KR19990086049A - Manufacturing method of pressure sensor - Google Patents

Manufacturing method of pressure sensor Download PDF

Info

Publication number
KR19990086049A
KR19990086049A KR1019980018834A KR19980018834A KR19990086049A KR 19990086049 A KR19990086049 A KR 19990086049A KR 1019980018834 A KR1019980018834 A KR 1019980018834A KR 19980018834 A KR19980018834 A KR 19980018834A KR 19990086049 A KR19990086049 A KR 19990086049A
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
metal electrode
forming
region
bipolar transistor
Prior art date
Application number
KR1019980018834A
Other languages
Korean (ko)
Other versions
KR100264518B1 (en
Inventor
김병철
Original Assignee
김충환
한국전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충환, 한국전자 주식회사 filed Critical 김충환
Priority to KR1019980018834A priority Critical patent/KR100264518B1/en
Publication of KR19990086049A publication Critical patent/KR19990086049A/en
Application granted granted Critical
Publication of KR100264518B1 publication Critical patent/KR100264518B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

본 발명은 바이폴라 트랜지스터를 구비하는 압력센서의 제조방법에 관한 것으로서, 상기 반도체 기판의 이면 식각에 앞서 접촉부와 금속전극을 먼저 형성함으로써 웨이퍼의 파손을 막아 수율을 향상시킬 수 있으며, 또한 상기 보호막이 상기 반도체 기판의 이면 식각시 상기 금속전극을 포함한 상부구조물들 실리콘 식각액으로부터 보호할뿐 아니라 소자의 최종 보호막으로도 사용함으로써 종래와 같은 별도의 전극보호막을 형성할 필요가 없으므로 공정이 용이하며 공정시간을 단축할 수 있는 효과가 있다.The present invention relates to a method of manufacturing a pressure sensor having a bipolar transistor, wherein the contact portion and the metal electrode are first formed before etching the back surface of the semiconductor substrate to prevent breakage of the wafer to improve the yield. When etching the back surface of the semiconductor substrate, the upper structures including the metal electrode are not only protected from the silicon etchant but also used as the final protective film of the device, thus eliminating the need to form a separate electrode protective film as in the prior art, and thus, the process is easy and the process time is shortened. It can work.

Description

압력센서의 제조방법Manufacturing method of pressure sensor

본 발명은 압력센서의 제조방법에 관한 것으로서, 특히 공정시간을 단축하고 수율을 증가시킬 수 있는 압력센서의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a pressure sensor, and more particularly to a method of manufacturing a pressure sensor that can shorten the process time and increase the yield.

압력센서소자의 제조공정 중 실리콘 식각공정은 매우 중요한데, 종래의 경우 바이폴라( bipolar)의 에미터(emitter) 영역 형성하고, 이 에미터 영역을 포함한 바이폴라가 형성되어 있는 반도체 기판의 상부 전면을 마스크(mask)로 보호한 후 반도체 기판의 반대면을 식각하는 방법을 사용하였다.In the manufacturing process of the pressure sensor element, the silicon etching process is very important. In the conventional case, the bipolar emitter region is formed, and the upper surface of the semiconductor substrate on which the bipolar including the emitter region is formed is masked ( After protecting with a mask, a method of etching the opposite side of the semiconductor substrate was used.

도 1a 내지 도 1c를 참조하여 이를 개략적으로 설명하면, 먼저 도 1a 에서는 도시한 바와 같이 반도체기판(1) 내에 통상적인 바이폴라 트랜지스터의 제조방법을 이용하여 매립층(2)과, 에피텍셜층(3), 소자분리영역(4), 베이스 영역(5) 및 에미터 영역(6)을 형성하고, 결과물의 전면에 절연물질로서 예를들어 PSG(Phospho Silicated Glass) 또는 CVD(Chemical Vapor deposition) 실리콘산화막으로 제 2 절연막(10)을 형성한 후 다시 상기 제 2 절연막(10) 위에 LPCVD(Low Pressure Chemical Vapor deposition) Si3N4을 침전시켜 반도체 기판의 이면 식각공정시 상부 구조물들을 보호하기 위한 보호막(11)을 형성한다.1A to 1C, the buried layer 2 and the epitaxial layer 3 will be described with reference to FIG. 1A by using a conventional method of manufacturing a bipolar transistor in the semiconductor substrate 1 as shown in FIG. 1A. A device isolation region 4, a base region 5 and an emitter region 6 are formed, and as an insulating material on the front surface of the resultant, for example, PSG (Phospho Silicated Glass) or CVD (Chemical Vapor Deposition) silicon oxide film. After forming the second insulating film 10, a protective film 11 for protecting upper structures during the back surface etching process of the semiconductor substrate by depositing Low Pressure Chemical Vapor Deposition (LPCVD) Si 3 N 4 on the second insulating film 10. ).

이때 상기 반도체 기판(1)의 이면에는 실리콘 나이트라이드(Si3N4)로 이루어진 제 3 절연막(12)이 형성되어 있으며, 미설명부호 7,8은 적층순서대로 실리콘을 열산화시킨 제 1 및 제 2 산화막이고, 9는 CVD 실리콘 산화막을 침전(deposition )시켜 형성한 제 1 절연막이다.At this time, a third insulating film 12 made of silicon nitride (Si 3 N 4 ) is formed on the back surface of the semiconductor substrate 1, and reference numeral 7, 8 denotes first and second thermal oxidation of silicon in the stacking order. 9 is a first insulating film formed by depositing a CVD silicon oxide film.

이어서 도 1b 에서는 상기 반도체 기판 이면의 제 3 절연막(12)을 사진식각방법을 이용하여 선택적으로 식각하고 이를 마스크로 하여 상기 반도체 기판 이면을 식각액을 이용하여 소정 깊이까지 식각한다.Subsequently, in FIG. 1B, the third insulating layer 12 on the back surface of the semiconductor substrate is selectively etched using a photolithography method, and the back surface of the semiconductor substrate is etched to a predetermined depth by using an etching solution as a mask.

이어서 도 1c 에서는 상기 반도체 기판 이면의 제 3 절연막과 상기 반도체 기판 표면의 보호막을 동시에 제거하고, 반도체 기판의 표면 상부에 순차적층된 제 1, 제 2 산화막(7,8)과 제 1, 제 2 절연막(9,10)을 선택적으로 식각하여 접촉부(contact hole)를 형성한 후 금속전극(13)을 형성하며, 다시 상기 금속전극(13) 위에 금속전극을 보호하기 위한 전극보호막(14)을 형성한다.Subsequently, in FIG. 1C, the third insulating film on the back surface of the semiconductor substrate and the protective film on the surface of the semiconductor substrate are simultaneously removed, and the first and second oxide films 7 and 8 and the first and second layers sequentially layered on the surface of the semiconductor substrate. Selectively etching the insulating films 9 and 10 to form a contact hole, and then forming a metal electrode 13, and then forming an electrode protective layer 14 to protect the metal electrode on the metal electrode 13. do.

그러나 상기와 같은 종래의 압력센서는, 상기 반도체 기판의 이면 식각시 상기 반도체 기판 표면의 상부구조물들을 보호하기 위해 일반적으로 LPCVD에 의한 실리콘 나이트라이드 형성공정이 추가되어 공정이 복잡하고 그에 따른 공정시간이 증가할뿐만 아니라, 도 1b 에 도시한 바와 같이 반도체 기판의 식각된 부분이 가공되는 웨이퍼의 대부분의 면적을 차지하므로 반도체 기판 이면 식각 후의 접촉부 및 금속전극 형성시 웨이퍼가 파손됨으로써 수율이 저하되는 등 많은 문제점들이 있다.However, in the conventional pressure sensor as described above, in order to protect the upper structures of the surface of the semiconductor substrate when the backside of the semiconductor substrate is etched, a silicon nitride forming process by LPCVD is generally added, which makes the process complicated and the processing time accordingly. In addition, as shown in FIG. 1B, since the etched portion of the semiconductor substrate occupies most of the area of the wafer to be processed, the yield is lowered due to breakage of the wafer during the formation of the contact portion and the metal electrode after etching the back surface of the semiconductor substrate. There are problems.

따라서 본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 접촉부 및 금속전극을 형성한 후 반도체 기판의 이면을 식각함으로써 공정시간을 단축하고 수율을 향상시킬 수 있는 압력센서의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a manufacturing method of a pressure sensor that can shorten the process time and improve the yield by etching the back surface of the semiconductor substrate after forming the contact portion and the metal electrode to solve the problems of the prior art as described above. It is.

상기 목적을 달성하기 위한 본 발명의 압력센서 제조방법은, 바이폴라 트랜지스터를 구비하는 압력센서의 제조방법에 있어서, 반도체 기판에 소자분리영역을 형성하여 소자분리영역과 소자형성영역을 정의하는 단계와, 상기 소자형성영역에 상기 바이폴라 트랜지스터의 베이스 영역 및 에미터 영역을 형성하는 단계와, 상기 구조물들과 상부에 형성될 금속전극을 절연시키기 위한 제 1 절연막을 형성하는 단계와, 상기 베이스 영역 및 에미터 영역과 상기 금속전극을 연결하기 위한 접촉부를 형성하는 단계와, 상기 접촉부와 연결되는 금속전극을 형성하는 단계와, 상기 금속전극 형성 후 결과물 전면에 상기 금속전극을 포함한 반도체 기판의 상부 구조물들을 보호하기 위한 보호막을 형성하는 단계와, 상기 바이폴라 트랜지스터가 형성되지 않은 반도체 기판의 이면 중 상기 바이폴라 트랜지스터에 대응되는 면을 제외한 일부영역을 소정깊이로 식각하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The pressure sensor manufacturing method of the present invention for achieving the above object, in the method of manufacturing a pressure sensor having a bipolar transistor, forming a device isolation region on the semiconductor substrate to define the device isolation region and the device formation region, Forming a base region and an emitter region of the bipolar transistor in the device formation region, forming a first insulating layer for insulating the structures and a metal electrode to be formed on the upper portion, and forming the base region and the emitter Forming a contact portion for connecting a region to the metal electrode, forming a metal electrode connected to the contact portion, and protecting the upper structures of the semiconductor substrate including the metal electrode on the entire surface of the resultant after forming the metal electrode; Forming a passivation layer for the passivation and the peninsula on which the bipolar transistor is not formed And etching a portion of the back surface of the body substrate except for the surface corresponding to the bipolar transistor to a predetermined depth.

도 1a 내지 도 1c는 종래의 기술에 의한 압력센서의 제조방법을 도시한 순서도들이고,1A to 1C are flowcharts illustrating a method of manufacturing a pressure sensor according to the related art.

도 2a 및 도 2c 는 본 발명에 의한 압력센서의 제조방법을 도시한 순서도들이다.2A and 2C are flowcharts illustrating a method of manufacturing a pressure sensor according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

51 : 반도체 기판 52 : 매립층51 semiconductor substrate 52 buried layer

53 : 에피텍셜층 54 : 소자분리영역53 epitaxial layer 54 device isolation region

55 : 베이스 영역 56 : 에미터 영역55: base area 56: emitter area

57 : 제 1 산화막 58 : 제 2 산화막57: first oxide film 58: second oxide film

59 : 제 1 절연막 60 : 제 2 절연막59: first insulating film 60: second insulating film

61 : 금속층 62 : 보호막61 metal layer 62 protective film

63 : 제 3 절연막63: third insulating film

이하, 첨부한 도면을 참조하여 본 발명을 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

도 2a 는 통상적인 방법으로 바이폴라의 에미터 영역을 형성한 상태를 도시한 것으로, 먼저 반도체기판(51)의 도전형(제 1 도전형)과 다른 도전형(제 2 도전형)의 물질로 매립층(52)을 형성한 후 상기 매립층(52)과 동일한 제 2 도전형 에피텍셜층(53)을 형성하며, 다시 상기 제 1 도전형의 물질을 상기 에피텍셜층(53)에 선택적으로 확산시켜 소자분리영역(54)을 형성함으로써 소자형성영역과 소자분리영역을 정의한다.FIG. 2A illustrates a state in which an emitter region of a bipolar is formed by a conventional method. First, a buried layer is formed of a material of a conductive type (first conductive type) different from that of the semiconductor substrate 51. After forming 52, a second conductive epitaxial layer 53 identical to the buried layer 52 is formed, and the first conductive material is selectively diffused into the epitaxial layer 53. The isolation region 54 is formed to define the device formation region and the isolation region.

이어서 상기 결과물 전면에 실리콘 열산화공정을 이용하여 제 1 산화막(57)을 형성한 후 선택적으로 사진식각하고 이를 마스크로 하여 상기 에피텍셜층(53) 내에 제 1 도전형 물질을 확산시켜 베이스 영역(55)를 형성하며, 다시 상기 결과물 전면에 실리콘 열산화 공정을 이용한 제 2 산화막(58)과 실리콘 CVD 공정을 이용한 제 1 절연막(59)을 순차적층시킨 후 선택적으로 이 두 층을 사진식각하고 이를 마스크로 하여 상기 베이스 영역(55) 내에 제 2 도전형의 물질을 확산시켜 에미터 영역(56)을 형성한다.Subsequently, after the first oxide film 57 is formed on the entire surface of the resultant by using a silicon thermal oxidation process, the first oxide film 57 is selectively etched, and the first conductive material is diffused into the epitaxial layer 53 using the mask as a base region. 55), the second oxide film 58 using the silicon thermal oxidation process and the first insulating film 59 using the silicon CVD process are sequentially formed on the entire surface of the resultant, and then the two layers are selectively etched and The emitter region 56 is formed by diffusing a second conductivity type material into the base region 55 using a mask.

이어서, 상기 에미터 영역(56)이 형성된 결과물 전면에 절연물질로서 예를들면 PSG(Phospho Silicated Glass) 또는 CVD(Chemical Vapor deposition) 실리콘산화물을 침전(deposition)시켜 제 2 절연막(60)을 형성한다.Subsequently, a second insulating film 60 is formed by depositing, for example, PSG (Phospho Silicated Glass) or CVD (Chemical Vapor Deposition) silicon oxide as an insulating material on the entire surface of the resultant product in which the emitter region 56 is formed. .

도 2b 에서는, 금속전극 마스크 패턴을 이용한 사진식각방법으로 상기 제 1, 제 2 산화막(57,58), 제 1, 제 2 절연막(59,60)을 반응성 이온식각하여 접촉부를 형성하고, 상기 접촉부가 형성된 결과물 전면에 금속물질로서 예를들면 알루미늄을 소정의 두께로 침전시켜 금속층(61)을 형성하며 이를 사진식각법으로 식각하여 금속전극을 형성한다.In FIG. 2B, the first and second oxide layers 57 and 58 and the first and second insulating layers 59 and 60 are reactively ion-etched to form a contact portion by a photolithography method using a metal electrode mask pattern. As a metal material on the entire surface of the resultant formed, for example, aluminum is precipitated to a predetermined thickness to form a metal layer 61, which is etched by photolithography to form a metal electrode.

이어서 후속공정시 반도체 기판의 모든 구조물들을 보호하기 위해 상기 금속전극이 형성된 결과물의 전,후면에 상기 금속층(61)보다 낮은 온도에서 형성할 수 있는 절연물질로서 예를들면 PECVD(Plasma Etched CVD) 실리콘 나이트라이드를 소정의 두께로 침전시켜 상기 반도체 기판 상부구조물의 전면에는 보호막(62)을 형성하고 상기 반도체 기판 이면에는 제 3 절연막(63)을 형성한다. 이때 상기 보호막(62)은 다른 구조물들뿐만 아니라 상기 금속전극도 함께 보호하게 되므로 종래와 같이 상기 금속전극을 보호하기 위한 별도의 전극보호막이 필요없다.Subsequently, in order to protect all the structures of the semiconductor substrate in a subsequent process, an insulating material that can be formed at a lower temperature than the metal layer 61 on the front and rear surfaces of the resultant metal electrode, for example, PECVD (Plasma Etched CVD) silicon. Nitride is deposited to a predetermined thickness to form a protective film 62 on the front surface of the upper structure of the semiconductor substrate, and to form a third insulating film 63 on the back surface of the semiconductor substrate. In this case, since the protective layer 62 protects the metal electrode as well as other structures, a separate electrode protective layer for protecting the metal electrode is not required as in the related art.

도 2c 에서는, 반도체 기판 이면의 상기 제 3 절연막을 사진식각공정을 이용하여 선택적으로 식각하고, 이를 마스크로 적용하여 다시 상기 반도체 기판(51)을 식각한 후 상기 제 3 절연막을 제거한다.In FIG. 2C, the third insulating film on the back surface of the semiconductor substrate is selectively etched using a photolithography process, and the third insulating film is removed by etching the semiconductor substrate 51 by applying it as a mask.

더 상세하게는, 상기 바이폴라 트랜지스터에 대응되는 면을 제외한 반도체 기판의 이면을 남은 부분이 약 20 마이크로미터( μm )정도의 두께가 되도록 식각하는데, 실제 이 부분이 압력인가시 휘어지기 때문에 이 휘어짐의 정도를 저항값으로 환산하여 압력을 측정할 수 있다.More specifically, the remaining portion of the back surface of the semiconductor substrate excluding the surface corresponding to the bipolar transistor is about 20 micrometers ( μm It is etched to have a thickness of about). Actually, this part is bent when pressure is applied, so the pressure can be measured by converting the degree of bending into a resistance value.

이상에서와 같이 본 발명에 의하면, 상기 반도체 기판의 이면 식각에 앞서 접촉부와 금속전극을 먼저 형성함으로써 웨이퍼의 파손을 막아 수율을 향상시킬 수 있으며, 또한 상기 보호막이 상기 반도체 기판의 이면 식각시 상기 금속전극을 포함한 상부구조물들 보호함으로써 종래와 같은 별도의 전극보호막을 형성할 필요가 없기 때문에 공정시간을 단축할 수 있는 효과가 있다.As described above, according to the present invention, by forming the contact portion and the metal electrode first before the back surface etching of the semiconductor substrate, it is possible to improve the yield by preventing the breakage of the wafer, and the protective film is the metal during the back surface etching of the semiconductor substrate. By protecting the upper structures including the electrode there is no need to form a separate electrode protective film as in the prior art has the effect of reducing the process time.

Claims (3)

바이폴라 트랜지스터를 구비하는 압력센서의 제조방법에 있어서,In the manufacturing method of the pressure sensor provided with a bipolar transistor, 반도체 기판에 소자분리영역을 형성하여 소자분리영역과 소자형성영역을 정의하는 단계와,Forming a device isolation region on the semiconductor substrate to define the device isolation region and the device formation region; 상기 소자형성영역에 상기 바이폴라 트랜지스터의 베이스 영역 및 에미터 영역을 형성하는 단계와,Forming a base region and an emitter region of the bipolar transistor in the device formation region; 상기 구조물들과 상부에 형성될 금속전극을 절연시키기 위한 절연막을 형성하는 단계와,Forming an insulating film for insulating the structures and the metal electrode to be formed thereon; 상기 베이스 영역 및 에미터 영역과 상기 금속전극을 연결하기 위한 접촉부를 형성하는 단계와,Forming a contact portion for connecting the base region and the emitter region to the metal electrode; 상기 접촉부와 연결되는 금속전극을 형성하는 단계와,Forming a metal electrode connected to the contact portion; 상기 금속전극 형성 후 결과물 전면에 상기 금속전극을 포함한 반도체 기판의 상부 구조물들을 보호하기 위한 보호막을 형성하는 단계와,Forming a protective film for protecting upper structures of the semiconductor substrate including the metal electrode after the metal electrode is formed; 상기 바이폴라 트랜지스터가 형성되지 않은 반도체 기판의 이면 중 상기 바이폴라 트랜지스터에 대응되는 면을 제외한 일부영역을 소정깊이로 식각하는 단계를 포함하여 이루어지는 것을 특징으로 하는 압력센서의 제조방법.And etching a portion of the back surface of the semiconductor substrate on which the bipolar transistor is not formed except a surface corresponding to the bipolar transistor to a predetermined depth. 제 1 항에 있어서, 상기 보호막은 상기 금속전극을 형성할때 보다 낮은 온도에서 형성하는 것을 특징으로 하는 압력센서의 제조방법.The method of claim 1, wherein the protective film is formed at a lower temperature than the metal electrode. 제 2 항에 있어서, 상기 보호막은 PECVD 실리콘 나이트라이드임을 특징으로 하는 압력센서의 제조방법.The method of claim 2, wherein the protective film is PECVD silicon nitride.
KR1019980018834A 1998-05-25 1998-05-25 Method for fabricating pressure sensor KR100264518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980018834A KR100264518B1 (en) 1998-05-25 1998-05-25 Method for fabricating pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980018834A KR100264518B1 (en) 1998-05-25 1998-05-25 Method for fabricating pressure sensor

Publications (2)

Publication Number Publication Date
KR19990086049A true KR19990086049A (en) 1999-12-15
KR100264518B1 KR100264518B1 (en) 2000-10-02

Family

ID=19537713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980018834A KR100264518B1 (en) 1998-05-25 1998-05-25 Method for fabricating pressure sensor

Country Status (1)

Country Link
KR (1) KR100264518B1 (en)

Also Published As

Publication number Publication date
KR100264518B1 (en) 2000-10-02

Similar Documents

Publication Publication Date Title
US4426768A (en) Ultra-thin microelectronic pressure sensors
US4625561A (en) Silicon capacitive pressure sensor and method of making
CA1271270A (en) Method of manufacturing a semiconductor device, in which a metallization with a thick connection electrode is provided on a semiconductor body
EP0340022A1 (en) Mechanical sensor for high temperature environments
JPS55163860A (en) Manufacture of semiconductor device
US5549785A (en) Method of producing a semiconductor dynamic sensor
KR100264518B1 (en) Method for fabricating pressure sensor
US4544941A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
KR100264517B1 (en) Method for fabricating pressure sensor
JPH0837289A (en) Semiconductor device and manufacture thereof
US4318936A (en) Method of making strain sensor in fragile web
JPH11121457A (en) Manufacture of semiconductor device
JPS5764927A (en) Manufacture of semiconductor device
KR100517288B1 (en) Pressure sensor and its manufacturing method
KR0161774B1 (en) Semiconductor device and manufacture thereof
JPS5918690A (en) Hall element
JPS6398156A (en) Manufacture of semiconductor pressure sensor
EP0056482B1 (en) Glass passivation semiconductor device and method of manufacturing the same
JPH01268150A (en) Semiconductor device
KR970030384A (en) Manufacturing method of semiconductor device
KR100215909B1 (en) Manufacturing method of semiconductor device
KR0122506B1 (en) Fabricating method for contact hole of semiconductor device
KR0146066B1 (en) Pad-protecting film forming method for semiconductor device
JP2897581B2 (en) Manufacturing method of semiconductor strain sensor
JPS6133257B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090525

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee