KR20000027616A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
KR20000027616A
KR20000027616A KR1019980045571A KR19980045571A KR20000027616A KR 20000027616 A KR20000027616 A KR 20000027616A KR 1019980045571 A KR1019980045571 A KR 1019980045571A KR 19980045571 A KR19980045571 A KR 19980045571A KR 20000027616 A KR20000027616 A KR 20000027616A
Authority
KR
South Korea
Prior art keywords
forming
semiconductor device
ion implantation
threshold voltage
film
Prior art date
Application number
KR1019980045571A
Other languages
Korean (ko)
Inventor
우영탁
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980045571A priority Critical patent/KR20000027616A/en
Publication of KR20000027616A publication Critical patent/KR20000027616A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]

Abstract

PURPOSE: A method of manufacturing a semiconductor device is provided to stabilize a threshold voltage. CONSTITUTION: A method of manufacturing a semiconductor device comprises the steps of: forming an isolation layer on a field region of a silicon substrate; forming a sacrificial layer; forming a well region on a desired region of the substrate by an ion implanting process using a photoresist layer mask; eliminating the sacrificial layer not uniform in the prior process; and re-forming a sacrificial layer and performing an ion-implanting process for controlling a threshold voltage.

Description

반도체소자 제조방법Semiconductor device manufacturing method

본 발명은 반도체소자 제조방법에 관한 것으로, 특히 문턱전압을 안정화시킬수 있도록 하는 반도체소자 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device to stabilize the threshold voltage.

일반적으로 반도체 소자에 널리 사용되는 CMOS 트랜지스터(Transistor) 제조방법에서는 트랜지스터 특성을 최적화시키기 위해 이온주입 공정을 한다. 특히 pMOS는 일반적으로 버리드 채널(Buried Channel) 구조가 이용되며 nMOS에 비해 후속 공정에 의해 영향을 많이 받기 때문에 초기 공정에서 문턱전압(Threshold Voltage)을 결정하는데 있어서 안정된 공정을 하는 것이 중요하다.In general, a CMOS transistor manufacturing method widely used in semiconductor devices performs an ion implantation process to optimize transistor characteristics. In particular, since pMOS generally uses a buried channel structure and is more affected by subsequent processes than nMOS, it is important to have a stable process in determining threshold voltage in the initial process.

pMOS 트랜지스터를 종래 기술에 의해 제조하는 공정을 첨부된 도1 내지 도3을 참조하여 설명하기로 한다.A process for manufacturing a pMOS transistor according to the prior art will be described with reference to FIGS.

도1은 실리콘 기판(1)의 필드영역에 소자분리막(2)을 열산화 공정에 의해 형성한다음, well 형성을 위해 산화막으로된 희생막(3)을 형성한 것이다.FIG. 1 shows that a device isolation film 2 is formed in a field region of a silicon substrate 1 by a thermal oxidation process, and then a sacrificial film 3 made of an oxide film is formed to form wells.

도2는 n/p-type well 을 형성하기 위해 마스크로 이용되는 감광막(4)을 형성한 단면도이다.FIG. 2 is a cross-sectional view of the photosensitive film 4 used as a mask to form n / p-type wells.

도3은 n/p type 불순물을 기판으로 이온 주입하여 well 을 형성한다음, 상기 감광막(4)을 제거한 것을 도시한 단면도이다. 이와같이 마스크로 이용되는 감광막을 형성하고, 이온주입 공정을 진행한다음, 상기 감광막을 제거하는 공정을 여러번 거치는 동안 상기 희생막(3)의 표면이 울퉁불퉁하게 변하게 되며 이후에 문턱전압을 맞추기 위해 p-채널 문턱전압 이온주입(5) 공정을 진행하게 된다FIG. 3 is a cross-sectional view showing that the photoresist film 4 is removed after ion implantation of n / p type impurities into the substrate to form wells. In this way, the photoresist film used as a mask is formed, the ion implantation process is performed, and then the surface of the sacrificial film 3 is unevenly changed during the process of removing the photoresist film several times. Channel Threshold Ion Implantation (5)

그러나 일반적인 CMOS 공정에서는 희생막 형성후 n/p-type well 을 형성하기 위해 마스크(Mask) 공정과 이온 주입 공정 그리고 감광막제거(P/R Strip) 공정을 하며 감광막 제거 공정에 들어가는 왯 크리닝(Wet Cleaning) 공정에서 희생막이 조금씩 제거되면서 최종적으로 채널 문턱 전압 (Channl Vt) 이온 주입시에는 희생막의 두께가 불균일하게 된다. 특히 보통 Channel Vt 이온주입시 에너지(Energy)가 작아 Rp가 작으므로 이에 의한 문턱전압이 웨이퍼의 위치에 따라 심한 차이를 보이게 된다.However, in general CMOS process, mask cleaning, ion implantation, and P / R strip process are performed to form n / p-type well after sacrificial film formation. As the sacrificial film is removed little by little in the) process, the thickness of the sacrificial film becomes uneven when the channel threshold voltage (Channl Vt) is finally implanted. In particular, the channel voltage due to the implantation of Vt ion is small and the Rp is small. Therefore, the threshold voltage caused by this is very different depending on the position of the wafer.

따라서, 본 발명은 상기한 문제점인 문턱전압을 안정화 시키기 위한 공정 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a process method for stabilizing a threshold voltage, which is the above problem.

도 1 내지 도 3은 종래 기술에 의해 MOS 트랜지스터를 제조하는 공정을 도시한 단면도이다.1 to 3 are cross-sectional views showing a process for manufacturing a MOS transistor according to the prior art.

도 4 내지 도 7은 본 발명에 의해 MOS 트랜지스터를 제조하는 공정을 도시한 단면도이다.4 to 7 are cross-sectional views showing a process for manufacturing a MOS transistor according to the present invention.

<도면의 주요부분에 대한 부호 설명><Description of Signs of Major Parts of Drawings>

1, 11 : 기판 2, 12 : 소자분리막1, 11 substrate 2, 12 device isolation film

3, 13 : 희생막 4 : 감광막3, 13: sacrificial film 4: photosensitive film

5, 15 : 이온 주입 14 : 희생막5, 15: ion implantation 14: sacrificial film

상기 목적을 달성하기 위한 본 발명은 반도체소자 제조방법에 있어서,The present invention for achieving the above object in the semiconductor device manufacturing method,

실리콘 기판의 필드영역에 소자분리막을 형성하는 단계와,Forming an isolation layer in the field region of the silicon substrate;

희생막을 형성하는 단계와,Forming a sacrificial layer,

감광막 마스크를 이용한 이온 주입 공정으로 원하는 기판 지역에 well 영역을 형성하는 단계와,Forming a well region in a desired substrate region by an ion implantation process using a photoresist mask;

상기 공정에서 표면이 균일하지 않게 된 희생막을 제거하는 단계와,Removing the sacrificial film whose surface is uneven in the process;

희생막을 다시 형성한다음, 문턱전압을 조절하기 위한 이온 주입 공정을 진행하는 것을 포함하는 것을 특징으로 한다.After the sacrificial layer is formed again, the ion implantation process for adjusting the threshold voltage is performed.

상기 well 을 형성하기 위해 이온 주입 공정을 실시한다음 고온에서 well 어닐을 하면서 희생막으로 산화막을 형성한다.An ion implantation process is performed to form the wells, and then an oxide film is formed as a sacrificial film while well annealing at a high temperature.

그리고, 상기 문턱전압 조절 이온주입은 20-50KeV의 에너지에서 실시하며, 상기 희생막은 80-100Å의 두께로 형성한다.The threshold voltage control ion implantation is performed at an energy of 20-50 KeV, and the sacrificial film is formed to a thickness of 80-100 kW.

본발명은 문턱전압 조절 이온 주입전 well 어닐(Anneal) 공정시 기존의 희생막을 크리닝 과정에서 제거하고 well 어닐 과정과 동시에 희생막을 고르게 생장시켜 P-채널 문턱전압 조절 이온주입시 Rp값을 고르게 조절할 수 있어 추가되는 공정없이 pMOS의 문턱전압을 안정적으로 할 수 있다.In the present invention, the conventional sacrificial film is removed from the cleaning process during the well annealing process before the threshold voltage control ion implantation, and the sacrificial film is grown evenly at the same time as the well annealing process, thereby controlling the Rp value evenly during the P-channel threshold voltage control ion implantation. As a result, the threshold voltage of the pMOS can be stabilized without an additional process.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도4 내지 도7은 본 발명의 실시예에 의해 반조체소자를 형성하는 공정을 도시한 단면도이다.4 to 7 are cross-sectional views showing a process for forming a semi-structured device according to an embodiment of the present invention.

도4는 실리콘 기판(11)의 필드영역에 소자분리막(12)을 열산화 공정에 의해 형성한다음, well 형성을 위해 산화막으로된 희생막(13)을 형성한 것이다.4 shows that the device isolation film 12 is formed in the field region of the silicon substrate 11 by a thermal oxidation process, and then a sacrificial film 13 made of an oxide film is formed to form wells.

도5는 n/p-type well 을 형성하기 위해 마스크로 이용되는 감광막(도시안됨)을 형성한후, n/p type 불순물을 기판으로 이온 주입하여 n 또는 p well (도시안됨)을 형성한다음, 상기 감광막을 제거한 것으로, 상기와 같은 공정을 여러번 거치는 동안 상기 희생막(13)의 표면이 울퉁불퉁하게 변하게 된다.FIG. 5 illustrates the formation of a photoresist film (not shown) used as a mask to form n / p-type wells, followed by ion implantation of n / p type impurities into a substrate to form n or p wells (not shown). By removing the photoresist layer, the surface of the sacrificial layer 13 may be unevenly changed during the above process several times.

도6은 본 발명에 의해 상가 표면이 고르지 않은 희생막(13)을 제거한 단면도이다.6 is a cross-sectional view of the sacrificial film 13 having an uneven top surface removed by the present invention.

도7은 상기 well을 활성화시키기 위하여 고온 예를들어 900-950℃의 온도에서 well 어닐을 하면서 희생막(14)을 다시 형성한다음, MOSFET의 채널을 형성하기 위하여 마스크 공정을 이용하여 n-well 또는 p-well에 p-타입 불순물을 작은 에너지 예를들어 20-50KeV로 이온 주입 공정을 진행한 것을 도시한 단면도이다.Figure 7 re-forms the sacrificial layer 14 while well annealing at a high temperature, e.g. Alternatively, a cross-sectional view showing an ion implantation process of p-type impurities in a p-well with small energy, for example, 20-50 KeV.

상기 p-타입 불순물은 B11 또는 BF2를 이용한다.The p-type impurity uses B11 or BF2.

이후의 공정은 일반적인 공정과 동일한 것으로, 게이트 산화막과 게이트전극을 형성하여 MOS 트랜지스터를 형성한다. 본 발명은 N-MOS, P-MOS에도 함께 적용되는 기술이다.The subsequent process is the same as the general process, and the MOS transistor is formed by forming a gate oxide film and a gate electrode. The present invention is also applied to N-MOS and P-MOS.

본발명에서는 채널 문턱전압 조절 이온 주입전 well 어닐(Anneal) 공정시 기존의 희생막을 크리닝 과정에서 제거하고 well 어닐 과정과 동시에 희생막을 고르게 성장시켜 채널 문턱전압 조절 이온주입시 Rp값을 고르게 조절할 수 있어 추가되는 공정없이 MOS의 문턱전압을 안정적으로 할 수 있다.In the present invention, it is possible to adjust the Rp value evenly during the channel threshold voltage control ion implantation by removing the existing sacrificial film during the cleaning process during the well annealing process before the channel threshold voltage control ion implantation, and evenly growing the sacrificial film simultaneously with the well annealing process. The threshold voltage of the MOS can be stabilized without an additional process.

상기한 본 발명의 사상의 범위 내에서 당업자가 용이하게 변경하는 것은 본 발명의 범위에 포함된다.It is within the scope of the present invention to be easily changed by those skilled in the art within the scope of the spirit of the present invention described above.

Claims (5)

반도체소자 제조방법에 있어서,In the semiconductor device manufacturing method, 실리콘 기판의 필드영역에 소자분리막을 형성하는 단계와,Forming an isolation layer in the field region of the silicon substrate; 희생막을 형성하는 단계와,Forming a sacrificial layer, 감광막 마스크를 이용한 이온 주입 공정으로 원하는 기판 지역에 well 영역을 형성하는 단계와,Forming a well region in a desired substrate region by an ion implantation process using a photoresist mask; 상기 공정에서 표면이 균일하지 않게 된 희생막을 제거하는 단계와,Removing the sacrificial film whose surface is uneven in the process; 희생막을 다시 형성한다음, 문턱전압을 조절하기 위한 이온 주입 공정을 진행하는 것을 포함하는 것을 특징으로 하는 반도체소자 제조방법.And forming a sacrificial layer again, and performing an ion implantation process to adjust the threshold voltage. 제1항에 있어서,The method of claim 1, 상기 희생막은 산화막으로 형성하는 것을 특징으로 하는 반도체소자 제조방법.The sacrificial film is a semiconductor device manufacturing method, characterized in that formed by the oxide film. 제1항에 있어서,The method of claim 1, 상기 well 을 형성하기 위해 이온 주입 공정을 실시한다음 고온에서 well 어닐을 하면서 희생막으로 산화막을 형성하는 것을 특징으로 하는 반도체소자 제조방법.And performing an ion implantation process to form the wells, and then forming an oxide film as a sacrificial film while well annealing at a high temperature. 제1항에 있어서,The method of claim 1, 상기 문턱전압 조절 이온주입은 20-50KeV의 에너지에서 실시하는 것을 특징으로 하는 반도체소자 제조방법.The threshold voltage control ion implantation method of the semiconductor device, characterized in that carried out at an energy of 20-50KeV. 제1항에 있어서,The method of claim 1, 상기 새로운 희생막은 80-100Å의 두께로 형성하는 것을 특징으로 하는 반도체소자 제조방법.The new sacrificial film is a semiconductor device manufacturing method, characterized in that formed to a thickness of 80-100Å.
KR1019980045571A 1998-10-28 1998-10-28 Method of manufacturing semiconductor device KR20000027616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980045571A KR20000027616A (en) 1998-10-28 1998-10-28 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980045571A KR20000027616A (en) 1998-10-28 1998-10-28 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20000027616A true KR20000027616A (en) 2000-05-15

Family

ID=19555950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980045571A KR20000027616A (en) 1998-10-28 1998-10-28 Method of manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR20000027616A (en)

Similar Documents

Publication Publication Date Title
US5918129A (en) Method of channel doping using diffusion from implanted polysilicon
US5166087A (en) Method of fabricating semiconductor element having lightly doped drain (ldd) without using sidewalls
US7018891B2 (en) Ultra-thin Si channel CMOS with improved series resistance
KR20010023697A (en) Cmos processing employing removable sidewall spacers for independently optimized n-and p-channel transistor performance
US9136157B1 (en) Deep N wells in triple well structures
EP1026738B1 (en) Novel mixed voltage CMOS process for high reliability and high performance core and I/O transistors with reduced mask steps
KR100632068B1 (en) Method for manufacturing mos transistor of semiconductor device
US6713334B2 (en) Fabricating dual voltage CMOSFETs using additional implant into core at high voltage mask
KR100267400B1 (en) Method for fabricating split gate
KR20070001732A (en) Method of manufacturing a semiconductor device using gate-through ion implantation
JP2806234B2 (en) Semiconductor device and manufacturing method thereof
KR20000027616A (en) Method of manufacturing semiconductor device
TW583726B (en) Method of simultaneously forming gate oxide layers with various thickness using oxygen ion implantation
KR0150104B1 (en) Method of forming gate oxide of semiconductor device
JPH04263468A (en) Manufacture of semiconductor device
KR100345366B1 (en) Triple Well Forming Method of Semiconductor Device_
KR100483029B1 (en) Triple well manufacturing method of semiconductor device
JPH04188762A (en) Manufacture of semiconductor device
KR100450078B1 (en) High operating voltage transistor and its manufacturing method
KR20040002207A (en) Method for manufacturing a semiconductor device
KR100600244B1 (en) Method for fabricating the multi-gate of semiconductor device
JP2007516614A (en) Manufacturing method of semiconductor device and semiconductor device obtained by the method
KR100575362B1 (en) Method for fabricating a semiconductor device
KR900005125B1 (en) Semiconductor device manufacturing method
KR100474543B1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination