KR20000045523A - Method for controlling rolling of continuous roller using neural circuit network - Google Patents

Method for controlling rolling of continuous roller using neural circuit network Download PDF

Info

Publication number
KR20000045523A
KR20000045523A KR1019980062082A KR19980062082A KR20000045523A KR 20000045523 A KR20000045523 A KR 20000045523A KR 1019980062082 A KR1019980062082 A KR 1019980062082A KR 19980062082 A KR19980062082 A KR 19980062082A KR 20000045523 A KR20000045523 A KR 20000045523A
Authority
KR
South Korea
Prior art keywords
rolling
stand
thickness
stands
roll
Prior art date
Application number
KR1019980062082A
Other languages
Korean (ko)
Inventor
홍성철
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980062082A priority Critical patent/KR20000045523A/en
Publication of KR20000045523A publication Critical patent/KR20000045523A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed

Abstract

PURPOSE: A method for controlling a continuous roller is provided to accurately obtain final thickness of a rolled board using a neuron circuit network. CONSTITUTION: A condition of a rolling such as the gap and velocity of a roll is set in advance. Once reaching a rolling material to a fourth stand(4), rolling values(rolling force, a roll gap, thickness between stands and so on) of a first to a fourth stand(1-4) are obtained and a roll gap of a fifth to a seventh stand(5-7) is obtained. Based on the values, a device dynamically corrects and resets the roll gap and roll driving velocity of the fifth to the seventh stand in order to make the rolling condition of each stand be most suitable.

Description

신경회로망을 이용한 연속압연기의 압연제어방법Rolling Control Method of Continuous Rolling Mill Using Neural Network

본 발명은 직렬로 배치된 복수의 탠덤(Tandom)식 압연 스탠드들을 통해 압연재를 순차연속 압연하여 목표 두께의 강판을 얻어내도록 된 연속압연기에 있어서 압연제어방법의 개선에 관한 것으로, 특히 신경회로망을 이용하여 상류측 스탠드의 압연실적 및 압연조건과 하류측 스탠드의 압연조건으로부터 설정오차를 예측하여 하류측 스탠드의 압연조건을 압연진행중에 동적으로 재설정하도록 함으로써 압연제어의 정도를 가일층 높일 수 있는 신경회로망을 이용한 연속압연기의 압연제어방법에 관한 것이다.The present invention relates to the improvement of the rolling control method in a continuous rolling machine in which a rolled material is successively rolled through a plurality of tandem rolling stands arranged in series to obtain a steel plate having a target thickness. Neural network that can further increase the degree of rolling control by predicting the setting error from the rolling performance and rolling conditions of the upstream stand and the rolling conditions of the downstream stand to dynamically reset the rolling conditions of the downstream stand during the rolling process. The rolling control method of the continuous rolling mill using the present invention.

본 발명이 관련된 연속압연기에 있어서는 피압연재에 대한 압연전의 두께, 폭, 온도, 강종 등과 압연사양에 따라 미리 각 압연 스탠드에서의 압연조건, 즉 압하력, 압연속도, 압하위치 등을 계산하고 이를 압연실행전에 각 압연 스탠드에 대해 설정한 후 압연작업에 들어가게 된다. 이렇게 설정된 각 스탠드의 압연조건이 적절하면 선단부의 두께정도가 우수한 제품을 얻을 수가 있다. 그러나, 미리 설정한 압연조건에 오차가 포함되어 있는 경우에는 최종의 압연 스탠드를 통해 나오는 강판 선단부에서의 판두께편차가 크게 발생하게 되고, 판두께가 관리공차에서 벗어난 부분은 제품으로 이용할 수가 없기 때문에 실수율저하의 큰 원인이 되게 된다. 이 때문에 연속압연기에 있어서는 각 압연 스탠드의 압연조건을 어떻게 해서든 적절하게 설정하는 것이 중요한 기술적 과제가 된다.In the continuous rolling mill according to the present invention, the rolling conditions at each rolling stand are calculated in advance according to the thickness, width, temperature, steel grade, and rolling specifications before rolling on the rolled material, that is, rolling force, rolling speed, rolling position, and the like. Before execution, the rolling work is started after setting for each rolling stand. If the rolling conditions of each stand set as described above are appropriate, a product having excellent thickness accuracy at the distal end portion can be obtained. However, if an error is included in the pre-set rolling conditions, a large plate thickness deviation occurs at the tip of the steel sheet coming out through the final rolling stand, and a part whose plate thickness is out of the management tolerance cannot be used as a product. This will cause a big drop in the real rate. For this reason, in a continuous rolling mill, it is an important technical subject to set the rolling conditions of each rolling stand suitably anyway.

연속압연기의 각 압연 스탠드에서의 압연조건, 특히 롤갭(Sd)은 압연하중을 예측한 상태에서 다음 식(1)과 같은 게이지미터식을 기초로 해서 목표로 하는 출측두께(h)를 얻을 수 있도록 설정된다.The rolling conditions at each rolling stand of the continuous rolling mill, in particular, the roll gap Sd, can be obtained in order to obtain the target exit thickness h based on the gauge metric equation as shown in the following equation (1) in the state of predicting the rolling load. Is set.

h = Sd + F/M + GME -------------------------------- (1)h = Sd + F / M + GME -------------------------------- (1)

여기서, F는 압연하중, M은 밀강성계수, GME는 게이지미터 보정계수이다. 위 식(1)에 의해 판두께를 정확하게 예측하기 위해서는 밀강성계수(M)를 압연력과 판폭 등에 따라 보정해야 하고, 게이지미터 보정계수(GME)는 롤온도상승 등에 의한 실갭변동 보정계수로 주로 롤의 열팽창의 영향을 받으므로 비압연시에 있어서의 냉각을 포함하여 GME의 변화를 시간에 따라 정확하게 파악할 필요가 있다. 한편, 상기 압연하중(F)은 다음 식(2)와 같은 일반식에 따라 계산된다.Where F is a rolling load, M is a stiffness coefficient, and GME is a gauge meter correction coefficient. In order to accurately predict the plate thickness by the above equation (1), the dense stiffness coefficient (M) should be corrected according to the rolling force and the plate width, etc., and the gauge meter correction coefficient (GME) is mainly used as a correction factor for the actual gap variation due to the roll temperature rise. Since it is influenced by the thermal expansion of a roll, it is necessary to grasp | ascertain the change of GME exactly with time, including cooling at the time of non-rolling. On the other hand, the rolling load (F) is calculated according to the general formula, such as the following formula (2).

F = Km·Wd·{R'(H-h)]1/2·Qp ---------------------- (2)F = KmWd (R '(Hh)] 1 / 2Qp ---------------------- (2)

여기서, Km은 재료평균변형저항, Wd는 판폭, H는 입측 판두께, (H-h)는 압하량, R'는 편평롤반경, 그리고 Qp는 압하력함수(마찰계수, F, H, h, Km, 장력등의 함수)이다. 따라서, 공정계획과 제품사양 등으로부터 피압연재의 입측 판두께(H), 출측 판두께(h), 판폭(Wd), 장력, 재질 등이 결정되면, 롤과 피압연재간 마찰계수와 판온도 등의 실적에 따라 위 식(1)(2)을 기초로 하여 각 압연 스탠드에서의 압연조건 설정에 적절한 롤갭을 계산하여 결정할 수가 있다.Where Km is material mean strain resistance, Wd is sheet width, H is grain thickness, (Hh) is rolling reduction, R 'is flat roll radius, and Qp is rolling reduction function (friction coefficient, F, H, h, Km , Tension, and so on). Therefore, when the plate thickness (H), the plate thickness (h), the plate width (Wd), the tension, and the material of the rolled material are determined from the process plan and the product specifications, the friction coefficient between the roll and the rolled material, the plate temperature, etc. According to the results of the above, based on Equation (1) and (2) above, a roll gap suitable for setting rolling conditions in each rolling stand can be calculated and determined.

판두께와 판온도는 압연시마다 변동되며, 마찰계수는 주로 롤의 표면상태와 윤활조건에 의해 결정되고 압연이 반복됨에 따라 서서히 변화하게 된다. 이런 이유로, 실제 압연조건 설정계산시에 있어서는 입측 판두께와 판온도는 압연직전에 실측하고, 또 마찰계수는 전회까지의 압연실적을 기초로 예측계산할 필요가 있다. 실측된 입측 판두께와 판온도에 포함된 측정오차는 롤갭에 대한 설정오차의 외란요인으로 된다. 게다가 각 압연 스탠드간에 판두께계가 없는 경우, 특히 탠덤밀(Tandom Mill)의 경우에는 일반적으로 압연 스탠드간에 판두께계를 설치하기가 곤란하기 때문에 한 스탠드에서 예측계산된 출측 판두께를 그대로 다음 스탠드의 입측 판두께로 사용할 수 밖에 없다. 이 때문에 예측계산된 출측 판두께에 오차가 포함된 경우, 이 오차가 그대로 다음 스탠드의 입측 판두께 오차로 되기 때문에 다음 스탠드의 롤갭설정 오차요인으로 될 수 밖에 없다. 게다가, 미리 설정된 롤갭을 그 스탠드에서의 통판전에 수정하는 것도 곤란한 일이다.The plate thickness and plate temperature vary with each rolling, and the coefficient of friction is mainly determined by the surface condition of the roll and the lubrication conditions and gradually changes as the rolling is repeated. For this reason, in the actual rolling condition setting calculation, it is necessary to estimate the side plate thickness and the plate temperature immediately before rolling, and the friction coefficient is predicted based on the rolling performance up to the previous time. The measured error included in the measured entry plate thickness and plate temperature is a disturbance factor of the set error with respect to the roll gap. In addition, when there is no plate thickness meter between each rolling stand, especially in the case of Tandem Mill, it is generally difficult to install the plate thickness meter between the rolling stand, so the estimated plate thickness calculated from one stand is used as it is. It can only be used as a side plate thickness. For this reason, when an error is included in the predicted calculated board thickness, this error becomes the side plate thickness error of the next stand as it is to be a roll gap setting error factor of the next stand. In addition, it is also difficult to correct the preset roll gap before the mail order in the stand.

근래, 연속압연기의 상류측 스탠드에서 통판시의 압연실적(압연하중, 롤갭 등)으로부터 그 스탠드에서의 설정오차를 추정하고, 이 설정오차를 기초로 하류측 스탠드의 롤갭을 다이나믹하게 설정함으로써 압연두께제어의 정도를 높이려고 시도하고 있다. 예를 들면, 일본 특개평 3-3241호에는 상류측의 복수의 스탠드에서의 압연실적을 이용하여 계산된 하중오차(예상하중-실측하중)를 기초로 하류측 스탠드에 설정된 롤갭을 보정하는 방법이 개시되어 있다. 그러나, 여기에서는 롤갭수정이 회귀식을 사용하여 이루어지기 때문에 다양한 압연조건에 적절한 동적 설정을 하기가 곤란하다. 또, 일본 특개평 9-276915호에는 피압연재가 제1 스탠드에 치입될 때 제1 스탠드에서의 압연하중실적을 기초로 피압연재의 진입속도와 게이지미터 보정계수를 추정하고, 추정된 게이지미터 보정계수를 이용하여 출측 판두께를 예측하며, 이와 같이 하여 얻어진 출측 판두께와 진입속도를 기초로 제1 스탠드의 출측 재료속도를 추정하고 이 출측 재료속도를 기초로 계산된 제2 스탠드의 입측 재료온도로부터 제2 스탠드 이하의 각 스탠드에서의 압연오차를 최소로 하는 롤갭과 롤속도를 각각 계산하여 동적 설적(Dynamic Setting)을 하는 방법이 소개되어 있다. 여기에서는 압연설정수식을 이용하여 압연하중실적으로부터 피압연재의 진입속도, 게이지미터 보정계수, 출측 판두께, 피압연재의 온도 등을 예측하기 때문에 동적 설정의 정도가 압연설정수식의 정도에 의존되어진다. 따라서, 압연설정수식의 정도가 낮은 경우에는 동적 설정 정도 또한 낮아질 수 밖에 없다.In recent years, the rolling error (rolling load, roll gap, etc.) at the upstream stand of a continuous rolling mill is estimated by the setting error in the stand, and the rolling thickness is set dynamically by setting the roll gap of the downstream stand based on this setting error. Attempting to increase the degree of control. For example, Japanese Patent Laid-Open No. 3-3241 discloses a method for correcting a roll gap set on a downstream stand based on a load error (expected load-measured load) calculated using rolling results from a plurality of stands on the upstream side. Is disclosed. However, in this case, since the roll gap correction is performed using a regression equation, it is difficult to make a dynamic setting suitable for various rolling conditions. In addition, Japanese Patent Laid-Open No. 9-276915 estimates the entry speed and gauge meter correction coefficient of the rolled material based on the rolling load performance at the first stand when the rolled material is inserted into the first stand, and the estimated gauge meter correction is performed. The exit plate thickness is predicted using the coefficient, and the exit material temperature of the first stand is estimated based on the exit plate thickness and the entry speed thus obtained, and the entrance material temperature of the second stand calculated based on the exit material speed. The method of dynamic setting is introduced by calculating the roll gap and the roll speed which minimize the rolling error in each stand below the second stand. Here, the rolling set equation is used to predict the entry speed of the rolled material, gauge measurement coefficient, exit plate thickness, temperature of the rolled material, etc. from the rolling load performance. . Therefore, when the degree of the rolling setting equation is low, the degree of dynamic setting is also inevitably lowered.

본 발명은 위와 같은 문제점을 해결하기 위해 압연설정수식에 의존하지 않고 학습을 통해 복잡한 압연현상을 묘사할 수 있는 특성을 갖는 신경회로망을 이용하여 상류측 스탠드의 압연실적 및 압연조건과 하류측 스탠드의 압연조건으로부터 설정오차(판두께오차)를 예측하여 하류측 스탠드의 압연조건을 동적으로 재설정하도록 함으로써 최종 목표로 하는 판두께를 가일층 정확하게 얻어낼 수 있는 방법을 제공할 목적에서 연구된 것이다.In order to solve the above problems, the present invention utilizes a neural network having characteristics that can describe complex rolling phenomena through learning without relying on rolling setting equations. The study aims to provide a method for accurately obtaining the final target plate thickness by predicting the set error (plate thickness error) from the rolling condition and dynamically resetting the rolling condition of the downstream stand.

도1은 본 발명의 방법에 따른 압연제어과정의 흐름도,1 is a flowchart of a rolling control process according to the method of the present invention;

도2는 본 발명에 있어서 설정 두께오차 예측을 위한 신경회로망의 구조도,2 is a structural diagram of a neural network for predicting a set thickness error in the present invention;

도3은 본 발명에 있어서 설정 두께오차 보정계수 산출을 위한 신경회로망의 구조도,3 is a structural diagram of a neural network for calculating a set thickness error correction coefficient according to the present invention;

도4는 본 발명이 적용되는 연속압연기의 전체 구성개요도.Figure 4 is a general configuration diagram of a continuous rolling mill to which the present invention is applied.

* 도면중 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

A: 출측 두께오차 예측 신경회로망 B: 보정계수 산출 신경회로망A: Predicted thickness error prediction neural network B: Correction factor calculation neural network

W: 압연재 1∼7: 압연 스탠드 8: 압연롤W: Rolling material 1-7: Rolling stand 8: Rolling roll

9: 백업롤 10: 압연제어기 11: 제어시스템9: Backup roll 10: Rolling controller 11: Control system

12: 센서12: sensor

이하에서, 상기의 목적을 달성하기 위한 본 발명의 기술내용을 첨부도면을 참조하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the technical details of the present invention for achieving the above object will be described in more detail.

본 발명에 따른 연속압연기의 압연제어방법은 도1과 같이 피압연재의 선단부가 중간 스탠드(예컨대 제1∼제7 스탠드를 직렬로 설치구비하는 연속압연기의 경우, 제4 스탠드)를 통과할 때 상류측 스탠드(제1∼제4 스탠드)들의 압연하중 및 롤갭과 하류측 스탠드(제5∼제7 스탠드)들의 롤갭으로부터 신경회로망(A)에 의해 최종 스탠드 출측 두께오차(Δhnn1)를 예측하고, 이 두께오차를 강종을 고려하여 보정하기 위한 보정계수(β)를 신경회로망(B)을 이용하여 산출한 후, 이와 같이 하여 얻어진 두께오차와 보정계수를 곱하여 설정 두께오차(Δh1)를 계산하며, 이 두께오차가 0이 되도록 하류측 스탠드(제5∼제7 스탠드)들의 롤갭과 롤속도를 동적 설정하는 것을 특징으로 한다.The rolling control method of the continuous rolling mill according to the present invention is upstream when the tip of the rolled material passes through the intermediate stand (for example, the fourth stand in the case of the continuous rolling mill in which the first to seventh stands are installed in series) as shown in FIG. The final stand exit thickness error Δhnn 1 is predicted by the neural network A from the rolling load of the side stands (first to fourth stands) and the roll gap of the downstream stands (five to seventh stands), The correction coefficient β for correcting the thickness error in consideration of the steel grade is calculated by using the neural network B, and then the thickness error obtained is multiplied by the correction coefficient to calculate the set thickness error Δh 1 . And the roll gap and the roll speed of the downstream stands (5th to 7th stands) are dynamically set so that the thickness error becomes zero.

이러한 본 발명에 있어서, 상기 신경회로망(A)은 도2에서 보는 바와 같이 피압연재의 폭(wd), 제1∼제4 스탠드의 압연력(F), 전 스탠드의 롤갭(Sd1)과 목표 두께(Ht1)간의 차, 롤교환 후 압연회수(Nr), 압연전 피압연재의 온도(FTo), 최종 스탠드 출측에서의 피압연재의 목표 두께(ht7) 및 온도(FTt)를 입력변수로 사용해서 최종 스탠드 출측 두께오차(Δhnn1)를 출력한다.In the present invention, as shown in Figure 2, the neural network (A) is the width (wd) of the rolled material, the rolling force (F) of the first to fourth stands, the roll gap (Sd 1 ) of all the stands and the target The difference between the thickness (Ht 1 ), the number of rolls after roll change (Nr), the temperature of the rolled material before rolling (FTo), the target thickness of the rolled material (ht 7 ) and the temperature (FTt) at the exit of the final stand are used as input variables. To output the final stand exit thickness error (Δhnn 1 ).

또, 상기 신경회로망(B)은 도3과 같이 피압연재의 구성화학원소(C, Mn, Si, Ni, Cr, Nb, V, Cu, Ti, P, S, Al, Mo, B, Sn, N, Ca)를 입력변수로 사용하여 위 신경회로망(A)의 예측 두께오차(Δhnn1)에 대한 실제 두께오차의 비율을 나타내는 보정계수(β)를 출력하도록 구성되어 있다.In addition, the neural network (B) is a constituent chemical element (C, Mn, Si, Ni, Cr, Nb, V, Cu, Ti, P, S, Al, Mo, B, Sn, N, Ca) is used as an input variable to output a correction coefficient β representing the ratio of the actual thickness error to the predicted thickness error Δhnn 1 of the neural network A.

[실시예]EXAMPLE

도4는 본 발명이 적용된 한 연속압연기의 전체 구성개요를 보여 주는데, 여기에서는 총 7단의 스탠드(1∼7)들이 직렬배치된 형태의 연속압연기에 본 발명을 적용한 경우를 예로 든 것이다. 각 스탠드(1∼7)는 각각 압연롤(8)과 백업롤(9)을 포함하여 구성되어 있고, 압연제어기(10)의 제어에 의해 압하하중이 제어되어 압연롤(8)사이에 들어온 피압연재(W)를 압연하도록 되어 있다. 피압연재(W)는 제1 스탠드(1)로부터 제7 스탠드(7)에 걸쳐 순차연속적으로 압연되어 최종의 제7 스탠드(7)의 출측에서 원하는 제품사양의 판두께를 얻는다. 11은 마이크로프로세서 등을 주체로 해서 구성된 총괄적인 제어시스템이다. 이 제어시스템(11)의 제어에 따라 각 스탠드(1∼7)에 대한 압연제어기(10)의 동작이 제어되고, 이에 따라 압연롤에 의한 압연하중 등의 조정이 이루어진다. 또, 12는 제7 스탠드(7)의 출측에 설치된 판두께계 등의 센서이다. 이러한 센서(12)에 의해 상기 압연기를 통해 압연된, 즉 압연후의 피압연재의 판두께 및 판온도 등이 측정된다.Figure 4 shows the overall configuration of a continuous rolling mill to which the present invention is applied. Herein, a case in which the present invention is applied to a continuous rolling mill having a series of seven stages 1 to 7 arranged in series is shown. Each stand 1 to 7 includes a rolling roll 8 and a backup roll 9, and the pressure load is controlled under the control of the rolling controller 10 to allow the pressure to enter between the rolling rolls 8, respectively. The softening material W is rolled. The rolled material W is sequentially rolled from the first stand 1 to the seventh stand 7 to obtain a plate thickness of a desired product specification at the exit side of the final seventh stand 7. 11 is a general control system mainly composed of microprocessors and the like. In accordance with the control of this control system 11, the operation of the rolling controller 10 with respect to each stand 1-7 is controlled, and adjustment of the rolling load etc. by a rolling roll is made by this. In addition, 12 is a sensor, such as a plate thickness meter, provided in the exit side of the 7th stand 7. As shown in FIG. The thickness and the plate temperature of the to-be-rolled material rolled through the rolling mill by the sensor 12, that is, after rolling, are measured.

상기와 같이 구성된 연속압연기에 있어서 압연조건의 동적 설정은 기본적으로는 공정계획과 제품사양등을 기초로 각 스탠드(1∼7)에서의 압연조건을 미리 결정하여 그 롤갭(Sdi)과 롤속도(Vi)(여기에서 i=1∼7) 등을 설정해놓는 것으로부터 시작된다. 그후 압연이 개시되어 압연재(W)가 제4 스탠드(4)에 이르렀을 때 상류측 스탠드인 제1∼제4 스탠드(1)(2)(3)(4)에서의 압연실적(압연력, 롤갭, 스탠드간 두께 실측치 등)과 하류측 스탠드인 제5∼제7 스탠드(5)(6)(7)의 롤갭을 구하여 이 값들을 기초로 하류측 스탠드의 롤갭과 롤구동속도를 동적으로 수정, 재설정하는 것으로 각 스탠드의 압연조건을 각각 최적화한다. 이와 같은 하류측 스탠드(5)(6)(7)에서의 압연조건의 동적 설정은 압연기전체를 총괄제어하는 제어시스템(11)에 의해 이루어진다.In the continuous rolling mill configured as described above, the dynamic setting of the rolling conditions is basically determined in advance the rolling conditions at each stand 1 to 7 based on the process plan and the product specifications, and the roll gap Sdi and the roll speed ( Vi) (where i = 1 to 7) is set. After that, rolling starts and when the rolled material W reaches the fourth stand 4, the rolling performance (rolling force) in the first to fourth stands 1, 2, 3, and 4 which are upstream stands. , Roll gap, thickness measurement between stands, etc.) and the roll gaps of the fifth to seventh stands (5) (6) and (7) which are the downstream stands, and based on these values, the roll gap and the roll driving speed of the downstream stand are dynamically determined. By modifying and resetting, the rolling conditions of each stand are optimized. The dynamic setting of the rolling conditions in the downstream stands 5, 6 and 7 is made by the control system 11 which controls the rolling mill as a whole.

따라서, 본 발명은 상술한 바와 같은 압연조건의 동적 설정 방법을 이용하여 압연기의 초기설정 압연조건에 대한 오차를 하류측 스탠드에서 동적으로 보정 재설정해 줌으로써 압연재 선단부에서의 판두께편차를 감소시켜 실수율향상에 크게 기여할 수 있는 효과를 제공하는 것이다.Accordingly, the present invention reduces the plate thickness deviation at the tip of the rolling material by dynamically correcting and resetting the error of the initial rolling condition of the rolling mill in the downstream stand by using the dynamic setting method of the rolling conditions as described above. It is to provide an effect that can greatly contribute to the improvement.

Claims (1)

복수의 압연 스탠드들을 직렬로 배치하여 연속압연을 행하는 연속압연기에 있어서, 피압연재의 선단부가 중간 스탠드를 통과할 때 상류측 스탠드들의 압연하중 및 롤갭과 하류측 스탠드들의 롤갭으로부터 최종 스탠드에서의 출측 두께오차(Δhnn1)를 예측하는 단계와, 상기 두께오차를 강종을 고려하여 산출한 보정계수(β)로 보정하여 설정 두께오차를 계산하는 단계와, 상기 두께오차가 0이 되도록 하류측 스탠드의 롤갭과 롤속도를 동적 설정하는 단계를 포함하고,In a continuous rolling machine in which a plurality of rolling stands are arranged in series to perform continuous rolling, the rolling load of the upstream stands and the exit thickness at the final stand from the roll gap of the upstream stands and the roll gap of the downstream stands when the leading end of the rolled material passes through the intermediate stand. Predicting an error Δhnn 1 , correcting the thickness error with a correction coefficient β calculated in consideration of steel grade, calculating a set thickness error, and a roll gap of a downstream stand such that the thickness error is zero. And dynamically setting the roll speed, 상기 최종 스탠드 출측 두께오차의 예측이 피압연재의 폭, 상류측 스탠드의 압연력, 전 스탠드의 롤갭과 목표 두께간의 차, 롤교환 후 압연회수, 압연전 피압연재의 온도, 최종 스탠드 출측에서의 피압연재의 목표 두께 및 온도등을 입력변수로 해서 최종 스탠드 출측 두께오차를 출력하는 신경회로망에 의해 이루어지며,The prediction of the thickness error of the final stand exit side includes the width of the rolled material, the rolling force of the upstream stand, the difference between the roll gap and the target thickness of all stands, the number of rolls after the roll change, the temperature of the rolled material before rolling, and the rolled material at the exit of the final stand. It is made by the neural network that outputs the final stand exit thickness error by using the target thickness and temperature as input variables. 상기 두께오차를 보정하는 보정계수의 산출이 피압연재의 구성화학원소를 입력변수로 사용하여 보정계수를 출력하는 신경회로망에 의해 이루어지는 것을 특징으로 하는 신경회로망을 이용한 연속압연기의 압연제어방법.The rolling control method for a continuous rolling mill using a neural network, characterized in that the calculation of the correction coefficient for correcting the thickness error is made by a neural network for outputting a correction coefficient using the constituent chemical elements of the material to be rolled.
KR1019980062082A 1998-12-30 1998-12-30 Method for controlling rolling of continuous roller using neural circuit network KR20000045523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980062082A KR20000045523A (en) 1998-12-30 1998-12-30 Method for controlling rolling of continuous roller using neural circuit network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980062082A KR20000045523A (en) 1998-12-30 1998-12-30 Method for controlling rolling of continuous roller using neural circuit network

Publications (1)

Publication Number Publication Date
KR20000045523A true KR20000045523A (en) 2000-07-15

Family

ID=19568777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980062082A KR20000045523A (en) 1998-12-30 1998-12-30 Method for controlling rolling of continuous roller using neural circuit network

Country Status (1)

Country Link
KR (1) KR20000045523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043911A (en) * 2002-11-20 2004-05-27 주식회사 포스코 Apparatus and method for prediction rolling force using neural network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043911A (en) * 2002-11-20 2004-05-27 주식회사 포스코 Apparatus and method for prediction rolling force using neural network

Similar Documents

Publication Publication Date Title
KR970033151A (en) Measuring method and control method of strip crown of continuous rolling mill
CN102343365B (en) Method and system for automatic thickness control over high-precision strip steel rolling under monitoring
JPH10192929A (en) Method and device for control of rolling mill
KR20170018419A (en) Flatness control device
CN102380515A (en) Synchronous transport model and method thereof
KR20000045523A (en) Method for controlling rolling of continuous roller using neural circuit network
KR100641755B1 (en) Control apparatus for width margin in hot strip mill and its method
JPH04111910A (en) Method for controlling shape of rolled stock in multistage rolling mill
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
US6722173B2 (en) Method and device for determining the rolling force in a roll stand
KR20040044325A (en) Method for Controlling Thickness of Front Portion of Hot-Rolled Steel Sheet
JP2008183594A (en) Method and device for controlling interstand tension of continuous rolling mill
JP2000135506A (en) Method of rolling plate with reversible rolling mill
JP5565214B2 (en) Thickness control method of rolling mill
KR20020050843A (en) Setup method of roll speed in continuous rolling mill
CN102366757B (en) Dynamic mean module and method thereof
JPH0857512A (en) Manufacture of tapered steel sheet
WO2024034020A1 (en) Sheet width control device for reversing rolling mill
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
KR100660215B1 (en) Apparatus for controlling speed of roll in continuous rolling mill
JPH0691311A (en) Installation arrangement of hot strip finishing mill
JPH04262815A (en) Method for setting roll gap of rolling mill
JPH06114424A (en) Method for controlling rolling strip in hot strip finishing mill
JPH0691312A (en) Installation arrangement of hot strip finishing mill
JP2628964B2 (en) Equipment arrangement of hot strip finishing mill

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination