KR19980046615A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
KR19980046615A
KR19980046615A KR1019960064996A KR19960064996A KR19980046615A KR 19980046615 A KR19980046615 A KR 19980046615A KR 1019960064996 A KR1019960064996 A KR 1019960064996A KR 19960064996 A KR19960064996 A KR 19960064996A KR 19980046615 A KR19980046615 A KR 19980046615A
Authority
KR
South Korea
Prior art keywords
conductivity type
region
gate electrode
doped
doped polysilicon
Prior art date
Application number
KR1019960064996A
Other languages
Korean (ko)
Other versions
KR100390153B1 (en
Inventor
노태훈
Original Assignee
문정환
엘지반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문정환, 엘지반도체 주식회사 filed Critical 문정환
Priority to KR1019960064996A priority Critical patent/KR100390153B1/en
Publication of KR19980046615A publication Critical patent/KR19980046615A/en
Application granted granted Critical
Publication of KR100390153B1 publication Critical patent/KR100390153B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure

Abstract

본 발명은 고미세 반도체소자의 쇼트채널효과를 개선하는데 적당하도록 한 반도체소자 및 그 반도체소자의 제조방법에 관한 것으로, 제 1 도전형 실리콘기판에 형성된 엘디디 구조의 제 2 도전형 소오스/드레인영역과: 게이트산화막 위에 형성된 2도우프 폴리실리콘 게이트전극으로 구성되는 것을 특징으로 하는 2도우프 폴리실리콘 게이트전극 및 엘디디 구조 도전형 소오스/드레인영역을 갖는 N채널 전계효과 트랜지스터를 제공함과 아울러, 제 1 도전형 실리콘기판 위에 게이트산화막을 형성한 후, 그 위에 언도우프(Undoped) 폴리실리콘을 증착하는 단계와; 그 언도우프 폴리실리콘층 위에 게이트영역의 중심부와 가장자리부를 각각 정의하는 제 1, 2 레지스트패턴을 형성함과 아울러 그 각각의 레지스트패턴을 통해 제 1, 2 도전형 도판트를 주입함으로써, 게이트영역의 중심부는 제 2 도전형으로 형성되고 가장자리부는 제 1 도전형으로 형성된 2도우프 폴리실리콘층을 형성하는 단계와; 상기 2도우프 폴리실리콘층 위에 제 1 절연막을 형성한 후, 포토리소그래피 및 식각공정으로 상기 제 1 절연막과 2 도우프를 폴리실리콘층, 게이트산화막을 순차적으로 패터닝하여 절연게이트전극을 형성하는 단계와. 저농도 제 1 도전형 도판트를 주입한 후, 절연게이트전극의 측면에 제 2 절연막 측벽스페이서를 형성하고, 이에 대해서 고농도 제 1 도전형 도판트를 주입함으로써, 엘디디 구조의 도전형 소오스/드레인영역을 형성하는 단계로 이루어지는 것을 특징으로 하는 2도우프 폴리실리콘 게이트전극 및 엘디디 구조 도전형 소오스/드레인영역을 갖는 N채널 전계효과 트랜지스터의 제조방법을 제공한다. 이때, 상기 2도우프 폴리실리콘 게이트전극은 그의 중심영역이 제 2 도전형(N형)으로 도우프되고, 양쪽의 가장자리영역이 제 1 도전형(P형)으로 도우프되는 것이 바람직하다, 이에 따라, 상기와 같이 구성된 본 발명은, 2도우프 폴리실리콘 게인트전극의 양쪽 가장자리부에 형성된 P형 도전영역이 게이트전극에 전압을 인가하지 않는 경우에도 그 아래에 있는 채널영역을 반전시킴으로써 쇼트채널효과를 개선하게 되는 효과가 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device, which are suitable for improving short channel effects of high-fine semiconductor devices. And an N-channel field effect transistor having a double-doped polysilicon gate electrode formed on the gate oxide film and an LED structure conductive source / drain region, wherein the double-doped polysilicon gate electrode is formed on the gate oxide film. Forming a gate oxide film on the first conductive silicon substrate, and then depositing undoped polysilicon on the gate oxide film; On the undoped polysilicon layer, first and second resist patterns defining the center and edge portions of the gate region are formed, and first and second conductivity type dopants are injected through the respective resist patterns, thereby forming the gate region. Forming a double-doped polysilicon layer having a central portion formed of a second conductivity type and an edge portion formed of a first conductivity type; Forming an insulating gate electrode by sequentially forming a first insulating film on the two-doped polysilicon layer, and then sequentially patterning the first insulating film and the second doped polysilicon layer and a gate oxide film by photolithography and etching processes; . After implanting the low concentration first conductivity type dopant, a second insulating film sidewall spacer is formed on the side surface of the insulated gate electrode, and the high concentration first conductivity type dopant is implanted therein, thereby conducting a conductive source / drain region having an LED structure. A method of manufacturing an N-channel field effect transistor having a 2-doped polysilicon gate electrode and an LED structure conductive source / drain region is provided. In this case, the two-doped polysilicon gate electrode is preferably doped with a center region thereof in a second conductivity type (N type) and both edge regions doped in a first conductivity type (P type). Accordingly, in the present invention configured as described above, the P-type conductive region formed at both edges of the two-doped polysilicon gain electrode inverts the channel region underneath even when no voltage is applied to the gate electrode. There is an effect to improve the effect.

Description

반도체소자 및 그 반도체소자의 제조방법Semiconductor device and manufacturing method thereof

본 발명은 반도체소자에 관한 것으로, 특히 게이트전극을 구성하는 폴리실리콘층에 P도전영역과 N-도전영역을 병존시켜 그 게이트전극에 전압을 인가하지 않는 경우에도 채널영역에 약한 반전층이 형성되도록함으로써, 고미세 반도체소자의 쇼트채널효과를 개선하는데 적당하도록 한 반도체소자 및 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device. In particular, the P conductive region and the N-conductive region coexist in a polysilicon layer constituting the gate electrode so that a weak inversion layer is formed in the channel region even when no voltage is applied to the gate electrode. Thus, the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device, which are suitable for improving the short channel effect of a high-fine semiconductor device.

종래의 일반적인 전계효과 트랜지스터(MOSFET)는 하나의 전도영역을 갖는 폴리실리콘으로 게이트전극을 형성하였다. 그리고, 상기와 같은 전계효과 트랜지스터가 고미세화됨에 따라 나타나는 쇼트채널효과를 개선하기 위해서, 소오스/드레인영역을 엘디디(LDD) 구조로 형성하였다. 이하, 상기와 같은 종래의 엘디디 구조 전계효과 트랜지스터에 대해서 도 1a-도 1d에 도시된 공정 단면도를 참조하여 설명하면 다음과 같다.Conventional field effect transistors (MOSFETs) form gate electrodes of polysilicon having one conduction region. In addition, the source / drain regions are formed in the LDD structure in order to improve the short channel effect that occurs as the field effect transistors become finer. Hereinafter, the conventional LED structure field effect transistor will be described with reference to the process cross-sectional view shown in FIGS. 1A to 1D.

우선, 도 1a와 도 1b에 도시된 바와 같이 일반적인 로커스(LOCOS)공정으로 형성된 필드산화막(120)을 통해 액티브영역과 필드영역이 구분된 실리콘기판(110)위에 게이트산화막(130)을 형성한 후, 그 게이트산화막(130) 위에 게이트전극을 형성하기 위한 N-도전형 폴리실리콘층(140)과 제 1 산화막(150)을 순차적으로 형성한다.First, as shown in FIGS. 1A and 1B, a gate oxide layer 130 is formed on a silicon substrate 110 in which an active region and a field region are separated through a field oxide layer 120 formed by a general LOCOS process. The N-conductive polysilicon layer 140 and the first oxide film 150 for forming the gate electrode are sequentially formed on the gate oxide film 130.

이후, 도 1c에 도시된 바와 같이 포토리소그래피 및 식각공정으로 상기 제 1 산화막(150)과 N-도전형 폴리실리콘층(140), 게이트산화막(130)을 순차적으로 패터닝하여 절연게이트전극(131,141,151)를 형성한 후, 그 절연게이트전극(131,141,151) 및 필드산화막(120)을 마스크로 하는 선택적 이온주입공정으로 저농도 N형 소오스/드레인영역(161)을 형성한다.Subsequently, as illustrated in FIG. 1C, the first oxide layer 150, the N-conductive polysilicon layer 140, and the gate oxide layer 130 are sequentially patterned by photolithography and etching processes to form the insulating gate electrodes 131, 141, and 151. After the formation, the low concentration N-type source / drain region 161 is formed by a selective ion implantation process using the insulating gate electrodes 131, 141, 151 and the field oxide film 120 as masks.

이어서, 도 1d에 도시된 바와 같이 상기 절연게이트전극(131,141,151)의 측면에 제 2 산화막 측벽스페이서(156)를 형성한 후, 그 제 2 산화막 측벽스페이서(156)와 절연게이트전극(131,141,151), 필드산화막(120)을 마스크로하는 선택적 이온주입공정으로 고농도 N형 소오스/드레인영역(162)을 형성함으로써, 엘디디 구조 전계효과 트랜지스터를 완성한다.Subsequently, as shown in FIG. 1D, a second oxide sidewall spacer 156 is formed on side surfaces of the insulating gate electrodes 131, 141, and 151, and then the second oxide sidewall spacer 156, the insulating gate electrodes 131, 141, 151, and a field are formed. The LED structure field effect transistor is completed by forming a high concentration N-type source / drain region 162 by a selective ion implantation process using the oxide film 120 as a mask.

이와 같은 방법으로 형성된 엘디디 구조 전계효과 트랜지스터는 통상적인 구조의 전계효과 트랜지스터에 비해서 쇼트채널효과가 개선된 것으로 알려져 있다.The LED structure field effect transistor formed by the above method is known to have an improved short channel effect compared to the field effect transistor of the conventional structure.

그러나, 상기와 같은 종래의 엘디디 구조 전계효과 트랜지스터도, 반도체소자의 고집적화에 따라 그의 게이트 길이(Gate length)가 더욱 감소하게 되면, 쇼트채널효과를 효과적으로 개선하지 못하게 되는 문제점이 있었다.However, the conventional LED structure field effect transistor has a problem in that the short channel effect cannot be effectively improved when its gate length is further reduced due to the high integration of the semiconductor device.

이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 창안한 것으로, 게이트전극을 구성하는 폴리실리콘층에 P-도전영역과 N-도전영역을 병존시켜 그 게이트전극에 전압을 인가하지 않는 경우에도 채널영역에 약한 반전층이 형성되도록 함으로써, 고미세반도체소자의 쇼트채널효과를 개선하는데 적당하도록 한 반도체소자 및 그 반도체소자의 제조방법을 제공함에 목적이 있다.Accordingly, the present invention has been made to solve the above problems, and the P-conducting region and the N-conducting region coexist in the polysilicon layer constituting the gate electrode, even when no voltage is applied to the gate electrode. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the semiconductor device, which are suitable for improving the short channel effect of a high-semiconductor device by forming a weak inversion layer.

도 1a-도 1d는 종래 기술에 따른 엘디디 구조 전계효과 트랜지스터의 제조방법을 나타낸 공정단면도.1A to 1D are cross-sectional views illustrating a method of manufacturing an LED structure field effect transistor according to the prior art.

도 2는 본 발명에 따른 2도우프 폴리실리콘 게이트전극 및 엘디디 구조의 도전형 소오스/드레인영역을 갖는 전계효과 트랜지스터의 구성단면도.2 is a cross-sectional view of a field effect transistor having a double-doped polysilicon gate electrode and a conductive source / drain region of an LED structure according to the present invention;

도 3a-도3g는 상기 도 2에 도시된 2도우프 폴리실리콘 게이트전극 및 엘디디 구조의 도전형 소오스/드레인영역을 갖는 전계효과 트랜지스터의 제조방법을 나타낸 공정단면도.3A to 3G are cross-sectional views illustrating a method of manufacturing a field effect transistor having a double-doped polysilicon gate electrode and an LED-type conductive source / drain region shown in FIG. 2;

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

210 : P형 실리콘기판230,231 : 게이트산화막210: P-type silicon substrate 230,231: gate oxide film

240 : 언도우프 폴리실리콘층241 : N형 도우프 폴리실리콘층240: undoped polysilicon layer 241: N-type dope polysilicon layer

242,242a : P형 도우프 폴리실리콘층250,251 : 제 1 산화막242,242a: P-type dope polysilicon layer 250,251: first oxide film

256 : 제 2 산화막 측벽스페이서261 : 저농도 N형 소오스/드레인영역256: second oxide sidewall spacer 261: low concentration N-type source / drain region

262 : 고농도 N형 소오스/드레인영역263 : 반전층262: high concentration N-type source / drain region 263: inversion layer

상기 목적을 달성하기 위한 본 발명에 따른 반도체소자는, 제 1 도전형(P형 또는 N형) 실리콘기판에 형성된 엘디디 구조의 제 2 도전형 소오스/드레인영역과: 게이트산화막 위에 형성된 2도우프 폴리실리콘 게이트전극으로 구성되는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a semiconductor device comprising: a second conductive source / drain region having an LED structure formed on a first conductive (P or N) silicon substrate; It is characterized by consisting of a polysilicon gate electrode.

이때, 상기 2도우프 폴리실리콘 게이트전극은 그의 중심영역이 제 2 도전형으로 도우프되는 반면에, 양쪽의 가장자리 영역이 제 1 도전형으로 도우프되는 것이 바람직하다. 그리고, 상기와 같은 반도체소자를 형성하기 위한 본 발명에 따른 반도체소자 제조방법은, 제 1 도전형(P형 또는 N형) 실리콘기판 위에 게이트산화막을 형성한 후, 그 위에 언도우프(Undoped) 폴리실리콘을 증착하는 단계와; 그 언도우프 폴리실리콘층 위에 게이트영역의 중심부와 가장자리부를 각각 정의하는 제 1, 2 레지스트패턴을 형성함과 아울러 그 각각의 레지스트패턴을 통해 제 1, 2 도전형 도판트를 주입함으로써, 게이트영역의 중심부는 제 2 도전형으로 형성되고 가장자리부는 제 1 도전형으로 형성된 2도우프 폴리실리콘층을 형성하는 단계와; 상기 2도우프 폴리실리콘층 위에 제 1 절연막을 형성한 후, 포토리소그래피 및 식각공정으로 상기 제 1 절연막과 2 도우프를 폴리실리콘층, 게이트산화막을 순차적으로 패터닝하여 절연게이트전극을 형성하는 단계와; 저농도 제 1 도전형 도판트를 주입한 후, 절연게이트전극의 측면에 제 2 절연막 측벽스페이서를 형성하고, 이에 대해서 고농도 제 1 도전형 도판트를 주입함으로써, 엘디디 구조의 소오스/드레인영역을 형성하는 단계로 이루어지는 것을 특징으로 한다.In this case, it is preferable that the two-doped polysilicon gate electrode is doped with a second conductivity type while its center region is doped with a second conductivity type. In the semiconductor device manufacturing method according to the present invention for forming the semiconductor device as described above, a gate oxide film is formed on a first conductive (P-type or N-type) silicon substrate, and then an undoped poly is formed thereon. Depositing silicon; On the undoped polysilicon layer, first and second resist patterns defining the center and edge portions of the gate region are formed, and first and second conductivity type dopants are injected through the respective resist patterns, thereby forming the gate region. Forming a double-doped polysilicon layer having a central portion formed of a second conductivity type and an edge portion formed of a first conductivity type; Forming an insulating gate electrode by sequentially forming a first insulating film on the two-doped polysilicon layer, and then sequentially patterning the first insulating film and the second doped polysilicon layer and a gate oxide film by photolithography and etching processes; ; After implanting the low concentration first conductivity type dopant, the second insulating film sidewall spacer is formed on the side of the insulated gate electrode, and the high concentration first conductivity type dopant is implanted to form the source / drain region of the LED structure. It is characterized by consisting of steps.

이하, 첨부된 도면을 참조하여 본 발명에 대해서 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

우선, 도 2에 도시된 단면도를 참조하여 본 발명의 바람직한 실시예에 따른 반도체소자의 구성 및 작용에 대해서 설명한다.First, the configuration and operation of a semiconductor device according to a preferred embodiment of the present invention will be described with reference to the cross-sectional view shown in FIG. 2.

본 발명의 바람직한 실시예에 따른 2도우프 폴리실리콘 게이트전극 및 엘디디 구조 소오스/드레인영역을 갖는 N채널 전계효과 트랜지스터는, 도 2에 도시된 바와 같이 필드 산화막(220)에 의하여 액티브영역과 필드영역이 구분된 P형 실리콘기판(210)의 상기 액티브영역에 엘디디(LDD) 구조로 형성된 N형 소오스/드레인영역(261,262)과, 그 N형 소오스/드레인영역(261,262) 사이로 정의되는 채널영역 위로 형성된 게이트산화막(231) 및 2도우프 폴리실리콘 게이트전극(241,242a)이 그의 중심영역은 N-도전형 폴리실리콘층(241)으로 형성되고, 양쪽의 가장자리 영역은 P-도전형 폴리실리콘층(242a)으로 형성되는 것을 특징으로 하고 있다. 위에서, 설명하지 않은 251은 제 1 산화막(Top Oxide)이고, 256은 제 2 산화막 측벽스페이서이고, 263은 게이트전압이 0(Zero)일 경우에 채널영역의 가장자리에 형성되는 얇은 반전층을 나타낸다.An N-channel field effect transistor having a double-doped polysilicon gate electrode and an LED structure source / drain region according to a preferred embodiment of the present invention is formed by the field oxide film 220 as shown in FIG. Channel regions defined between N-type source / drain regions 261 and 262 formed in the active region of the P-type silicon substrate 210 having the divided regions, and N-type source / drain regions 261 and 262 thereof. The gate oxide film 231 and the two-doped polysilicon gate electrodes 241 and 242a formed thereon have a central region formed of an N-conductive polysilicon layer 241, and both edge regions of the gate oxide film 231 and a double-doped polysilicon gate electrode 241,242a are formed of a P-conductive polysilicon layer. It is formed as 242a, It is characterized by the above-mentioned. In the above description, 251, which is not described above, is a first oxide film (Top Oxide), 256 is a second oxide film sidewall spacer, and 263 represents a thin inversion layer formed at the edge of the channel region when the gate voltage is zero.

이와 같은 2도우프 폴리실리콘 게이트전극 및 엘디디 구조 소오스/드레인영역을 갖는 N채널 전계효과 트랜지스터는, 도면에 표시된 바와 같이 게이트전극(G)에 전압(V)을 인가하지 상태에서도 채널영역의 가장자리에 얇은 반전층(Thin inversion layer)(263)이 형성되는 특성을 갖게 되는데, 그와 같은 얇은 반전층(263)은 유효한 매우 얇은 소오스/드레인 정션(Effective ultra shallow souce/drain Junction)을 형성함으로써 그 소자의 쇼트채널효과를 개선하는 작용을 한다. 이때, 상기 얇은 반전층(263)은 게이트전극의 양쪽 가장자리에 형성된 P-도전영역(242a)에 의하여 형성된다.The N-channel field effect transistor having such a double-doped polysilicon gate electrode and an LED structure source / drain region has an edge of the channel region even when voltage V is not applied to the gate electrode G as shown in the drawing. A thin inversion layer 263 is formed in the thin inversion layer 263. Such a thin inversion layer 263 is formed by forming an effective ultra shallow souce / drain junction. It serves to improve the short channel effect of the device. In this case, the thin inversion layer 263 is formed by the P-conductive region 242a formed at both edges of the gate electrode.

그리고, 도 3a-도 3g의 공정 단면도를 참조하여 상기 도 2에 도시된 바와 같이 구성된 2도우프 폴리실리콘 게이트전극 및 엘디디 구조 소오스/드레인영역을 갖는 N채널 전계효과 트랜지스터의 제조방법에 대해서 상세히 설명한다.In addition, a method of manufacturing an N-channel field effect transistor having a double-doped polysilicon gate electrode and an LED structure source / drain region configured as shown in FIG. 2 with reference to the process cross-sectional view of FIGS. 3A to 3G is described in detail. Explain.

먼저, 도 3a와 도 3b에 도시된 바와 같이 일반적인 로커스(LOCCS) 공정으로 형성된 필드산화막(220)을 통해 액티브영역과 필드영역이 구분된 실리콘기판(210) 위에 게이트산화막(230)을 형성한 후, 그 게이트산화막(230) 위에 게이트전극을 형성하기 위한 연도우프 폴리실리콘(240)을 증착한다.First, as shown in FIGS. 3A and 3B, a gate oxide layer 230 is formed on a silicon substrate 210 having an active region and a field region separated by a field oxide layer 220 formed by a general LOCCS process. The soft-doped polysilicon 240 is formed on the gate oxide film 230 to form a gate electrode.

이후, 도 3c와 반도체소자와 같이 상기 언도우프 폴리실리콘층(240) 위에 게이트영역의 중심부를 정의하는 제 1 레지스트패턴(271)을 형성한 후 고농도 N형 이온을 주입하고, 도 3d와 같이 상기 제 1 레지스트패턴(271)과 반대되는 패턴구조를 갖는 제 2 레지스트패턴(272)을 형성한 후, 고농도 P형 이온을 주입한다.3C and a first resist pattern 271 defining a center portion of the gate region on the undoped polysilicon layer 240, as shown in FIG. 3C, and then implanted with high concentration N-type ions, as shown in FIG. 3D. After forming the second resist pattern 272 having a pattern structure opposite to that of the first resist pattern 271, high concentration P-type ions are implanted.

이어서, 도 3e와 같이 상기와 같이 게이트영역의 중심부는 고농도 N형 영역(241)으로 형성되고, 양쪽의 가장자리부는 고동도 P형 영역(242)으로 형성된 2도우프 폴리실리콘층 위에 제 1 산화막(250)을 증착한 후, 도 3f와 같이 포토리소그래프 및 식각공정으로 상기 제 1 산화막(250)과 2도우프 폴리실리콘층(241,242), 게이트산화막(230)을 순차적으로 패터닝하여 절연게이트전극(231,241,242a,251)을 형성하고 나서, 그 절연게이트전극(231,241,242a,251) 및 필드산화막(220)을 마스크로 하는 선택적 이온주입공정으로 저농도 N형 소오스/드레인영역(261)을 형성한다.Subsequently, as shown in FIG. 3E, the central portion of the gate region is formed of a high concentration N-type region 241, and both edges thereof are formed on the two-doped polysilicon layer formed of the highly dynamic P-type region 242. After the deposition of 250, the first oxide layer 250, the second doped polysilicon layers 241 and 242, and the gate oxide layer 230 are sequentially patterned by a photolithography and etching process as shown in FIG. 3F. After forming 231, 241, 242a and 251, a low concentration N-type source / drain region 261 is formed by a selective ion implantation process using the insulating gate electrodes 231, 241, 242a and 251 and the field oxide film 220 as a mask.

이후, 도 3g와 같이 절연게이트전극(231,241,242a,251)의 측면에 제 2 산화막 측벽스페이서(256)를 형성한 후, 그 제 2 산화막 측벽스페이서(256)와 절연게이트전극(231,241,242a,251), 필드산화막(220)을 형성함으로써, 2 도우프 폴리실리콘 게이트전극 및 엘디디 구조를 갖는 N-채널 전계효과 트랜지스터를 완성한다.Thereafter, as shown in FIG. 3G, the second oxide sidewall spacer 256 is formed on the side surfaces of the insulating gate electrodes 231, 241, 242a and 251, and the second oxide sidewall spacer 256 and the insulating gate electrodes 231, 241, 242a and 251 are formed. By forming the field oxide film 220, an N-channel field effect transistor having a 2-doped polysilicon gate electrode and an LED structure is completed.

상술한 바와 같이, 2도우프 폴리실리콘 게이트전극을 갖는 것을 특징으로 하는 본 발명에 따른 2도우프 폴리실리콘 게이트전극 및 엘디디 구조를 갖는 N-채널 전계효과 트랜지스터는, 상기 2도우프 폴리실리콘 게이트전극의 양쪽 가장자리부에 형성된 P형 도전영역이 게이트전극에 전압을 인가하지 않는 경우에도 그 아래에 있는 채널영역을 반전시킴으로써 쇼트채널효과를 개선하는 효과가 있다.As described above, the N-channel field effect transistor having the double-doped polysilicon gate electrode and the LED structure according to the present invention, which has a double-doped polysilicon gate electrode, the double-doped polysilicon gate Even when the P-type conductive regions formed at both edges of the electrode do not apply voltage to the gate electrode, the short channel effect is improved by inverting the channel region beneath it.

Claims (5)

제 1 도전형 실리콘기판에 형성된 엘디디 구조의 제 2 도전형 소오스/드레인영역과: 게이트산화막 위에 형성된 2도우프 폴리실리콘 게이트전극으로 구성되는 것을 특징으로 하는 반도체소자.A semiconductor device comprising: a second conductive source / drain region of an LED structure formed on a first conductive silicon substrate; and a 2-doped polysilicon gate electrode formed on the gate oxide film. 제 1 항에 있어서, 상기 2도우프 폴리실리콘 게이트전극은 그의 중심영역이 제 2 도전형으로 도우프되고, 양쪽의 가장자리영역이 제 1 도전형으로 도우프된 폴리실리콘으로 구성된 것을 특징으로 하는 반도체소자.2. The semiconductor according to claim 1, wherein the two-doped polysilicon gate electrode is composed of polysilicon doped with a central region thereof doped with a second conductivity type and both edge regions doped with a first conductivity type. device. 제 2 항에 있어서, 상기 2 도우프 폴리실리콘 게이트전극은 그의 중심영역이 N도전형으로 도우프되고, 양쪽의 가장자리영역이 P도전형으로 도우프된 폴리실리콘으로 구성된 것을 특징으로 하는 반도체소자.3. The semiconductor device according to claim 2, wherein the two-doped polysilicon gate electrode is formed of polysilicon doped with an N conductive type in its center region and doped with a P conductive type in its edge region. 제 1 도전형 실리콘기판 위에 게이트산화막을 형성한 후, 그 위에 언도우프(Undoped) 폴리실리콘을 증착하는 단계와; 그 언도우프 폴리실리콘층 위에 게이트영역의 중심부와 가장자리부를 각각 정의하는 제 1, 2 레지스트패턴을 형성함과 아울러 그 각각의 레지스트패턴을 통해 제 2, 1 도전형 도판트를 주입함으로써, 게이트영역의 중심부는 제 2 도전형으로 형성되고 가장자리부는 제 1 도전형으로 형성된 2도우프 폴리실리콘층을 형성하는 단계와; 상기 2도우프 폴리실리콘층 위에 제 1 절연막을 형성한 후, 포토리소그래피 및 식각공정으로 상기 제 1 절연막과 2 도우프를 폴리실리콘층, 게이트산화막을 순차적으로 패터닝하여 절연게이트전극을 형성하는 단계와; 저농도 제 1 도전형 도판트를 주입한 후, 절연게이트전극의 측면에 제 2 절연막 측벽스페이서를 형성하고, 이에 대해서 고농도 제 1 도전형 도판트를 주입함으로써, 엘디디 구조의 소오스/드레인영역을 형성하는 단계로 이루어지는 것을 특징으로 하는 반도체소자 제조방법.Forming a gate oxide film on the first conductive silicon substrate, and then depositing undoped polysilicon on the gate oxide film; On the undoped polysilicon layer, first and second resist patterns defining respective center and edge portions of the gate region are formed, and the second and first conductivity type dopants are implanted through the respective resist patterns to form the gate region. Forming a double-doped polysilicon layer having a central portion formed of a second conductivity type and an edge portion formed of a first conductivity type; Forming an insulating gate electrode by sequentially forming a first insulating film on the two-doped polysilicon layer, and then sequentially patterning the first insulating film and the second doped polysilicon layer and a gate oxide film by photolithography and etching processes; ; After implanting the low concentration first conductivity type dopant, the second insulating film sidewall spacer is formed on the side of the insulated gate electrode, and the high concentration first conductivity type dopant is implanted to form the source / drain region of the LED structure. A semiconductor device manufacturing method comprising the steps of. 제 4 항에 있어서, 상기 제 1 레지스트패턴과 제 2 레지스트패턴은 대칭구조로 형성하는 것을 특징으로 하는 반도체소자 제조방법.The method of claim 4, wherein the first resist pattern and the second resist pattern are formed in a symmetrical structure.
KR1019960064996A 1996-12-13 1996-12-13 Semiconductor device and manufacturing method thereof KR100390153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960064996A KR100390153B1 (en) 1996-12-13 1996-12-13 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960064996A KR100390153B1 (en) 1996-12-13 1996-12-13 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR19980046615A true KR19980046615A (en) 1998-09-15
KR100390153B1 KR100390153B1 (en) 2003-09-19

Family

ID=37421838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960064996A KR100390153B1 (en) 1996-12-13 1996-12-13 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100390153B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419744B1 (en) * 2001-06-28 2004-02-25 주식회사 하이닉스반도체 Method for manufacturing a transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419744B1 (en) * 2001-06-28 2004-02-25 주식회사 하이닉스반도체 Method for manufacturing a transistor

Also Published As

Publication number Publication date
KR100390153B1 (en) 2003-09-19

Similar Documents

Publication Publication Date Title
KR100445904B1 (en) Extended drain MOSFET(EDMOSFET) having the source field plate and method for fabricating the same
JP3521246B2 (en) Field effect transistor and method of manufacturing the same
KR950025920A (en) Semiconductor device manufacturing method
US5879995A (en) High-voltage transistor and manufacturing method therefor
KR19980053390A (en) METHOD FOR MANUFACTURING DUAL-GATE SEMICONDUCTOR DEVICE
JP3170610B2 (en) Manufacturing method of vertical field effect transistor
KR100232197B1 (en) Method of manufacturing semiconductor device
KR100390153B1 (en) Semiconductor device and manufacturing method thereof
JPS6025028B2 (en) Manufacturing method of semiconductor device
KR100351251B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100618313B1 (en) Cmos having elevated source/drain and method of fabricating thereof
JP3307972B2 (en) Method for manufacturing field effect transistor and field effect transistor
JPH0521789A (en) Field effect type transistor and its manufacture
KR100498592B1 (en) Most transistors and manufacturing method thereof
KR100202642B1 (en) Method for manufacturing mos transistor
KR940002776B1 (en) Producting method for mosfet with cmos and soi complex structure
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
KR0172463B1 (en) Mos transistor and its fabrication
KR0186198B1 (en) Method of fabricating transistor
KR100223795B1 (en) Manufacturing method of semiconductor memory device
KR100214077B1 (en) Mosfet and method for fabricating the same
KR0130384B1 (en) High voltage cmos transistor manufacturing method
KR0127691B1 (en) Method of manufacturing transistor
KR100537272B1 (en) Method for fabricating of semiconductor device
KR100214535B1 (en) Method for fabricating ldd mosfet

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110526

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee