られ室内の暖房を行う。そして、送風ファン25aの作用により室内空気と熱交換を行って凝縮し、膨張手段23aにて膨張して低温低圧冷媒になり、一体熱交流路切替手段34を経て、一体型熱交換器42(1)の空調用流路24a(1)へ送られ、ここで冷蔵側の高温高圧の冷媒と熱交換を行って蒸発し、空調用圧縮機21aへ戻る。冷凍サイクルを循環する冷媒は、蒸発器において周囲の媒体から吸熱することで蒸発、ガス化するため、蒸発器内の冷媒の温度は周囲媒体の温度よりも高い温度にはなり得ない。モードBにおいては、空調側冷媒は、一体型熱交換器42(1)にて高温の冷蔵側冷媒から吸熱して蒸発するため、その蒸発温度は、低温の外気とは無関係に高温高圧の冷蔵側冷媒の温度および一体型熱交換器42(1)における熱交換量によって決まり、高い値に保てるため、非常に効率のよい運転が可能になる。したがって一体型熱交換器42(1)における空調側冷媒に対し通風などによる外部からの空気を当てないようにすることが必要である。一方、冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、一体型熱交換器42(1)の冷蔵用流路24b(1)を経て一体型熱交換器42(2)の冷蔵用流路24b(2)へ至る。この際、空調側の低温低圧の冷媒は一体型熱交換器42(1)のみを通っているため、冷媒冷媒一体型熱交換器42(1)においては冷蔵側の冷媒は低温低圧の空調側冷媒と熱交換を行い凝縮する。しかし、空調側の蒸発熱量があまり大きくないため、冷蔵側の冷媒は完全には凝縮しきれずに空冷一体型熱交換器42(2)へ至る。空冷一体型熱交換器42(2)においては送風ファン25cの作用により周囲空気と熱交換を行って凝縮し、過冷却手段33、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。外気温が低過ぎた場合の動作は先と同じである。   Next, the case where the air conditioning load is small will be described. When there is a not so large air conditioning load, that is, when the air-conditioning-side refrigerant evaporation heat amount <the refrigeration-side refrigerant condensation heat amount is satisfied, the integrated heat AC path switching unit 34 is set to the position B. The operation in this state is called mode B. The air-conditioning-side refrigerant is compressed by the air-conditioning compressor 21a to become a high-temperature and high-pressure refrigerant, and is sent to the air-conditioning-side indoor heat exchanger 22a, which is a load, to heat the room. Then, by the action of the blower fan 25a, heat is exchanged with the indoor air to condense, expand by the expansion means 23a to become a low-temperature and low-pressure refrigerant, pass through the integrated heat AC path switching means 34, and then pass through the integrated heat exchanger 42 ( It is sent to the air conditioning flow path 24a (1) of 1), where it is evaporated by performing heat exchange with the high-temperature and high-pressure refrigerant on the refrigeration side, and returns to the air conditioning compressor 21a. Since the refrigerant circulating in the refrigeration cycle evaporates and gasifies by absorbing heat from the surrounding medium in the evaporator, the temperature of the refrigerant in the evaporator cannot be higher than the temperature of the surrounding medium. In the mode B, the air-conditioning-side refrigerant absorbs heat from the high-temperature refrigeration-side refrigerant and evaporates in the integrated heat exchanger 42 (1), and its evaporation temperature is high-temperature and high-pressure refrigeration regardless of low-temperature outside air. It is determined by the temperature of the side refrigerant and the amount of heat exchange in the integrated heat exchanger 42 (1) and can be kept at a high value, so that a very efficient operation becomes possible. Therefore, it is necessary to prevent external air such as ventilation from being applied to the air-conditioning-side refrigerant in the integrated heat exchanger 42 (1). On the other hand, the refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, and passes through the refrigeration flow path 24b (1) of the integrated heat exchanger 42 (1) to form the integrated heat exchanger 42 (2). ) To the refrigerating channel 24b (2). At this time, since the low-temperature and low-pressure refrigerant on the air-conditioning side passes only through the integrated heat exchanger 42 (1), the refrigerant on the refrigeration side in the refrigerant-refrigerant integrated heat exchanger 42 (1) is It exchanges heat with the refrigerant and condenses. However, since the heat of evaporation on the air conditioning side is not so large, the refrigerant on the refrigeration side does not completely condense and reaches the air-cooling integrated heat exchanger 42 (2). In the air-cooling integrated heat exchanger 42 (2), heat is exchanged with the surrounding air by the action of the blower fan 25c, condensed, passed through the supercooling means 33 and the liquid reservoir 26, expanded in the expansion means 23b, and reduced in temperature and pressure. It becomes a refrigerant, evaporates in the refrigeration heat exchanger 22b, and returns to the compressor 21b. The operation when the outside air temperature is too low is the same as the above.

次に空調暖房負荷が大きい場合について説明する。空調負荷が大きい場合は、一体熱交流路切替手段34はAの位置に設定する。この状態での運転をモードAと呼称する。空調側の冷媒は空調用圧縮機21aで圧縮されて高温高圧冷媒になり、空調側室内熱交換器22aへ送られ、送風ファン25aの作用により周囲空気と熱交換を行って凝縮し、膨張手段23aにて膨張して低温低圧冷媒になり、一体熱交流路切替手段34を経て、一体型熱交換器42(2)の空調用流路24a(2)を経て一体型熱交換器42(1)の空調用流路24a(1)へ送られる。一体型熱交換器42(2)においては、冷蔵側の高温高圧の冷媒との熱交換および送風機25cの作用による周囲空気との熱交換がなされ、更に一体型熱交換器42(1)において冷蔵側の高温高圧の冷媒との熱交換が再びなされ、蒸発した冷媒は、空調用圧縮機21aへ戻る。一方、冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、一体型熱交換器42(1)の冷蔵用流路24b(1)を経て一体型熱交換器42(2)の冷蔵用流路24b(2)へ至る。この際、空調側の低温低圧の冷媒は一体型熱交換器42(1)と42(2)の両方を通っている。一体型熱交換器42(1)においては冷蔵側の冷媒は低温低圧の空調側冷媒と熱交換を行い凝縮する。しかし、冷蔵側冷媒の必要凝縮熱量に対し一体型熱交換器42(1)にて得られる熱交換量が小さいため、冷蔵側の冷媒は完全には凝縮しきれずに一体型熱交換器42(2)へ至る。一体型熱交換器42(2)においては高温高圧の空調側冷媒との熱交換および送風ファン25cの作用による周囲空気との熱交換によって凝縮し、過冷却手段33、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。外気温が低過ぎた場合の動作は先と同じである。   Next, the case where the air conditioning and heating load is large will be described. When the air conditioning load is large, the integrated thermal AC path switching means 34 is set to the position A. The operation in this state is referred to as mode A. The air-conditioning-side refrigerant is compressed by the air-conditioning compressor 21a to become a high-temperature and high-pressure refrigerant, sent to the air-conditioning-side indoor heat exchanger 22a, exchanges heat with the surrounding air by the action of the blower fan 25a, condenses, and expands. The refrigerant expands at 23a to become a low-temperature low-pressure refrigerant, passes through the integrated heat exchange path switching means 34, passes through the air conditioning flow path 24a (2) of the integrated heat exchanger 42 (2), and then passes through the integrated heat exchanger 42 (1). ) Is sent to the air conditioning channel 24a (1). In the integrated heat exchanger 42 (2), heat exchange with the high-temperature and high-pressure refrigerant on the refrigeration side and heat exchange with the surrounding air by the action of the blower 25c are performed. The heat exchange with the high-temperature and high-pressure refrigerant on the side is performed again, and the evaporated refrigerant returns to the air conditioning compressor 21a. On the other hand, the refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, and passes through the refrigeration flow path 24b (1) of the integrated heat exchanger 42 (1) to form the integrated heat exchanger 42 (2). ) To the refrigerating channel 24b (2). At this time, the low-temperature low-pressure refrigerant on the air-conditioning side passes through both the integrated heat exchangers 42 (1) and 42 (2). In the integrated heat exchanger 42 (1), the refrigerant on the refrigeration side exchanges heat with the low-temperature and low-pressure air-conditioning side refrigerant and condenses. However, since the amount of heat exchange obtained in the integrated heat exchanger 42 (1) is smaller than the required amount of heat of condensation of the refrigerated refrigerant, the refrigerated refrigerant cannot be completely condensed and the integrated heat exchanger 42 ( 2). In the integrated heat exchanger 42 (2), the heat is condensed by heat exchange with the high-temperature and high-pressure air-conditioning-side refrigerant and heat exchange with the surrounding air by the action of the blower fan 25c, and expands through the supercooling means 33 and the liquid reservoir 26. The refrigerant expands in the means 23b to become a low-temperature low-pressure refrigerant, evaporates in the refrigeration heat exchanger 22b, and returns to the compressor 21b. The operation when the outside air temperature is too low is the same as the above.

次に、モードAとモードBの切替方法について図14について説明する。図14はモード切替のフローを示すフローチャートである。判断開始(ST1)後、空調側の運転が停止している(ST2)場合はモードBへ切替を行い(ST3)、停止していない場合はモード切替を行わず、次のステップへ行く。ST4にて運転モードによりフローの分離を行う。   Next, a method for switching between mode A and mode B will be described with reference to FIG. FIG. 14 is a flowchart showing the flow of mode switching. After the start of the determination (ST1), if the operation on the air-conditioning side is stopped (ST2), the mode is switched to mode B (ST3). In ST4, the flow is separated according to the operation mode.

モードBの場合、空調側の冷媒は高温高圧の冷蔵側冷媒とのみ熱交換行っており、空調負荷がさほど大きくない場合、空調側蒸発温度は高温高圧の冷蔵側冷媒温度に近づき、高めの温度となる。空調負荷が増えると、冷媒の蒸発熱量を確保するため、空調側冷媒の蒸発温度は低下し、更に空調負荷が増えると、外気温度−空調側蒸発温度>α、が成り立つようになる。ここでαはもともと設定してある正の定数である。この条件が成り立った場合、空調側冷媒を蒸発させるのに外気も使用した方が空調用圧縮機21aの入力が少なくなる。そこで、外気温度−空調側蒸発温度>α、か否かを判断し(ST5)、この条件が成り立った場合、モードAへ切替え(ST6)、外気の熱量も蒸発に使えるようにし、フローから抜ける(ST9)。   In mode B, the air-conditioning-side refrigerant exchanges heat only with the high-temperature and high-pressure refrigeration-side refrigerant, and when the air-conditioning load is not so large, the air-conditioning-side evaporation temperature approaches the high-temperature and high-pressure refrigeration-side refrigerant temperature and increases Becomes When the air-conditioning load increases, the evaporation temperature of the air-conditioning-side refrigerant decreases in order to secure the amount of evaporation heat of the refrigerant. When the air-conditioning load further increases, the relationship of outside air temperature-air-conditioning-side evaporation temperature> α is satisfied. Here, α is a positive constant set originally. When this condition is satisfied, the input of the air-conditioning compressor 21a decreases when outside air is also used to evaporate the air-conditioning-side refrigerant. Then, it is determined whether or not the outside air temperature−the air-conditioning side evaporation temperature> α (ST5). If this condition is satisfied, the mode is switched to mode A (ST6), the amount of heat of the outside air is used for evaporation, and the process exits. (ST9).

モードAの場合、空調側の冷媒は高温高圧の冷蔵側冷媒と外気の両方と熱交換行っており、外気温度−空調側蒸発温度>0、が成り立つ。モードBからモードAへ切り替えがなされると、空調側の蒸発器の伝熱面積が増加するため、外気温度−空調側蒸発温度の値は、切替前(外気温度−空調側蒸発温度>α)よりも小さい値になる(α>外気温度−空調側蒸発温度>0)。その後、外気温度−空調側蒸発温度は、空調負荷が増加すると大きくなり、空調負荷が減少すると小さくなる。そして、更に空調負荷が小さくなると、外気温度−空調側蒸発温度<β、が成り立つようになる。ここでβはもともと設定してある定数で、α>β>0の範囲にある値である。この条件が成り立った場合、空調側冷媒を蒸発させるのに外気も使用しないで、冷蔵側冷媒との熱交換のみで蒸発させた方が空調用圧縮機21aの入力が少なくなる。そこで、外気温度−空調側蒸発温度<β、か否かを判断し(ST7)、この条件が成り立った場合、モードBへ切替えを行い(ST8)、フローから抜ける(ST9)。   In the case of mode A, the refrigerant on the air-conditioning side exchanges heat with both the high-temperature and high-pressure refrigeration-side refrigerant and the outside air, and the relation: outside air temperature−air-conditioning-side evaporation temperature> 0 holds. When the mode is switched from the mode B to the mode A, the heat transfer area of the evaporator on the air conditioning side increases, so that the value of the outside air temperature-the evaporation temperature on the air conditioning side is the value before the switching (the outside air temperature-the evaporation temperature on the air conditioning side> α). (Α> outside air temperature−air conditioning side evaporation temperature> 0). Thereafter, the ratio between the outside air temperature and the air conditioning-side evaporation temperature increases as the air conditioning load increases, and decreases as the air conditioning load decreases. When the air-conditioning load is further reduced, the relationship of outside air temperature−air-conditioning-side evaporation temperature <β is satisfied. Here, β is a constant originally set and is a value in the range of α> β> 0. When this condition is satisfied, the input to the air conditioning compressor 21a is reduced by evaporating only the heat exchange with the refrigeration side refrigerant without using the outside air to evaporate the air conditioning side refrigerant. Then, it is determined whether or not the outside air temperature−the air conditioning side evaporation temperature <β (ST7). If this condition is satisfied, the mode is switched to the mode B (ST8), and the process is exited (ST9).

以上のフローによって、低圧流路切替手段の切替ができるが、モードAからモードBへの切替が適切になされない可能性もある。すなわち、モードAからモードBへの切替えはモードBで運転した方が効率がよくなると判断した場合に行う。その判断を、外気温度−空調側蒸発温度<β、で行っているが、一体型熱交換器の伝熱面積がかなり大きいため、βの値は小さめの値に設定され、また、空調負荷が変化しても、外気温度−空調側蒸発温度、は少ししか変化しない。また、外気から吸熱する一体型熱交換器42(2)を使用している限り、必ず、外気温度−空調側蒸発温度>0、が成り立ち、これが下限になる。すなわち、外気温度−空調側蒸発温度、は空調負荷の変化に対する感度が悪く、βの設定値を間違うと、切替タイミングが適切になされず、多少効率の悪いところで動く時間が増えてしまう可能性がある。そこで、外気温度−空調側蒸発温度>α か否かを判断し(ST5)、この条件が成り立った場合、図15のようにその時の空調用圧縮機21aの運転周波数を記憶してから(ST20)、モードAへ切替えを行う(ST6)。そして、空調負荷が小さくなると空調用圧縮機21aの運転周波数も小さくなるため、空調用圧縮機21aの運転周波数をモニタしておき、これが前のモード切替時に記憶した周波数よりも小さくなった場合(ST7a)にモードAからモードBへの切替えを行う(ST8)。このように制御フローを修正することで、モード切替を適切に行えるようになる場合がある。   According to the above flow, the switching of the low-pressure flow path switching means can be performed, but the switching from the mode A to the mode B may not be properly performed. That is, switching from mode A to mode B is performed when it is determined that driving in mode B is more efficient. Although the determination is made based on the relationship between the outside air temperature and the air-conditioning side evaporation temperature <β, the value of β is set to a small value because the heat transfer area of the integrated heat exchanger is considerably large. Even if it changes, the outside air temperature minus the air conditioning-side evaporation temperature changes only slightly. In addition, as long as the integrated heat exchanger 42 (2) that absorbs heat from the outside air is used, the relationship of outside air temperature−air-conditioning evaporation temperature> 0 always holds, and this is the lower limit. That is, the sensitivity of the outside air temperature to the air-conditioning-side evaporation temperature to the change in the air-conditioning load is poor, and if the set value of β is incorrect, the switching timing is not appropriate, and there is a possibility that the operating time in a somewhat inefficient place may be increased. is there. Then, it is determined whether or not the outside air temperature−the air conditioning side evaporation temperature> α (ST5). If this condition is satisfied, the operating frequency of the air conditioning compressor 21a at that time is stored as shown in FIG. 15 (ST20). ), The mode is switched to mode A (ST6). When the air-conditioning load decreases, the operating frequency of the air-conditioning compressor 21a also decreases. Therefore, the operating frequency of the air-conditioning compressor 21a is monitored, and when the operating frequency is lower than the frequency stored at the time of the previous mode switching ( Switching from mode A to mode B is performed in ST7a) (ST8). By modifying the control flow in this manner, mode switching may be performed appropriately.

次に、夏期の空調側が冷房運転を行っている場合について説明する。空調側が冷房運転を行っている場合は、図12において、一体熱交流路切替手段34はAの位置に設定され、空調側の冷媒は空調用圧縮機21aで圧縮されて高温高圧冷媒になり、一体型熱交換器42(1)の空調用流路24a(1)を経て、一体型熱交換器42(2)の空調用流路24a(2)へ至る。この際、冷蔵側の冷媒の動きは先の説明と同様であり、一体型熱交換器42(1)、42(2)の冷蔵用流路24b(1)、24b(2)へは高温高圧の冷媒が流入する。従って、一体型熱交換器内では空調側冷媒と冷蔵側冷媒の温度差がほとんどないため、冷媒同士の熱交換がなされず、空調側冷媒は一体型熱交42(2)内において送風用ファン25cの作用によって周囲空気とのみ熱交換を行って凝縮し、一体熱交流路切替手段34を経て、空調用膨張手段23aによって低温低圧の冷媒に膨張し、負荷である空調用室内熱交換器23aにて蒸発し室内空気の冷却を行い、流路切替手段31を経て、空調用圧縮機21aへ戻る。この冷房運転の場合、冷蔵側と空調側は熱のやり取りをせずほとんど無関係に動作する。   Next, the case where the air conditioning side performs the cooling operation in the summer will be described. When the air-conditioning side is performing the cooling operation, in FIG. 12, the integrated thermal AC path switching means 34 is set to the position A, and the refrigerant on the air-conditioning side is compressed by the air-conditioning compressor 21a to become a high-temperature high-pressure refrigerant, Through the air conditioning flow path 24a (1) of the integrated heat exchanger 42 (1), it reaches the air conditioning flow path 24a (2) of the integrated heat exchanger 42 (2). At this time, the movement of the refrigerant on the refrigeration side is the same as that described above, and the high-temperature and high-pressure flows to the refrigeration channels 24b (1) and 24b (2) of the integrated heat exchangers 42 (1) and 42 (2). Refrigerant flows in. Therefore, since there is almost no temperature difference between the air conditioning-side refrigerant and the refrigeration-side refrigerant in the integrated heat exchanger, heat exchange between the refrigerants is not performed, and the air-conditioning refrigerant is blown by the blowing fan in the integrated heat exchange 42 (2). Due to the action of 25c, heat exchange is performed only with the ambient air to condense, and the heat is expanded to low-temperature and low-pressure refrigerant by the air-conditioning expansion means 23a via the integrated heat AC path switching means 34, and the air-conditioning indoor heat exchanger 23a as a load Then, the room air is cooled and the air returns to the air conditioning compressor 21a via the flow path switching means 31. In the case of this cooling operation, the refrigeration side and the air conditioning side do not exchange heat and operate almost independently.

しかし、空調用圧縮機21aおよび冷蔵用圧縮機21bはそれぞれインバータで制御されているため、両冷凍サイクル凝縮器内の高温高圧の冷媒の温度が異なる場合があり得る。この温度が異なると、本来冷蔵側と空調側は無関係に動いて欲しいところが、一体型熱交換器42(1)内で高温高圧冷媒同士で熱交換を行ってしまい、効率の悪い運転を行ってしまう可能性もある。そこで、冷媒回路を図13のようにしてもよい。図13においては、逆止弁35(1)、35(2)が追加になっている。このように回路を構成すると、暖房運転時は空調側冷媒が一体型熱交換器42(1)内の空調用流路24a(1)を通った後、逆止弁35(1)、流路切替手段31を経て空調用圧縮機21aへ戻るように冷媒が流れ、先の説明と同様の動きとなる。また、冷房運転時は、空調用圧縮機21aで圧縮された冷媒が流路切替手段31、逆止弁35(2)を経て、一体型熱交換器42(2)の空調用流路24a(2)へ至るように流れ、空調側の冷媒を一体型熱交換器42(1)へ流さないようにすることができ、冷蔵側の冷媒との不要な熱交換を防止でき、常時効率のよい運転を行うことができるようになる。なお、2つの逆止弁はどちらか片方もしくは両方を電磁弁等の開閉弁にし、逆止弁の場合と同様の動作をさせるような開閉操作をするように構成してもよい。即ち図12、図13の様に直列に設けた複数の一体型熱交換器に流れる冷媒を切換えて、一体型熱交換器内の独立した流路を流れる冷媒の温度差を利用した省エネルギー運転と、一体型熱交換器内の独立した流路の一方を停止させて放熱フィンの大きさを利用した省エネルギー運転を季節や外気温度に応じて行うことが出来る。   However, since the air-conditioning compressor 21a and the refrigeration compressor 21b are each controlled by an inverter, the temperature of the high-temperature and high-pressure refrigerant in both refrigeration cycle condensers may be different. If this temperature is different, the refrigeration side and the air-conditioning side should operate independently regardless of each other. There is also a possibility. Therefore, the refrigerant circuit may be configured as shown in FIG. In FIG. 13, check valves 35 (1) and 35 (2) are added. With this circuit configuration, during the heating operation, the air-conditioning-side refrigerant passes through the air-conditioning flow path 24a (1) in the integrated heat exchanger 42 (1), and then passes through the check valve 35 (1) and the flow path. The refrigerant flows so as to return to the air conditioning compressor 21a via the switching means 31, and the operation is the same as described above. In the cooling operation, the refrigerant compressed by the air conditioning compressor 21a passes through the flow path switching means 31 and the check valve 35 (2), and passes through the air conditioning flow path 24a () of the integrated heat exchanger 42 (2). 2), the refrigerant on the air conditioning side can be prevented from flowing to the integrated heat exchanger 42 (1), unnecessary heat exchange with the refrigerant on the refrigeration side can be prevented, and the efficiency is always high. You will be able to drive. Note that one or both of the two check valves may be configured as an open / close valve such as an electromagnetic valve, and may be configured to perform an open / close operation to perform the same operation as that of the check valve. That is, by switching the refrigerant flowing through a plurality of integrated heat exchangers provided in series as shown in FIGS. 12 and 13, energy saving operation utilizing the temperature difference of the refrigerant flowing through independent flow paths in the integrated heat exchanger is achieved. By stopping one of the independent flow paths in the integrated heat exchanger, energy saving operation using the size of the radiation fins can be performed according to the season and the outside air temperature.

以上のように本発明の構成で、空調用圧縮機21a、冷蔵用又は冷凍用圧縮機21bに対しインバータ駆動のDCブラシレスモータで駆動するスクロールやロータリーなどの圧縮機を使用することにより一層効率の改善が可能になる。更に空調機用冷凍サイクルを複数設け、空調専用の冷凍サイクルと冷蔵又は冷凍用冷凍サイクルの凝縮器と一体型熱交換器で熱交換可能に接続されている空調機を設けることができる。すなわち図1のようにコンビニエンスストア等の店舗14内に空調用専門の室内機12bおよび冷蔵空調一体機に接続される室内機12aと冷蔵用ショーケース13がそれぞれ複数台配置され、空調用室内機12bは空調用室外機10に、空調用室内機12aおよび冷蔵用ショーケース13は冷蔵空調一体機11にそれぞれ接続されている。この店舗14において空調用室外機10と空調用室内機12bで構成される空調機は、冷房時は優先的に運転するように制御される。すなわち冷房モードで店舗の空調が行われるときはフル運転するように室温の目標温度を冷蔵空調一体機11と空調用室内機12aで構成される空調機より低く設定され、これにより室内温度検出値と設定値との差は空調用室内機12bの方が空調用室内機12aより常に大きくなり、空調用室内機12bの運転が優先される。   As described above, in the configuration of the present invention, by using a compressor such as a scroll or a rotary driven by an inverter-driven DC brushless motor for the air conditioning compressor 21a and the refrigeration or freezing compressor 21b, the efficiency is further improved. Improvements are possible. Further, a plurality of refrigeration cycles for air conditioners may be provided, and an air conditioner connected to a refrigeration cycle dedicated to air conditioning and a condenser of the refrigeration cycle for refrigeration or freezing and heat exchange with an integrated heat exchanger may be provided. That is, as shown in FIG. 1, a plurality of indoor units 12 a and a plurality of indoor units 12 a connected to the refrigeration and air-conditioning integrated unit and a plurality of refrigeration showcases 13 are arranged in a store 14 such as a convenience store. 12b is connected to the outdoor unit for air conditioning 10, and the indoor unit 12a for air conditioning and the refrigeration showcase 13 are connected to the integrated refrigeration and air conditioning unit 11, respectively. In this store 14, the air conditioner including the outdoor unit 10 for air conditioning and the indoor unit 12b for air conditioning is controlled so as to preferentially operate during cooling. That is, when the store is air-conditioned in the cooling mode, the target temperature of the room temperature is set lower than that of the air conditioner including the refrigeration / air-conditioning unit 11 and the air-conditioning indoor unit 12a so that the store is fully operated. The difference between the air conditioner indoor unit 12b and the set value is always larger than the air conditioner indoor unit 12a, and the operation of the air conditioner indoor unit 12b is prioritized.

一方、一体型熱交換器42を備えた冷蔵空調一体機11に接続される空調用室内機12aは暖房時に運転を優先するように制御される。すなわち暖房モードで店舗の運転が行われるときは目標温度は空調用室内機12bよりも高く設定され、これにより室内温度検出値と設定値との差は室内空調機12aの方が室内空調機12bより常に大きくなり、空調用室内機12aの運転が優先される。ただし共通のシステム制御装置を設けてある時は、冷房運転時空調用室内機12bを優先的にフル運転させたままとし、室温の設定値への到達が所定時間より遅れる場合等に空調用室内機12aの運転調整を行うようにしても良い。このように冷房と暖房で優先的に運転させる空調用室内機を、冷凍サイクルが空調専門のものと、冷蔵又は冷凍装置と一体になった熱交換器を熱源である室内機内に設けたもので区分けすることにより従来の空調機、冷凍機分散の店舗内システムの装置よりそれぞれの室外機の特性に合わせた最適運転を行うことができ、効率的な運転が可能になり、エネルギーの低減を行うことができる。   On the other hand, the air-conditioning indoor unit 12a connected to the refrigeration / air-conditioning integrated unit 11 having the integrated heat exchanger 42 is controlled so that the operation is prioritized during heating. That is, when the store is operated in the heating mode, the target temperature is set higher than that of the indoor unit 12b for air conditioning, whereby the difference between the detected indoor temperature and the set value is smaller for the indoor air conditioner 12b than for the indoor air conditioner 12b. It always becomes larger, and the operation of the air conditioning indoor unit 12a is prioritized. However, when a common system control device is provided, the air conditioning indoor unit 12b during the cooling operation is preferentially kept in full operation, and when reaching the set value of the room temperature is later than a predetermined time, etc. The operation of the machine 12a may be adjusted. As described above, the air-conditioning indoor unit that is preferentially operated by cooling and heating is provided by a refrigeration cycle dedicated to air conditioning and a heat exchanger integrated with a refrigeration or refrigeration unit provided in the indoor unit as a heat source. By classifying, it is possible to perform optimal operation according to the characteristics of each outdoor unit compared to the conventional in-store system of air conditioners and refrigerators, enabling efficient operation and reducing energy. be able to.

また、ここでの説明は冷凍空調一体機11が1つの筐体に納まっている場合について説明を行ったが、空調側冷凍サイクルと冷蔵側冷凍サイクルが一体型熱交換器42で熱交換可能なように構成されていればよく、1つの筐体に納まっている必要はない。例えば、図16のように冷蔵空調一体機11が空調部分11aと冷蔵部分11bの2つの部分から構成され、それぞれが別々の筐体に分かれており、双方の接続バルブ36aおよび36bの間を配管で接続して、冷蔵空調一体機を構成するようにしてもよい。なお図16では負荷側の熱交換器、すなわち空調用室内熱交換器22aと冷蔵用又は冷凍用室内熱交換器22bに接続される負荷側接続バルブ部37a、37bをそれぞれの筐体の接続部とする構成例を示すが、これらの負荷側熱交換器をそれぞれの筐体に含める構成であっても良い。このように構成すると、店舗の売り場面積がもっと大きい場合あるいは北海道等の北国へ設置された場合などの空調負荷が大きい場合に、接続バルブ36aと36bを分離し、空調熱源側接続バルブ36aに別の大容量の凝縮器を接続することで空調能力を増加させることができ、新たに別の空調機を設置する場合に比べ、安価に構成できるというメリットがある。設備拡張でなく設備変更にも簡単に対応できるし、メインテナンスなどの作業にも有効である。更に、図19のように、冷凍空調一体機11が、空調部分11a、冷蔵部分11b、一体型熱交換器部分11cの3つの部分から構成され、それぞれが別々の筐体に分かれており、それぞれの接続バルブ36aと36c、36bと36cとを接続して、冷蔵空調一体機を構成するようにしてもよく、このように構成すると更に設置、構成の自由度が広がり、一体型熱交換器部11cの代わりに空調専用の熱交換器および冷蔵あるいは冷凍専用の熱交換器を接続すれば、空調用の冷凍サイクルと冷蔵または冷凍用の冷凍サイクルを全く別々に構成することもでき、客先のニーズに応じた自由なシステムを構成することができるようになる。   In addition, although the description here has been given of the case where the integrated refrigeration / air-conditioning machine 11 is housed in one housing, the air-conditioning-side refrigeration cycle and the refrigeration-side refrigeration cycle can exchange heat with the integrated heat exchanger 42. It is only necessary to have such a configuration, and it is not necessary to house it in one housing. For example, as shown in FIG. 16, the refrigeration / air-conditioning integrated machine 11 is composed of two parts, an air-conditioning part 11a and a refrigeration part 11b, each of which is divided into separate casings, and a pipe is provided between both connection valves 36a and 36b. May be connected to form an integrated refrigeration and air conditioning unit. In FIG. 16, the load-side heat exchangers, that is, the load-side connection valve portions 37a and 37b connected to the indoor heat exchanger 22a for air conditioning and the indoor heat exchanger 22b for refrigeration or freezing are connected to the connection portions of the respective housings. A configuration example will be described, but the configuration may be such that these load-side heat exchangers are included in respective housings. With this configuration, the connection valves 36a and 36b are separated and separated into the air-conditioning heat source side connection valve 36a when the store has a larger sales floor area or when the air conditioning load is large, such as when the store is installed in a northern country such as Hokkaido. By connecting a large-capacity condenser, the air-conditioning capacity can be increased, and there is an advantage that the configuration can be made at a lower cost than when another air conditioner is newly installed. It can easily respond to equipment changes rather than equipment expansion, and is also effective for maintenance and other operations. Furthermore, as shown in FIG. 19, the refrigeration / air-conditioning integrated machine 11 is composed of three parts: an air-conditioning part 11a, a refrigeration part 11b, and an integrated heat exchanger part 11c, each of which is divided into separate housings. The connection valves 36a and 36c, 36b and 36c may be connected to form a refrigeration and air-conditioning integrated unit. With such a configuration, the degree of freedom of installation and configuration is further increased, and the integrated heat exchanger unit If a heat exchanger dedicated to air conditioning and a heat exchanger dedicated to refrigeration or freezing are connected instead of 11c, the refrigeration cycle for air conditioning and the refrigeration cycle for refrigeration or freezing can be configured completely separately. A free system can be configured according to needs.

図17は一体型熱交換器42を複数に分け直列に接続可能にして熱源機として室外熱交換器の箱体にそれぞれの圧縮機21a、21bや各弁類などと一緒に収納したものである。一体型熱交換器42の分離した2つは空調用流路24aと冷蔵用又は冷凍用流路24bとの相互熱交換をそれぞれ行うとともに、一方はプレート熱交換器や2重管熱交換器のように送風ファンなどによる積極的な周囲空気との熱交換を行わない冷媒冷媒一体型熱交換器42(1)である。これと直列接続可能な空冷一体型熱交換器42(2)は、送風機25cにより周囲の空気との熱交換も行い、且つ、送風機25cの回転数を変えて熱交換量の調整も可能である。その他の構成は図2、12、13などの構成などと同じで、これにより双方の流路間の熱交換量を増やすことができる。しかも熱交換量が増え省エネルギー対策が一層効果的になった室外機である冷凍空調装置の熱源機は空調用および冷蔵又は冷凍用冷凍サイクルがそれぞれ独立して分離した状態で、一体型熱交換器42(1)、42(2)は冷房時は直列に配管接続し、且つ、暖房時はどちらか一方に冷媒を流すことにより、運転状況に合せて効率よく対応できるようにしたものである。なお他の構成は先に説明したきた図1乃至図16の構成と同様で、動作も同じように運転される。   FIG. 17 shows a case where the integrated heat exchanger 42 is divided into a plurality of parts and can be connected in series, and is housed in a box of the outdoor heat exchanger together with the compressors 21a and 21b and the valves as a heat source unit. . Two of the integrated heat exchangers 42 perform mutual heat exchange between the air-conditioning flow path 24a and the refrigeration or freezing flow path 24b, respectively, and one of them has a plate heat exchanger or a double-pipe heat exchanger. In this manner, the heat exchanger 42 (1) is a refrigerant-refrigerant integrated heat exchanger that does not actively exchange heat with the surrounding air by a blowing fan or the like. The air-cooling integrated heat exchanger 42 (2), which can be connected in series with this, also performs heat exchange with the surrounding air by the blower 25c, and can adjust the amount of heat exchange by changing the rotation speed of the blower 25c. . Other configurations are the same as those in FIGS. 2, 12, 13, and the like, whereby the amount of heat exchange between the two flow paths can be increased. In addition, the heat source unit of the refrigeration and air conditioning system, which is an outdoor unit that has increased the amount of heat exchange and made energy saving measures more effective, is an integrated heat exchanger in which the air conditioning and refrigeration or refrigeration refrigeration cycles are separated independently from each other. 42 (1) and 42 (2) are connected in series with each other for piping during cooling, and allow refrigerant to flow through one of them during heating, so that it is possible to efficiently cope with operating conditions. The other configuration is the same as the configuration of FIGS. 1 to 16 described above, and the operation is the same.

まずは、図17の構成で中間期および冬期の空調側が停止もしくは暖房運転を行っている場合について説明する。空調負荷がなく空調側の冷媒循環が停止している場合、空冷一体型熱交換器42(2)への冷媒の凝縮を防止するため、開閉弁73および74を閉鎖する。冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、冷媒冷媒一体型熱交換器42(1)の冷蔵用流路24bを経て空冷一体型熱交換器42(2)の冷蔵用流路24bへ至る。この際、空調側の冷媒循環が停止しているため冷媒冷媒一体型熱交換器42(1)においては熱交換をなされない。空冷一体型熱交換器42(2)において、送風ファン25cの作用により周囲空気と熱交換を行って凝縮し、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、負荷である食品などを定められた低温で冷却する冷気を生成する冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。なお、外気温度が低過ぎ、冷蔵側冷凍サイクル内の高圧が低下し過ぎる場合は、膨張手段23bの差圧を維持し正常動作を保障するため、高圧維持手段である開閉弁76,77により冷媒の一部をバイパス流路24cへ流すことで、高圧が低くならないようにする。それでも、高圧が下がりすぎる場合は、送風機25cの回転数を低下させる。送風機25cの回転数低下を開閉弁76に優先させれば冷媒の調整は不要となる。   First, a description will be given of a case where the air conditioning side in the intermediate period and the winter period is stopped or performs the heating operation in the configuration of FIG. When there is no air conditioning load and the refrigerant circulation on the air conditioning side is stopped, the on-off valves 73 and 74 are closed in order to prevent the refrigerant from condensing to the air-cooling integrated heat exchanger 42 (2). The refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature, high-pressure refrigerant, and passes through the refrigeration flow path 24b of the refrigerant-refrigerant integrated heat exchanger 42 (1) to the air-cooled integrated heat exchanger 42 (2). It reaches the cooling passage 24b. At this time, since the refrigerant circulation on the air conditioning side is stopped, no heat exchange is performed in the refrigerant-refrigerant integrated heat exchanger 42 (1). In the air-cooling integrated heat exchanger 42 (2), heat is exchanged with the surrounding air by the action of the blower fan 25c to be condensed, and through the liquid reservoir 26, expanded by the expansion means 23b to become a low-temperature and low-pressure refrigerant. Evaporates in the refrigeration heat exchanger 22b that generates cold air for cooling food or the like at a predetermined low temperature, and returns to the compressor 21b. If the outside air temperature is too low and the high pressure in the refrigeration side refrigeration cycle is too low, the refrigerant is controlled by the open / close valves 76 and 77 as high pressure maintaining means in order to maintain the differential pressure of the expansion means 23b and ensure normal operation. Is flowed to the bypass flow passage 24c to prevent the high pressure from lowering. If the high pressure is still too low, the rotation speed of the blower 25c is reduced. If priority is given to lowering the rotation speed of the blower 25c over the on-off valve 76, the adjustment of the refrigerant becomes unnecessary.

次に暖房空調負荷が少しある場合について説明する。あまり大きくない空調負荷がある場合、すなわち、空調側冷媒蒸発熱量<冷蔵側冷媒凝縮熱量、が成り立つ場合、開閉弁73を開放し開閉弁74を閉鎖する。空調側の冷媒は空調用圧縮機21aで圧縮されて高温高圧冷媒になり、負荷である空調側室内熱交換器22aへ送られ室内の暖房を行う。そして、送風ファン25aの作用により室内空気と熱交換を行って凝縮し、第1絞り手段71にて膨張して低温低圧冷媒になり、冷媒冷媒一体型熱交換器42(1)の空調用流路24aへ送られ、ここで冷蔵側の高温高圧の冷媒と熱交換を行って蒸発し、空調用圧縮機21aへ戻る。一方、冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、冷媒冷媒一体型熱交換器42(1)の冷蔵用流路24bを経て空冷一体型熱交換器42(2)の冷蔵用流路24bへ至る。この際、空調側の低温低圧の冷媒は一体型熱交換器42(1)のみを通っているため、冷媒冷媒一体型熱交換器42(1)においては冷蔵側の冷媒は低温低圧の空調側冷媒と熱交換を行い凝縮する。しかし、空調側の蒸発熱量があまり大きくないため、冷蔵側の冷媒は完全には凝縮しきれずに空冷一体型熱交換器42(2)へ至る。空冷一体型熱交換器42(2)においては送風ファン25cの作用により周囲空気と熱交換を行って凝縮し、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。外気温が低過ぎた場合の動作は先と同じである。   Next, the case where the heating and air conditioning load is small will be described. When there is not so large air conditioning load, that is, when the air-conditioning-side refrigerant evaporation heat amount <the refrigeration-side refrigerant condensation heat amount, the on-off valve 73 is opened and the on-off valve 74 is closed. The air-conditioning-side refrigerant is compressed by the air-conditioning compressor 21a to become a high-temperature and high-pressure refrigerant, and is sent to the air-conditioning-side indoor heat exchanger 22a, which is a load, to heat the room. The heat is exchanged with the indoor air by the action of the blower fan 25a, condensed, and expanded by the first throttle means 71 to become a low-temperature low-pressure refrigerant. The refrigerant is sent to the passage 24a, where it exchanges heat with the high-temperature, high-pressure refrigerant on the refrigeration side, evaporates, and returns to the air conditioning compressor 21a. On the other hand, the refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, and passes through the refrigeration flow path 24b of the refrigerant-refrigerant integrated heat exchanger 42 (1), and the air-cooled integrated heat exchanger 42 (2). ) To the cooling channel 24b. At this time, since the low-temperature and low-pressure refrigerant on the air-conditioning side passes only through the integrated heat exchanger 42 (1), the refrigerant on the refrigeration side in the refrigerant-refrigerant integrated heat exchanger 42 (1) is It exchanges heat with the refrigerant and condenses. However, since the heat of evaporation on the air conditioning side is not so large, the refrigerant on the refrigeration side does not completely condense and reaches the air-cooling integrated heat exchanger 42 (2). In the air-cooling integrated heat exchanger 42 (2), heat is exchanged with the surrounding air by the action of the blower fan 25c and condensed. The heat is then expanded by the expansion means 23b through the liquid reservoir 26 to become a low-temperature low-pressure refrigerant. Evaporates in the heat exchanger 22b for use and returns to the compressor 21b. The operation when the outside air temperature is too low is the same as the above.

次に空調暖房負荷が大きい場合について説明する。暖房時空調負荷が大きい場合は、開閉弁73を閉鎖し、開閉弁74を開放する。空調側の冷媒は空調用圧縮機21aで圧縮されて高温高圧冷媒になり、空調側室内熱交換器22aへ送られ、送風ファン25aの作用により周囲空気と熱交換を行って凝縮し、第一絞り手段であるキャピラリ71により膨張して中温中圧冷媒になり、再び第二絞り手段であるキャピラリ72にて膨張し、空冷一体型熱交換器42(2)の空調用流路24aへ送られる。空冷一体型熱交換器42(2)においては、送風機25cの作用による周囲空気との熱交換がなされ、蒸発した冷媒は、空調用圧縮機21aへ戻る。一方、冷蔵側の冷媒は冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、冷媒冷媒一体型熱交換器42(1)の冷蔵用流路24bを経て、開閉弁77が閉鎖され開閉弁76が開放されているため、空冷一体型熱交換器42(2)の冷蔵用流路24bはとおらずに絞り手段23bから冷蔵ショーケース熱交換器22bへ至る。この際、空調側の低温低圧の冷媒は一体型熱交換器42(1)と42(2)の両方を通っている。負荷が大きい暖房空調時の空調側の冷凍サイクルでは、冷媒冷媒一体型熱交換器42(1)の前後に絞り手段を入れる回路構成にすることで、中圧にして冷媒冷媒一体型熱交換器を通る冷媒の蒸発温度を高くして冷蔵側冷媒との熱交換量を減らしている。例えば冷蔵用冷媒30゜Cに対し、空調用冷媒が4゜Cであったものが、空調用冷媒20゜Cになる。この2つの絞り手段はそれぞれキャピラリーチューブにすると構造および制御が簡単になる。もちろん電子式膨張弁で連動制御させると制御性がよいため更に性能が上がることになる。   Next, the case where the air conditioning and heating load is large will be described. When the heating air conditioning load is large, the on-off valve 73 is closed and the on-off valve 74 is opened. The air-conditioning-side refrigerant is compressed by the air-conditioning compressor 21a to become a high-temperature and high-pressure refrigerant, sent to the air-conditioning-side indoor heat exchanger 22a, condensed by exchanging heat with the surrounding air by the action of the blowing fan 25a, and The refrigerant is expanded by the capillary 71 as the expansion means to become a medium-temperature and medium-pressure refrigerant, expanded again by the capillary 72 as the second expansion means, and sent to the air-conditioning passage 24a of the air-cooling integrated heat exchanger 42 (2). . In the air-cooling integrated heat exchanger 42 (2), heat is exchanged with the surrounding air by the action of the blower 25c, and the evaporated refrigerant returns to the air conditioning compressor 21a. On the other hand, the refrigerant on the refrigeration side is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, passes through the refrigeration flow path 24b of the refrigerant-refrigerant integrated heat exchanger 42 (1), and the on-off valve 77 is closed and the on-off valve Since 76 is open, the flow path 24b for cooling of the air-cooling integrated heat exchanger 42 (2) does not pass, and the air flows from the expansion means 23b to the refrigerated showcase heat exchanger 22b. At this time, the low-temperature low-pressure refrigerant on the air-conditioning side passes through both the integrated heat exchangers 42 (1) and 42 (2). In a refrigeration cycle on the air conditioning side during heating and air conditioning with a large load, a circuit configuration in which a throttling means is provided before and after the refrigerant-refrigerant integrated heat exchanger 42 (1) makes the refrigerant-refrigerant integrated heat exchanger at medium pressure. The amount of heat exchange with the refrigeration-side refrigerant is reduced by increasing the evaporation temperature of the refrigerant passing through the refrigerant. For example, the refrigerant for air conditioning is 4 ° C. for the refrigerant 30 ° C. for refrigeration, and the refrigerant for air conditioning is 20 ° C. If these two restricting means are each a capillary tube, the structure and control are simplified. Of course, when the interlocking control is performed by the electronic expansion valve, the controllability is good, so that the performance is further improved.

冷蔵側冷凍サイクルではこの場合圧縮機から吐出された高温高圧の冷媒が冷媒冷媒一体型熱交換器で凝縮され開閉弁76を経由し膨張弁23bにて膨張し熱交換器22bで蒸発して圧縮機21bへ戻される。冷蔵側の冷凍サイクルは冷媒冷媒一体型熱交換器42(1)での熱交換量は減るが冷媒流量は減っていないため、空冷一体型熱交換器をバイパスさせて高圧が下がるのを防いでいる。すなわちこのように空調が停止したり、暖房負荷が小さくとも大きくとも、空冷一体型熱交換器は空調用もしくは冷蔵用のどちらか一方しか冷媒を流がす回路構成にするため、言い換えるとこの一方の冷媒が流れる方にとって見れば有効伝熱面積が拡大する回路構成にするため、性能が上がることになる。   In the refrigeration cycle, in this case, the high-temperature and high-pressure refrigerant discharged from the compressor is condensed by the refrigerant-refrigerant integrated heat exchanger, expanded via the on-off valve 76, expanded by the expansion valve 23b, evaporated by the heat exchanger 22b, and compressed. Machine 21b. In the refrigeration cycle on the refrigeration side, the amount of heat exchange in the refrigerant-refrigerant integrated heat exchanger 42 (1) is reduced but the flow rate of the refrigerant is not reduced, so that the air-cooled integrated heat exchanger is bypassed to prevent the high pressure from decreasing. I have. That is, even if the air conditioning is stopped or the heating load is small or large, the air-cooling integrated heat exchanger has a circuit configuration in which the refrigerant flows only for air conditioning or refrigeration, in other words, If the refrigerant flows, the circuit configuration is such that the effective heat transfer area is enlarged, so that the performance is improved.

図17の回路における冷房運転時、まず空調側冷凍サイクル内での冷媒の流れは、圧縮機21aから吐出され四方弁を経由し、開閉弁73が閉鎖され開閉弁74が開放されているため、空冷一体型熱交換器42(2)、第二絞り手段72、冷媒冷媒一体型熱交換器42(1)、第一絞り手段71を介して空調室内機22aにて蒸発し冷房が行われ圧縮機に戻される。一方冷蔵側冷凍サイクルでの冷媒の流れは、圧縮機21bから吐出され冷媒冷媒一体型圧縮機である熱回収プレート熱交換器42(1)を経由し、開閉弁77が開放され開閉弁76が閉鎖されているため空冷一体型熱交換器42(2)から膨張手段23b、ショーケース熱交換器22bをとおり圧縮機に戻る。空調、冷蔵両方の冷凍サイクルは既に説明したようにそれぞれ独立して性能を発揮させるような運転が行われるが、図17の回路構成では、冷媒冷媒一体型熱交換器42(1)にて空調用冷媒が2つの絞り手段により中圧になるため、空調側冷媒のほうが冷蔵側冷媒よりも温度が低くなり、冷媒冷媒一体型熱交換器42(1)にて空調側と冷蔵側との間で熱移動が生じる。もともと空調側のCOPが冷蔵側のCOPよりよいため、この熱移動により冷房時空調と冷蔵トータルの性能を向上させることができる。すなわちCOP=能力/入力で、蒸発温度が低いほど入力が大きく、冷蔵の低温を得るためCOPが悪くなるのを空調側の冷媒の流れにより補正して装置全体の性能を挙げることができる。   During the cooling operation in the circuit of FIG. 17, first, the flow of the refrigerant in the air conditioning-side refrigeration cycle is discharged from the compressor 21a, passes through the four-way valve, and the on-off valve 73 is closed and the on-off valve 74 is opened. Via the air-cooling integrated heat exchanger 42 (2), the second throttle means 72, the refrigerant / refrigerant integrated heat exchanger 42 (1), and the first throttle means 71, the air-conditioning indoor unit 22a evaporates and performs cooling to perform compression. Returned to the machine. On the other hand, the flow of the refrigerant in the refrigeration side refrigeration cycle is discharged from the compressor 21b, passes through the heat recovery plate heat exchanger 42 (1) which is a refrigerant-refrigerant integrated compressor, the on-off valve 77 is opened, and the on-off valve 76 is opened. Since it is closed, it returns from the air-cooled integrated heat exchanger 42 (2) to the compressor through the expansion means 23b and the showcase heat exchanger 22b. As described above, the refrigeration cycle for both the air conditioning and the refrigeration is operated so as to exhibit the performance independently of each other. However, in the circuit configuration of FIG. 17, the air conditioning is performed by the refrigerant / refrigerant heat exchanger 42 (1). Since the refrigerant for use has a medium pressure by the two throttle means, the temperature of the air-conditioning-side refrigerant is lower than that of the refrigeration-side refrigerant, and the refrigerant-refrigerant-type heat exchanger 42 (1) is connected between the air-conditioning side and the refrigeration side. Causes heat transfer. Since the COP on the air conditioning side is originally better than the COP on the refrigeration side, the performance of air conditioning during cooling and the total performance of refrigeration can be improved by this heat transfer. That is, COP = capacity / input. The lower the evaporating temperature, the higher the input. To obtain a low refrigeration temperature, the deterioration of the COP is corrected by the flow of the refrigerant on the air conditioning side, so that the performance of the entire apparatus can be improved.

なお、上記説明はキャピラリーチューブ71,72に説明したが、電子膨張弁で冷媒冷媒一体型熱交換器42(1)における空調用冷媒の圧力を調整すれば性能が上がるだけでなく、上記のように冷房時の熱移動を運転状態に合せて自動調整することができる。この調整により総合性能のアップが可能で、例えば冷房の状態により総合入力を減らすことができる。また図18は一体型熱交換器42の構造図を示し、図4のものと同様であるが、図4との違いは熱交換器の冷媒出入り口4箇所を片側端部に設けたものである。図4のように両側端部にこの冷媒配管とのつなぎである出入り口を設けないで、図18のように片側に設ける場合、外部冷媒配管と熱交換器チューブの接続部への差込やロー付けなどを一方の端部に面する空間から行うことが出来、機械による作業が簡単になり、且つ、製造時に4箇所全部を一度に機械にてロー付けが行えるなど作業時間の短縮も得られる。なお、ここでの説明は冷凍機が冷蔵用冷凍機である場合についてを主体的に説明を行ったが、冷凍用冷凍機の場合でも同じように構成することができ、同様の効果を奏する。   Although the above description has been given with reference to the capillary tubes 71 and 72, if the pressure of the air-conditioning refrigerant in the refrigerant-refrigerant integrated heat exchanger 42 (1) is adjusted by the electronic expansion valve, not only does the performance increase, but also as described above. In addition, the heat transfer during cooling can be automatically adjusted according to the operating condition. By this adjustment, the overall performance can be improved, and for example, the total input can be reduced depending on the cooling condition. FIG. 18 shows a structural view of the integrated heat exchanger 42, which is the same as that of FIG. 4 except that four points of the refrigerant inlet / outlet of the heat exchanger are provided at one end. . In the case where an inlet / outlet which is a connection with the refrigerant pipe is not provided at both ends as shown in FIG. 4, but is provided at one side as shown in FIG. Brazing can be performed from the space facing one end, so that the work with the machine is simplified, and the work time can be shortened such that all four locations can be brazed at the same time at the time of manufacture. . Although the description here has been made mainly on the case where the refrigerator is a refrigerator refrigerator, the same configuration can be applied to the case of a refrigerator refrigerator, and the same effect can be obtained.

図17における構成では、空調側冷媒サイクルに対し複数設けた一体型熱交換器への冷媒の流れを複数の内の一つだけに流したり、全部に流したり、流れの方向を変えたりすることが出来、これにより空調側の運転だけでも外気状態や空調運転の要求レベルに応じて装置全体の効率を考えた操作が可能になる。なおその上で一体型熱交換器の熱伝達を考慮した冷蔵冷凍側の冷媒流やファンの操作で冷蔵冷凍の要求レベル、外気の状態と空調の要求レベルに応じ、エネルギーを最低限に抑える制御を、制御装置のマイコンに予め設定した条件やコントロールのフローで行うことが可能になる。なお、流路切替手段31は四方弁であることを例に説明を行ったが、配管内部を流れる冷媒の流路を切り替えられるものであればどんなものを用いてもよい。例えば、電磁弁や二方弁や三方弁を複数個用いるようにしてもよい。   In the configuration in FIG. 17, the flow of the refrigerant to a plurality of integrated heat exchangers provided for the air-conditioning-side refrigerant cycle can be made to flow to only one of the plurality, to the whole, or to change the flow direction. Accordingly, it is possible to perform the operation in consideration of the efficiency of the entire apparatus according to the outside air condition and the required level of the air conditioning operation only by the operation on the air conditioning side. In addition, control to minimize the energy according to the required level of refrigeration and refrigeration, the state of outside air and the required level of air conditioning by operating the refrigerant flow and the fan on the refrigeration side considering the heat transfer of the integrated heat exchanger Can be performed under the conditions and control flow preset in the microcomputer of the control device. In addition, although the flow-path switching means 31 has been described as an example of a four-way valve, any means may be used as long as it can switch the flow path of the refrigerant flowing inside the pipe. For example, a plurality of solenoid valves, two-way valves, and three-way valves may be used.

なお、本実施の形態の構成図には過冷却手段33を液溜26の上流側に設置するように示しているものが多いが、冷凍サイクルを簡素化し、安価に構成するためには過冷却手段33を設置しない構成としてもよく、同様の効果を奏する。また、過冷却手段33を液溜26の下流側に設置してもよく、この場合は、ショーケースである冷蔵用または冷凍用室内機22bでの冷凍能力を増やすことことができるという効果がある。   In many of the configuration diagrams of the present embodiment, the supercooling means 33 is shown to be installed on the upstream side of the liquid reservoir 26. The configuration in which the means 33 is not provided may be adopted, and the same effect is obtained. Further, the supercooling means 33 may be installed downstream of the liquid reservoir 26, and in this case, there is an effect that the refrigerating capacity of the refrigeration or freezing indoor unit 22b as a showcase can be increased. .

図20は、本発明の上記までの説明と同様な動作や効果を簡単な構成で得られる冷凍空調装置の構成図である。図20の構成において、冷蔵側冷凍サイクルの一体型熱交換器42(1)および42(2)の周囲には開閉弁やその他の流路切替手段を具備しておらず、冷蔵側または冷凍側の冷媒は運転中は一体型熱交換器に対して常時同じ動きをしており、冷蔵用圧縮機21bで圧縮されて高温高圧冷媒になり、冷媒冷媒一体型熱交換器42(1)の冷蔵用流路24b(1)を経て空冷一体型熱交換器42(2)の冷蔵用流路24b(2)へ至る。即ち冷蔵側冷凍サイクルは大幅に簡素化している。この構成で空調側の暖房/冷房/停止の運転モードあるいは空調負荷の大小による循環流路の違いにより、今までの説明と同様に複数の一体型熱交換器42(1)あるいは42(2)において、空調側冷媒と多大な熱交換をするか、少しの熱交換をするか、あるいは熱交換をしないかのいずれかの状態にすることが出来る。そして、冷蔵側冷凍サイクルは空冷一体型熱交換器42(2)において、冷媒が凝縮するために必要な残りの熱量を送風ファン25cの作用により周囲空気に放熱することで得て凝縮し、液溜26を経て、膨張手段23bにて膨張して低温低圧冷媒になり、負荷である食品などを定められた低温で冷却する冷気を生成する冷蔵用熱交換器22bにて蒸発し、圧縮機21bへ戻る。なお、本構成においては、外気温度が低過ぎ、冷蔵側冷凍サイクル内の高圧が低下し過ぎる場合は、膨張手段23bの差圧が維持できなくなり、冷媒が流れにくくなるため低圧が低下して冷蔵用圧縮機21bが停止したとしても、少しの時間経過後、低圧が復帰すると圧縮機21bが再び動くというON/OFF制御により、食品の鮮度維持に必要な冷却熱量を確保している。先には冷蔵側冷凍サイクルに凝縮器のバイパス流路を設けて高圧を制御することを説明したが、このように冷蔵側冷凍サイクルにバイパス流路を設けないで自動的に行われるON/OFF制御を利用するという簡単な構成とすることで、高圧が低くなるため、より効率のよい運転が行える。   FIG. 20 is a configuration diagram of a refrigeration / air-conditioning apparatus that can obtain the same operation and effect as described above of the present invention with a simple configuration. In the configuration shown in FIG. 20, the open / close valve and other flow path switching means are not provided around the integrated heat exchangers 42 (1) and 42 (2) of the refrigeration side refrigeration cycle. During the operation, the refrigerant is always moving in the same manner with respect to the integrated heat exchanger, and is compressed by the refrigeration compressor 21b to become a high-temperature and high-pressure refrigerant, and is refrigerated by the refrigerant-refrigerant integrated heat exchanger 42 (1). The air-cooling integrated heat exchanger 42 (2) reaches the refrigeration flow path 24b (2) via the flow path 24b (1). That is, the refrigeration cycle is greatly simplified. In this configuration, a plurality of integrated heat exchangers 42 (1) or 42 (2) are provided in the same manner as described above, depending on the operation mode of heating / cooling / stopping on the air conditioning side or the difference in the circulation flow path depending on the size of the air conditioning load. In the above, it is possible to make a state in which a large amount of heat exchange is performed with the air conditioning-side refrigerant, a small amount of heat exchange is performed, or no heat exchange is performed. In the refrigeration side refrigeration cycle, in the air-cooled integrated heat exchanger 42 (2), the remaining amount of heat necessary for the refrigerant to condense is obtained by radiating heat to the surrounding air by the action of the blower fan 25c, and condensed. Through the reservoir 26, the refrigerant expands in the expansion means 23b to become a low-temperature low-pressure refrigerant, and evaporates in the refrigeration heat exchanger 22b that generates cold air for cooling the load, such as food, at a predetermined low temperature, and is compressed by the compressor 21b. Return to In this configuration, when the outside air temperature is too low and the high pressure in the refrigeration side refrigeration cycle is too low, the differential pressure of the expansion means 23b cannot be maintained, and the refrigerant becomes difficult to flow, so that the low pressure is reduced and the refrigeration is performed. Even if the compressor 21b is stopped, the ON / OFF control that the compressor 21b starts moving again when the low pressure is restored after a short period of time secures the cooling heat required for maintaining the freshness of the food. Although it has been described above that a high pressure is controlled by providing a condenser bypass path in the refrigeration side refrigeration cycle, ON / OFF is automatically performed without providing a bypass flow path in the refrigeration side refrigeration cycle. With a simple configuration using control, the high pressure is reduced, so that more efficient operation can be performed.

次に、空調側が暖房運転を行っている場合の空調側冷媒の動作について説明する。空調側の冷媒は、空調用圧縮機21aで圧縮されて高温高圧冷媒になり、負荷である空調側室内熱交換器22aへ送られ室内の暖房を行う。そして、送風ファン25aの作用により室内空気と熱交換を行って凝縮し、空調用膨張手段23aにて膨張して低温低圧冷媒になる。ここで、冷蔵用圧縮機21bが動いている場合は、冷蔵側冷媒から熱回収が可能であるため、冷凍機主体モード(開閉弁73開、74閉、78閉)にする。すると、空調側の冷媒は冷媒冷媒一体型熱交換器42(1)の空調用流路24a(1)へ送られ、ここで高温高圧の冷蔵側冷媒と熱交換を行って蒸発し、逆止弁35を通って、空調用圧縮機21aへ戻る。冷凍サイクルを循環する冷媒は、蒸発器において周囲の媒体から吸熱することで蒸発、ガス化するため、蒸発器内の冷媒の温度は周囲媒体の温度よりも高い温度にはなり得ない。冷凍機主体モードにおいて、空調側冷媒は、一体型熱交換器42(1)にて高温の冷蔵側冷媒から吸熱して蒸発するため、その蒸発温度は、低温の外気とは無関係に高温高圧の冷蔵側冷媒の温度および一体型熱交換器42(1)における熱交換量によって決まり、高い値に保てるため、非常に効率のよい運転が可能になる。しかし、冷蔵用圧縮機21bが停止している場合は、冷蔵側冷媒からの熱回収ができないため、空調機単独運転モード(開閉弁73閉、74開、78開)にする。このときは、空調側の冷媒は空冷一体型熱交換器42(2)の空調用流路24a(2)へ送られ、ここで周囲空気と熱交換を行って蒸発し、空調用圧縮機21aへ戻るようになり、冷たい外気の影響で空調側の冷凍サイクルの低圧(蒸発温度)は低い状態で運転されるため、冷凍機主体モードに比べると効率はよくない。従って、本来であれば可能な限り、冷凍機主体モードで動かしたいところであるが、常時冷凍機主体モードでは動かせない。その理由を次に説明する。   Next, the operation of the air-conditioning-side refrigerant when the air-conditioning side performs the heating operation will be described. The air-conditioning-side refrigerant is compressed by the air-conditioning compressor 21a to become a high-temperature and high-pressure refrigerant, and is sent to the air-conditioning-side indoor heat exchanger 22a, which is a load, to heat the room. Then, by the action of the blower fan 25a, heat is exchanged with the indoor air to condense, and is expanded by the air-conditioning expansion means 23a to become a low-temperature low-pressure refrigerant. Here, when the refrigerating compressor 21b is operating, since the heat can be recovered from the refrigerating-side refrigerant, the mode is set to the refrigerator main mode (opening / closing valve 73, closing 74, closing 78). Then, the refrigerant on the air-conditioning side is sent to the air-conditioning flow path 24a (1) of the refrigerant-refrigerant integrated heat exchanger 42 (1), where it exchanges heat with the high-temperature and high-pressure refrigeration-side refrigerant and evaporates, and is checked. The air returns to the air conditioning compressor 21a through the valve 35. Since the refrigerant circulating in the refrigeration cycle evaporates and gasifies by absorbing heat from the surrounding medium in the evaporator, the temperature of the refrigerant in the evaporator cannot be higher than the temperature of the surrounding medium. In the refrigerator-main mode, the air-conditioning-side refrigerant absorbs heat from the high-temperature refrigeration-side refrigerant in the integrated heat exchanger 42 (1) and evaporates. It is determined by the temperature of the refrigeration-side refrigerant and the amount of heat exchange in the integrated heat exchanger 42 (1) and can be kept at a high value, so that extremely efficient operation is possible. However, when the refrigerating compressor 21b is stopped, heat cannot be recovered from the refrigerating-side refrigerant, so that the air conditioner is in the independent operation mode (opening / closing valve 73, opening 74, opening 78). At this time, the refrigerant on the air-conditioning side is sent to the air-conditioning passage 24a (2) of the air-cooling integrated heat exchanger 42 (2), where it exchanges heat with the ambient air and evaporates, and the air-conditioning compressor 21a Since the air conditioner is operated at a low pressure (evaporation temperature) in the refrigeration cycle on the air conditioning side due to the influence of cold outside air, the efficiency is lower than in the refrigerator main mode. Therefore, although it is originally desired to operate in the refrigerator-main mode as much as possible, the operation cannot always be performed in the refrigerator-main mode. The reason will be described below.

冷凍機主体モードにおいて、空調暖房負荷が小さいあるいは適度の場合は、冷媒冷媒一体型熱交換器42(1)における冷蔵側冷媒との熱交換量がそれほど大きくないため、冷蔵側冷凍サイクルの高圧が運転可能な状態に維持されており、冷凍機主体モードを維持できる。しかし、空調暖房負荷が大きい場合は、冷媒冷媒一体型熱交換器42(1)における冷蔵側冷媒との熱交換量が大きくなるため、冷蔵側冷凍サイクルの高圧が低くなるが、この場合においても、冷蔵側冷凍サイクルが運転を継続できる場合は、空調側の冷媒流路の切り替えは行わず、空調負荷が小さい場合と同様、効率のよい回路での運転を行う。しかし、冷蔵側冷凍サイクルにおいて、高圧が下がりすぎ、運転を継続できなくなった場合は、冷蔵用圧縮機21bが停止し、そのままの流路にしておくと、空調側冷媒の蒸発熱量が確保できないため、空調機主体モード(開閉弁73閉、74開、78開)に切り替え、空冷一体型熱交換器42(2)において、外気から吸熱し運転を継続させる。そして、冷蔵用圧縮機22bが再び動き出し、冷蔵側冷媒からの熱回収が可能になったら、再び冷凍機主体モード(開閉弁73開、74閉、78閉)に切り替え、冷媒冷媒一体型熱交換器42(1)において、冷蔵側冷媒と熱交換させ運転させるようにする。   In the refrigerator-main mode, when the air-conditioning / heating load is small or moderate, the amount of heat exchange with the refrigeration-side refrigerant in the refrigerant-refrigerant heat exchanger 42 (1) is not so large. The operable state is maintained, and the refrigerator-main mode can be maintained. However, when the air-conditioning and heating load is large, the amount of heat exchange with the refrigeration side refrigerant in the refrigerant-refrigerant integrated heat exchanger 42 (1) increases, so that the high pressure of the refrigeration side refrigeration cycle decreases. When the operation of the refrigeration side refrigeration cycle can be continued, the refrigerant flow path on the air conditioning side is not switched, and the operation is performed in an efficient circuit as in the case where the air conditioning load is small. However, in the refrigeration-side refrigeration cycle, when the high pressure drops too much and the operation cannot be continued, the refrigeration compressor 21b is stopped, and if the flow path is left as it is, the evaporation heat amount of the air-conditioning-side refrigerant cannot be secured. Then, the mode is switched to the air conditioner main mode (opening / closing valve 73 closed, 74 open, 78 open), and the air-cooling integrated heat exchanger 42 (2) absorbs heat from the outside air to continue the operation. When the refrigerating compressor 22b starts operating again and heat can be recovered from the refrigerating-side refrigerant, the mode is switched again to the refrigerator main mode (opening of the on-off valves 73, 74, and 78), and the refrigerant-refrigerant integrated heat exchange is performed. In the heat exchanger 42 (1), heat is exchanged with the refrigeration-side refrigerant to operate.

なお、冷蔵用または冷凍用室内機であるショーケースの熱交換器22bへの着霜が増えすぎた場合の除霜運転においても、冷蔵用圧縮機21bが停止するため、同様の切り替えを行う必要がある。   In addition, even in the defrosting operation when the frost formation on the heat exchanger 22b of the showcase that is the indoor unit for refrigeration or freezing is excessively increased, the same switching needs to be performed because the refrigeration compressor 21b stops. There is.

また、冷蔵用圧縮機21bのON/OFFに伴う開閉弁の切り替えは、冷蔵用圧縮機21bが停止する直前に行うのが望ましいが、冷媒冷媒一体型熱交換器42(1)およびその中を流れている冷蔵側冷媒に熱容量があるため、冷蔵用圧縮機21bが停止した直後に切り替えても、空調側の低圧が運転を継続できなくなるところまで低下することもなく、運転を継続できることが分かっている。   Further, it is desirable that the switching of the on-off valve in accordance with ON / OFF of the refrigeration compressor 21b be performed immediately before the refrigeration compressor 21b stops, but the refrigerant-cooler integrated heat exchanger 42 (1) and the inside thereof Since the flowing refrigerant on the refrigeration side has a heat capacity, it can be seen that even if switching is performed immediately after the refrigeration compressor 21b is stopped, the operation can be continued without lowering the low pressure on the air conditioning side to a point where the operation cannot be continued. ing.

しかし、空調側冷媒は、冷媒冷媒一体型熱交換器42(1)にて高温高圧の冷蔵用冷媒と熱交換を行っている時は低圧が高いが、空冷一体型熱交換器42(2)にて冷たい外気と熱交換を行うようになると低圧が低くなる。そして、この変化が急に起こると、空調用圧縮機21aへの液バックが起こり、これが何回も繰り返されると空調用圧縮機21aが壊れて、運転が継続できなくなってしまう事態に陥る可能性がある。   However, when the refrigerant on the air conditioning side is performing heat exchange with the high-temperature and high-pressure refrigeration refrigerant in the refrigerant-refrigerant integrated heat exchanger 42 (1), the low pressure is high, but the air-cooled integrated heat exchanger 42 (2). When heat exchange is performed with cold outside air, the low pressure is reduced. If this change occurs abruptly, liquid back to the air-conditioning compressor 21a occurs, and if this is repeated many times, the air-conditioning compressor 21a may be broken and the operation may not be continued. There is.

そこで、実用上は、冷蔵用圧縮機21bの停止に伴い、以下のいずれかの方法をとることが望ましい。まず、第一の方法は、ハード的にモード切替による液バックに対する保護機能を入れておく方法であり、開閉弁74の前後に径が大きめのキャピラリチューブなどの絞りを入れておく方法である。すると、流路を切り替えた際に、空調用膨張手段23aを通った冷媒が一旦絞られるため、空調用圧縮機21aに多大な量の冷媒が一気に戻るのを防ぐことができる。   Therefore, in practice, it is desirable to take one of the following methods with the stoppage of the refrigeration compressor 21b. First, the first method is a method in which a protection function against liquid back by mode switching is provided in a hardware manner, and a method in which a throttle such as a capillary tube having a large diameter is provided before and after the on-off valve 74. Then, when the flow path is switched, the refrigerant that has passed through the air-conditioning expansion means 23a is once throttled, so that a large amount of refrigerant can be prevented from returning to the air-conditioning compressor 21a at once.

第二の方法は、冷蔵用圧縮機21bが停止した場合に、空調用圧縮機21aも一旦停止させることである。空調用圧縮機21aに液バックが起こり圧縮機が破損するのは、冷凍サイクル中に循環している冷媒が低圧の引き込みによって、一気に圧縮機に戻ってくるためであり、一度空調用圧縮機21aを停止させて、冷媒の動きを止め、その後、少ししてから、例えば3分後、再び空調用圧縮機21aを動かすようにすれば、通常の再起動と同じ動作になり、液バックは起こらない。この方法においては、空調用圧縮機21aを一旦停止させるが、少しの時間暖房ができなくても室内には熱容量があるため問題ない。   The second method is to temporarily stop the air conditioning compressor 21a when the refrigeration compressor 21b stops. The reason why the liquid back occurs in the air conditioning compressor 21a and the compressor is damaged is that the refrigerant circulating during the refrigeration cycle returns to the compressor at a stretch by drawing in the low pressure. Is stopped to stop the movement of the refrigerant, and then, after a short time, for example, after three minutes, the air-conditioning compressor 21a is operated again, and the operation becomes the same as the normal restart, and the liquid back occurs. Absent. In this method, the air-conditioning compressor 21a is temporarily stopped. However, even if heating cannot be performed for a short time, there is no problem because the room has heat capacity.

図21の動作フローチャートは、この第二の方法に基づく動作をフローチャートにしたものである。図21において、処理フローチャートに入り(ST31)、冷蔵用圧縮機21bがONしており(ST32)、冷蔵用圧縮機21bがONしてからΔt時間経過していれば(ST33)、冷凍機主体モード(開閉弁73開、74閉、78閉)に切り替える(ST34)。このΔt時間は冷蔵用圧縮機21bが再起動した場合の安定待ち時間であり、通常数分程度でよいが、場合によってはゼロでも構わない。そして、冷蔵用圧縮機21bがONしてからΔt時間経過した後は(ST35)、冷凍機側サイクルにおいては起動制御を終了し通常制御に移る(ST36)。しかし、冷蔵用圧縮機21bがOFFした場合(ST32)、冷凍機主体モードである場合は(ST37)、冷媒冷媒一体型熱交換器においては空調側冷媒が蒸発するための熱量が確保できなくなるため熱源を空冷一体型熱交換器に切り替える必要が生じるが、空調用圧縮機21aへの液バックを防ぐため、空調用圧縮機21aを一旦OFFにした後(ST38),空調機単独運転モード(開閉弁73閉、74開、78開)に切り替える(ST39)。その後、空調用圧縮機21aがOFF後冷媒が安定するまでΔt時間、例えば3分間、待ち(ST43)、その後空調用圧縮機21aをONにし、空調用圧縮機21aを初期起動周波数にし、空調用膨張弁23aを初期起動開度にする(ST44)。そして、その状態をΔt時間保持してサイクルが安定するのを待ち(ST41)、その後、空調機通常制御に移行し(ST42)、処理を終了する(ST45)。 The operation flowchart of FIG. 21 is a flowchart of the operation based on the second method. In FIG. 21, when the processing flow chart is entered (ST31), the refrigeration compressor 21b is ON (ST32), and Δt 1 hour has elapsed since the refrigeration compressor 21b was ON (ST33), the refrigerator The mode is switched to the main mode (opening / closing valve 73, closing 74, closing 78) (ST34). The Δt 1 hour is a stabilization wait time when the refrigerating compressor 21b is restarted, and may be generally several minutes, but may be zero in some cases. Then, after Δt 2 hours have elapsed since the refrigerator compressor 21b was turned on (ST35), the start-up control is terminated in the refrigerator-side cycle, and the process shifts to the normal control (ST36). However, when the refrigerating compressor 21b is turned off (ST32), and when the mode is the refrigerator-main mode (ST37), the amount of heat for evaporating the air-conditioning-side refrigerant cannot be secured in the refrigerant-refrigerant integrated heat exchanger. It is necessary to switch the heat source to the air-cooled integrated heat exchanger. However, in order to prevent the liquid from flowing back to the air-conditioning compressor 21a, the air-conditioning compressor 21a is temporarily turned off (ST38), and then the air-conditioner alone operation mode (open / close) The valve 73 is closed, 74 is opened, and 78 is opened) (ST39). Then, after the air conditioning compressor 21a is turned off, the refrigerant waits for Δt 4 hours, for example, 3 minutes (ST43) until the refrigerant is stabilized (ST43). Thereafter, the air conditioning compressor 21a is turned on, the air conditioning compressor 21a is set to the initial startup frequency, and The use expansion valve 23a is set to the initial startup opening (ST44). Then, the state is held for Δt 3 hours and the cycle is stabilized (ST41), and thereafter, the process shifts to the air conditioner normal control (ST42), and the process ends (ST45).

第三の方法は、冷蔵用圧縮機21bが停止した際、空調用圧縮機21aの周波数を下げ、空調用膨張弁23aの開度を小さめにし、この状態を空調用冷媒の状態が安定するまで一定時間保つことである。通常の起動時にはこのような動きをさせているが、それと同様の動きをさせればよい。このようにすることで、冷凍サイクル内を循環する冷媒流量を小さく保つとともに、膨張弁23aを通過する冷媒量を少なくすることができ、圧縮機への液バックによる圧縮機の破損を防ぐことができる。   The third method is that when the refrigeration compressor 21b is stopped, the frequency of the air conditioning compressor 21a is reduced, the opening of the air conditioning expansion valve 23a is reduced, and this state is maintained until the state of the air conditioning refrigerant is stabilized. It is to keep it for a certain period of time. At the time of normal startup, such a movement is performed, but a similar movement may be performed. By doing so, the flow rate of the refrigerant circulating in the refrigeration cycle can be kept small, and the amount of the refrigerant passing through the expansion valve 23a can be reduced, thereby preventing damage to the compressor due to liquid back to the compressor. it can.

図22の動作フローチャートは、この第三の方法に基づく動作をフローチャートにしたものである。図22において、処理フローチャートに入ってから(ST31)冷凍機側サイクルのは起動制御を終了し通常制御に移るまでは(ST36)図21の動作フローチャートと同じであり説明を省略する。冷蔵用圧縮機21bがOFFした場合(ST32)、冷凍機主体モードである場合は(ST37)、冷媒冷媒一体型熱交換器においては空調側冷媒が蒸発するための熱量が確保できなくなるため熱源を空冷一体型熱交換器に切り替える必要が生じるが、空調用圧縮機21aへの液バックを防ぐため、空調用圧縮機21aを低めの周波数に、空調用膨張弁23aを絞り気味の開度に固定し(ST50)、空調機単独運転モードに回路を切り替える(ST39)。その後、空調側冷凍サイクルの状態が安定するまでΔt時間待ち(ST51)、空調機通常制御に移行し(ST42)、処理を終了する(ST45)。 The operation flowchart of FIG. 22 is a flowchart of the operation based on the third method. In FIG. 22, the process from the start of the process flowchart (ST31) to the end of the start-up control of the refrigerator-side cycle and the transition to the normal control (ST36) is the same as the operation flowchart of FIG. 21 and will not be described. When the refrigerating compressor 21b is turned off (ST32) or in the refrigerator main mode (ST37), the heat source for evaporating the air-conditioning-side refrigerant cannot be secured in the refrigerant-refrigerant integrated heat exchanger, so that the heat source is not used. It is necessary to switch to the air-cooling integrated heat exchanger, but in order to prevent liquid back to the air-conditioning compressor 21a, the air-conditioning compressor 21a is fixed at a lower frequency, and the air-conditioning expansion valve 23a is fixed at a slightly throttled opening. Then, the circuit is switched to the air conditioner independent operation mode (ST39). Thereafter, it waits for Δt 5 hours until the state of the air conditioning-side refrigeration cycle is stabilized (ST51), shifts to the air conditioner normal control (ST42), and ends the process (ST45).

以上のいずれかの方法により、空調用圧縮機23aへの液バックを防ぐことができ、圧縮機の破損を防ぎ、安定した運転をさせることができる。なお、空調用圧縮機23aが流路切替に伴う液バックに十分耐え得る耐力を持ったものである場合は、このような保護動作を行わなくてもよいのは言うまでもない。   By any of the above methods, liquid back to the air conditioning compressor 23a can be prevented, damage to the compressor can be prevented, and stable operation can be achieved. If the air-conditioning compressor 23a has sufficient strength to withstand the liquid back caused by the flow path switching, it goes without saying that such a protective operation need not be performed.

なお、ここでは、冷蔵用圧縮機21bが停止後、再び動き出した際は、一定時間経過後、冷凍機主体モードへ切り替えることを例に説明を行った。このようにすることで、効率のよい冷凍機主体モードにて運転する時間を長くすることができ省エネになる。しかし、空調機主体モードにおいても、冷蔵用圧縮機が停止しているときは、空冷一体熱交換器を空調側冷媒が蒸発するために占有できるため実際の伝熱面積が大きくなり、室外熱交換器が独立した空調機を運転させるよりも、効率のよい運転になる。従って、冷蔵用圧縮機21bが停止後、再び動き出した際に、空調機単独運転モードのままにしておいても、運転上は問題ないし省エネルギー効果を得ることができる。   Here, an example has been described in which, when the refrigerator 21b is stopped and then started again, the mode is switched to the refrigerator-main mode after a certain period of time has elapsed. By doing so, it is possible to extend the operation time in the efficient refrigerator-main mode, thereby saving energy. However, even in the air conditioner main mode, when the refrigeration compressor is stopped, the air-cooling integrated heat exchanger can be occupied because the air-conditioning-side refrigerant evaporates, so the actual heat transfer area increases, and the outdoor heat exchange The operation is more efficient than operating the independent air conditioner. Therefore, even if the air conditioner is kept in the single operation mode when the compressor 21b is restarted after stopping, it is possible to obtain an operational problem or an energy saving effect.

次に、冷房運転について説明する。冷房運転においては、開閉弁73を閉、74を開、78を開としておく。すると、空調側冷媒は、圧縮機21aから吐出され四方弁31を経由し、開閉弁78を通って空冷一体型熱交換器42(2)へ至り、送風機25cの作用によって周囲空気と熱交換を行って凝縮し、開閉弁74を通って、空調用膨張手段23aによって低温低圧冷媒になり、空調室内機22aにて蒸発し冷房が行われ圧縮機21aに戻される。この動きは、冷蔵用圧縮機21bが動いていても止まっていても同じである。なお、冷蔵用冷凍サイクルの動きは常に同じであるため、空調用冷凍サイクルが停止している場合の説明は省略する。   Next, the cooling operation will be described. In the cooling operation, the on-off valve 73 is closed, 74 is open, and 78 is open. Then, the air-conditioning-side refrigerant is discharged from the compressor 21a, passes through the four-way valve 31, passes through the on-off valve 78, reaches the air-cooling integrated heat exchanger 42 (2), and exchanges heat with the surrounding air by the action of the blower 25c. Then, the refrigerant is condensed, passes through the on-off valve 74, becomes low-temperature low-pressure refrigerant by the air-conditioning expansion means 23a, evaporates in the air-conditioning indoor unit 22a, is cooled, and is returned to the compressor 21a. This movement is the same whether the refrigeration compressor 21b is moving or stopped. In addition, since the movement of the refrigeration cycle is always the same, the description when the air conditioning refrigeration cycle is stopped will be omitted.

以上のように構成することで、暖房運転時においては、冷蔵用冷媒と空調用冷媒を冷媒冷媒一体型熱交換器で効率的に熱交換させ、その状態を冷蔵用圧縮機が動作できる限界まで継続させることで、長い時間効率的な運転ができるため、大きな省エネ効果を得ることができるとともに、冷房運転時においては、空調用冷媒を冷媒冷媒一体型熱交換器へ流さないため、冷蔵側および空調側の双方の凝縮側の冷媒の温度によらず、すなわち双方の圧縮機の周波数によらず、お互いの冷媒同士が熱交換をして効率の悪い運転をするのを防止でき、常に設計どおりの性能を発揮させることができる。即ち図20の構成においても複数の一体型熱交換器を設け、この一体型熱交換器に個別に冷媒を流す切り替えを行うことで既に説明してきたと同様な効果が得られる。   With the above configuration, during the heating operation, the refrigerant for cooling and the refrigerant for air conditioning are efficiently exchanged heat by the refrigerant-refrigerant integrated heat exchanger, and the state is reduced to the limit at which the refrigerator for cooling can operate. By continuing, efficient operation can be performed for a long time, so that a great energy saving effect can be obtained.At the time of the cooling operation, the air-conditioning refrigerant does not flow to the refrigerant-refrigerant integrated heat exchanger. Irrespective of the temperature of the refrigerant on both the condensing side of the air conditioning side, that is, regardless of the frequency of both compressors, it is possible to prevent heat exchange between the refrigerants and prevent inefficient operation, always as designed Performance can be exhibited. That is, in the configuration of FIG. 20 as well, a plurality of integrated heat exchangers are provided, and by switching the flow of the refrigerant to the integrated heat exchangers individually, the same effect as described above can be obtained.

図23は、空調用膨張手段23aを複数直列に接続し、その間に中圧レシーバ79を設け、更に空調用圧縮機21aの吸入側の冷媒と中圧レシーバ79内の冷媒を熱交換可能なように構成したものである。このように構成することで、空調側の余剰冷媒を中圧レシーバ79内に溜めることができるため、熱交換器22a、24a内の冷媒量を最適に保つことができ、常に効率のよい運転を行うことができる。更に、空調用圧縮機21aへ多少液バックがあっても中圧レシーバ79と吸入管との熱交換によって蒸発させることができ、信頼性の高い冷凍サイクルを構成できる。その他の構成は図20と同じであり、動作および効果は先の説明と同一である。   FIG. 23 shows a configuration in which a plurality of air-conditioning expansion units 23a are connected in series, an intermediate-pressure receiver 79 is provided therebetween, and the refrigerant in the suction side of the air-conditioning compressor 21a can exchange heat with the refrigerant in the intermediate-pressure receiver 79. It is what was constituted. With this configuration, the excess refrigerant on the air-conditioning side can be stored in the intermediate-pressure receiver 79, so that the amount of refrigerant in the heat exchangers 22a and 24a can be kept optimal, and efficient operation can always be performed. It can be carried out. Furthermore, even if there is some liquid back in the air conditioning compressor 21a, it can be evaporated by heat exchange between the intermediate pressure receiver 79 and the suction pipe, and a highly reliable refrigeration cycle can be configured. Other configurations are the same as those in FIG. 20, and the operations and effects are the same as those described above.

図24は空冷一体型熱交換器の構造図で、空調用流路24aと冷蔵用又は冷凍用流路24bを分離して同一の放熱フィン41に貫装させ一体化した構造であり、図のように空調用流路24aと冷蔵用または冷凍用流路24bを熱交換器の両側に分離しているため、空調暖房時の空調冷凍サイクルの蒸発熱と冷蔵冷凍サイクルの凝縮熱の熱交換があまり大きくない構造になっている。このようにすることで、双方の冷媒が流れる流路をクロスさせないので製造が簡単になるとともに、片方の流路に冷媒が流れていない時は流れている方の冷媒が他方のフィンの一部を凝縮または蒸発のために使用することができ、それぞれ別々に構成するよりも効率よく運転することができる。   FIG. 24 is a structural view of an air-cooling integrated heat exchanger, in which an air-conditioning flow path 24a and a refrigeration or freezing flow path 24b are separated and inserted into the same radiating fin 41 to be integrated. As described above, since the air conditioning flow path 24a and the refrigeration or freezing flow path 24b are separated on both sides of the heat exchanger, the heat exchange between the evaporation heat of the air conditioning refrigeration cycle during the air conditioning and heating and the condensation heat of the refrigeration refrigeration cycle is performed. The structure is not very large. By doing so, the flow path through which both refrigerants flow does not cross, thereby simplifying the manufacture. When the refrigerant is not flowing through one flow path, the flowing refrigerant is part of the other fin. Can be used for condensing or evaporating, and can be operated more efficiently than when each is configured separately.

図25は冷凍空調装置構成図であって、図23の冷凍空調装置の基本動作に使用している検出手段を記載している。検出手段として、空調側冷凍サイクルの冷媒配管に空調側吐出温度検出手段53と空調側室内飽和温度検出手段54と空調側液管温度検出手段55と空調側二相管温度検出手段(暖房用)56(1)と空調側二相管温度検出手段(冷房用)56(2)、冷蔵側冷凍サイクルの冷媒配管に冷蔵側低圧検出手段61と冷蔵側高圧検出手段62、空気温度検出用に室内空気温度検出手段51と外気温度検出手段57と庫内温度検出手段64が取り付けてある。   FIG. 25 is a configuration diagram of the refrigeration / air-conditioning apparatus, and illustrates a detection unit used for the basic operation of the refrigeration / air-conditioning apparatus of FIG. As the detection means, the air-conditioning-side discharge temperature detecting means 53, the air-conditioning-side indoor saturation temperature detecting means 54, the air-conditioning-side liquid pipe temperature detecting means 55, and the air-conditioning two-phase pipe temperature detecting means (for heating) are provided in the refrigerant pipe of the air-conditioning refrigeration cycle. 56 (1) and air-conditioning two-phase tube temperature detecting means (for cooling) 56 (2), refrigeration side low pressure detecting means 61 and refrigeration side high pressure detecting means 62 in the refrigerant pipe of the refrigeration side refrigeration cycle, and indoor for air temperature detection The air temperature detecting means 51, the outside air temperature detecting means 57 and the inside temperature detecting means 64 are attached.

図において、冷凍機主体モードのとき、冷蔵側冷凍サイクルは、冷蔵側低圧検出手段61にて検出された冷蔵側低圧および冷蔵側高圧検出手段62にて検出された冷蔵側高圧を予め設定された目標値に近づけるように冷蔵側圧縮機21bの周波数および空冷一体型熱交換器用送風ファン25cの回転数が制御される。なお、冷蔵側の低圧および高圧の目標値は予めメモリにシステムを省エネに運転できる値が記憶されている。また、庫内温度検出手段64にて検出された温度を一定に保つべく別に設置されたコントローラにより冷蔵負荷側開閉弁80が開閉される。   In the figure, in the refrigerator-main mode, the refrigeration-side refrigeration cycle presets the refrigeration-side low pressure detected by the refrigeration-side low-pressure detection unit 61 and the refrigeration-side high pressure detected by the refrigeration-side high-pressure detection unit 62. The frequency of the refrigerating-side compressor 21b and the number of revolutions of the air-cooling integrated heat exchanger blower fan 25c are controlled so as to approach the target value. Note that, as the low-pressure and high-pressure target values on the refrigeration side, values capable of operating the system with energy saving are stored in the memory in advance. Further, a refrigeration load side on-off valve 80 is opened and closed by a controller separately installed to keep the temperature detected by the in-compartment temperature detection means 64 constant.

また、空調側冷凍サイクルは、冷凍機主体モードにおいては暖房運転であり、空調側吐出温度検出手段53にて吐出温度を、空調側室内飽和温度検出手段54にて凝縮温度を、空調側液管温度検出手段(暖房)55(1)にて液管温度を、空調側液管温度検出手段(冷房)55(2)にて蒸発温度を、空調側二相管温度検出手段(暖房用)56(1)にて吸入温度を、室内空気温度検出手段51にて室内空気温度を検出する。そして、吸入温度と蒸発温度との差で定義されるスーパーヒート、凝縮温度と液管温度との差で定義されるサブクール、凝縮温度と室内空気温度との差で定義される室内温度差および吐出温度を目標に、空調用圧縮機21a、空調側膨張弁23a(1)、23a(2)および空冷一体型熱交換器用送風ファン25cが制御される。なお、冷凍機主体モードにおいては、空調側二相管温度検出手段(冷房)56(2)は冷媒流路に入っていないため使用しない。   The air conditioning side refrigeration cycle is a heating operation in the refrigerator main mode, and the discharge temperature is detected by the air conditioning side discharge temperature detecting means 53, the condensing temperature is detected by the air conditioning side indoor saturation temperature detecting means 54, and the air conditioning side liquid pipe is operated. The temperature of the liquid pipe is detected by the temperature detecting means (heating) 55 (1), the evaporation temperature is detected by the air-conditioning side liquid pipe temperature detecting means (cooling) 55 (2), and the temperature of the air-conditioning two-phase pipe temperature detecting means (heating) 56 At (1), the intake air temperature is detected by the indoor air temperature detecting means 51 at the intake air temperature. The superheat defined by the difference between the suction temperature and the evaporation temperature, the subcool defined by the difference between the condensation temperature and the liquid pipe temperature, the room temperature difference defined by the difference between the condensation temperature and the room air temperature, and the discharge The air-conditioning compressor 21a, the air-conditioning-side expansion valves 23a (1), 23a (2), and the air-cooling integrated heat exchanger blower fan 25c are controlled to target the temperature. In the refrigerator main mode, the air-conditioning two-phase tube temperature detecting means (cooling) 56 (2) is not used because it is not in the refrigerant flow path.

一方、空調側冷凍サイクルは、空調機単独運転モードにおいては冷房運転であり、空調側吐出温度検出手段53にて吐出温度を、空調側二相管温度検出手段(冷房)56(2)にて凝縮温度を、空調側液管温度検出手段(冷房)55(2)にて液管温度を、空調側液管温度検出手段(暖房)55(1)にて蒸発温度を、空調側室内飽和温度検出手段54にて吸入温度を、室内空気温度検出手段51にて室内空気温度を検出する。そして、吸入温度と蒸発温度との差で定義されるスーパーヒート、凝縮温度と液管温度との差で定義されるサブクール、凝縮温度と室内空気温度との差で定義される室内温度差および吐出温度を目標に、空調用圧縮機21a、空調側膨張弁23a(1)、23a(2)および空冷一体型熱交換器用送風ファン25cが制御される。なお、空調機単独運転モードにおいては、空調側二相管温度検出手段(暖房)56(1)の検出温度は、情報として必要な部位の温度ではないため使用しない。   On the other hand, the air-conditioning side refrigeration cycle is a cooling operation in the air conditioner independent operation mode. The condensing temperature, the liquid pipe temperature by the air-conditioning side liquid pipe temperature detecting means (cooling) 55 (2), the evaporation temperature by the air-conditioning side liquid pipe temperature detecting means (heating) 55 (1), the air-conditioning side indoor saturation temperature The detecting means 54 detects the intake air temperature, and the indoor air temperature detecting means 51 detects the indoor air temperature. The superheat defined by the difference between the suction temperature and the evaporation temperature, the subcool defined by the difference between the condensation temperature and the liquid pipe temperature, the room temperature difference defined by the difference between the condensation temperature and the room air temperature, and the discharge The air-conditioning compressor 21a, the air-conditioning-side expansion valves 23a (1), 23a (2), and the air-cooling integrated heat exchanger blower fan 25c are controlled to target the temperature. Note that, in the air conditioner independent operation mode, the temperature detected by the air-conditioning two-phase tube temperature detecting means (heating) 56 (1) is not used because it is not the temperature of a portion required as information.

このように、空調側冷凍サイクルが暖房運転か冷房運転かによって、温度検出手段を空調側二相管温度検出手段(冷房)56(1)と空調側二相管温度検出手段(冷房)56(2)とで切り替える必要があるが、その方法としては、ソフト的に切り替える方法とリレーなどによってハード的に切り替える方法とが考えられる。   As described above, depending on whether the air-conditioning side refrigeration cycle is the heating operation or the cooling operation, the temperature detecting means is used as the air-conditioning two-phase pipe temperature detecting means (cooling) 56 (1) and the air-conditioning two-phase pipe temperature detecting means (cooling) 56 ( It is necessary to switch in 2), and as the method, a method of switching by software and a method of switching by hardware using a relay or the like can be considered.

また、空冷一体型熱交換器42(2)は、冷凍機主体モードにおいては冷蔵側冷凍サイクルの凝縮器として機能し、空調機単独運転モードにおいては空調側冷凍サイクルの蒸発器として機能し、冷房モードにおいては双方の冷凍サイクルの凝縮器として機能する。従って、空冷一体型熱交換器用送風ファン25cは、冷凍機主体モードにおいては冷凍側冷凍サイクルを省エネにするように動作させ、空調機単独運転モードにおいては空調側冷凍サイクルを省エネにするように動作させ、冷房モードにおいては冷蔵側冷凍サイクルと空調側冷凍サイクルの合計消費エネルギーが減る方向へ動作させ、年間を通じて省エネ運転が実現できる。   Further, the air-cooling integrated heat exchanger 42 (2) functions as a condenser of the refrigeration side refrigeration cycle in the refrigerator main mode, and functions as an evaporator of the air conditioning side refrigeration cycle in the air conditioner independent operation mode. In mode, it functions as a condenser for both refrigeration cycles. Accordingly, the air-cooling integrated heat exchanger blower fan 25c operates to save energy in the refrigeration side refrigeration cycle in the refrigerator-main mode, and operates to save energy in the air conditioning-side refrigeration cycle in the air conditioner independent operation mode. By operating in the cooling mode, the total energy consumption of the refrigeration side refrigeration cycle and the air conditioning side refrigeration cycle is reduced, and energy saving operation can be realized throughout the year.

なお、冷蔵側低圧検出手段61および冷蔵側高圧検出手段62はそれぞれの圧力の飽和温度を検出する温度検出手段にて代用することも可能である。   The refrigeration-side low-pressure detection means 61 and the refrigeration-side high-pressure detection means 62 can be replaced by temperature detection means for detecting the saturation temperature of each pressure.

また、ここでは冷蔵もしくは冷凍側冷凍サイクルに室内機であるショーケースが1つだけついているかのように説明したが、通常は図1に示したように1つの冷凍サイクルに複数の室内機(ショーケース)が接続される。その際、例えば図25を例に説明すると、屋外には冷蔵用圧縮機21b、一体型熱交換器24bおよび送風ファン25c、液溜26が1つもしくは複数の筐体内に収められて設置されており、冷蔵または冷凍負荷側開閉弁80、冷蔵用又は冷凍用膨張手段23b、冷蔵用または冷凍用熱交換器22bおよび送風ファン25bが屋内に複数設置され、液溜26と冷蔵または冷凍負荷側開閉弁80との間において分岐される。なお、その他の構成図においては、簡略化のために冷蔵または冷凍負荷側開閉弁80を省略しているが、冷蔵または冷凍負荷側開閉弁80は冷蔵用又は冷凍用膨張手段23bの近くにそれぞれのショーケースに対応して設置されている。また、冷蔵側冷凍サイクルの室内機としては、冷蔵用または冷凍用オープンショーケース、冷蔵用または冷凍用リーチインショーケース、冷蔵または冷凍用ユニットクーラーなどが接続されている。又各検出手段は、それぞれ室外や室内に設けられた筐体の中の電気品箱に設けられ基板に取り付けられたマイコンなどから構成される制御装置に接続され、あらかじめマイコンに記憶されたデータやフローチャートに基づいて判断や演算され制御が行われる。   Also, here, the explanation has been made as if the refrigeration or freezing-side refrigeration cycle had only one indoor unit showcase. However, as shown in FIG. Case) is connected. At this time, for example, referring to FIG. 25 as an example, the refrigerator 21b, the integrated heat exchanger 24b, the blower fan 25c, and the liquid reservoir 26 are housed and installed in one or a plurality of housings outdoors. A plurality of refrigeration or refrigeration load side on-off valves 80, refrigeration or refrigeration expansion means 23b, refrigeration or refrigeration heat exchangers 22b and a plurality of blower fans 25b are installed indoors, and the liquid reservoir 26 and refrigeration or refrigeration load side on / off are installed. A branch is made between the valve 80 and the valve 80. In the other configuration diagrams, the refrigeration or refrigeration load-side on-off valve 80 is omitted for simplicity, but the refrigeration or refrigeration load-side on-off valve 80 is located near the refrigeration or refrigeration expansion means 23b, respectively. It is installed corresponding to the showcase. As the indoor unit of the refrigeration cycle, an open showcase for refrigeration or freezing, a reach-in showcase for refrigeration or freezing, a unit cooler for refrigeration or freezing, and the like are connected. Each detecting means is connected to a control device including a microcomputer mounted on a substrate provided in an electric component box in a housing provided outdoors or indoors, and data and data stored in the microcomputer in advance. The control is performed based on the determination and calculation based on the flowchart.

図20乃至図25の構成の場合は、第三の熱交換器、すなわち空調側冷凍サイクルと冷蔵もしくは冷凍側冷凍サイクルに循環する冷媒をそれぞれ独立に流す流路間で熱交換する熱交換器を複数設け、一つは直接冷媒間通しの熱交換を主体に行うようにし、別の一つは共通の放熱フィンを介して両方の冷媒と空気との間で強制的に熱放出させるようにして、この一つと別の一つの熱交換器を切り替えられるようにしている。すなわち図20の構成の例では熱交換器42(1)に第一の冷媒を流すときには、熱交換器42(2)に第二の冷媒を流さない。また熱交換器42(2)に第一の冷媒を流す時には熱交換器42(1)に第一の冷媒を流さない。一方第二の冷媒は常に両方の熱交換器42(1)と42(2)に流している。このよう冷蔵・冷凍側の冷凍サイクルの制御を単純化させるとともに、空調側の冷凍サイクルにおける冷媒が流れる流路を切り替えて、空調運転の熱放出などの熱制御をも単純化させることにより、システム全体を安定した運転が行えるとともに信頼性の高い装置にすることができる。   In the case of the configuration of FIGS. 20 to 25, a third heat exchanger, that is, a heat exchanger that exchanges heat between the air-conditioning-side refrigeration cycle and the flow path that independently flows the refrigerant circulating in the refrigeration or refrigeration-side refrigeration cycle, A plurality is provided, one is mainly performing heat exchange directly between the refrigerants, and the other is forcibly releasing heat between both refrigerants and air through a common radiating fin. This makes it possible to switch between this one and another one heat exchanger. That is, in the example of the configuration in FIG. 20, when the first refrigerant flows through the heat exchanger 42 (1), the second refrigerant does not flow through the heat exchanger 42 (2). When the first refrigerant flows through the heat exchanger 42 (2), the first refrigerant does not flow through the heat exchanger 42 (1). On the other hand, the second refrigerant always flows through both heat exchangers 42 (1) and 42 (2). By simplifying the control of the refrigeration cycle on the refrigeration / refrigeration side and switching the flow path of the refrigerant in the refrigeration cycle on the air conditioning side, the system also simplifies heat control such as heat release in air conditioning operation. The whole can be operated stably, and the device can be made highly reliable.

また、冷媒冷媒一体型熱交換器としてプレート熱交換器を、空冷一体型熱交換器としてプレートフィンタイプの熱交換器を使用することを想定すると、冷媒冷媒一体型熱交換器は空冷一体型熱交換器に対し、熱通過率(熱効率を表す指標)が数倍から数十倍大きい値になり、非常に効率のよい熱交換をさせることができるため、伝熱面積を非常に小さくすることができ、コンパクトに構成できる。従って、一体型熱交換器を冷媒冷媒一体型熱交換器と空冷一体型熱交換器に分けることで、冷蔵側と空調側の排熱を有効に利用した効率的な運転を行うことができ、かつ空冷一体型熱交換器だけの構成に対してスペース的にあまり大きくならないコンパクトなシステムを構成することができる。   Further, assuming that a plate heat exchanger is used as the refrigerant-refrigerant integrated heat exchanger and a plate-fin type heat exchanger is used as the air-cooled integrated heat exchanger, the refrigerant-refrigerant integrated heat exchanger is an air-cooled integrated heat exchanger. The heat transfer rate (index indicating thermal efficiency) is several to several tens times larger than that of the exchanger, and heat exchange can be performed very efficiently. It can be made compact. Therefore, by dividing the integrated heat exchanger into a refrigerant-cooled integrated heat exchanger and an air-cooled integrated heat exchanger, it is possible to perform an efficient operation that effectively uses the exhaust heat of the refrigeration side and the air conditioning side, In addition, a compact system that does not become so large in space can be configured as compared with the configuration of only the air-cooling integrated heat exchanger.

また、冷媒冷媒一体型熱交換器における熱交換量はなるべく大きい方が空調側冷凍サイクルの低圧(蒸発温度)を高くすることができ効率のよい運転ができる。しかし、実際には、大きすぎると、冷蔵側冷凍サイクルの高圧(凝縮温度)が下がりすぎ、ON/OFFが頻繁に発生するため、逆に効率が悪くなることも想定される。コンビニエンスストアにおいては、暖房空調負荷と冷蔵負荷との関係および冷蔵側冷凍サイクルの高圧維持の必要性およびコストパフォーマンスから、冷媒冷媒一体型熱交換器における熱交換量は空冷一体型熱交換器における熱交換量よりも小さくなるように熱交換器の大きさを選定している。   In addition, when the amount of heat exchange in the refrigerant-refrigerant integrated heat exchanger is as large as possible, the low pressure (evaporation temperature) of the air conditioning-side refrigeration cycle can be increased, and efficient operation can be performed. However, in practice, if it is too large, the high pressure (condensation temperature) of the refrigeration side refrigeration cycle becomes too low, and ON / OFF frequently occurs. At convenience stores, the amount of heat exchange in the refrigerant-cooled integrated heat exchanger is limited by the heat exchange in the air-cooled integrated heat exchanger because of the relationship between the heating and air conditioning load and the refrigeration load, the need to maintain high pressure in the refrigeration side refrigeration cycle, and cost performance. The size of the heat exchanger is selected to be smaller than the exchange amount.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な第三の熱交換器と、あらかじめ設定された条件に応じて第二の流路に設けられ第二の冷媒の一部もしくは全部が第三の熱交換器に対しバイパスされるバイパス流路と、を備えているので、一体型熱交換器を熱源に有する冷蔵又は冷凍装置の冷凍サイクルの高圧部が低圧で不安定になりやすい場合も、安定した運転が行える。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room-temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low-temperature air and a second refrigerant. And a third heat exchanger in which refrigerants passing through independent flow paths of a first flow path connected to the first heat exchanger and a second flow path connected to the second heat exchanger can exchange heat with each other. Heat exchanger, and a bypass flow path provided in the second flow path according to a preset condition, a part or all of the second refrigerant is bypassed to the third heat exchanger, Therefore, even when the high pressure part of the refrigeration cycle of a refrigeration or refrigeration apparatus having an integrated heat exchanger as a heat source is likely to be unstable at low pressure, stable operation can be performed.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の圧縮機を有する第一の流路と第二の熱交換器に接続される第二の圧縮機を有する第二の流路のそれぞれ独立した流路を通る各冷媒が互いに熱交換可能な第三の熱交換器と、第三の熱交換器と周囲空気との熱交換量を調整する送風機と、第一圧縮機の駆動による所定の空調運転および第二の圧縮機の駆動による所定の冷蔵もしくは冷凍運転を行うとともに、両方の圧縮機入力を低減する方向に送風機の送風量を変化させるコントローラと、を備えので、いつの時期でも、またどのような運転モードでも効率の良い運転を可能にすることができる。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And a first flow path having a first compressor connected to the first heat exchanger and a second flow path having a second compressor connected to the second heat exchanger, respectively. A third heat exchanger in which each refrigerant passing through the flow path that can exchange heat with each other, a blower that adjusts the amount of heat exchange between the third heat exchanger and the surrounding air, and a predetermined by driving the first compressor A controller that performs a predetermined refrigeration or refrigeration operation by driving the air-conditioning operation and the second compressor, and changes a blower amount of the blower in a direction to reduce both compressor inputs, so that at any time, Efficient operation can be performed in any operation mode.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な第三の熱交換器と、を備え、第三の熱交換器は第二の流路の中に第一の流路を設けたり、又は第二の流路と第一の流路を板状の両側の通路とすることとしたので、小型、且つ簡単な構造でエネルギーの少ない装置を得ることができる。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room-temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low-temperature air and a second refrigerant. And a third heat exchanger in which refrigerants passing through independent flow paths of a first flow path connected to the first heat exchanger and a second flow path connected to the second heat exchanger can exchange heat with each other. The third heat exchanger is provided with the first flow path in the second flow path, or the second flow path and the first flow path are plate-shaped both sides Therefore, a device having a small size, a simple structure and low energy can be obtained.

本発明の冷凍空調装置は、第三の熱交換器の第二の流路に設けられ第二の冷媒の一部もしくは全部を第三の熱交換器に対しバイパスするバイパス流路と、を備えたので、効率が良く、且つ、安定した動作が可能になる。   The refrigeration air conditioner of the present invention includes a bypass flow path provided in the second flow path of the third heat exchanger and bypassing part or all of the second refrigerant to the third heat exchanger. Therefore, efficient and stable operation is possible.

以上の説明のように、本発明の冷凍空調装置は、複数設けられた冷媒が循環される第一の冷凍サイクルの負荷側に設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルの熱源側の少なくとも一つの流路を通る冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、を備え、冷房時は第三の熱交換器と熱交換をしない第一の冷凍サイクルの熱源側の流路への冷媒の流れを行う運転を優先し、暖房時は第三の熱交換器と熱交換を行う第一の冷凍サイクルの熱源側の流路への冷媒の流れを行う運転を優先するものである。この場合、第三の熱交換器と熱交換をしない第一の冷凍サイクルの熱源側の流路は、第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器とは接続せずに独立しているので、これにより負荷を背負う複数の第一の熱交換器および第二の熱交換器で構成される冷凍空調装置全体の運転が、運転時期、運転モードにとらわれず、効率が良い、エネルギーの少ない運転を可能にする。   As described above, the refrigeration / air-conditioning apparatus of the present invention includes a first heat exchanger provided on the load side of a first refrigeration cycle through which a plurality of refrigerants are circulated to perform indoor air conditioning, and a second heat exchanger. A second heat exchanger that performs refrigeration or freezing provided in a second refrigeration cycle independent of the first refrigeration cycle in which the refrigerant is circulated, and at least one flow path on the heat source side of the first refrigeration cycle. A third heat exchanger that exchanges heat with the second refrigerant that passes through the flow path of the second refrigeration cycle, wherein the first refrigeration does not exchange heat with the third heat exchanger during cooling. Priority is given to the operation of performing the flow of the refrigerant to the flow path on the heat source side of the cycle, and during the heating, the flow of the refrigerant to the flow path on the heat source side of the first refrigeration cycle performing heat exchange with the third heat exchanger. The operation to be performed has priority. In this case, the flow path on the heat source side of the first refrigeration cycle that does not exchange heat with the third heat exchanger is the third heat exchange that exchanges heat with the second refrigerant passing through the flow path of the second refrigeration cycle. The operation of the entire refrigeration and air-conditioning system composed of the plurality of first heat exchangers and the second heat exchangers carrying the load is independent of the operation and the operation mode, It enables efficient, low-energy operation without being constrained.

本発明の冷凍空調装置は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一および第二の2つの流路であって独立した各流路を持ちその各流路を通る冷媒が互いに熱交換をするように一体に設けられた第三の熱交換器と、第一の熱交換器と第三の熱交換器の第一の流路とを配管で接続してなる第一の冷凍サイクルと、第二の熱交換器と第三の熱交換器の第二の流路とを配管で接続してなる第二の冷凍サイクルと、第二の流路に設けられ第二の冷凍サイクルの冷媒の一部もしくは全部を第三の熱交換器をバイパス可能なバイパス流路と、第二の冷凍サイクルの高圧側の圧力に応じてバイパス流路へ流す冷媒流量を調整する高圧維持手段とを備えたものである。この場合第二の低温の空気は第一の常温の空気より低い温度を有する。   The refrigeration air conditioner of the present invention includes a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, and a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant. And a third heat exchanger integrally provided so that the first and second two flow paths have independent flow paths and the refrigerant passing through the respective flow paths exchange heat with each other, A first refrigeration cycle in which the first heat exchanger and the first flow path of the third heat exchanger are connected by piping, and a second refrigeration cycle of the second heat exchanger and the third heat exchanger. A second refrigeration cycle, which is connected to the flow path of the second refrigeration cycle by a pipe, and a bypass provided in the second flow path and capable of bypassing part or all of the refrigerant of the second refrigeration cycle through the third heat exchanger. A flow path and high-pressure maintaining means for adjusting the flow rate of the refrigerant flowing to the bypass flow path in accordance with the pressure on the high pressure side of the second refrigeration cycle. In this case, the second cold air has a lower temperature than the first cold air.

本発明の冷凍空調装置は、第二の流路もしくは第二の冷凍サイクルに設けられ第三の熱交換器をバイパスするバイパス流路と第二の流路もしくは第二の冷凍サイクルとの合流部の後流側に配置された冷媒の過冷却手段と、を備えたものである。これにより冷蔵又は冷凍装置の冷凍サイクルの運転は広い範囲で安定したものとなり、より正確な温度コントロールを可能にする。   The refrigeration / air-conditioning apparatus of the present invention is configured such that a junction between a bypass flow path provided in the second flow path or the second refrigeration cycle and bypassing the third heat exchanger and the second flow path or the second refrigeration cycle is provided. And supercooling means for the refrigerant arranged on the downstream side of the cooling medium. As a result, the operation of the refrigeration cycle of the refrigeration or refrigerating apparatus becomes stable over a wide range, and enables more accurate temperature control.

本発明の冷凍空調装置は、第二の流路もしくは第二の冷凍サイクルに設けられた第三の熱交換器をバイパスするバイパス流路に配置され周囲空気との熱交換を行う第四の熱交換器と、を備えたので、一体型熱交換器を熱源に備えた構成でも安定した冷蔵又は冷凍用の冷凍サイクルの運転が可能になる。また本発明の冷凍空調装置は、第一の流路もしくは第一の冷凍サイクルに設けられた第三の熱交換器をバイパスする第二のバイパス流路に配置され周囲空気との熱交換を行う第五の熱交換器と、を備えたので、いつどのような空調に対しても能力が大きく効率の良い運転が可能である。   The refrigeration / air-conditioning apparatus of the present invention is provided with a fourth heat exchanger that is disposed in a bypass flow path that bypasses a third heat exchanger provided in the second flow path or the second refrigeration cycle and exchanges heat with ambient air. , The stable refrigeration cycle for refrigeration or freezing can be operated even in a configuration in which the integrated heat exchanger is provided in the heat source. Further, the refrigeration air conditioner of the present invention is arranged in the second bypass flow path that bypasses the first flow path or the third heat exchanger provided in the first refrigeration cycle and exchanges heat with ambient air. With the fifth heat exchanger, a large-capacity and efficient operation is possible for any type of air conditioning at any time.

本発明の冷凍空調装置は、第三の熱交換器は、内側を前記第一の冷凍サイクルの流路とし外側を第二の冷凍サイクルの流路とする2重管であるので、装置を小型にすることができる。また本発明の冷凍空調装置は、第三の熱交換器は、熱交換量を調整可能な第一の熱交換部と、熱交換量の調整を行わない第二の熱交換部より形成されるので、運転状態に合せて熱交換量を調整でき、実用的な装置が可能である。   In the refrigeration / air-conditioning apparatus of the present invention, the third heat exchanger is a double pipe having an inner side as the flow path of the first refrigeration cycle and an outer side as the flow path of the second refrigeration cycle. Can be In the refrigeration / air-conditioning apparatus of the present invention, the third heat exchanger is formed by a first heat exchange unit capable of adjusting the amount of heat exchange and a second heat exchange unit not adjusting the amount of heat exchange. Therefore, the amount of heat exchange can be adjusted according to the operation state, and a practical device is possible.

本発明の冷凍空調装置は、第三の熱交換器は、ファンを有し回転停止から速度を変化させた風量の変化により熱交換量を調整する第一の熱交換部と、熱交換量を調整する手段を設けない第二の熱交換部より形成し、両方の流路もしくは冷凍サイクルの運転モードに合せて前記ファンの運転を選択するので、常にエネルギーを減らす運転を行うことが可能である。また本発明の冷凍空調装置は、第一の熱交換部および第二の熱交換部を直列に設け、第一および第二の熱交換部の少なくとも一方をバイパスする熱交換部バイパス回路を備えたので、常にエネルギーを減らす運転が可能である。   The refrigeration and air-conditioning apparatus of the present invention has a third heat exchanger, a first heat exchange unit that has a fan and adjusts the heat exchange amount by changing the air flow with the speed changed from the stop of rotation, and the heat exchange amount. It is formed by the second heat exchange section without the means for adjusting, and the operation of the fan is selected in accordance with the operation mode of both the flow paths or the refrigeration cycle, so that it is possible to always perform the operation of reducing the energy. . Further, the refrigerating air conditioner of the present invention includes a heat exchange unit bypass circuit that provides a first heat exchange unit and a second heat exchange unit in series and bypasses at least one of the first and second heat exchange units. Therefore, it is possible to always operate with reduced energy.

本発明の冷凍空調装置は、熱交換部バイパス回路には逆止弁もしくは開閉弁を設けたので無駄な冷凍サイクルの熱交換の動作を防ぐことができる。   In the refrigeration / air-conditioning apparatus of the present invention, since the check valve or the on-off valve is provided in the heat exchange unit bypass circuit, useless heat exchange operation of the refrigeration cycle can be prevented.

本発明の冷凍空調装置の運転方法は、冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、第一の冷凍サイクルおよび第二の冷凍サイクルに圧縮機などを設け、第一および第二の冷凍サイクルの運転を少なくとも圧縮機の回転速度を調整して行う運転状況調整手段と、を備えた冷凍空調装置において、運転状況調整手段を調整して第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第三の熱交換器用ファンにより第三の熱交換器の熱交換量を調整するステップと、第二の冷凍サイクルに設けられ第二の冷媒の一部もしくは全部を前記第三の熱交換器に対しバイパスするステップと、を備え、第一および第二の冷凍サイクルの両方の圧縮比を低減するように運転状況調整手段の調整および第三の熱交換器の熱交換量の調整およびバイパスを行うことの少なくともいずれかを選択するので、いつでも効率の良い運転が可能になる。   The operation method of the refrigeration / air-conditioning apparatus of the present invention includes a first heat exchanger provided in the first refrigeration cycle in which the refrigerant is circulated to perform room air conditioning, and a first refrigeration cycle in which the second refrigerant is circulated. And a second heat exchanger provided for independent refrigeration cycle and performing refrigeration or freezing, and heat exchange between the refrigerant passing through the first refrigeration cycle and the second refrigerant passing through the flow path of the second refrigeration cycle. An operation in which a third heat exchanger and a compressor are provided in the first refrigeration cycle and the second refrigeration cycle, and the operation of the first and second refrigeration cycles is performed by adjusting at least the rotation speed of the compressor. In a refrigeration air-conditioning apparatus comprising: a refrigeration air conditioner comprising: adjusting the operation status adjustment means to perform an air conditioning operation in the first refrigeration cycle, and performing a refrigeration or freezing operation in the second refrigeration cycle; Third heat exchanger Adjusting the amount of heat exchange of the third heat exchanger by means of heat, and bypassing part or all of the second refrigerant provided to the second refrigeration cycle to the third heat exchanger, Comprising at least one of adjusting the operating condition adjusting means and adjusting and bypassing the heat exchange amount of the third heat exchanger so as to reduce the compression ratio of both the first and second refrigeration cycles. Selection makes it possible to operate efficiently at any time.

以上のように本発明の冷凍空調装置は、第三の熱交換器の配管接続部を取りつけ分解可能にすることで冷蔵冷凍側冷凍サイクル装置、空調側冷凍サイクル装置、この両者の冷凍サイクル間の熱交換可能な第三の熱交換器という如く自由に組合せが出来るので、室内側に配置する空調室内機やショーケースなどと接続される冷凍サイクルの室外装置としては設置スペースをフレキシブルに扱うことが出来、設置スペースを小さくしたり、それぞれ分けて都合の良いところに配置することも出来る。しかも、簡単な項増で装置で、安価に且つ、エネルギーを低減できる装置が得られる。また本発明はどのような運転状態、空調は季節や外気の温度状況など温度設定を変化させたりあるいは常に一定の速度で圧縮機を運転させるなど、また冷蔵冷凍側は内蔵食品などの量や温度設定に応じて変化させたり、あるいは常に一定の速度で圧縮機を運転させるなどに、簡単に適応させることが出来、また、空調室内機の増設や変更、冷蔵冷凍装置側のどのような組合せや増設や変更も適応可能になるし、又簡単に室外装置を追加することも出来る。更にエネルギーに無駄のない運転が可能な冷凍空調装置およびその方法が得られる。この様に本発明はフレキシブルな設備変更などの使いやすい装置が得られ、更に、どのような状況に対してもエネルギーが少ない運転方法を行うことができる。   As described above, the refrigeration / air-conditioning apparatus of the present invention has a refrigeration refrigeration-side refrigeration cycle apparatus, an air-conditioning-side refrigeration cycle apparatus, and a refrigeration cycle between both refrigeration cycles by attaching and disassembling the pipe connection portion of the third heat exchanger. Since it can be freely combined like a third heat exchanger that can exchange heat, the installation space can be handled flexibly as an outdoor unit of a refrigeration cycle connected to an air conditioning indoor unit or a showcase placed indoors It is possible to reduce the installation space, and to arrange them separately and conveniently. In addition, a simple device can be used to obtain an inexpensive device that can reduce energy. The present invention also relates to any operating conditions, such as changing the temperature setting such as the season or the temperature of the outside air, operating the compressor at a constant speed, etc. It can be easily adapted to be changed according to the setting, or to always operate the compressor at a constant speed, etc. Expansion and changes can be adapted, and outdoor equipment can be easily added. Further, a refrigeration / air-conditioning apparatus and a method thereof capable of operating without waste of energy can be obtained. As described above, the present invention can provide an easy-to-use device such as flexible equipment change, and can perform an operation method with low energy in any situation.

本発明は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な第三の熱交換器と、第二の流路に設けられ第三の熱交換器に流れる第二の冷媒の量を調整可能なバイパス流路と、を備えたので、冷凍空調装置全体でバイパス流路を使用したり使用せずに簡単にエネルギー低減を得ることが出来る。   The present invention provides a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant, A third heat exchanger in which refrigerant passing through independent flow paths of a first flow path connected to the heat exchanger and a second flow path connected to the second heat exchanger can exchange heat with each other And a bypass flow path provided in the second flow path and capable of adjusting the amount of the second refrigerant flowing through the third heat exchanger, so that the bypass flow path can be used in the entire refrigeration / air-conditioning apparatus. Energy reduction can be easily obtained without using.

本発明は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な複数の第三の熱交換器と、第一の流路もしくは第二の流路に接続され第三の熱交換器の複数の内の少なくとも一つに対し冷媒をバイパスさせるバイパス流路と、を備えたので、複数の第三の熱交換器を運転状態に応じて切換えて簡単にエネルギーを低減できる冷凍空調装置を得ることが出来る。   The present invention provides a first heat exchanger that performs heat exchange between normal-temperature air and a first refrigerant, a second heat exchanger that performs heat exchange between low-temperature air and a second refrigerant, A plurality of third heats in which refrigerant passing through independent flow paths of the first flow path connected to the heat exchanger and the second flow path connected to the second heat exchanger can exchange heat with each other. Exchanger, and a bypass flow path that is connected to the first flow path or the second flow path and bypasses the refrigerant to at least one of the plurality of third heat exchangers. It is possible to obtain a refrigeration / air-conditioning apparatus that can easily reduce energy by switching the third heat exchanger according to the operation state.

本発明は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の圧縮機を有する第一の流路と第二の熱交換器に接続される第二の圧縮機を有する第二の流路のそれぞれ独立した流路を通る各冷媒が互いに熱交換可能な第三の熱交換器と、第三の熱交換器と周囲空気との熱交換量を調整する送風機と、を備え、第一の圧縮機の駆動による所定の空調運転および第二の圧縮機の駆動による所定の冷蔵もしくは冷凍運転を行うとともに、両方の圧縮機入力を低減する方向に送風機の送風量を変化させるので、簡単にエネルギーを低減できる冷凍空調装置を得ることが出来る。   The present invention provides a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant, A first flow path having a first compressor connected to the heat exchanger and a second flow path having a second compressor connected to the second heat exchanger are independent flow paths. A third heat exchanger through which each of the refrigerants can exchange heat with each other, and a blower that adjusts the amount of heat exchange between the third heat exchanger and the surrounding air, are provided by a predetermined operation by driving the first compressor. A refrigeration and air-conditioning system that can easily reduce energy because it performs air conditioning operation and predetermined refrigeration or refrigeration operation by driving the second compressor, and changes the blower volume of the blower in a direction to reduce both compressor inputs. Can be obtained.

本発明は、常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一の熱交換器に接続される第一の流路と第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに直接の熱交換可能な第三の熱交換器と、第一の流路および第二の流路の少なくとも一方に接続され第三の熱交換器と並列に設けられ周囲空気との熱交換量を調整する送風機を有する補助熱交換器と、を備えたので、第三の熱交換器を直接熱伝達可能な冷媒と冷媒を熱工関させる簡単な構造とすることが出来、しかもエネルギーの低減を図ることが出来る冷凍空調装置を得ることが出来る。   The present invention provides a first heat exchanger that performs heat exchange between room temperature air and a first refrigerant, a second heat exchanger that performs heat exchange between low temperature air and a second refrigerant, The refrigerant passing through independent flow paths of the first flow path connected to the heat exchanger and the second flow path connected to the second heat exchanger can exchange heat directly with each other. An auxiliary heat exchanger having a blower that is connected to at least one of the first flow path and the second flow path and is provided in parallel with the third heat exchanger and adjusts the amount of heat exchange with ambient air. , So that the third heat exchanger can have a simple structure in which the heat transfer between the refrigerant and the refrigerant capable of directly transferring heat can be performed, and further, a refrigeration / air-conditioning apparatus capable of reducing energy can be obtained. Can be done.

本発明の第三の熱交換器は、複数の熱交換部で形成され、複数の熱交換部は、それぞれ独立した流路を通る冷媒に対し並列もしくは直列もしくは切替可能に配置されるので、フレキシブルな使用方法が可能な使い勝手の良い冷凍空調装置が得られる。   Since the third heat exchanger of the present invention is formed of a plurality of heat exchange units, and the plurality of heat exchange units are arranged in parallel or in series or switchable with respect to the refrigerant passing through the independent flow paths, respectively, An easy-to-use refrigeration and air-conditioning apparatus that can be used in various ways can be obtained.

本発明は、第三の熱交換器は、熱交換量を調整可能な第一の熱交換部と、熱交換量の調整を行わない第二の熱交換部より形成され、第一の熱交換部と第二の熱交換部が冷媒の流れに対し並列もしくは直列もしくは切替可能に配置されるので、簡単な構成でエネルギー低減の大きな冷凍空調装置が得られる。   According to the present invention, the third heat exchanger is formed of a first heat exchange unit capable of adjusting the amount of heat exchange and a second heat exchange unit that does not adjust the amount of heat exchange. Since the section and the second heat exchange section are arranged so as to be parallel, serial or switchable with respect to the flow of the refrigerant, a refrigeration and air-conditioning apparatus having a simple configuration and large energy reduction can be obtained.

本発明は、第三の熱交換器を形成する複数の熱交換部の少なくともひとつに対し、この熱交換部を流れる冷媒をバイパスさせるバイパス流路を設けたので簡単な構成でエネルギー低減の大きな冷凍空調装置が得られる。   According to the present invention, since at least one of the plurality of heat exchange units forming the third heat exchanger is provided with a bypass flow path for bypassing the refrigerant flowing through the heat exchange unit, the refrigeration system has a simple configuration and a large energy reduction. An air conditioner is obtained.

本発明は、第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続される熱交換部に対し、流れる冷媒をバイパスさせるバイパス流路を設け、第二の冷媒を吐出する圧縮機が運転中は熱交換量を調整可能な熱交換部をバイパスさせるのて、簡単な構成で信頼性の高い冷凍空調装置が得られる。   The present invention is a plurality of heat exchange units forming a third heat exchanger, wherein the first refrigerant flows, or the heat exchange unit connected to the first refrigeration cycle, bypasses the flowing refrigerant. By providing the bypass flow path and bypassing the heat exchange unit capable of adjusting the amount of heat exchange during operation of the compressor that discharges the second refrigerant, a highly reliable refrigeration air-conditioning apparatus with a simple configuration can be obtained.

本発明は、第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続される熱交換部に対し、流れる冷媒をバイパスさせるバイパス流路を設け、第二の冷媒を吐出する圧縮機が停止中は熱交換量の調整を行わない熱交換部をバイパスさせるので、省エネルギー効果の高い冷凍空調装置が得られる。   The present invention is a plurality of heat exchange units forming a third heat exchanger, wherein the first refrigerant flows, or the heat exchange unit connected to the first refrigeration cycle, bypasses the flowing refrigerant. By providing a bypass flow path and bypassing the heat exchange unit that does not adjust the amount of heat exchange while the compressor that discharges the second refrigerant is stopped, a refrigeration / air-conditioning apparatus with high energy saving effect can be obtained.

本発明は、第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続される熱交換部に対し、流れる冷媒をバイパスさせるバイパス流路を設け、第二の冷媒を吐出する圧縮機が停止中もしくは運転中に応じてバイパス流路を切りかえる際第一の冷媒を吸引する圧縮機へ液冷媒を吸引させない様に第一の冷媒の変化を遅くする液バック保護手段を設けたので、信頼性が高く、且つ、使用するエネルギーの少ない冷凍空調装置が得られる。   The present invention is a plurality of heat exchange units forming a third heat exchanger, wherein the first refrigerant flows, or the heat exchange unit connected to the first refrigeration cycle, bypasses the flowing refrigerant. A bypass flow path is provided, and when the compressor that discharges the second refrigerant switches the bypass flow path according to whether the compressor is stopped or in operation, the first refrigerant is not sucked into the compressor that sucks the first refrigerant. Since the liquid-back protection means for delaying the change of the refrigerant is provided, a refrigeration / air-conditioning apparatus having high reliability and using less energy can be obtained.

本発明の第三の熱交換器は、送風機を有し回転停止から速度を変化させた風量の変化により熱交換量を調整する第一の熱交換部と、熱交換量を調整する手段を設けない第二の熱交換部より形成し、両方の流路もしくは冷凍サイクルの運転モードに合せて送風機の運転を選択するので、簡単な構造で少ないエネルギーの冷凍空調装置が得られる。   The third heat exchanger of the present invention is provided with a first heat exchange unit that has a blower and adjusts the heat exchange amount by changing the air flow with the speed changed from the rotation stop, and a means for adjusting the heat exchange amount. Since the air conditioner is formed by the second heat exchanging section and the operation of the blower is selected in accordance with the operation mode of both the flow paths or the refrigeration cycle, a refrigeration air conditioner with a simple structure and low energy can be obtained.

本発明は、送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と第一の冷媒と第二の冷媒の間の熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能として第三の熱交換器を形成し、第一の流路の第一の熱交換器と冷媒冷媒一体型熱交換器の間、および冷媒冷媒一体型熱交換器と記空冷一体型熱交換器の間に設けられ、第一の冷媒を膨張させる絞り手段と、を備えたので、さまざまな運転が可能な使い易い冷凍空調装置が得られる。   The present invention parallels an air-cooled integrated heat exchanger that adjusts the amount of heat exchange with ambient air by a blower and a refrigerant-cooled integrated heat exchanger that mainly performs heat exchange between the first refrigerant and the second refrigerant. Alternatively, a third heat exchanger is formed so as to be connectable in series or switchable, and is referred to as a heat exchanger between the first heat exchanger and the refrigerant-refrigerant integrated heat exchanger in the first flow path and the refrigerant-refrigerant integrated heat exchanger. Since the air conditioner is provided between the air-cooling integrated heat exchanger and the expansion means for expanding the first refrigerant, an easy-to-use refrigeration / air-conditioning apparatus capable of various operations can be obtained.

本発明の第三の熱交換器は第二の流路の中に第一の流路を設けたもの、又は第二の流路と第一の流路を板状の両側の通路とするもの、又は流路を形成する伝熱管に放熱フィンを有するものであるので、装置の用とや能力に応じた構成が可能な冷凍空調装置が得られる。   The third heat exchanger of the present invention has a first flow path provided in the second flow path, or has the second flow path and the first flow path as plate-like two-sided flow paths. Alternatively, since the heat transfer tubes that form the flow path have the radiation fins, a refrigeration / air-conditioning apparatus that can be configured according to the use and capacity of the apparatus can be obtained.

本発明は、冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、第一の冷凍サイクルおよび第二の冷凍サイクルに圧縮機などを設け、第一および第二の冷凍サイクルの運転を少なくとも圧縮機などをオンオフしもしくは回転速度を調整して行う運転状況調整手段と、を備えた冷凍空調装置に対し、運転状況調整手段を調整して第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第三の熱交換器に設けた送風機により第三の熱交換器の熱交換量を調整するステップと、第二の冷凍サイクルに設けられ第三の熱交換器に対し冷媒をバイパスさせる、又は第二の冷凍サイクルに循環する冷媒を短時間停止させることにより冷蔵もしくは冷凍を継続させるステップと、を備えたので、簡単な方法でエネルギー低減効果の大きな冷凍空調装置の運転方法が得られる。   The present invention provides a first heat exchanger provided in a first refrigeration cycle in which a refrigerant is circulated to perform air conditioning of a room, and a second refrigeration independent of the first refrigeration cycle in which a second refrigerant is circulated. A second heat exchanger provided in the cycle for refrigeration or freezing, and a third heat exchanger for the refrigerant passing through the first refrigeration cycle to exchange heat with the second refrigerant passing through the flow path of the second refrigeration cycle Operating condition adjusting means for providing a compressor or the like in the first refrigeration cycle and the second refrigeration cycle, and performing operation of the first and second refrigeration cycles by turning on / off the compressor or the like or adjusting the rotation speed at least And performing a refrigeration or refrigeration operation in a second refrigeration cycle while performing an air conditioning operation in a first refrigeration cycle by adjusting operating condition adjusting means for a refrigeration air-conditioning apparatus including: Installed in the heat exchanger Adjusting the amount of heat exchange of the third heat exchanger by a blower, and bypassing the refrigerant to the third heat exchanger provided in the second refrigeration cycle, or the refrigerant circulating in the second refrigeration cycle A step of continuing refrigeration or freezing by stopping for a short period of time, so that a method for operating a refrigeration / air-conditioning apparatus having a large energy reduction effect can be obtained by a simple method.

本発明は、第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換するとともに送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と第一の冷媒と第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能な第三の熱交換器と、を備えた冷凍空調装置に対し、第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第一の冷凍サイクルに対し冷房時には空冷一体型熱交換器を主体に運転を行い、暖房時には冷媒冷媒一体型熱交換器を主体に運転を行うステップと、を備えたので、信頼性が高く省エネルギー効果の大きな冷凍空調装置の運転方法が得られる。   The present invention provides a first heat exchanger provided in a first refrigeration cycle in which a first refrigerant is circulated to perform room air conditioning, and a second heat exchanger independent of the first refrigeration cycle in which a second refrigerant is circulated. A second heat exchanger provided in the second refrigeration cycle for performing refrigeration or freezing, and the first refrigerant passing through the first refrigeration cycle exchanges heat with the second refrigerant passing through the flow path of the second refrigeration cycle. An air-cooled integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower, and a refrigerant-refrigerant integrated heat exchanger that mainly performs direct heat exchange between the first refrigerant and the second refrigerant, or Performing a refrigeration or refrigeration operation in a second refrigeration cycle while performing an air conditioning operation in a first refrigeration cycle for a refrigeration air-conditioning apparatus including a third heat exchanger that can be connected in series or switchable. And cooling for the first refrigeration cycle The operation is mainly performed by the air-cooling integrated heat exchanger, and the operation is mainly performed by the refrigerant-cooled integrated heat exchanger at the time of heating. A driving method is obtained.

本発明は、第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、第一の冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルの流路を通る第二の冷媒と熱交換する第三の熱交換器と、送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と第一の冷媒と第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを直列接続可能とする第三の熱交換器と、第一の冷凍サイクルに設けられ冷媒冷媒一体型熱交換器か空冷一体型熱交換器かの流路を切りかえる開閉手段と、を備えた冷凍空調装置に対し、第一の冷凍サイクルにて空調運転を行うとともに、第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、第一の冷媒を前記開閉手段を開閉させて冷媒冷媒一体型熱交換器に流し空冷一体型熱交換器には流さないステップと、空冷一体型熱交換器には第二の冷媒のみを流すステップと、を備えたので、使用するエネルギーの少ない冷凍空調装置の運転方法が得られる。   The present invention provides a first heat exchanger provided in a first refrigeration cycle in which a first refrigerant is circulated to perform room air conditioning, and a second heat exchanger independent of the first refrigeration cycle in which a second refrigerant is circulated. A second heat exchanger provided in the second refrigeration cycle for performing refrigeration or freezing, and the first refrigerant passing through the first refrigeration cycle exchanges heat with the second refrigerant passing through the flow path of the second refrigeration cycle. A third heat exchanger, an air-cooled integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower, and a refrigerant-cooled integrated type that mainly performs direct heat exchange between the first refrigerant and the second refrigerant A third heat exchanger that allows the heat exchanger to be connected in series, and an opening / closing unit that is provided in the first refrigeration cycle and switches the flow path of the refrigerant-cooled integrated heat exchanger or the air-cooled integrated heat exchanger, Air-conditioning operation in the first refrigeration cycle Performing a refrigeration or refrigeration operation in a second refrigeration cycle, and opening and closing the first refrigerant to flow through a refrigerant-refrigerant integrated heat exchanger and not flowing into an air-cooled integrated heat exchanger. And the step of flowing only the second refrigerant into the air-cooling integrated heat exchanger, so that an operation method of the refrigeration / air-conditioning apparatus using less energy can be obtained.

本発明は、暖房空調時には空冷一体型熱交換器にて空調側と冷蔵又は冷凍側との間で熱移動を行なわせるとともに、冷房空調時には冷媒冷媒一体型熱交換器にて空調側と冷蔵又は冷凍側との間で熱移動を行なわせるので、エネルギー低減効果の大きな冷凍空調装置の運転方法が得られる。   The present invention allows heat transfer between the air conditioning side and the refrigeration or freezing side with an air-cooling integrated heat exchanger during heating and air conditioning, and refrigeration or the air conditioning side with a refrigerant / coolant integrated heat exchanger during cooling air conditioning. Since heat is transferred to and from the refrigeration side, a method of operating the refrigeration / air-conditioning apparatus having a large energy reduction effect is obtained.

本発明は、第一および第二の冷凍サイクルの両方の圧縮比を低減するように運転状況調整手段の調整、および前記第三の熱交換器の熱交換量の調整を行うことの少なくともいずれかを選択するので使い易い冷凍空調装置の運転方法が得られる。   The present invention provides at least one of adjusting the operating condition adjusting means so as to reduce the compression ratio of both the first and second refrigeration cycles, and adjusting the heat exchange amount of the third heat exchanger. Is selected, an easy-to-use refrigeration / air-conditioning apparatus operating method can be obtained.

本発明の実施の形態の一例を示すコンビニエンスストアなどの店舗の空調・冷凍機接続図。1 is a connection diagram of an air conditioner / refrigerator of a store such as a convenience store, showing an example of an embodiment of the present invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置の動作を示すモリエル線図。The Mollier diagram which shows operation | movement of the refrigerating air conditioner which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す一体型熱交換器の構造説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure | structure explanatory drawing of the integrated heat exchanger which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す一体型熱交換器の構造説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure | structure explanatory drawing of the integrated heat exchanger which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す一体型熱交換器の構造説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure | structure explanatory drawing of the integrated heat exchanger which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置の動作を示すフローチャート。5 is a flowchart showing an operation of the refrigeration / air-conditioning apparatus showing one example of an embodiment of the present invention. 本発明の実施の形態の一例を示す冷凍空調装置の動作を示すフローチャート。5 is a flowchart showing an operation of the refrigeration / air-conditioning apparatus showing one example of an embodiment of the present invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す一体型熱交換器の構造説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure | structure explanatory drawing of the integrated heat exchanger which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す冷凍空調装置の動作を示すフローチャート。5 is a flowchart showing an operation of the refrigeration / air-conditioning apparatus showing one example of an embodiment of the present invention. 本発明の実施の形態の一例を示す冷凍空調装置の動作を示すフローチャート。5 is a flowchart showing an operation of the refrigeration / air-conditioning apparatus showing one example of an embodiment of the present invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明の実施の形態の一例を示す一体型熱交換器の構造説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure | structure explanatory drawing of the integrated heat exchanger which shows an example of Embodiment of this invention. 本発明の実施の形態の一例を示す冷凍空調装置構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

符号の説明Explanation of reference numerals

10 空調用室外機、 11 冷凍空調一体機、 12a 冷蔵空調一体機11と接続される空調用室内機、 12b 空調用室外機10と接続される空調用室内機、 13 冷蔵用又は冷凍用ショーケース、 14 店舗、 21a 空調用圧縮機、 21b 冷蔵用又は冷凍用圧縮機、 22a 空調用室内熱交換器、 22b 冷蔵用又は冷凍用室内熱交換器、 22c 過冷却用熱交換器、 22d 冷蔵用または冷凍用サブ熱交換器、 22e 空調用サブ熱交換器、 23a 空調用膨張手段、 23b 冷蔵用又は冷凍用膨張手段、 23c 過冷却用膨張手段、 24a 空調用流路、 24b 冷蔵用又は冷凍用流路、 24c バイパス流路、 24d 過冷却冷媒流路、 25a 空調用室内熱交換器用ファン、 25b 冷蔵用又は冷凍用熱交換器ファン、 25c 一体型熱交換器用送風ファン、 25d 冷蔵用または冷凍用サブ熱交換器、 22d用送風ファン、 25e 空調用サブ熱交換器22e用送風ファン、 26 液溜、 31 四方弁のような流路切り替え手段、 32 高圧維持手段あるいは流路制御手段、 33 過冷却手段、 34 一体熱交流路切り替え手段、 35 逆止弁、 36 熱源側接続バルブ、 37 負荷側接続バルブ、 41 一体型熱交換器用放熱フィン、 42 一体型熱交換器、 51 室内空気温度検出手段、 52 空調側熱交換器温度検出手段あるいは圧力検出手段、 53 空調側吐出温度検出手段、 54 空調側室内飽和温度検出手段、 55 空調側液管温度検出手段、 56 空調側二相管温度検出手段、 57 外気温度検出手段、 61 冷蔵側低圧検出手段又は蒸発温度検出手段又は冷蔵用もしくは冷凍用室内熱交換器の周囲温度検出手段、 62 冷蔵側凝縮温度検出手段もしくは高圧検出手段、 63 冷蔵側吐出温度検出手段、 64 庫内温度検出手段、 71 第一の絞り手段であるキャピラリ、 72 第二の絞り手段であるキャピラリ、 73 空調側流路切替用開閉弁、 74 空調側流路切替用開閉弁、 75 開閉弁、 76 冷蔵側または冷凍側高圧維持用開閉弁、 77 冷蔵側または冷凍側高圧維持用開閉弁、 78 開閉弁、 79 中圧レシーバ、 80 冷蔵または冷凍負荷側開閉弁。   DESCRIPTION OF SYMBOLS 10 Air conditioning outdoor unit, 11 Refrigeration air-conditioning integrated unit, 12a Air conditioning indoor unit connected to the refrigeration air-conditioning integrated unit 11, 12b Air conditioning indoor unit connected to the air conditioning outdoor unit 10, 13 Refrigeration or freezing showcase , 14 stores, 21a air conditioning compressor, 21b refrigeration or freezing compressor, 22a air conditioning indoor heat exchanger, 22b refrigeration or freezing indoor heat exchanger, 22c supercooling heat exchanger, 22d refrigeration or Sub-heat exchanger for refrigeration, 22e Sub-heat exchanger for air conditioning, 23a Expansion means for air conditioning, 23b Expansion means for refrigeration or freezing, 23c Expansion means for supercooling, 24a Air conditioning flow path, 24b Refrigeration or freezing flow Road, 24c bypass flow path, 24d supercooled refrigerant flow path, 25a air conditioning indoor heat exchanger fan, 25b refrigeration or freezing heat exchange Fan, 25c blower for integral heat exchanger, 25d refrigeration or freezing sub-heat exchanger, 22d blower, 25e blower for air conditioner sub-heat exchanger 22e, 26 reservoir, 31 four-way valve Path switching means, 32 high pressure maintaining means or flow path control means, 33 supercooling means, 34 integrated heat AC path switching means, 35 check valve, 36 heat source side connection valve, 37 load side connection valve, 41 for integrated heat exchanger Radiating fins, 42 integrated heat exchanger, 51 indoor air temperature detecting means, 52 air conditioning side heat exchanger temperature detecting means or pressure detecting means, 53 air conditioning side discharge temperature detecting means, 54 air conditioning side indoor saturation temperature detecting means, 55 air conditioning Side liquid pipe temperature detecting means, 56 air conditioning side two-phase pipe temperature detecting means, 57 outside air temperature detecting means, 61 refrigeration Low pressure detecting means or evaporating temperature detecting means or means for detecting the ambient temperature of the indoor heat exchanger for refrigeration or freezing; 62 refrigeration side condensation temperature detecting means or high pressure detecting means; 63 refrigeration side discharge temperature detecting means; 64 internal temperature detecting means 71 Capillary as first throttle means, 72 Capillary as second throttle means, 73 Air-conditioning-side flow path switching on-off valve, 74 Air-conditioning-side flow path switching on-off valve, 75 on-off valve, 76 Refrigeration side or freezing Open / close valve for maintaining high pressure on the side, 77 Refrigeration side or on / off valve for maintaining high pressure on the refrigeration side, 78 On / off valve, 79 Medium pressure receiver, 80 On / off valve for refrigeration or refrigeration load side.

Claims (25)

常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、前記第一の熱交換器に接続される第一の流路と前記第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な第三の熱交換器と、前記第二の流路に設けられ前記第三の熱交換器に流れる前記第二の冷媒の量を前記第二の熱交換器に流れる量とは異なる冷媒量に調整可能な第二冷媒流量調整手段と、を備えたことを特徴とする冷凍空調装置。 A first heat exchanger that performs heat exchange between the normal temperature air and the first refrigerant, a second heat exchanger that performs heat exchange between the low temperature air and the second refrigerant, and the first heat exchange. A first heat path connected to the device and a third heat exchanger in which refrigerant passing through independent flow paths of the second flow path connected to the second heat exchanger can exchange heat with each other, A second refrigerant flow rate adjustment that is provided in the second flow path and is capable of adjusting the amount of the second refrigerant flowing through the third heat exchanger to a refrigerant amount different from the amount flowing through the second heat exchanger. And a refrigerating air conditioner. 常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、前記第一の熱交換器に接続される第一の流路と前記第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに熱交換可能な複数の第三の熱交換器と、前記第一の流路もしくは前記第二の流路に接続され前記第三の熱交換器の複数の内の少なくとも一つに対し冷媒をバイパスさせるバイパス流路と、を備えたことを特徴とする冷凍空調装置。 A first heat exchanger that performs heat exchange between the normal temperature air and the first refrigerant, a second heat exchanger that performs heat exchange between the low temperature air and the second refrigerant, and the first heat exchange. A plurality of third heat exchangers in which refrigerant passing through independent flow paths of a first flow path connected to the heat exchanger and a second flow path connected to the second heat exchanger can exchange heat with each other. And a bypass flow path connected to the first flow path or the second flow path and bypassing the refrigerant to at least one of the plurality of third heat exchangers. Refrigeration and air conditioning equipment. 常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、前記第一の熱交換器に接続される第一の圧縮機を有する第一の流路と前記第二の熱交換器に接続される第二の圧縮機を有する第二の流路のそれぞれ独立した流路を通る各冷媒が互いに熱交換可能な第三の熱交換器と、前記第三の熱交換器と周囲空気との熱交換量を調整する送風機と、を備え、前記第一の圧縮機の駆動による所定の空調運転および前記第二の圧縮機の駆動による所定の冷蔵もしくは冷凍運転を行うとともに、前記両方の圧縮機入力の合計値を低減する方向に前記送風機の送風量を変化させることを特徴とする冷凍空調装置。 A first heat exchanger that performs heat exchange between the normal temperature air and the first refrigerant, a second heat exchanger that performs heat exchange between the low temperature air and the second refrigerant, and the first heat exchange. A first flow path having a first compressor connected to the second heat exchanger and a second flow path having a second compressor connected to the second heat exchanger. A third heat exchanger in which the refrigerants can exchange heat with each other, and a blower that adjusts the amount of heat exchange between the third heat exchanger and the surrounding air, and a predetermined heat driven by the first compressor. Refrigeration characterized by performing a predetermined refrigeration or freezing operation by air-conditioning operation and driving of the second compressor, and changing a blowing amount of the blower in a direction to reduce a total value of both compressor inputs. Air conditioner. 常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、前記第一の熱交換器に接続される第一の流路と前記第二の熱交換器に接続される第二の流路のそれぞれ独立した流路を通る冷媒が互いに直接の熱交換可能な第三の熱交換器と、前記第一の流路および前記第二の流路の少なくとも一方に接続され前記第三の熱交換器と並列に設けられ周囲空気との熱交換量を調整する送風機を有する補助熱交換器と、を備えたことを特徴とする冷凍空調装置。 A first heat exchanger that performs heat exchange between the normal temperature air and the first refrigerant, a second heat exchanger that performs heat exchange between the low temperature air and the second refrigerant, and the first heat exchange. A third heat exchanger capable of directly exchanging heat with refrigerant passing through independent flow paths of a first flow path connected to the heat exchanger and a second flow path connected to the second heat exchanger. And an auxiliary heat exchanger that is connected to at least one of the first flow path and the second flow path and that is provided in parallel with the third heat exchanger and adjusts a heat exchange amount with ambient air. And a refrigerating air conditioner comprising: 冷媒が循環する複数設けられた第一の冷凍サイクルの負荷側にて室内の空調を行う第一の熱交換器と、第二の冷媒が循環される前記第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ負荷側にて冷蔵もしくは冷凍を行う第二の熱交換器と、前記複数の第一の冷凍サイクルの内少なくとも一つの冷凍サイクルを通る第一の冷媒が第二の冷凍サイクルを通る前記第二の冷媒と熱源側にて熱交換する第三の熱交換器と、を備え、冷房時は前記第三の熱交換器と熱交換をしない第一の冷凍サイクルの流路への冷媒の流れを行う運転を優先し、暖房時は前記第三の熱交換器と熱交換を行う第一の冷凍サイクルの流路への冷媒の流れを行う運転を優先することを特徴とする冷凍空調装置。 A first heat exchanger for performing room air conditioning on the load side of a plurality of first refrigeration cycles in which a refrigerant circulates, and a second heat exchanger independent of the first refrigeration cycle in which a second refrigerant is circulated. A second heat exchanger that is provided in the refrigeration cycle and performs refrigeration or freezing on the load side, and a first refrigerant that passes through at least one refrigeration cycle of the plurality of first refrigeration cycles is a second refrigeration cycle. A third heat exchanger that exchanges heat on the heat source side with the second refrigerant passing therethrough, during cooling to the flow path of the first refrigeration cycle that does not exchange heat with the third heat exchanger. Priority is given to the operation of performing the flow of the refrigerant, and during heating, the operation of performing the flow of the refrigerant to the flow path of the first refrigeration cycle performing heat exchange with the third heat exchanger is prioritized. Refrigeration air conditioner. 常温の空気と第一の冷媒との熱交換を行う第一の熱交換器と、低温の空気と第二の冷媒との熱交換を行う第二の熱交換器と、第一および第二の2つの流路であって独立した各流路を持ちその各流路を通る冷媒が互いに熱交換をするように一体に設けられた第三の熱交換器と、前記第一の熱交換器と前記第三の熱交換器の第一の流路とを配管で接続してなる第一の冷凍サイクルと、前記第二の熱交換器と前記第三の熱交換器の第二の流路とを配管で接続してなる第二の冷凍サイクルと、前記第一および第二の冷凍サイクルの少なくとも一方に接続されこの冷凍サイクルを流れる冷媒の一部もしくは全部を前記第三の熱交換器をバイパス可能なバイパス流路と、前記第一および第二の冷凍サイクルの少なくとも一方に設けられ前記バイパス流路へ流す冷媒流量を調整する流路制御手段と、を備えたことを特徴とする冷凍空調装置。 A first heat exchanger that performs heat exchange between the normal temperature air and the first refrigerant, and a second heat exchanger that performs heat exchange between the low temperature air and the second refrigerant, and the first and second A third heat exchanger integrally provided so that the two passages have independent passages and the refrigerants passing through the passages exchange heat with each other, and the first heat exchanger, A first refrigeration cycle formed by connecting a first flow path of the third heat exchanger with a pipe, and a second flow path of the second heat exchanger and the third heat exchanger. And a second refrigeration cycle connected by piping, and a part or all of the refrigerant connected to at least one of the first and second refrigeration cycles and flowing through the refrigeration cycle bypasses the third heat exchanger. Possible bypass flow path, and provided in at least one of the first and second refrigeration cycles to the bypass flow path Refrigerating and air-conditioning apparatus characterized by comprising: a flow path control means for adjusting the to refrigerant flow, a. 前記第三の熱交換器は、複数の熱交換部で形成され、前記複数の熱交換部は、それぞれ独立した流路を通る冷媒に対し並列もしくは直列もしくは前記複数の熱交換部の1つを他に切替可能に配置されることを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍空調装置。 The third heat exchanger is formed of a plurality of heat exchange units, and the plurality of heat exchange units are arranged in parallel or in series or one of the plurality of heat exchange units with respect to the refrigerant passing through independent flow paths. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 6, wherein the refrigeration / air-conditioning apparatus is disposed so as to be switchable. 前記第三の熱交換器は、熱交換量を調整可能な第一の熱交換部と、熱交換量の調整を行わない第二の熱交換部より形成され、前記第一の熱交換部と前記第二の熱交換部が冷媒の流れに対し並列もしくは直列もしくは前記複数の熱交換部の一方を他方に切り替え可能に配置されることを特徴とする請求項1乃至請求項7のいずれかに記載の冷凍空調装置。 The third heat exchanger is formed of a first heat exchange unit capable of adjusting the amount of heat exchange and a second heat exchange unit that does not adjust the amount of heat exchange, and the first heat exchange unit 8. The method according to claim 1, wherein the second heat exchanging unit is arranged in parallel or in series with the flow of the refrigerant or so that one of the plurality of heat exchanging units can be switched to the other. The refrigeration and air-conditioning apparatus according to the above. 前記第三の熱交換器を形成する複数の熱交換部の少なくともひとつに対し、この熱交換部を流れる冷媒をバイパスさせるバイパス流路を設けたことを特徴とする請求項1乃至請求項8のいずれかに記載の冷凍空調装置。 9. The at least one of a plurality of heat exchange units forming the third heat exchanger, a bypass flow path for bypassing a refrigerant flowing through the heat exchange unit is provided. A refrigeration / air-conditioning apparatus according to any one of the above. 前記第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続される熱交換部に対し、流れる冷媒をバイパス可能なバイパス流路を設け、第二の冷媒を吐出する圧縮機が運転中は前記第三の熱交換器を形成する複数の熱交換部の内熱交換量を調整可能な熱交換部をバイパスさせることを特徴とする請求項1乃至請求項9のいずれかに記載の冷凍空調装置。 A plurality of heat exchange units forming the third heat exchanger, wherein a first refrigerant flows, or a heat exchange unit connected to the first refrigeration cycle, a bypass flow capable of bypassing the flowing refrigerant. A path is provided, wherein the heat exchanger that can adjust the internal heat exchange amount of the plurality of heat exchangers forming the third heat exchanger is bypassed while the compressor that discharges the second refrigerant is operating. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 9, wherein 前記第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続される熱交換部に対し、流れる冷媒をバイパス可能なバイパス流路を設け、第二の冷媒を吐出する圧縮機が停止中は前記第三の熱交換器を形成する複数の熱交換部の内熱交換量の調整を行わない熱交換部をバイパスさせることを特徴とする請求項1乃至請求項10のいずれかに記載の冷凍空調装置。 A plurality of heat exchange units forming the third heat exchanger, wherein a first refrigerant flows, or a heat exchange unit connected to the first refrigeration cycle, a bypass flow capable of bypassing the flowing refrigerant. Providing a passage, while the compressor that discharges the second refrigerant is stopped, to bypass the heat exchange unit that does not adjust the internal heat exchange amount of the plurality of heat exchange units that form the third heat exchanger. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 10, wherein: 前記第三の熱交換器を形成する複数の熱交換部であって熱交換量の調整を行う熱交換器が、空冷一体熱交換器であろうと冷媒冷媒一体熱交換器であろうと周囲空気との熱交換量を調整する送風機を有する、もしくは前記熱交換器に流れる冷媒量を調整することにより熱交換量の調整を行うことを特徴とする請求項1乃至請求項11のいずれかに記載の冷凍空調装置。 The plurality of heat exchangers forming the third heat exchanger, the heat exchanger for adjusting the amount of heat exchange, and the surrounding air, regardless of whether it is an air-cooled integrated heat exchanger or a refrigerant-cooled integrated heat exchanger. 12. The heat exchanger according to claim 1, further comprising a blower for adjusting a heat exchange amount, or adjusting a heat exchange amount by adjusting a refrigerant amount flowing through the heat exchanger. Refrigeration air conditioner. 前記第三の熱交換器を形成する複数の熱交換部であって熱交換量の調整を行なわない熱交換器では、第一の流路を流れる第一の冷媒と周囲空気との熱交換を行わないようにすることを特徴とする請求項1乃至請求項12のいずれかに記載の冷凍空調装置。 In the heat exchanger that does not adjust the amount of heat exchange, which is a plurality of heat exchange units forming the third heat exchanger, heat exchange between the first refrigerant flowing through the first flow path and the surrounding air is performed. 13. The refrigeration / air-conditioning apparatus according to claim 1, wherein the refrigeration and air conditioning is not performed. 前記第三の熱交換器を形成する複数の熱交換部であって、第一の冷媒が流れる、もしくは第一の冷凍サイクルに接続されるそれぞれの熱交換部の少なくとも一つに対し、流れる冷媒をバイパスさせるバイパス流路を設け、第二の冷媒を吐出する圧縮機が停止中もしくは運転中に応じて前記バイパス流路を切りかえる際前記第一の冷媒を吸引する圧縮機へ液冷媒を吸引させない様に前記第一の冷媒の流れの変化を遅くする液バック保護手段を設けたことを特徴とする請求項1乃至請求項13のいずれかに記載の冷凍空調装置。 A plurality of heat exchangers forming the third heat exchanger, wherein the first refrigerant flows, or at least one of the heat exchangers connected to the first refrigeration cycle, the refrigerant flowing Provide a bypass flow path for bypassing, when the compressor that discharges the second refrigerant switches over the bypass flow path according to whether the compressor is stopped or in operation, the compressor that sucks the first refrigerant does not suck the liquid refrigerant 14. The refrigeration / air-conditioning apparatus according to claim 1, further comprising a liquid back protection means for delaying a change in the flow of the first refrigerant. 前記第二の流路もしくは前記第二の冷凍サイクルに設けられ前記第三の熱交換器をバイパスするバイパス流路と前記第二の流路もしくは第二の冷凍サイクルとの合流部の後流側に配置された冷媒の過冷却手段と、を備えたことを特徴とする請求項1乃至請求項14のいずれかに記載の冷凍空調装置。 The downstream side of the junction between the second flow path or the second refrigeration cycle and the bypass flow path that bypasses the third heat exchanger and the junction of the second flow path or the second refrigeration cycle The refrigeration / air-conditioning apparatus according to any one of claims 1 to 14, further comprising: means for supercooling the refrigerant arranged in the refrigeration system. 前記第三の熱交換器は、送風機を有し回転停止から速度を変化させた風量の変化により熱交換量を調整する第一の熱交換部と、熱交換量を調整する手段を設けないで第一の流路と第二の流路を直接熱交換させる第二の熱交換部より形成し、前記両方の流路を流れる冷媒の状態もしくは冷凍サイクルの運転モードに合せて前記送風機の運転を選択することを特徴とする請求項1乃至請求項15のいずれかに記載の冷凍空調装置。 The third heat exchanger has a blower, a first heat exchange unit that adjusts the heat exchange amount by a change in the amount of air whose speed has been changed from the rotation stop, and does not include a unit that adjusts the heat exchange amount. The first flow path and the second flow path are formed by a second heat exchange portion that directly exchanges heat, and the operation of the blower is adjusted to a state of a refrigerant flowing in both the flow paths or an operation mode of a refrigeration cycle. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 15, wherein the refrigeration / air-conditioning apparatus is selected. 送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と前記第一の冷媒と前記第二の冷媒との間の熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能として前記第三の熱交換器を形成し、前記空冷一体型熱交換器に対し前記第二の冷媒の一部もしくは全部がバイパスされる前記第二の流路に設けられたバイパス流路と、を備えたことを特徴とする請求項1乃至16のいずれかに記載の冷凍空調装置。 An air-cooled integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower and a refrigerant-refrigerant integrated heat exchanger that mainly performs heat exchange between the first refrigerant and the second refrigerant or The third heat exchanger is formed so as to be connectable in series or switchable, and is provided in the second flow path where a part or all of the second refrigerant is bypassed with respect to the air-cooling integrated heat exchanger. The refrigeration / air-conditioning apparatus according to any one of claims 1 to 16, further comprising: a bypass flow path. 送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と前記第一の冷媒と前記第二の冷媒の間の熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能として前記第三の熱交換器を形成し、前記第一の流路の前記第一の熱交換器と前記冷媒冷媒一体型熱交換器の間、および前記冷媒冷媒一体型熱交換器と前記空冷一体型熱交換器の間に設けられ、前記第一の冷媒を膨張させる絞り手段と、を備えたことを特徴とする請求項1乃至17のいずれかに記載の冷凍空調装置。 An air-cooling integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower and a refrigerant-refrigerant integrated heat exchanger that mainly performs heat exchange between the first refrigerant and the second refrigerant are arranged in parallel or in series. Alternatively, the third heat exchanger is formed so as to be switchably connectable, and between the first heat exchanger and the refrigerant-refrigerant integrated heat exchanger in the first flow path, and the refrigerant-refrigerant integrated heat exchange The refrigeration / air-conditioning apparatus according to any one of claims 1 to 17, further comprising: a throttling means provided between the heat exchanger and the air-cooling integrated heat exchanger to expand the first refrigerant. 送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と前記第一の冷媒と前記第二の冷媒の間の熱交換を主として行う冷媒冷媒一体型熱交換器とで形成する前記第三の熱交換器では、前記冷媒冷媒一体型熱交換器は前記空冷一体型熱交換器より熱交換量を小さくなるようにして熱交換部の大きさを小型化することを特徴とする請求項1乃至18のいずれかに記載の冷凍空調装置。 An air-cooling integrated heat exchanger that adjusts the amount of heat exchange with ambient air by a blower and a refrigerant-cooled integrated heat exchanger that mainly performs heat exchange between the first refrigerant and the second refrigerant. In the third heat exchanger, the size of the heat exchange unit is reduced by making the heat exchange amount of the refrigerant-refrigerant integrated heat exchanger smaller than that of the air-cooled integrated heat exchanger. Item 19. A refrigerating air conditioner according to any one of Items 1 to 18. 前記第三の熱交換器は第一の流路と第二の流路を2重管として熱伝達を行うもの、又は第一の流路と第二の流路を板状に仕切り両側を通路として熱伝達を行うもの、又は第一の流路と第二の流路を形成する伝熱管に共通の放熱フィンを有するものであることを特徴とする請求項1乃至19のいずれかに記載の冷凍空調装置。 The third heat exchanger performs heat transfer by using the first flow path and the second flow path as a double pipe, or separates the first flow path and the second flow path into a plate shape and passes on both sides. 20. The method according to any one of claims 1 to 19, wherein the heat transfer is performed as a heat transfer tube, or the heat transfer tube forming the first flow passage and the second flow passage has a common radiation fin. Refrigeration air conditioner. 冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される前記第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、前記第一の冷凍サイクルを通る冷媒が前記第二の冷凍サイクルの流路を通る前記第二の冷媒と熱交換する第三の熱交換器と、前記第一の冷凍サイクルおよび前記第二の冷凍サイクルにそれぞれ圧縮機などを設け、前記第一および第二の冷凍サイクルの運転を少なくとも前記圧縮機などをオンオフしもしくは回転速度を調整して行う運転状況調整手段と、を備えた冷凍空調装置に対し、前記運転状況調整手段を調整して前記第一の冷凍サイクルにて空調運転を行うとともに、前記第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、前記第三の熱交換器に設けた送風機により前記第三の熱交換器の熱交換量を調整するステップと、前記第二の冷凍サイクルに設けられ前記第三の熱交換器に対し冷媒をバイパスさせる、又は第二の冷凍サイクルに循環する冷媒を短時間停止させることにより冷蔵もしくは冷凍を継続させるステップと、を備えたことを特徴とする冷凍空調装置の運転方法。 A first heat exchanger that is provided in a first refrigeration cycle in which a refrigerant is circulated and performs room air conditioning, and is provided in a second refrigeration cycle independent of the first refrigeration cycle in which a second refrigerant is circulated. A second heat exchanger that performs refrigeration or freezing, and a third heat exchanger that exchanges heat between the refrigerant passing through the first refrigeration cycle and the second refrigerant passing through the flow path of the second refrigeration cycle And, the first refrigeration cycle and the second refrigeration cycle each provided with a compressor or the like, the operation of the first and second refrigeration cycle by turning on or off at least the compressor or the like or adjusting the rotation speed Operating condition adjusting means for performing the air conditioning operation in the first refrigeration cycle by adjusting the operating condition adjusting means, and refrigeration or freezing in the second refrigeration cycle. luck Performing, and adjusting the heat exchange amount of the third heat exchanger by a blower provided in the third heat exchanger, the third heat exchanger provided in the second refrigeration cycle Operating the refrigeration and air-conditioning system by bypassing the refrigerant or stopping the refrigerant circulating in the second refrigeration cycle for a short time to continue refrigeration or freezing. 第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される前記第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、前記第一の冷凍サイクルを通る前記第一の冷媒が第二の冷凍サイクルの流路を通る前記第二の冷媒と熱交換するとともに送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と前記第一の冷媒と前記第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを並列もしくは直列もしくは切替接続可能な前記第三の熱交換器と、を備えた冷凍空調装置に対し、前記第一の冷凍サイクルにて空調運転を行うとともに、前記第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、前記第一の冷凍サイクルに対し冷房時には前記空冷一体型熱交換器を主体に運転を行い、暖房時には前記冷媒冷媒一体型熱交換器を主体に運転を行うステップと、を備えたことを特徴とする冷凍空調装置の運転方法。 A first heat exchanger provided in the first refrigeration cycle in which the first refrigerant is circulated to perform room air conditioning, and a second refrigeration independent of the first refrigeration cycle in which the second refrigerant is circulated A second heat exchanger provided in the cycle for performing refrigeration or freezing, and the first refrigerant passing through the first refrigeration cycle exchanges heat with the second refrigerant passing through the flow path of the second refrigeration cycle. An air-cooled integrated heat exchanger that adjusts the amount of heat exchange with the surrounding air by a blower, and a refrigerant-refrigerant integrated heat exchanger that mainly performs direct heat exchange between the first refrigerant and the second refrigerant. In parallel with the third heat exchanger that can be switched or connected in series, and with a refrigeration air-conditioning device, while performing an air-conditioning operation in the first refrigeration cycle, refrigeration or in the second refrigeration cycle Before and after performing the refrigeration operation Operating the air-cooling integrated heat exchanger mainly during cooling for the first refrigeration cycle, and operating mainly the refrigerant-cooled integrated heat exchanger during heating during heating. How to operate a refrigeration and air conditioning system. 第一の冷媒が循環される第一の冷凍サイクルに設けられ室内の空調を行う第一の熱交換器と、第二の冷媒が循環される前記第一の冷凍サイクルと独立な第二の冷凍サイクルに設けられ冷蔵もしくは冷凍を行う第二の熱交換器と、前記第一の冷凍サイクルを通る前記第一の冷媒が第二の冷凍サイクルの流路を通る前記第二の冷媒と熱交換する第三の熱交換器と、送風機により周囲空気との熱交換量を調整する空冷一体型熱交換器と前記第一の冷媒と前記第二の冷媒との間の直接熱交換を主として行う冷媒冷媒一体型熱交換器とを直列接続可能とする前記第三の熱交換器と、前記第一の冷凍サイクルに設けられ前記冷媒冷媒一体型熱交換器か前記空冷一体型熱交換器かの流路を切りかえる開閉手段と、を備えた冷凍空調装置に対し、前記第一の冷凍サイクルにて空調運転を行うとともに、前記第二の冷凍サイクルにて冷蔵もしくは冷凍運転を行うステップと、前記第一の冷媒を前記開閉手段を開閉させて冷媒冷媒一体型熱交換器に流し前記空冷一体型熱交換器には流さないステップと、前記空冷一体型熱交換器には第二の冷媒のみを流すステップと、を備えたことを特徴とする冷凍空調装置の運転方法。 A first heat exchanger provided in the first refrigeration cycle in which the first refrigerant is circulated to perform room air conditioning, and a second refrigeration independent of the first refrigeration cycle in which the second refrigerant is circulated A second heat exchanger provided in the cycle for performing refrigeration or freezing, and the first refrigerant passing through the first refrigeration cycle exchanges heat with the second refrigerant passing through the flow path of the second refrigeration cycle. A third heat exchanger, an air-cooled integrated heat exchanger that adjusts the amount of heat exchange with ambient air by a blower, and a refrigerant refrigerant that mainly performs direct heat exchange between the first refrigerant and the second refrigerant An integrated heat exchanger that can be connected in series to the third heat exchanger; and a flow path provided in the first refrigeration cycle, the refrigerant-cooled integrated heat exchanger or the air-cooled integrated heat exchanger. Opening / closing means for switching the first air conditioner. Performing an air-conditioning operation in a cycle and performing a refrigeration or freezing operation in the second refrigeration cycle; and opening and closing the opening / closing means to flow the first refrigerant to a refrigerant-refrigerant integrated heat exchanger, and A method of operating a refrigeration / air-conditioning apparatus, comprising: a step of not flowing the integrated refrigerant into the integrated heat exchanger; and a step of flowing only the second refrigerant through the integrated air-cooled heat exchanger. 暖房空調時には前記空冷一体型熱交換器にて空調側と冷蔵又は冷凍側との間で熱移動を行なわせるとともに、冷房空調時には前記冷媒冷媒一体型熱交換器にて空調側と冷蔵又は冷凍側との間で熱移動を行なわせることを特徴とする請求項21乃至23のいずれかに記載の冷凍空調装置の運転方法。 At the time of heating and air conditioning, heat transfer is performed between the air conditioning side and the refrigeration or freezing side by the air-cooling integrated heat exchanger. The method for operating a refrigeration / air-conditioning apparatus according to any one of claims 21 to 23, wherein heat transfer is performed between the refrigeration and air conditioning apparatus. 前記第一および第二の冷凍サイクルの両方の圧縮比を低減するように前記運転状況調整手段の調整、および前記第三の熱交換器の熱交換量の調整を行うことの少なくともいずれかを選択することを特徴とする請求項21乃至24のいずれかに記載の冷凍空調装置の運転方法。 At least one of adjustment of the operating condition adjustment means and adjustment of the heat exchange amount of the third heat exchanger so as to reduce the compression ratio of both the first and second refrigeration cycles is selected. The method for operating a refrigeration / air-conditioning apparatus according to any one of claims 21 to 24, wherein:
JP2003408715A 2003-02-20 2003-12-08 Refrigeration air conditioner, operation method of refrigeration air conditioner Expired - Lifetime JP4258363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408715A JP4258363B2 (en) 2003-02-20 2003-12-08 Refrigeration air conditioner, operation method of refrigeration air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042158 2003-02-20
JP2003408715A JP4258363B2 (en) 2003-02-20 2003-12-08 Refrigeration air conditioner, operation method of refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2004271166A true JP2004271166A (en) 2004-09-30
JP4258363B2 JP4258363B2 (en) 2009-04-30

Family

ID=33134164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408715A Expired - Lifetime JP4258363B2 (en) 2003-02-20 2003-12-08 Refrigeration air conditioner, operation method of refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4258363B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189237A (en) * 2004-12-08 2006-07-20 Mitsubishi Electric Corp Refrigerating air conditioner, operating method and manufacturing method of the same, refrigerating device, and manufacturing method of refrigerating device
JP2006207989A (en) * 2004-12-27 2006-08-10 Mitsubishi Electric Corp Refrigeration and freezing heat source unit, freezing device, and freezing air conditioner
JP2006343088A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
DE102007018439B3 (en) * 2007-04-19 2008-09-18 Dresdner Kühlanlagenbau GmbH refrigeration plant
JP2010060228A (en) * 2008-09-05 2010-03-18 Fuji Electric Retail Systems Co Ltd Refrigerant circuit apparatus
EP2325580A1 (en) * 2008-09-16 2011-05-25 Sanyo Electric Co., Ltd. Refrigeration device
JP2012073008A (en) * 2010-09-30 2012-04-12 Toshiba Carrier Corp Refrigeration cycle device
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
JP2012193908A (en) * 2011-03-17 2012-10-11 Toshiba Carrier Corp Dual refrigerating cycle device
US20130333857A1 (en) * 2011-02-22 2013-12-19 Airbus Operations Sas Heat exchanger incorporated into a wall of an aircraft
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535421U (en) * 1978-08-28 1980-03-07
JPS57117757A (en) * 1981-01-13 1982-07-22 Fuji Suupaa Kk Heater
JPH0182484U (en) * 1987-11-18 1989-06-01
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535421U (en) * 1978-08-28 1980-03-07
JPS57117757A (en) * 1981-01-13 1982-07-22 Fuji Suupaa Kk Heater
JPH0182484U (en) * 1987-11-18 1989-06-01
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189237A (en) * 2004-12-08 2006-07-20 Mitsubishi Electric Corp Refrigerating air conditioner, operating method and manufacturing method of the same, refrigerating device, and manufacturing method of refrigerating device
JP4659521B2 (en) * 2004-12-08 2011-03-30 三菱電機株式会社 Refrigeration air conditioner, operation method of refrigeration air conditioner, method of manufacturing refrigeration air conditioner, refrigeration apparatus, method of manufacturing refrigeration apparatus
JP2006207989A (en) * 2004-12-27 2006-08-10 Mitsubishi Electric Corp Refrigeration and freezing heat source unit, freezing device, and freezing air conditioner
JP4651452B2 (en) * 2004-12-27 2011-03-16 三菱電機株式会社 Refrigeration air conditioner
JP2006343088A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
DE102007018439B3 (en) * 2007-04-19 2008-09-18 Dresdner Kühlanlagenbau GmbH refrigeration plant
EP1983276A1 (en) 2007-04-19 2008-10-22 Dresdner Kühlanlagenbau GmbH Refrigeration system
JP2010060228A (en) * 2008-09-05 2010-03-18 Fuji Electric Retail Systems Co Ltd Refrigerant circuit apparatus
EP2325580A1 (en) * 2008-09-16 2011-05-25 Sanyo Electric Co., Ltd. Refrigeration device
EP2325580A4 (en) * 2008-09-16 2017-03-29 Panasonic Healthcare Holdings Co., Ltd. Refrigeration device
EP3495751A1 (en) * 2008-09-16 2019-06-12 PHC Holdings Corporation Refrigeration device
EP3789694A1 (en) * 2008-09-16 2021-03-10 PHC Holdings Corporation Refrigeration device
JP2012073008A (en) * 2010-09-30 2012-04-12 Toshiba Carrier Corp Refrigeration cycle device
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
US20130333857A1 (en) * 2011-02-22 2013-12-19 Airbus Operations Sas Heat exchanger incorporated into a wall of an aircraft
US9446850B2 (en) * 2011-02-22 2016-09-20 Airbus Operations Sas Heat exchanger incorporated into a wall of an aircraft
JP2012193908A (en) * 2011-03-17 2012-10-11 Toshiba Carrier Corp Dual refrigerating cycle device
WO2017068649A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Heat pump system
JPWO2017068649A1 (en) * 2015-10-20 2018-03-29 三菱電機株式会社 Heat pump system

Also Published As

Publication number Publication date
JP4258363B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
KR100463548B1 (en) Air conditioner
KR101639814B1 (en) Refrigerating and freezing combine air conditioning system
JP4804396B2 (en) Refrigeration air conditioner
JP2003172523A (en) Heat-pump floor heater air conditioner
JP2005299935A (en) Air conditioner
JP4659521B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner, method of manufacturing refrigeration air conditioner, refrigeration apparatus, method of manufacturing refrigeration apparatus
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
EP2584285B1 (en) Refrigerating air-conditioning device
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP4651452B2 (en) Refrigeration air conditioner
JP2018173197A (en) Refrigeration device
KR20180082724A (en) temperature compensated cooling system high efficiency
JP2007100987A (en) Refrigerating system
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system
JP4660334B2 (en) Refrigeration system
JP6238935B2 (en) Refrigeration cycle equipment
JP4169080B2 (en) Freezer refrigerator
JP6042037B2 (en) Refrigeration cycle equipment
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR101118137B1 (en) Air cooling type heat pump system
JP4108003B2 (en) Refrigeration system
JP4104519B2 (en) Refrigeration system
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2006300507A (en) Refrigeration device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term