KR20000033367A - 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막제조 방법 - Google Patents

스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막제조 방법 Download PDF

Info

Publication number
KR20000033367A
KR20000033367A KR1019980050207A KR19980050207A KR20000033367A KR 20000033367 A KR20000033367 A KR 20000033367A KR 1019980050207 A KR1019980050207 A KR 1019980050207A KR 19980050207 A KR19980050207 A KR 19980050207A KR 20000033367 A KR20000033367 A KR 20000033367A
Authority
KR
South Korea
Prior art keywords
substrate
thin film
area
single crystal
temperature superconducting
Prior art date
Application number
KR1019980050207A
Other languages
English (en)
Other versions
KR100301110B1 (ko
Inventor
서정대
한석길
강광용
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019980050207A priority Critical patent/KR100301110B1/ko
Priority to US09/436,799 priority patent/US6280580B1/en
Publication of KR20000033367A publication Critical patent/KR20000033367A/ko
Application granted granted Critical
Publication of KR100301110B1 publication Critical patent/KR100301110B1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 스퍼터링 증착법을 이용한 대면적 양면 박막 제조방법에 관한 것으로, 특히 산화물 대면적 단결정 기판의 양쪽면에 고온초전도 대면적 박막을 제조하는 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법에 관한 것이다.
본 발명은 박막증착실에 2개의 고온초전도 산화물 YBa2Cu3O7-x소결체 타겟을 배치하고, 지름이 2 내지 3인치 크기의 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4대면적 산화물 단결정 기판이 박막증착실 분리대를 관통하여 기판지지대에 부착되도록 하며, 상기 기판지지대의 회전을 통하여 상기 대면적 산화물 단결정 기판이 증착실 분리대를 기준으로 회전되도록 하고, 상기 대면적 산화물 단결정 기판의 표면 양쪽에 2개의 기판 가열기를 배치하여 상기 대면적 산화물 단결정 기판을 가열하면서 상기 소결체 타겟과 상기 대면적 산화물 단결정 기판사이에 전압을 인가하고 상기 2개의 고온초전도 타겟에서 발생한 플라즈마가 상기 대면적 산화물 단결정 기판의 양쪽면에 닿아 고온초전도 타겟 물질이 증착되게 하는 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법을 제시한다.

Description

스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법
본 발명은 스퍼터링 증착법을 이용하여 산화물 대면적 단결정 기판의 양쪽면에 산화물 고온초전도 대면적 박막을 제조하는 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법에 관한 것이다.
지름이 2인치 이상의 대면적 산화물 초전도 박막을 제조하기 위한 종래의 스퍼터링 방법에서는 하나의 원판형 타겟을 회전하면서 금속판 위에 대면적 박막을 제조하는 방법(US4886032)이나, 타겟을 실린더 형태의 타겟지지대 외부에 부착하여 대면적 박막을 제조하는 방법(US5196400)이 제시되어 있다. 그리고 사각통 형태의 할로우 캐소드 타겟을 사용하여 기판을 타겟 표면에 평행하게 이동하여 대면적 박막을 증착하는 방법(H. Koch, et al. Journal of Vacuum Science and Technology A.9(4), 2374 (1991), Th. Schuring, et al. Physica C 262, 89 (1996))이 제시되어 있다. 그러나 이들 방법에 의하면 대면적 단결정 기판의 한쪽면에만 고온초전도박막을 증착할 수 있다.
그러나 고온초전도박막을 디지털 전자소자와 마이크로파 소자에 응용하기 위해서는 대면적 산화물 단결정 기판의 한쪽면 뿐만 아니라 양쪽면에 박막을 제조하는 기술이 필수적이다.
따라서, 본 발명은 스퍼터링 증착법을 이용하여 산화물 대면적 단결정 기판의 양쪽면에 지름이 2인치 이상을 갖는 산화물 고온초전도박막을 제조할 수 있는 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법을 제공하는 데 그 목적이 있다.
상술한 목적을 달성하기 위한 본 발명은 박막증착실에 2개의 고온초전도 산화물 YBa2Cu3O7-x소결체 타겟을 배치하고, 지름이 2 내지 3인치 크기의 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4대면적 산화물 단결정 기판이 박막증착실 분리대를 관통하여 기판지지대에 부착되도록 하며, 상기 기판지지대의 회전을 통하여 상기 대면적 산화물 단결정 기판이 증착실 분리대를 기준으로 회전되도록 하고, 상기 대면적 산화물 단결정 기판의 표면 양쪽에 2개의 기판 가열기를 배치하여 상기 대면적 산화물 단결정 기판을 가열하면서 상기 소결체 타겟과 상기 대면적 산화물 단결정 기판사이에 전압을 인가하고 상기 2개의 고온초전도 타겟에서 발생한 플라즈마가 상기 대면적 산화물 단결정 기판의 양쪽면에 닿아 고온초전도 타겟 물질이 증착되게 하는 것을 특징으로 한다.
도 1은 디스크 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
도 2는 디스크 형태의 스퍼터링 타겟 2개를 증착기판 표면에 수직하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
도 3은 관통된 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
도 4는 관통된 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 수직하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
도 5는 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
도 6은 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 산화물 고온초전도박막을 증착하는 방법의 도면.
<도면의 주요 부분에 대한 부호의 설명>
1, 2: 소결체 타겟 3, 4: 기판가열기
5: 회전형 기판지지대 6: 대면적 산화물 단결정 기판
7, 8: 플라즈마 9, 10: 박막증착실 분리대
11: 박막증착실
이하, 첨부된 도면을 참고하여 본 발명의 실시예에 따른 대면적 양면 산화물 고온초전도박막 제조 방법을 상세히 설명한다.
도 1은 디스크 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 1 실시예는 도 1과 같이 박막증착실(11)에 2개의 디스크 형태의 소결체 타겟(1,2)이 대면적 산화물 단결정 기판(6) 표면에 평행하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 회전형 기판지지대(5)에 부착되어 있으며, 회전형 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 박막증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 대면적 산화물 단결정 기판(6) 표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
도 2는 디스크 형태의 스퍼터링 타겟 2개를 증착기판 표면에 수직하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 2 실시예는 도 2와 같이 박막증착실(11)에 2개의 디스크 형태의 소결체 타겟(1,2)이 대면적 산화물 단결정 기판(6) 표면에 수직하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 회전형 기판지지대(5)에 부착되어 있으며, 회전형 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 기판표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr 압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
도 3은 관통된 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 3 실시예는 도 3과 같이 박막증착실(11)에 관통된 원기둥 형태의 스퍼터링 소결체 타겟(1,2)이 대면적 산화물 단결정 기판(6) 표면에 평행하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 기판지지대(5)에 부착되어 있으며, 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 기판표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr 압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
도 4는 관통된 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 수직하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 4 실시예는 도 4와 같이 박막증착실(11)에 관통된 원기둥 형태의 스퍼터링 소결체 타겟(1,2)이 대면적 산화물 단결정 기판(6) 표면에 수직하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 기판지지대(5)에 부착되어 있으며, 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 기판표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr 압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
도 5는 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 5 실시예는 도 5와 같이 박막증착실(11)에 기판쪽이 열린 원기둥 형태의 스퍼터링 소결체 타겟(1,2)이 대면적 산화물 기판(6) 표면에 평행하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 기판지지대(5)에 부착되어 있으며, 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 기판표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr 압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
도 6은 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟 2개를 증착기판 표면에 평행하게 배열하여 대면적 양면 고온초전도박막을 증착하는 방법을 설명하기 위한 도면이다.
본 발명의 대면적 양면 박막을 제조하는 방법의 제 6 실시예는 도 6과 같이 박막증착실(11)에 기판쪽이 열린 원기둥 형태의 스퍼터링 소결체 타겟(2,3)이 대면적 산화물 기판(6) 표면에 수직하게 배치되어 있고, 이 소결체 타겟(1,2)은 산화물 고온초전도 물질 YBa2Cu3O7-x로 구성된다. 대면적 산화물 단결정 기판(6)은 증착실 분리대(9,10)를 관통하여 기판지지대(5)에 부착되어 있으며, 기판지지대(5)의 회전을 통하여 대면적 산화물 단결정 기판(6)이 증착실 분리대(9,10)를 기준으로 회전하게 된다. 기판 가열기(3,4)는 대면적 산화물 단결정 기판(6)을 양쪽에서 가열하기 위하여 기판표면에 수직하게 배치되어 있다. 대면적 산화물 단결정 기판(6)은 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4등의 산화물로 구성된다. 대면적 산화물 단결정 기판(6)의 온도는 YBa2Cu3O7-x결정상이 형성되는 700 내지 800℃ 사이를 유지한다. 박막증착실(11) 내부로 스퍼터링 가스를 100 내지 300 mTorr 압력을 유지하도록 주입 한 후, 소결체 타겟(1,2)과 대면적 산화물 단결정 기판(6) 사이에 전압을 인가하고 플라즈마(7, 8)를 발생하여 대면적 산화물 단결정 기판(6)의 양쪽면에 타겟 물질이 증착되도록 한다.
이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함으로 전술한 실시 예 및 첨부된 도면에 한정되는 것이 아니다.
상술한 바와 같이 본 발명의 박막증착 방법에 의하면 대면적 양면 산화물 고온초전도박막을 증착할 수 있다.

Claims (8)

  1. 대면적 산화물 고온초전도박막을 제조하는데 있어서,
    박막증착실에 2개의 고온초전도 산화물 YBa2Cu3O7-x소결체 타겟을 배치하고, 지름이 2 내지 3인치 크기의 MgO, SrTiO3, LaAlO3, Al2O3, LaSrGaO4대면적 산화물 단결정 기판이 박막증착실 분리대를 관통하여 기판지지대에 부착되도록 하며, 상기 기판지지대의 회전을 통하여 상기 대면적 산화물 단결정 기판이 증착실 분리대를 기준으로 회전되도록 하고, 상기 대면적 산화물 단결정 기판의 표면 양쪽에 2개의 기판 가열기를 배치하여 상기 대면적 산화물 단결정 기판을 가열하면서 상기 소결체 타겟과 상기 대면적 산화물 단결정 기판사이에 전압을 인가하고 상기 2개의 고온초전도 타겟에서 발생한 플라즈마가 상기 대면적 산화물 단결정 기판의 양쪽면에 닿아 고온초전도 타겟 물질이 증착되게 하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막 제조 방법.
  2. 제 1 항에 있어서,
    상기 소결체 타겟은 디스크 형태의 스퍼터링 타겟을 기판표면에 수직하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  3. 제 1 항에 있어서,
    상기 소결체 타겟은 디스크 형태의 스퍼터링 타겟을 기판표면에 평행하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  4. 제 1 항에 있어서,
    상기 소결체 타겟은 관통된 원기둥 형태의 스퍼터링 타겟을 기판표면에 평행하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  5. 제 1 항에 있어서,
    상기 소결체 타겟은 관통된 원기둥 형태의 스퍼터링 타겟을 기판표면에 수직하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  6. 제 1 항에 있어서,
    상기 소결체 타겟은 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟을 기판표면에 평행하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  7. 제 1 항에 있어서,
    상기 소결체 타겟은 기판쪽이 열린 원기둥 형태의 스퍼터링 타겟을 기판표면에 수직하게 배열하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
  8. 제 1 항에 있어서,
    상기 기판 가열기는 상기 대면적 산화물 단결정 기판 양면에 대하여 수직하게 배치하는 것을 특징으로 하는 스퍼터링 증착법을 이용한 대면적 양면 고온초전도박막 제조 방법.
KR1019980050207A 1998-11-23 1998-11-23 스퍼터링증착장비 KR100301110B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980050207A KR100301110B1 (ko) 1998-11-23 1998-11-23 스퍼터링증착장비
US09/436,799 US6280580B1 (en) 1998-11-23 1999-11-08 Method for manufacturing a double-sided high-temperature superconducting oxide thin film having large area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980050207A KR100301110B1 (ko) 1998-11-23 1998-11-23 스퍼터링증착장비

Publications (2)

Publication Number Publication Date
KR20000033367A true KR20000033367A (ko) 2000-06-15
KR100301110B1 KR100301110B1 (ko) 2001-09-06

Family

ID=19559311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980050207A KR100301110B1 (ko) 1998-11-23 1998-11-23 스퍼터링증착장비

Country Status (2)

Country Link
US (1) US6280580B1 (ko)
KR (1) KR100301110B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413533B1 (ko) * 2001-03-19 2003-12-31 학교법인 포항공과대학교 초전도 마그네슘 보라이드(MgB₂) 박막의 제조 방법 및제조 장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093122A1 (ja) * 2004-03-26 2005-10-06 Tohoku Seiki Industries, Ltd. 薄膜形成方法および薄膜形成装置
JP4414428B2 (ja) * 2004-03-26 2010-02-10 東北精機工業株式会社 薄膜形成方法および薄膜形成装置
US20070119375A1 (en) * 2005-11-30 2007-05-31 Darrin Leonhardt Dual large area plasma processing system
KR100829015B1 (ko) * 2006-08-22 2008-05-14 엘지전자 주식회사 면 광원 장치, 이를 구비한 백라이트 유닛 및 액정 표시장치
CN102255040B (zh) * 2011-04-13 2013-06-12 电子科技大学 双面超导带材缓冲层的连续制备方法
KR101805107B1 (ko) * 2011-04-26 2017-12-05 엘지이노텍 주식회사 발광소자 제조장치 및 발광소자
EP3238279A4 (en) * 2014-12-22 2018-10-03 Technology Innovation Momentum Fund (Israel) Limited Partnership Dielectric substrate for superconductive device and superconductive article utilizing such substrate
KR102160500B1 (ko) * 2018-07-11 2020-09-28 주식회사 테토스 기판 측면부 배선 형성 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0102489B1 (de) * 1982-07-31 1987-02-04 BROWN, BOVERI & CIE Aktiengesellschaft Supraleitendes Faserbündel und Verfahren zu dessen Herstellung
JPH0772349B2 (ja) 1987-05-12 1995-08-02 住友電気工業株式会社 大面積化合物薄膜の作製方法および装置
US5140004A (en) * 1987-12-31 1992-08-18 Sumitomo Electric Industries, Ltd. Method for preparing a high Tc superconducting fiber
US5196400A (en) 1990-08-17 1993-03-23 At&T Bell Laboratories High temperature superconductor deposition by sputtering
US5126318A (en) 1991-03-13 1992-06-30 Westinghouse Electric Corp. Sputtering method for forming superconductive films using water vapor addition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413533B1 (ko) * 2001-03-19 2003-12-31 학교법인 포항공과대학교 초전도 마그네슘 보라이드(MgB₂) 박막의 제조 방법 및제조 장치

Also Published As

Publication number Publication date
US6280580B1 (en) 2001-08-28
KR100301110B1 (ko) 2001-09-06

Similar Documents

Publication Publication Date Title
CA1330548C (en) Method and apparatus for producing thin film of compound having large area
CN101273431A (zh) 通过溅射沉积涂层的方法
Witanachchi et al. Effect of buffer layers on low‐temperature growth of mirror‐like superconducting thin films on sapphire
KR20000033367A (ko) 스퍼터링 증착법을 이용한 대면적 양면 산화물 고온초전도박막제조 방법
CA2045267C (en) Process and apparatus for preparing superconducting thin films
US5126318A (en) Sputtering method for forming superconductive films using water vapor addition
KR920007799B1 (ko) 초전도 산화물 세라믹 막 제조방법 및 산화물 초전도 세라믹 막 침착장치
Truman et al. Continued improvement of large area, in situ sputter deposition of superconducting YBCO thin films
Hirata et al. Preparation of high‐T c oxide superconductors at low substrate temperature by facing‐targets sputtering
JP2716138B2 (ja) 対向ターゲット式スパッタ法による複合酸化物超電導薄膜の形成方法及び装置
Fyk et al. Analysis of the technology to manufacture a high-temperature microstrip superconductive device for theelectromagnetic protection of receivers
Auyeung et al. In situ pulsed laser deposition of large-area ceramic and multilayer films for applications in industry
Yuan et al. Some aspects of fabrication of YBCO thin films by inverted cylindrical magnetron sputtering in large area
RU2046837C1 (ru) Способ получения эпитаксильных пленок
JP2502344B2 (ja) 複合酸化物超電導体薄膜の作製方法
JP2611332B2 (ja) 薄膜超電導体の製造方法
Arendt et al. Highly-Textured Tl-Ba-Ca-Cu-O Polycrystalline Superconducting Films on Ag Substrates
Höhler et al. Preparation of thin YBa2Cu3O7− δ layers on various substrates (LiNbO3, MgO, SrTiO3) BY dc-magnetron sputtering
JP3018605B2 (ja) 超電導薄膜の成膜方法と装置
JPH01115014A (ja) 超電導薄膜の製造方法
Veliang et al. Double-sided YBa 2 Cu 3 O 7− δ superconducting films prepared by laser ablation with a Si radiation heater
Ballentine et al. Commerical‐scale production of high temperature superconducting thin films
Houlton et al. Development of materials for high temperature superconductor Josephson junctions
JPH0753638B2 (ja) 超電導薄膜の形成方法
JPH05139737A (ja) 酸化物薄膜およびその成膜方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110609

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee