KR102648323B1 - Pt-Ru-Ti catalyst electrode for ballast water electrolysis - Google Patents

Pt-Ru-Ti catalyst electrode for ballast water electrolysis Download PDF

Info

Publication number
KR102648323B1
KR102648323B1 KR1020210177788A KR20210177788A KR102648323B1 KR 102648323 B1 KR102648323 B1 KR 102648323B1 KR 1020210177788 A KR1020210177788 A KR 1020210177788A KR 20210177788 A KR20210177788 A KR 20210177788A KR 102648323 B1 KR102648323 B1 KR 102648323B1
Authority
KR
South Korea
Prior art keywords
electrode
ballast water
electrolysis
catalyst
molar ratio
Prior art date
Application number
KR1020210177788A
Other languages
Korean (ko)
Other versions
KR20230089282A (en
Inventor
박현웅
량난난
최원정
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020210177788A priority Critical patent/KR102648323B1/en
Priority to PCT/KR2022/019568 priority patent/WO2023113337A1/en
Publication of KR20230089282A publication Critical patent/KR20230089282A/en
Application granted granted Critical
Publication of KR102648323B1 publication Critical patent/KR102648323B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

본 발명은 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서, 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며, 상기 촉매층은 Ru, Ti, 및 Pt으로 구성된 3원계 화합물이고, 상기 촉매층에서 Pt:Ru의 몰비는 2:8 내지 8:2이고, Ti 혼합 후 (Pt : Ru)와 Ti의 몰비는 1:1 내지 3:7이며, 상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 선박평형수 전기분해용 전극에 관한 것이다.
본 발명에 따른 선박평형수 전기분해용 전극은 물 산화와의 경쟁에도 염소산화 효율이 저하되지 않고 활성염소종 생성에 대해 98% 이상의 선택성을 보인다. 또한, 귀금속의 함량을 줄여 촉매층을 제조하므로 촉매의 경제성을 확보할 수 있는 장점이 있다.
The present invention relates to an electrode for electrolysis of ballast water for sterilizing ballast water, comprising at least one selected from metal mesh, metal foam, and metal plate, on which a Pt, Ru, and Ti catalyst layer is located, The catalyst layer is a ternary compound composed of Ru, Ti, and Pt, and the molar ratio of Pt:Ru in the catalyst layer is 2:8 to 8:2, and after mixing Ti, the molar ratio of (Pt:Ru) and Ti is 1:1. to 3:7, and the amount of Pt, Ru, and Ti catalyst loaded on the electrolysis electrode is 0.5 to 5 mg/cm 2 .
The electrode for electrolysis of ballast water according to the present invention does not reduce chlorine oxidation efficiency even in competition with water oxidation and shows a selectivity of more than 98% for the generation of active chlorine species. In addition, since the catalyst layer is manufactured by reducing the content of precious metals, there is an advantage in securing the economic efficiency of the catalyst.

Description

선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극{Pt-Ru-Ti catalyst electrode for ballast water electrolysis}Pt-Ru-Ti catalyst electrode for ballast water electrolysis}

본 발명은 선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 백금, 루테늄 및 티타늄 촉매층을 포함하는 선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극 및 이의 제조방법에 관한 것이다.The present invention relates to a Pt-Ru-Ti catalyst electrode for ballast water electrolysis and a manufacturing method thereof, and more specifically, to a Pt-Ru-Ti catalyst electrode for ballast water electrolysis comprising platinum, ruthenium and titanium catalyst layers. and its manufacturing method.

일반적으로 선박평형수(Ballast Water)란, 선박의 안전하고 효율적인 운항을 위해 배 안에 채우는 바닷물을 말한다. 배가 싣고 있던 화물을 내리면 줄어든 무게만큼 물 위로 떠오르게 되고, 이에 따라 무게중심이 높아지면 좌우 흔들림이 증가하게 된다. 이 상태에서 운항할 경우 자칫 전복사고로 이어질 수도 있다. 또한, 선박의 한쪽 측면에만 화물이 많이 실려 있다면 반대쪽 밸러스트 탱크에 물을 채워 좌우 균형을 맞추기도 한다. 더 나아가 선박평형수는 선박의 운항 효율을 높이기 위해서도 필요한데, 배가 어느 정도 잠겨 있어야 프로펠러가 수면 아래에서 동작할 수 있게 되므로 효율적으로 운항가능하기 때문이다. 이러한, 선박평형수는 선박 운항을 위해 필수적이기는 하나, 오늘날 해양 생태계 파괴의 주범이라는 오명을 안고 있으며, 선박평형수에 포함된 다양한 해양 생물이 다른 국가 해안으로 이동해 생태계를 교란시킬 수 있기 때문이다. 이러한 문제점으로 인하여, 2012년 이후 건조되는 신조선, 2017년 이후에는 현재 운항하는 모든 선박에 선박평형수 처리시스템을 설치하는 것이 의무화되었으며, 이에 따라 선박평형수 처리를 위한 효율적인 기술이 요구되고 있다. 일반적인 선박평형수 처리기술로는 전기분해(직관식, 사이드스트림식), 자외선(UV), 오존, 필터방식, 원심분리, 열처리 등 다양한 처리 방식이 제안되고 있다. 최근 가장 많이 채택되는 방식은 전기분해 방식으로, 이중 직접 전기분해 방식은 해수를 전기분해하여 생성된 차아염소산류(HClO, NaClO), OH 라디칼 또는 전위차에 의해, 직접소독 의한 소독을 통해 평형수를 살균 처리하는 방식이다. 종래 직접 전기 분해 방식은 해수분해 공정과 같이 산소나 염소가 발생하는 전해공정을 이용하며 금속 티타늄을 기판으로 하여 기판 표면에 이리듐(Ir), 루테늄(Ru) 등 백금족 금속의 산화물인 전극활성물질(촉매층)을 증착시켜 제조한 전극을 사용하는 것이 일반적이다. 이리듐, 루테늄 등 백금족 금속의 산화물과 같은 촉매층은 높은 염소 생성 및 환원 반응을 유도하기 위해 사용되고 있으며, 이들 전극은 흔히 DSA전극이라고 부르며 현재 선박평형수 처리는 물론 다양한 클로르 알칼리 산업에서 사용되고 있다. 다만 원료 물질의 가격이 높아 공정가동비용을 높이는 문제점이 있다. 따라서, 이들 DSA전극을 대체하는 저가형 전기 촉매 전극을 개발하기 위해 Ru, Ir 등의 기존 백금족 귀금속에 Sn, Sb, Zr 등을 조합한 이원, 삼원전극 등에 대한 연구가 진행되고 있으나, 아직까지 염소 발생 효율 면에서 만족할 만한 성과는 없는 상황이다. 염소발생 반응의 환원전위가 물 산화 전위와 유사하기 때문에 염소 발생 반응의 선택성을 높이는 것은 효율적인 공정 운영을 위해 필수적이다. 따라서, 수중에서 전극이 작동함에 따라 염소 산화 효율이 저하되는 문제점을 해결하여 염소 발생 반응을 촉진시키고, 귀금속 함량을 줄여 촉매의 경제성을 확보할 필요가 있다.In general, ballast water refers to seawater filled inside a ship for safe and efficient operation. When a ship unloads its cargo, it floats on the water equal to the reduced weight, and as the center of gravity rises, the side-to-side shaking increases. Operating in this condition may lead to a rollover accident. Additionally, if a lot of cargo is loaded on only one side of the ship, water can be filled in the ballast tank on the other side to balance the left and right sides. Furthermore, ballast water is also necessary to increase the operating efficiency of ships, because the ship must be submerged to some extent so that the propeller can operate below the water surface and thus can be operated efficiently. Although ballast water is essential for ship operation, it carries the stigma of being the main cause of destruction of marine ecosystems today, and various marine organisms contained in ballast water can migrate to the coasts of other countries and disturb the ecosystem. Due to these problems, it has become mandatory to install a ballast water treatment system on new ships built after 2012 and on all ships currently in operation after 2017, and thus efficient technology for ballast water treatment is required. As general ballast water treatment technology, various treatment methods are proposed, such as electrolysis (straight-line type, side stream type), ultraviolet (UV), ozone, filter method, centrifugation, and heat treatment. The most widely adopted method recently is electrolysis. Among these, the direct electrolysis method disinfects ballast water through direct disinfection using hypochlorous acids (HClO, NaClO), OH radicals, or potential differences generated by electrolyzing seawater. It is a sterilization method. The conventional direct electrolysis method uses an electrolytic process that generates oxygen or chlorine, such as a seawater decomposition process, and uses titanium metal as a substrate. Electrode active materials (oxides of platinum group metals such as iridium (Ir) and ruthenium (Ru)) are applied to the surface of the substrate. It is common to use electrodes manufactured by depositing a catalyst layer. Catalyst layers such as oxides of platinum group metals such as iridium and ruthenium are used to induce high chlorine production and reduction reactions, and these electrodes are commonly called DSA electrodes and are currently used in various chlor-alkali industries as well as ballast water treatment. However, there is a problem of increasing process operation costs due to the high price of raw materials. Therefore, in order to develop a low-cost electrocatalytic electrode to replace these DSA electrodes, research is being conducted on binary and ternary electrodes that combine existing platinum group noble metals such as Ru and Ir with Sn, Sb, and Zr, but chlorine is still generated. There are no satisfactory results in terms of efficiency. Because the reduction potential of the chlorine generation reaction is similar to the water oxidation potential, increasing the selectivity of the chlorine generation reaction is essential for efficient process operation. Therefore, there is a need to solve the problem of reduced chlorine oxidation efficiency as the electrode operates in water, promote the chlorine generation reaction, and secure the economic feasibility of the catalyst by reducing the precious metal content.

한국공개특허 제10-2013-0130504호Korean Patent Publication No. 10-2013-0130504

상기와 같은 문제를 해결하기 위하여, 본 발명은 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극을 제공하는 것을 목적으로 한다.In order to solve the above problems, the purpose of the present invention is to provide an electrode for electrolysis of ballast water to sterilize ballast water.

상기 목적을 달성하기 위하여 본 발명은,In order to achieve the above object, the present invention,

선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서,In the electrode for electrolysis of ballast water for sterilizing ballast water,

메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 촉매층이 위치하며,
상기 촉매층은 Ru, Ti, 및 Pt으로 구성된 3원계 화합물이고,
It includes one or more selected from metal mesh, metal foam, and metal plate, and a catalyst layer is located on top of them,
The catalyst layer is a ternary compound composed of Ru, Ti, and Pt,

상기 촉매층에서 Pt:Ru의 몰비는 2:8 내지 8:2이고, Ti 혼합 후 (Pt : Ru)와 Ti의 몰비는 1:1 내지 3:7이며,The molar ratio of Pt:Ru in the catalyst layer is 2:8 to 8:2, and after mixing Ti, the molar ratio of (Pt:Ru) and Ti is 1:1 to 3:7,

상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극을 제공한다.An electrode for electrolysis of ballast water is provided, wherein the amount of Pt, Ru, and Ti catalyst loaded on the electrode for electrolysis is 0.5 to 5 mg/cm 2 .

본 발명의 일 실시예에 따르면, 상기 촉매층은 400 내지 900 ℃에서 소성하여 생성할 수 있다.According to one embodiment of the present invention, the catalyst layer can be produced by firing at 400 to 900 °C.

본 발명의 다른 실시예에 따르면, 상기 촉매층은 산처리하여 산화피막이 제거된 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상에 에어브러쉬로 스프레이 코팅하여 제작할 수 있다.According to another embodiment of the present invention, the catalyst layer can be produced by spray coating with an airbrush one or more selected from metal mesh, metal foam, and metal plate from which the oxide film has been removed by acid treatment.

본 발명의 또 다른 실시예에 따르면, 상기 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상은 티타늄, 니켈, 금, 구리, 니켈 합금 및 스테인레스 스틸을 사용할 수 있다.According to another embodiment of the present invention, titanium, nickel, gold, copper, nickel alloy, and stainless steel may be used as one or more selected from the metal mesh, metal foam, and metal plate.

본 발명의 또 다른 실시예에 따르면, 상기 선박평형수 전기분해용 전극에 10 내지 1000 mA/cm2의 전류밀도를 가할 수 있다.According to another embodiment of the present invention, a current density of 10 to 1000 mA/cm 2 may be applied to the electrode for electrolysis of ballast water.

본 발명에 따른 선박평형수 전기분해용 전극은 물 산화와의 경쟁에도 염소산화 효율이 저하되지 않고 활성염소종 생성에 대해 98% 이상의 선택성을 보인다. 또한, 귀금속의 함량을 줄여 촉매층을 제조하므로 촉매의 경제성을 확보할 수 있는 장점이 있다.The electrode for electrolysis of ballast water according to the present invention does not reduce chlorine oxidation efficiency even in competition with water oxidation and shows a selectivity of more than 98% for the generation of active chlorine species. In addition, since the catalyst layer is manufactured by reducing the content of precious metals, there is an advantage in securing the economic efficiency of the catalyst.

도 1은 본 발명의 일 실시예에 따른 2전극 시스템의 이미지를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 전극의 전하전달저항 측정 실험에서 사용한 회로 모델을 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 생성된 활성염소종의 농도와 전류 효율 그래프를 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 전극의 내구성 평가를 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 전극 표면의 SEM 이미지를 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 전극의 EDS 분석 이미지를 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 전극의 XRD 분석 이미지를 도시한 것이다.
Figure 1 shows an image of a two-electrode system according to an embodiment of the present invention.
Figure 2 shows a circuit model used in an experiment measuring the charge transfer resistance of an electrode according to an embodiment of the present invention.
Figure 3 shows a graph of the concentration and current efficiency of activated chlorine species generated according to an embodiment of the present invention.
Figure 4 shows durability evaluation of an electrode according to an embodiment of the present invention.
Figure 5 shows an SEM image of the electrode surface according to an embodiment of the present invention.
Figure 6 shows an EDS analysis image of an electrode according to an embodiment of the present invention.
Figure 7 shows an XRD analysis image of an electrode according to an embodiment of the present invention.

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일측면에 따르면, 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서, 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며, 상기 촉매층의 Pt:Ru의 조합 몰비는 1:9 내지 9:1, (Pt:Ru):Ti의 몰비는 1: 1 내지 3이며, 상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극을 제공한다.According to one aspect of the present invention, an electrode for electrolysis of ballast water for sterilizing ballast water includes at least one selected from metal mesh, metal foam, and metal plate, and the upper portion thereof includes Pt, Ru, and Ti. A catalyst layer is located, the combined molar ratio of Pt:Ru of the catalyst layer is 1:9 to 9:1, the molar ratio of (Pt:Ru):Ti is 1:1 to 3, Pt loaded on the electrolysis electrode, An electrode for electrolysis of ballast water is provided, wherein the amount of Ru and Ti catalysts is 0.5 to 5 mg/cm 2 .

본 발명의 선박평형수 전기분해용 전극은 메탈 메쉬, 메탈 폼 및/또는 메탈플레이트 상에 Pt, Ru 및 Ti 촉매층을 코팅하여 제작하며, 상세한 전극 제조 방법은 다음과 같다. 상기 메탈 메쉬, 메탈폼 및/또는 메탈 플레이트는 티타늄, 니켈, 금, 구리, 니켈 합금, 스테인레스 스틸일 수 있지만, 바람직하게는 티타늄, 스테인레스 스틸이며, 가장 바람직하게는 티타늄이다.The electrode for ballast water electrolysis of the present invention is manufactured by coating a Pt, Ru, and Ti catalyst layer on metal mesh, metal foam, and/or metal plate, and the detailed electrode manufacturing method is as follows. The metal mesh, metal foam and/or metal plate may be titanium, nickel, gold, copper, nickel alloy, or stainless steel, but titanium and stainless steel are preferred, and titanium is most preferred.

먼저, Pt,Ru 및 Ti 금속 혼합물을 시트르산 용액과 에틸렌글리콜 혼합 용액에 용해시킨 후 30분 내지 1시간 30분 동안 소성한다. 다음으로, 수득한 촉매를 이소프로필알코올에 넣고 1시간 내지 3시간 초음파 처리하여 입자형태로 만들고, 염산, 황산, 질산과 같은 강산을 처리하여 산화피막을 제거한다. 다음으로, 상기 산화피막이 제거된 Pt,Ru 및 Ti 촉매를 티타늄 메쉬, 티타늄 폼 및/또는 티타늄 플레이트 상에 에어브러쉬를 이용한 스프레이코팅법으로 코팅한다.First, the Pt, Ru and Ti metal mixture is dissolved in a citric acid solution and ethylene glycol mixture solution and then fired for 30 minutes to 1 hour and 30 minutes. Next, the obtained catalyst is placed in isopropyl alcohol and ultrasonicated for 1 to 3 hours to form particles, and then treated with strong acids such as hydrochloric acid, sulfuric acid, and nitric acid to remove the oxide film. Next, the Pt, Ru, and Ti catalysts from which the oxide film has been removed are coated on titanium mesh, titanium foam, and/or titanium plate using a spray coating method using an airbrush.

본 발명의 전극은 Pt-Ru-Ti 전극을 작업 전극(working electrode), 포화칼로멜 전극(Saturated Calomel Electrode)을 기준 전극(reference electrode), 백금 또는 티타늄을 포함하는 카운터전극(Counter electrode)으로 한 3전극 시스템으로 전기분해가 이루어지거나, Pt-Ru-Ti 전극을 양극(anode), 백금이나 티타늄을 음극(cathode)로 사용한 2전극 시스템으로 전기분해가 이루어질 수 있다.The electrode of the present invention uses a Pt-Ru-Ti electrode as a working electrode, a Saturated Calomel Electrode as a reference electrode, and a counter electrode containing platinum or titanium. Electrolysis can be performed with an electrode system, or with a two-electrode system using a Pt-Ru-Ti electrode as an anode and platinum or titanium as a cathode.

상기 제조방법으로 제작한 전극의 염소 산화 반응의 효율은 전극에 10 내지 1000 mA/cm2의 전류밀도를 가하여 활성염소종의 생성률을 측정하며, 바람직하게는 60 내지 1000mA/cm2, 더욱 바람직하게는 80 내지 1000mA/cm2, 더욱 바람직하게는 80 내지 800mA/cm2이며, 활성염소종 생성효율은 Pt 및 Ru 몰비 조합비, 촉매량, 소성온도, Ti 혼합 유무에 따라 영향을 받을 수 있다. Pt-Ru-Ti 촉매층에서 Pt 및 Ru의 몰비는 1:9 내지 9:1일 수 있으며, 바람직하게는 2:8 내지 8:2이다. 500 ℃의 소성조건에서는 8:2의 몰비에서 효율이 가장 우수하지만 소성온도의 변화를 통해 다른 몰비 조건의 전극도 우수한 효율 달성이 가능했으며 효율과 귀금속 함량 모두를 고려하여 전극의 몰비를 선택한다. Pt 및 Ru의 몰비가 0:10 내지 1:9 또는 9:1의 몰비를 가진 촉매는 활성염소종 생성율이 낮으므로 전극의 기능을 제대로 할 수 없다.The efficiency of the chlorine oxidation reaction of the electrode manufactured by the above manufacturing method is measured by measuring the production rate of active chlorine species by applying a current density of 10 to 1000 mA/cm 2 to the electrode, preferably 60 to 1000 mA/cm 2 , more preferably is 80 to 1000 mA/cm 2 , more preferably 80 to 800 mA/cm 2 , and the efficiency of generating active chlorine species may be affected by the Pt and Ru molar ratio combination, catalyst amount, calcination temperature, and presence or absence of Ti mixing. The molar ratio of Pt and Ru in the Pt-Ru-Ti catalyst layer may be 1:9 to 9:1, and is preferably 2:8 to 8:2. Under firing conditions of 500°C, the efficiency is the best at a molar ratio of 8:2, but it is possible to achieve excellent efficiency with electrodes under other molar ratio conditions through changes in firing temperature. The molar ratio of the electrode is selected considering both efficiency and precious metal content. A catalyst having a molar ratio of Pt and Ru of 0:10 to 1:9 or 9:1 has a low rate of active chlorine species production and cannot function properly as an electrode.

Ti 혼합 후 (Pt:Ru):Ti의 몰비는 3:7 내지 7:3일 수 있으나, 바람직하게는 (Pt:Ru):Ti의 몰비가 1: 1 내지 3 이다. Ti 함량을 높이면 귀금속 함량을 줄일 수 있어서 전극의 경제성을 확보할 수 있으며, 전극의 기능도 안정적으로 유지시킬 수 있다. Ti의 혼합은 소성온도와 관계없이 Pt-Ru-Ti 전극의 활성염소종 생성효율을 92 내지 100%로 전극의 기능을 안정적으로 유지시켜주며, 바람직하게는 (Pt:Ru):Ti의 몰비가 1: 1 내지 3일 때 활성염소종 생성에 대해 98 내지 100%의 선택성을 가진다.After mixing Ti, the molar ratio of (Pt:Ru):Ti may be 3:7 to 7:3, but preferably the molar ratio of (Pt:Ru):Ti is 1:1 to 3. Increasing the Ti content can reduce the precious metal content, thereby securing the economic feasibility of the electrode and maintaining the function of the electrode stably. Mixing Ti maintains the function of the electrode stably with an active chlorine species generation efficiency of 92 to 100% of the Pt-Ru-Ti electrode regardless of the sintering temperature. Preferably, the molar ratio of (Pt:Ru):Ti is 1: When 1 to 3, it has a selectivity of 98 to 100% for generating active chlorine species.

또한, Ti 혼합 후 (Pt:Ru):Ti의 몰비가 1: 1 내지 3일 때, 전하전달 저항이 가장 낮고 전기화학적활성 면적이 가장 크며, 본 발명의 전극의 전하전달 저항(Rct)은 30 내지 40이며, 전기화학적활성 면적(Electrochemical surface area)는 5 내지 7 mF/cm2이다. 이때 소성온도는 450 내지 550 ℃이며, 가장 바람직하게는 500 ℃이다.In addition, after mixing Ti, when the molar ratio of (Pt:Ru):Ti is 1:1 to 3, the charge transfer resistance is It has the lowest and largest electrochemical active area, and the charge transfer resistance (R ct ) of the electrode of the present invention is 30 to 40, and the electrochemical surface area is 5 to 7 mF/cm 2 . At this time, the firing temperature is 450 to 550°C, most preferably 500°C.

전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2이며, 바람직하게는 0.8 내지 4 mg/cm2이다. 촉매량이 0.5 mg/cm2 미만일 때는 전극의 활성염소종 생성율이 현저히 떨어져 선박평형수 전기분해용 전극으로서 기능을 할 수 없으며, 촉매량이 5 mg/cm2 초과할 때는 촉매량을 0.5 내지 5 mg/cm2 사용했을 때보다 활성염소종 생성율이 현저히 증가하지 않으며, 오히려 전극 제조의 비용이 증가한다.The amount of Pt, Ru, and Ti catalyst loaded on the electrode for electrolysis is 0.5 to 5 mg/cm 2 , preferably 0.8 to 4 mg/cm 2 . When the catalyst amount is less than 0.5 mg/cm 2 , the active chlorine species production rate of the electrode is significantly reduced and it cannot function as an electrode for electrolysis of ballast water. When the catalyst amount is more than 5 mg/cm 2 , the catalyst amount is adjusted to 0.5 to 5 mg/cm . 2 The production rate of active chlorine species does not increase significantly compared to when used, and the cost of electrode manufacturing actually increases.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 대해 상세히 설명하기로 한다. 한편, 해당 기술분야의 통상적인 지식을 가진자로부터 용이하게 알 수 있는 구성과 그에 대한 작용 및 효과에 대한 도시 및 상세한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 상세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. Meanwhile, illustrations and detailed descriptions of the configuration and its operations and effects that can be easily seen by those with ordinary knowledge in the relevant technical field will be simplified or omitted and will be explained in detail focusing on parts related to the present invention.

<실시예><Example>

실시예 1 - 전극 제작Example 1 - Electrode Fabrication

(1) Pt-Ru 전극 제작(1) Fabrication of Pt-Ru electrode

Pt 및 Ru을 0:10 내지 9:1의 몰비로 하여, 시트르산 수용액과 에틸렌글리콜 혼합용액에 용해 후 1시간 동안 소성하였다. 이때 수득한 촉매를 이소프로필알코올에 넣고 2시간 동안 초음파처리하여 입자형태로 만든 후 산처리하여 산화피막을 제거한 티타늄 메쉬에 에어브러쉬를 이용하여 스프레이 코팅하였다. 이때, 전극의 내구성 평가를 위해서, 일부 전극은 별도로 스프레이 코팅 후 300℃로 6시간 열처리하였다. 그런 다음, 코팅한 전극을 건조하여 제작 완료하였다.Pt and Ru were dissolved in a mixed solution of citric acid aqueous solution and ethylene glycol at a molar ratio of 0:10 to 9:1 and then fired for 1 hour. At this time, the obtained catalyst was placed in isopropyl alcohol and ultrasonicated for 2 hours to form particles, and then spray-coated using an airbrush on a titanium mesh from which the oxide film was removed by acid treatment. At this time, in order to evaluate the durability of the electrodes, some electrodes were separately spray coated and heat treated at 300°C for 6 hours. Then, the coated electrode was dried and fabrication was completed.

(2) Pt-Ru-Ti 전극 제작(2) Fabrication of Pt-Ru-Ti electrode

Pt-Ru-Ti의 비율은 0.6:2.4:7(mol %)로 하며, 시트르산 수용액과 에틸렌글리콜 혼합용액에 용해 후 1시간 동안 소성하였다. 이때 수득한 촉매를 이소프로필알코올에 넣고 2시간 동안 초음파처리하여 입자형태로 만든 후 산처리하여 산화피막을 제거한 티타늄 메쉬에 에어브러쉬를 이용하여 코팅하였다. 그런 다음, 코팅한 전극을 건조하여 제작 완료하였다.The ratio of Pt-Ru-Ti was 0.6:2.4:7 (mol %), and it was dissolved in a mixed solution of citric acid and ethylene glycol and fired for 1 hour. At this time, the obtained catalyst was placed in isopropyl alcohol and ultrasonicated for 2 hours to form particles, and then coated with an airbrush on a titanium mesh from which the oxide film was removed by acid treatment. Then, the coated electrode was dried and fabrication was completed.

실시예 2 - 전극의 성능 분석Example 2 - Performance analysis of electrodes

상기 실시예 1에서 제작한 전극의 염소 산화를 관찰하기 위해 0.137 M, 0.5 M의 NaCl 수용액, 인공해수에서 2전극 시스템으로 전기분해 실험을 진행하였다. Pt-Ru 또는 Pt-Ru-Ti 전극을 양극(anode)으로, 음극(cathode)으로는 백금이나 티타늄을 사용하였다[도 1 참조]. 전극의 성능 분석 실험으로 Pt-Ru 조합 비율, 소성온도, 촉매량에 따른 활성염소종 생성효율 및 potential, 전기화학적 활성면적 및 전하전달 저항을 측정하였다. 전극에 가해진 전류밀도는 80 mA/cm2이며, 성능 분석 방법은 다음과 같다:To observe chlorine oxidation of the electrode manufactured in Example 1, an electrolysis experiment was conducted using a two-electrode system in 0.137 M and 0.5 M NaCl aqueous solutions and artificial seawater. A Pt-Ru or Pt-Ru-Ti electrode was used as the anode, and platinum or titanium was used as the cathode (see Figure 1). As a performance analysis experiment of the electrode, active chlorine species generation efficiency and potential, electrochemical active area, and charge transfer resistance were measured according to the Pt-Ru combination ratio, calcination temperature, and catalyst amount. The current density applied to the electrode is 80 mA/cm 2 , and the performance analysis method is as follows:

(1) 활성염소종 생성(1) Generation of active chlorine species

2전극시스템으로 실험 장치를 구성하고 0.137 M, 0.5 M, 0.941 M의 NaCl수용액 혹은 인공해수에서 전기분해 실험을 진행하였다. 전기분해 실험 중 시간에 따라 전해질에서 일정량의 시료를 추출하여 활성염소종과 DPD reagent (N,N-diethyl-p-phenylenediamine)의 반응으로 발생하는 발색의 흡광도를 측정해 농도를 계산하는 방법인 Hach method로 반응 중에 생성된 활성염소종의 양을 측정하고 패러데이 효율을 계산하였다. 효율 계산 시에는 활성 염소종의 생성에 2전자가 필요하므로 2를 곱하여 계산한다:The experimental device was configured with a two-electrode system, and electrolysis experiments were conducted in 0.137 M, 0.5 M, and 0.941 M NaCl aqueous solutions or artificial seawater. Hach is a method of calculating concentration by extracting a certain amount of sample from the electrolyte over time during an electrolysis experiment and measuring the absorbance of the color generated by the reaction between active chlorine species and DPD reagent (N,N-diethyl-p-phenylenediamine). The amount of active chlorine species generated during the reaction was measured using the method and the Faraday efficiency was calculated. When calculating efficiency, multiply by 2 because 2 electrons are required to produce active chlorine species:

[수학식 1][Equation 1]

Faradaic Efficiency(%)=

Figure 112021144212786-pat00001
Faradaic Efficiency(%)=
Figure 112021144212786-pat00001

Q는 전기화학 반응 동안 흐른 전하량(C), F는 패러데이 상수(96485 C/mol), n은 생성된 활성염소종의 몰수(mol)이다.Q is the amount of charge (C) flowing during the electrochemical reaction, F is Faraday's constant (96485 C/mol), and n is the number of moles of active chlorine species generated (mol).

(2) 전극의 전기화학적 활성면적 측정(2) Measurement of electrochemically active area of electrode

Cyclic voltamogramm (CV)을 통해 ECSA (ElectroChemical Surface Area)를 계산하여 제작한 전극의 활성을 확인하였다. CV는 0.5 M NaCl에서 0.85~0.95 V vs. SCE 범위를 20~100 mV/s로 측정하였다.The activity of the manufactured electrode was confirmed by calculating ECSA (ElectroChemical Surface Area) through cyclic voltamogram (CV). CV was 0.85-0.95 V vs. 0.5 M NaCl. The SCE range was measured from 20 to 100 mV/s.

(3) 전극의 전하전달저항 측정(3) Measurement of charge transfer resistance of electrode

임피던스분광법 (Electrochemical impedance spectroscopy, EIS)을 이용해 전기화학반응 중의 저항을 측정하였다. 0.5 M의 NaCl에서 0.01 ~ 50000 Hz (1.1 V vs. SCE)에서 10 mV간격으로 측정하고 계산하였다. 사용한 회로모델은 도 2에 도시하였다.Resistance during electrochemical reaction was measured using impedance spectroscopy (EIS). Measurements and calculations were made at 10 mV intervals from 0.01 to 50000 Hz (1.1 V vs. SCE) in 0.5 M NaCl. The circuit model used is shown in Figure 2.

실시예 3 - 전극의 내구성 평가Example 3 - Evaluation of durability of electrodes

Pt:Ru:Ti=0.6:2.4:7 조건의 전극에 800 mA/cm2의 전류밀도를 가하여 0.941 M NaCl에서 500시간동안 전압측정 실험을 진행하였다.A voltage measurement experiment was conducted for 500 hours in 0.941 M NaCl by applying a current density of 800 mA/cm 2 to the electrode under the condition of Pt:Ru:Ti=0.6:2.4:7.

실시예 4 - 전극의 물성평가Example 4 - Evaluation of physical properties of electrode

(1) SEM 분석(1) SEM analysis

SEM(Scanning Electron Microscope, 주사전자현미경) 분석은 Su-8230(Hitachi) 장비를 이용해 5.0 kV의 accelerating voltage를 가하여 전극 표면의 이미지를 촬영하였다.For SEM (Scanning Electron Microscope) analysis, images of the electrode surface were taken by applying an accelerating voltage of 5.0 kV using Su-8230 (Hitachi) equipment.

(2) EDS 분석(2) EDS analysis

SEM에 부착된 OXFORD사의 Ultim Extreme 장비를 이용하여 element mapping을 진행하였다.Element mapping was performed using OXFORD's Ultim Extreme equipment attached to the SEM.

(3) XRD 분석(3) XRD analysis

Panalytical사의 EMPYREAN 장비를 이용하여 1.5406 Å 파장의 Cu-Kα radiation(40 kV, 30 mA)을 가하여 관찰하였다.Observation was made by applying Cu-Kα radiation (40 kV, 30 mA) with a wavelength of 1.5406 Å using EMPYREAN equipment from Panalytical.

<결과 및 평가><Results and Evaluation>

Pt-Ru의 몰비에 따른 활성염소종 생성효율Active chlorine species production efficiency according to molar ratio of Pt-Ru

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru 몰비Pt:Ru molar ratio 활성염소종 생성효율Active chlorine species production efficiency Pt:Ru 몰비Pt:Ru molar ratio 활성염소종 생성효율Active chlorine species production efficiency 0:100:10 32.34%32.34% 0:100:10 54.84%54.84% 1:91:9 39.37%39.37% 2:82:8 47.80%47.80% 2:82:8 67.49%67.49% 3:73:7 49.21%49.21% 4:64:6 54.83%54.83% 4:64:6 71.71%71.71% 5:55:5 59.06%59.06% 6:46:4 64.7%64.7% 6:46:4 80.15%80.15% 7:37:3 54.84%54.84% 8:28:2 71.71%71.71% 8:28:2 90%90% 9:19:1 36.56%36.56% 9:19:1 81.55%81.55%

표 1은 400 ℃의 소성온도에서 Pt 및 Ru 몰비에 따라 제조된 전극의 활성염소종 생성효율을 나타낸 것이다. 표 1을 참조하면, 활성염소종에 대한 생성효율이 가장 높은 Pt-Ru의 비율은 8:2였으며, 같은 전류밀도를 가했을 때 가장 낮은 potential을 보이는 비율은 2:8인 것을 확인할 수 있었다.Table 1 shows the active chlorine species generation efficiency of electrodes manufactured according to the molar ratio of Pt and Ru at a sintering temperature of 400°C. Referring to Table 1, the ratio of Pt-Ru with the highest production efficiency for active chlorine species was 8:2, and the ratio with the lowest potential when the same current density was applied was 2:8.

소성온도에 따른 활성염소종 생성 효율Active chlorine species generation efficiency according to calcination temperature

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru
몰비
Pt:Ru
molar ratio
소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species production efficiency Pt:Ru
몰비
Pt:Ru
molar ratio
소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species production efficiency
8:28:2 400400 80.15%80.15% 8:28:2 400400 90%90% 500500 100%100% 500500 100%100% 600600 80.15%80.15% 600600 91.4%91.4% 2:82:8 400400 46.40%46.40% 2:82:8 400400 67.49%67.49% 500500 67.49%67.49% 500500 84.37%84.37% 600600 77.33%77.33% 600600 95.62%95.62% 700700 78.74%78.74% 700700 92.80%92.80% 800800 91.40%91.40% 800800 95.62%95.62% 900900 75.93%75.93% 900900 90%90%

표 2는 소성온도에 따른 활성염소종의 효율 및 potential을 나타낸 것이다. 표 2를 참조하면, Pt:Ru의 몰비를 8:2 또는 2:8로 고정하고 400~900 ℃의 온도 범위에서 활성염소종 생성효율을 측정하였으며, 몰비가 8:2일 때 소성온도 500 ℃에서 NaCl 용액의 몰농도와 무관하게 활성염소종 생성효율이 100%임을 확인할 수 있었다. 또한, 몰비가 2:8일때 0.137 M NaCl 수용액에서는 소성온도가 800 ℃에서 91.40%로 가장 높은 활성염소종 생성효율을 나타내었으며, 0.5 M NaCl 수용액에서는 소성온도가 600 ℃에서 95.62%로 가장 높은 활성염소종 생성효율을 나타내었음을 확인하였다.Table 2 shows the efficiency and potential of active chlorine species according to calcination temperature. Referring to Table 2, the molar ratio of Pt:Ru was fixed at 8:2 or 2:8 and the production efficiency of active chlorine species was measured in the temperature range of 400 to 900 ℃. When the molar ratio was 8:2, the calcination temperature was 500 ℃. It was confirmed that the production efficiency of active chlorine species was 100% regardless of the molar concentration of the NaCl solution. In addition, when the molar ratio was 2:8, the 0.137 M NaCl aqueous solution showed the highest active chlorine species generation efficiency at 91.40% at a calcination temperature of 800 ℃, and the 0.5 M NaCl aqueous solution showed the highest activity at 600 ℃, 95.62%. It was confirmed that the chlorine species production efficiency was shown.

촉매량에 따른 활성염소종 생성 효율Active chlorine species generation efficiency according to catalyst amount

Pt:Ru=8:2Pt:Ru=8:2 Pt:Ru=2:8Pt:Ru=2:8 전해질electrolyte 촉매량
(mg/cm2)
Catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species production efficiency 전해질electrolyte 촉매량
(mg/cm2)
Catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species production efficiency
0.137 M
NaCl
0.137M
NaCl
3.333.33 100%100% 0.137 M
NaCl
0.137M
NaCl
3.333.33 91.40%91.40%
2.502.50 100%100% 2.502.50 90%90% 1.671.67 100%100% 1.671.67 70.30%70.30% 0.830.83 100%100% 0.830.83 66.09%66.09% 0.5 M
NaCl
0.5M
NaCl
3.333.33 100%100% 0.5 M
NaCl
0.5M
NaCl
3.333.33 95.62%95.62%
0.830.83 97.02%97.02% 0.830.83 100%100%

표 3은 Pt-Ru의 몰비와 소성온도를 고정한 상태에서의 촉매량에 따른 활성염소종 생성효율 및 potential을 나타낸 것이다. 표 3을 참조하면, Pt-Ru의 몰비가 8:2일 때 0.137 M NaCl 수용액에서는 촉매량과는 무관하게 활성염소종 생성효율이 100%로 나타났으며, 0.5 M NaCl 수용액에서는 3.33 mg/cm2일 때 활성염소종 생성효율이 100%임을 확인하였다. 또한 Pt-Ru의 몰비가 2:8일 때 0.137 M NaCl 수용액에서는 첨가한 촉매량이 증가할수록 활성염소종 생성효율이 높아져 3.33 mg/cm2일 때 91.40%로 가장 높게 나타난 반면에, 0.5 M NaCl 수용액에서는 오히려 촉매량이 줄어든 0.83 mg/cm2일 때 활성염소종 생성효율이 100%로 나타남을 확인하였다.Table 3 shows the production efficiency and potential of active chlorine species according to the amount of catalyst when the molar ratio of Pt-Ru and calcination temperature are fixed. Referring to Table 3, when the molar ratio of Pt-Ru was 8:2, the active chlorine species production efficiency was 100% in 0.137 M NaCl aqueous solution, regardless of the catalyst amount, and 3.33 mg/cm 2 in 0.5 M NaCl aqueous solution. It was confirmed that the active chlorine species production efficiency was 100%. In addition, when the molar ratio of Pt-Ru was 2:8, the production efficiency of active chlorine species increased as the amount of catalyst added increased in the 0.137 M NaCl aqueous solution, reaching the highest level of 91.40% at 3.33 mg/cm 2 , while the 0.5 M NaCl aqueous solution In fact, it was confirmed that the active chlorine species production efficiency was 100% when the catalyst amount was reduced to 0.83 mg/cm 2 .

Ti 혼합 후 Ti 비율에 따른 전극 성능 관찰Observation of electrode performance according to Ti ratio after Ti mixing

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl (Pt:Ru):Ti 몰비(Pt:Ru):Ti molar ratio 활성염소종 생성효율Active chlorine species production efficiency (Pt:Ru):Ti 몰비(Pt:Ru):Ti molar ratio 활성염소종 생성효율Active chlorine species production efficiency 1:91:9 83%83% 1:91:9 85.77%85.77% 2:82:8 85.77%85.77% 2:82:8 91.397%91.397% 3:73:7 98.43%98.43% 3:73:7 100%100%

표 4는 Ti 혼합 후 Ti 비율에 따른 전극 성능 평가를 나타낸 것이다. 표 4를 참조하면, (Pt:Ru):Ti 몰비가 3:7일 때 활성염소종 생성효율이 98% 이상으로 가장 우수한 성능을 가짐을 확인할 수 있었다.Table 4 shows electrode performance evaluation according to Ti ratio after Ti mixing. Referring to Table 4, it was confirmed that when the (Pt:Ru):Ti molar ratio was 3:7, the active chlorine species generation efficiency was over 98%, showing the best performance.

Ti 혼합 후 전극 성능 관찰Observation of electrode performance after Ti mixing

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species production efficiency Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species production efficiency
0.6:2.4:70.6:2.4:7 400400 92.80%92.80% 0.6:2.4:70.6:2.4:7 400400 94.21%94.21% 500500 98.43%98.43% 500500 100%100% 600600 99.83%99.83% 600600 100%100% 700700 97.02%97.02% 700700 94.21%94.21% 800800 94.21%94.21% 800800 92.80%92.80% 900900 98.43%98.43% 900900 100%100%

표 5는 Ti 혼합 후 3원 전극의 성능 평가를 나타낸 것이다. 표 5를 참조하면, (Pt:Ru):Ti를 3:7의 몰비로 조합하고 Ti와 조합한 Pt:Ru의 비율은 2:8로 설정한 것을 알 수 있으며 기존의 Pt:Ru=2:8의 몰비로 제작한 전극에 비해 소성 온도와 관계없이 우수한 성능을 보이는 것을 확인하였다.Table 5 shows the performance evaluation of the ternary electrode after mixing Ti. Referring to Table 5, it can be seen that (Pt:Ru):Ti was combined at a molar ratio of 3:7, and the ratio of Pt:Ru combined with Ti was set at 2:8, and the existing Pt:Ru = 2: It was confirmed that superior performance was shown regardless of the firing temperature compared to the electrode manufactured with a molar ratio of 8.

Ti 혼합 후 전극 특성 관찰Observation of electrode properties after Ti mixing

Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도(℃)Firing temperature (℃) EISEIS ECSAECSA Rs R s Rct R ct Cdl(mF/cm2)C dl (mF/cm 2 ) 0.6:2.4:70.6:2.4:7 400400 6.3586.358 69.6369.63 0.810.81 500500 6.1826.182 35.7135.71 5.7455.745 600600 5.8845.884 95.9295.92 4.3854.385 700700 6.4506.450 259.6259.6 0.630.63 800800 4.7714.771 333.2333.2 1.8751.875 900900 3.7193.719 427.9427.9 0.6850.685

표 6은 Ti 혼합 후 3원 전극의 특성을 관찰한 것을 나타낸 것이다. 표 6을 참조하면, 활성염소종 실험에서 가장 성능이 좋게 나타난 500 ℃의 소성 온도에서 전하전달 저항이 가장 낮고 전기화학적활성면적이 가장 크게 관찰되었으며, 이로써 소성온도 500 ℃가 우수한 제작 조건임을 알 수 있었다.Table 6 shows the observed characteristics of the three-way electrode after mixing Ti. Referring to Table 6, the lowest charge transfer resistance and the largest electrochemical active area were observed at the firing temperature of 500°C, which showed the best performance in the active chlorine species experiment. This shows that the firing temperature of 500°C is an excellent manufacturing condition. there was.

Ti 혼합 후 촉매량에 따른 전극 성능 관찰Observation of electrode performance according to catalyst amount after mixing Ti

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl 촉매량(mg/cm2)Catalyst amount (mg/cm 2 ) 활성염소종 생성효율Active chlorine species production efficiency 촉매량(mg/cm2)Catalytic amount (mg/cm 2 ) 활성염소종 생성효율Active chlorine species production efficiency 3.333.33 98.43%98.43% 3.333.33 100%100% 0.830.83 100%100% 0.830.83 100%100%

표 7은 Ti 혼합 후 촉매량에 따른 3원 전극의 성능 평가를 나타낸 것이다. Pt:Ru:Ti=0.6:2.4:7의 몰비, 소성온도 500 ℃로 고정하여 촉매량에 따른 전극 성능을 관찰한 결과, 촉매량에 관계없이 우수한 성능을 보이는 것을 확인하였다. 도 3은 본 발명의 일 실시예에 따른 생성된 활성염소종의 농도와 전류 효율 그래프를 도시한 것이다. 도 3을 참조하면, 전류효율이 95% 이상이며 이는 Pt-Ru-Ti 촉매가 활성염소종 생성에 대해 95% 이상의 선택성을 보이는 것을 의미한다.Table 7 shows the performance evaluation of the three-way electrode according to the amount of catalyst after mixing Ti. As a result of observing the electrode performance according to the catalyst amount by fixing the molar ratio of Pt:Ru:Ti = 0.6:2.4:7 and the calcination temperature at 500 ℃, it was confirmed that excellent performance was shown regardless of the catalyst amount. Figure 3 shows a graph of the concentration and current efficiency of activated chlorine species produced according to an embodiment of the present invention. Referring to Figure 3, the current efficiency is more than 95%, which means that the Pt-Ru-Ti catalyst shows a selectivity of more than 95% for the generation of active chlorine species.

인공 해수에서의 활성염소종 생성 효율Efficiency of active chlorine species production in artificial seawater

Pt:Ru = 8:2 (500 ℃)Pt:Ru = 8:2 (500℃) Pt:Ru = 2:8 (600 ℃)Pt:Ru = 2:8 (600℃) Pt:Ru:Ti = 0.6:2.4:7 (500 ℃)Pt:Ru:Ti = 0.6:2.4:7 (500℃) 촉매량
(mg/cm2)
Catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species production efficiency 촉매량
(mg/cm2)
Catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species production efficiency 촉매량
(mg/cm2)
Catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species production efficiency
3.333.33 90.00%90.00% 3.333.33 95.62%95.62% 3.333.33 91.40%91.40% 0.830.83 90.00%90.00% 0.830.83 92.80%92.80% 0.830.83 91.40%91.40%

표 8은 제작한 전극의 인공해수에서의 활성염소종 생성효율을 나타낸 것이다. 표 8을 참조하면, 인공해수에 포함된 다양한 이온의 영향으로 비슷한 농도의 NaCl 용액 조건보다 약간의 효율이 감소했지만 인공해수에서도 90% 이상의 우수한 성능을 보이는 것을 확인하였다.Table 8 shows the production efficiency of active chlorine species in artificial seawater of the manufactured electrode. Referring to Table 8, although the efficiency was slightly reduced compared to the NaCl solution condition of similar concentration due to the influence of various ions contained in artificial seawater, it was confirmed that excellent performance of more than 90% was shown even in artificial seawater.

Pt-Ru-Ti 전극의 내구성 평가Durability evaluation of Pt-Ru-Ti electrode

도 4는 본 발명의 일 실시예에 따른 전극의 내구성 평가를 도시한 것이다. 도 4를 참조하면, 열처리하지 않은 전극은 14시간만에 전극이 손상되어 전압이 크게 증가하는 모습이 관찰되지만, 열처리를 한 전극은 500시간 동안 전압의 증가폭이 크지 않아 강한 내구성을 가졌음을 확인하였다. Figure 4 shows durability evaluation of an electrode according to an embodiment of the present invention. Referring to Figure 4, it was observed that the electrode without heat treatment was damaged in 14 hours and the voltage increased significantly, but the heat treatment electrode showed no significant increase in voltage over 500 hours, confirming that it had strong durability. .

또한 내구성 평가 실험 전후에 0.941 M NaCl 수용액에서 80 mA/cm2의 전류밀도를 가하며 활성염소종 생성 실험을 진행하고 결과를 비교하여 내구성 평가를 진행하는 동안 전극의 손상 여부를 평가하였다. 표 9는 내구성평가 실험 전후에 전극의 활성염소종 생성 효율을 비교한 결과이다. 내구성평가 이후 전극의 효율이 조금 감소한 것을 확인할 수 있지만 여전히 높은 효율을 유지함을 확인하였다.In addition, before and after the durability evaluation experiment, an active chlorine species generation experiment was performed by applying a current density of 80 mA/cm 2 in a 0.941 M NaCl aqueous solution, and the results were compared to evaluate whether the electrode was damaged during the durability evaluation. Table 9 shows the results of comparing the active chlorine species generation efficiency of the electrode before and after the durability evaluation experiment. After the durability evaluation, it was confirmed that the efficiency of the electrode decreased slightly, but it was confirmed that the efficiency was still maintained at a high level.

0.941 M NaCl0.941 M NaCl Pt-Ru-TiPt-Ru-Ti 활성염소종 생성효율Active chlorine species production efficiency as-synthesizedas-synthesized 97%97% usedused 90%90%

Pt-Ru-Ti 전극의 물성 평가Evaluation of physical properties of Pt-Ru-Ti electrode

도 5는 본 발명의 일 실시예에 따른 전극 표면의 SEM 이미지를 도시한 것이다. 도 5를 참조하면, 티타늄 기판 위에 Pt-Ru-Ti 촉매가 나노파티클 형태로 형성되어 있음을 확인할 수 있었다. 도 6은 본 발명의 일 실시예에 따른 전극의 EDS 분석 이미지를 도시한 것이다. 도 6을 참조하면, 티타늄 기판 위에 Pt-Ru-Ti 촉매는 각 구성원소가 편재되어 있지 않고 전극 전체에 고르게 분포함을 알 수 있었다. 도 7은 본 발명의 일 실시예에 따른 전극의 XRD 분석 이미지를 도시한 것이다. 도 7을 참조하면, RuO2, TiO2 및 Pt의 peak가 나타났는데, 이로써 Ru 및 Ti는 산화물의 형태, Pt는 메탈 형태로 존재함을 알 수 있으며, 또한 RuO2, TiO2 및 금속 Pt이 혼합되어 구성됨을 확인할 수 있다.Figure 5 shows an SEM image of the electrode surface according to an embodiment of the present invention. Referring to Figure 5, it was confirmed that the Pt-Ru-Ti catalyst was formed in the form of nanoparticles on the titanium substrate. Figure 6 shows an EDS analysis image of an electrode according to an embodiment of the present invention. Referring to FIG. 6, it was found that the Pt-Ru-Ti catalyst on the titanium substrate was evenly distributed throughout the electrode, with each element not being localized. Figure 7 shows an XRD analysis image of an electrode according to an embodiment of the present invention. Referring to Figure 7, the peaks of RuO 2 , TiO 2 and Pt appeared, which shows that Ru and Ti exist in the form of oxides and Pt in the form of metals, and also that RuO 2 , TiO 2 and metal Pt exist in the form of metals. It can be confirmed that it is composed by mixing.

전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The foregoing has described, rather broadly, the features and technical advantages of the present invention to enable a better understanding of the claims described below. Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the claims and their equivalent concepts should be construed as being included in the scope of the present invention.

Claims (5)

선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서,
메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상의 상부에 촉매층이 위치하며,
상기 촉매층은 Ru, Ti 및 Pt로 형성된 3원계 화합물이고,
상기 Pt : Ru : Ti의 몰비는 0.6 : 2.4 : 7 이고,
상기 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.83 mg/cm2인 것을 특징으로 하는 선박평형수 전기분해용 전극.
In the electrode for electrolysis of ballast water for sterilizing ballast water,
A catalyst layer is located on top of one or more selected from metal mesh, metal foam, and metal plate,
The catalyst layer is a ternary compound formed of Ru, Ti, and Pt,
The molar ratio of Pt:Ru:Ti is 0.6:2.4:7,
An electrode for electrolysis of ballast water, characterized in that the amount of Pt, Ru and Ti catalyst loaded on the electrode is 0.83 mg/cm 2 .
제 1항에 있어서,
상기 촉매층은 Ru, Ti 및 Pt를 500℃에서 소성하여 형성된 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to clause 1,
An electrode for electrolysis of ballast water, wherein the catalyst layer is formed by sintering Ru, Ti, and Pt at 500°C.
제 1항에 있어서,
상기 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상은 티타늄, 니켈, 금, 구리, 니켈 합금 및 스테인레스 스틸인 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to clause 1,
An electrode for electrolysis of ballast water, wherein at least one selected from the metal mesh, metal foam, and metal plate is titanium, nickel, gold, copper, nickel alloy, and stainless steel.
삭제delete 삭제delete
KR1020210177788A 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis KR102648323B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis
PCT/KR2022/019568 WO2023113337A1 (en) 2021-12-13 2022-12-05 Pt-ru-ti catalytic electrode for electrolysis of ballast water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis

Publications (2)

Publication Number Publication Date
KR20230089282A KR20230089282A (en) 2023-06-20
KR102648323B1 true KR102648323B1 (en) 2024-03-14

Family

ID=86772858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis

Country Status (2)

Country Link
KR (1) KR102648323B1 (en)
WO (1) WO2023113337A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064911B1 (en) * 2008-05-07 2011-09-16 (주) 테크로스 Treatment System for Ballast Water
KR101148111B1 (en) * 2009-07-23 2012-05-22 (주) 테크로스 Manufacturing Method for Electrolytic Sterilization Insoluble Electrode
KR101317669B1 (en) * 2011-12-08 2013-10-15 (주) 테크로스 Ship ballast water electrolysis, sterilized insoluble electrode and method for manufacturing the same
KR101431597B1 (en) 2012-05-22 2014-08-22 (주) 테크로스 Electrode wiring sturcture of electrolysis device and electrode defect detecting method using thereof
JP7073104B2 (en) * 2015-09-28 2022-05-23 株式会社大阪ソーダ Electrode for chlorine generation and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lassali, T. A. 외 2인. ‘Structural, morphological and surface properties as a function of composition of Ru+ Ti+ Pt mixed-oxide electrodes.’ Electrochimica acta 43.16-17 (1998): p2515-2525.*

Also Published As

Publication number Publication date
KR20230089282A (en) 2023-06-20
WO2023113337A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP4116726B2 (en) Electrochemical treatment method and apparatus
CN101525755B (en) Cathode for hydrogen generation
JP3689541B2 (en) Seawater electrolyzer
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US7985327B2 (en) Electrode, method of manufacture and use thereof
EP3587622B1 (en) Positive electrode, positive electrode for water electrolysis, electrolysis cell, and method for producing hydrogen
CN112647086B (en) Titanium fiber felt anode diffusion layer for PEM water electrolysis cell and preparation method and application thereof
US11028491B2 (en) Electrolysis electrode featuring metal-doped nanotube array and methods of manufacture and using same
CA1220446A (en) Electride with intermediate layer containing 1) titanium or tin, 2) tantalum
CN1153228A (en) Electrodes and methods of preparation thereof
US7211177B2 (en) Electrode for electrolysis in acidic media
EP0046449B1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
EP0046448B1 (en) Electrode with outer coating for effecting an electrolytic process and protective intermediate coating on a conductive base, and method of making same
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis
JPH0633489B2 (en) Electrode for dilute salt water electrolysis
CN113699540B (en) Preparation method of disinfectant
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JP7376913B2 (en) electrolyzer
CN113463126A (en) Non-noble metal chlorine evolution catalyst electrode and preparation method thereof
JPH045493B2 (en)
JP3538271B2 (en) Hydrochloric acid electrolyzer
Mahidashti et al. Design of CoSbyOx/Ti electrocatalyst via facile thermal decomposition method for durable and high temperature chlorine evolution reaction in acidic media
JP2020193371A (en) Ozone generating electrode
JP2015017324A (en) Method of producing transportation- and storage-stable oxygen consumption electrode

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant