KR20230089282A - Pt-Ru-Ti catalyst electrode for ballast water electrolysis - Google Patents

Pt-Ru-Ti catalyst electrode for ballast water electrolysis Download PDF

Info

Publication number
KR20230089282A
KR20230089282A KR1020210177788A KR20210177788A KR20230089282A KR 20230089282 A KR20230089282 A KR 20230089282A KR 1020210177788 A KR1020210177788 A KR 1020210177788A KR 20210177788 A KR20210177788 A KR 20210177788A KR 20230089282 A KR20230089282 A KR 20230089282A
Authority
KR
South Korea
Prior art keywords
electrode
ballast water
electrolysis
catalyst
molar ratio
Prior art date
Application number
KR1020210177788A
Other languages
Korean (ko)
Other versions
KR102648323B1 (en
Inventor
박현웅
량난난
최원정
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020210177788A priority Critical patent/KR102648323B1/en
Priority to PCT/KR2022/019568 priority patent/WO2023113337A1/en
Publication of KR20230089282A publication Critical patent/KR20230089282A/en
Application granted granted Critical
Publication of KR102648323B1 publication Critical patent/KR102648323B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

본 발명은 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서, 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며, 상기 촉매층의 Pt:Ru의 조합 몰비는 1:9 내지 9:1, (Pt:Ru):Ti의 몰비는 1: 1 내지 3이며, 상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극에 관한 것이다.
본 발명에 따른 선박평형수 전기분해용 전극은 물 산화와의 경쟁에도 염소산화 효율이 저하되지 않고 활성염소종 생성에 대해 98% 이상의 선택성을 보인다. 또한, 귀금속의 함량을 줄여 촉매층을 제조하므로 촉매의 경제성을 확보할 수 있는 장점이 있다.
The present invention is a ballast water electrolysis electrode for sterilizing ballast water, comprising at least one selected from metal mesh, metal foam and metal plate, and Pt, Ru and Ti catalyst layers are located on top of them, The combined molar ratio of Pt:Ru in the catalyst layer is 1:9 to 9:1, and the molar ratio of (Pt:Ru):Ti is 1:1 to 3, and the amounts of Pt, Ru, and Ti catalysts loaded on the electrode for electrolysis are It relates to an electrode for ballast water electrolysis comprising 0.5 to 5 mg/cm 2 .
The electrode for ballast water electrolysis according to the present invention does not decrease chlorine oxidation efficiency even in competition with water oxidation and shows a selectivity of 98% or more for generation of active chlorine species. In addition, since the catalyst layer is prepared by reducing the content of precious metals, there is an advantage in securing economic feasibility of the catalyst.

Description

선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극{Pt-Ru-Ti catalyst electrode for ballast water electrolysis}Pt-Ru-Ti catalyst electrode for ballast water electrolysis}

본 발명은 선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 백금, 루테늄 및 티타늄 촉매층을 포함하는 선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극 및 이의 제조방법에 관한 것이다.The present invention relates to a Pt-Ru-Ti catalyst electrode for ballast water electrolysis and a manufacturing method thereof, and more particularly, to a Pt-Ru-Ti catalyst electrode for ballast water electrolysis comprising platinum, ruthenium and titanium catalyst layers. And it relates to a manufacturing method thereof.

일반적으로 선박평형수(Ballast Water)란, 선박의 안전하고 효율적인 운항을 위해 배 안에 채우는 바닷물을 말한다. 배가 싣고 있던 화물을 내리면 줄어든 무게만큼 물 위로 떠오르게 되고, 이에 따라 무게중심이 높아지면 좌우 흔들림이 증가하게 된다. 이 상태에서 운항할 경우 자칫 전복사고로 이어질 수도 있다. 또한, 선박의 한쪽 측면에만 화물이 많이 실려 있다면 반대쪽 밸러스트 탱크에 물을 채워 좌우 균형을 맞추기도 한다. 더 나아가 선박평형수는 선박의 운항 효율을 높이기 위해서도 필요한데, 배가 어느 정도 잠겨 있어야 프로펠러가 수면 아래에서 동작할 수 있게 되므로 효율적으로 운항가능하기 때문이다. 이러한, 선박평형수는 선박 운항을 위해 필수적이기는 하나, 오늘날 해양 생태계 파괴의 주범이라는 오명을 안고 있으며, 선박평형수에 포함된 다양한 해양 생물이 다른 국가 해안으로 이동해 생태계를 교란시킬 수 있기 때문이다. 이러한 문제점으로 인하여, 2012년 이후 건조되는 신조선, 2017년 이후에는 현재 운항하는 모든 선박에 선박평형수 처리시스템을 설치하는 것이 의무화되었으며, 이에 따라 선박평형수 처리를 위한 효율적인 기술이 요구되고 있다. 일반적인 선박평형수 처리기술로는 전기분해(직관식, 사이드스트림식), 자외선(UV), 오존, 필터방식, 원심분리, 열처리 등 다양한 처리 방식이 제안되고 있다. 최근 가장 많이 채택되는 방식은 전기분해 방식으로, 이중 직접 전기분해 방식은 해수를 전기분해하여 생성된 차아염소산류(HClO, NaClO), OH 라디칼 또는 전위차에 의해, 직접소독 의한 소독을 통해 평형수를 살균 처리하는 방식이다. 종래 직접 전기 분해 방식은 해수분해 공정과 같이 산소나 염소가 발생하는 전해공정을 이용하며 금속 티타늄을 기판으로 하여 기판 표면에 이리듐(Ir), 루테늄(Ru) 등 백금족 금속의 산화물인 전극활성물질(촉매층)을 증착시켜 제조한 전극을 사용하는 것이 일반적이다. 이리듐, 루테늄 등 백금족 금속의 산화물과 같은 촉매층은 높은 염소 생성 및 환원 반응을 유도하기 위해 사용되고 있으며, 이들 전극은 흔히 DSA전극이라고 부르며 현재 선박평형수 처리는 물론 다양한 클로르 알칼리 산업에서 사용되고 있다. 다만 원료 물질의 가격이 높아 공정가동비용을 높이는 문제점이 있다. 따라서, 이들 DSA전극을 대체하는 저가형 전기 촉매 전극을 개발하기 위해 Ru, Ir등의 기존 백금족 귀금속에 Sn, Sb, Zr 등을 조합한 이원, 삼원전극 등에 대한 연구가 진행되고 있으나, 아직까지 염소 발생 효율 면에서 만족할 만한 성과는 없는 상황이다. 염소발생 반응의 환원전위가 물 산화 전위와 유사하기 때문에 염소 발생 반응의 선택성을 높이는 것은 효율적인 공정 운영을 위해 필수적이다. 따라서, 수중에서 전극이 작동함에 따라 염소 산화 효율이 저하되는 문제점을 해결하여 염소 발생 반응을 촉진시키고, 귀금속 함량을 줄여 촉매의 경제성을 확보할 필요가 있다.In general, ballast water refers to seawater filled in a ship for safe and efficient operation of the ship. When a ship unloads its cargo, it rises above the water by the reduced weight, and as the center of gravity increases accordingly, the left and right shaking increases. Operating in this condition may lead to a rollover accident. In addition, if a lot of cargo is loaded on only one side of the ship, the ballast tank on the opposite side is filled with water to balance the left and right sides. Furthermore, ballast water is also necessary to increase the operation efficiency of a ship, because the ship must be submerged to a certain extent so that the propeller can operate under the water surface, so that the ship can operate efficiently. Although ballast water is essential for ship operation, it has a stigma as a major culprit in the destruction of marine ecosystems today, and various marine organisms included in ballast water may move to the coasts of other countries and disturb the ecosystem. Due to these problems, it has become mandatory to install a ballast water treatment system on new ships built after 2012 and on all ships currently operating after 2017, and accordingly, an efficient technology for ballast water treatment is required. As a general ballast water treatment technology, various treatment methods such as electrolysis (straight pipe type, side stream type), ultraviolet (UV), ozone, filter method, centrifugal separation, and heat treatment have been proposed. The most recently adopted method is the electrolysis method, of which the direct electrolysis method is used to disinfect ballast water through direct disinfection by hypochlorous acid (HClO, NaClO), OH radicals, or potential difference generated by electrolyzing seawater. method of sterilization. The conventional direct electrolysis method uses an electrolysis process in which oxygen or chlorine is generated, such as a seawater decomposition process, and uses a metal titanium as a substrate to form an electrode active material (oxides of platinum group metals such as iridium (Ir) and ruthenium (Ru)) on the substrate surface. It is common to use an electrode prepared by depositing a catalyst layer). Catalyst layers such as oxides of platinum group metals such as iridium and ruthenium are used to induce high chlorine production and reduction reactions, and these electrodes are commonly called DSA electrodes and are currently used in various chlor-alkali industries as well as ballast water treatment. However, there is a problem in that the price of the raw material is high and the process operation cost is increased. Therefore, in order to develop low-cost electrocatalytic electrodes that replace these DSA electrodes, research on binary and ternary electrodes combining Sn, Sb, Zr, etc. with existing platinum group noble metals such as Ru and Ir is being conducted, but chlorine is still generated. There is no satisfactory performance in terms of efficiency. Since the reduction potential of the chlorine generation reaction is similar to the oxidation potential of water, increasing the selectivity of the chlorine generation reaction is essential for efficient process operation. Therefore, it is necessary to solve the problem that the chlorine oxidation efficiency is lowered as the electrode operates in water to promote the chlorine generation reaction and to reduce the noble metal content to secure the economic feasibility of the catalyst.

한국공개특허 제10-2013-0130504호Korean Patent Publication No. 10-2013-0130504

상기와 같은 문제를 해결하기 위하여, 본 발명은 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide an electrode for ballast water electrolysis for sterilizing ballast water.

상기 목적을 달성하기 위하여 본 발명은,In order to achieve the above object, the present invention,

선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서,In the ballast water electrolysis electrode for sterilizing ballast water,

메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며,It includes at least one selected from metal mesh, metal foam, and metal plate, and Pt, Ru, and Ti catalyst layers are positioned on top of them,

상기 촉매층의 Pt:Ru의 조합 몰비는 1:9 내지 9:1, (Pt:Ru):Ti의 몰비는 1: 1 내지 3이며,The combined molar ratio of Pt:Ru in the catalyst layer is 1:9 to 9:1, the molar ratio of (Pt:Ru):Ti is 1:1 to 3,

상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극을 제공한다.A catalyst amount of Pt, Ru, and Ti loaded on the electrode for electrolysis is 0.5 to 5 mg/cm 2 It provides an electrode for electrolysis of ballast water, characterized in that it comprises.

본 발명의 일 실시예에 따르면, 상기 촉매층은 400 내지 900 ℃에서 소성하여 생성할 수 있다.According to one embodiment of the present invention, the catalyst layer may be produced by firing at 400 to 900 °C.

본 발명의 다른 실시예에 따르면, 상기 촉매층은 산처리하여 산화피막이 제거된 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상에 에어브러쉬로 스프레이 코팅하여 제작할 수 있다.According to another embodiment of the present invention, the catalyst layer may be manufactured by spray coating with an airbrush on at least one selected from a metal mesh, a metal foam, and a metal plate from which an oxide film is removed by acid treatment.

본 발명의 또 다른 실시예에 따르면, 상기 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상은 티타늄, 니켈, 금, 구리, 니켈 합금 및 스테인레스 스틸을 사용할 수 있다.According to another embodiment of the present invention, at least one selected from the metal mesh, metal foam, and metal plate may use titanium, nickel, gold, copper, a nickel alloy, and stainless steel.

본 발명의 또 다른 실시예에 따르면, 상기 선박평형수 전기분해용 전극에 10 내지 1000 mA/cm2의 전류밀도를 가할 수 있다.According to another embodiment of the present invention, a current density of 10 to 1000 mA/cm 2 may be applied to the ballast water electrolysis electrode.

본 발명에 따른 선박평형수 전기분해용 전극은 물 산화와의 경쟁에도 염소산화 효율이 저하되지 않고 활성염소종 생성에 대해 98% 이상의 선택성을 보인다. 또한, 귀금속의 함량을 줄여 촉매층을 제조하므로 촉매의 경제성을 확보할 수 있는 장점이 있다.The electrode for ballast water electrolysis according to the present invention does not decrease chlorine oxidation efficiency even in competition with water oxidation and shows a selectivity of 98% or more for generation of active chlorine species. In addition, since the catalyst layer is prepared by reducing the content of precious metals, there is an advantage in securing economic feasibility of the catalyst.

도 1은 본 발명의 일 실시예에 따른 2전극 시스템의 이미지를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 전극의 전하전달저항 측정 실험에서 사용한 회로 모델을 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 생성된 활성염소종의 농도와 전류 효율 그래프를 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 전극의 내구성 평가를 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 전극 표면의 SEM 이미지를 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 전극의 EDS 분석 이미지를 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 전극의 XRD 분석 이미지를 도시한 것이다.
1 shows an image of a two-electrode system according to an embodiment of the present invention.
2 shows a circuit model used in an experiment for measuring the charge transfer resistance of an electrode according to an embodiment of the present invention.
Figure 3 shows a graph of the concentration and current efficiency of the generated active chlorine species according to an embodiment of the present invention.
4 shows durability evaluation of an electrode according to an embodiment of the present invention.
5 shows a SEM image of an electrode surface according to an embodiment of the present invention.
6 shows an EDS analysis image of an electrode according to an embodiment of the present invention.
7 shows an XRD analysis image of an electrode according to an embodiment of the present invention.

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일측면에 따르면, 선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서, 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며, 상기 촉매층의 Pt:Ru의 조합 몰비는 1:9 내지 9:1, (Pt:Ru):Ti의 몰비는 1: 1 내지 3이며, 상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극을 제공한다.According to one aspect of the present invention, in the ballast water electrolysis electrode for sterilizing ballast water, it includes at least one selected from metal mesh, metal foam and metal plate, and Pt, Ru and Ti are on top of them. A catalyst layer is located, the combination molar ratio of Pt:Ru in the catalyst layer is 1:9 to 9:1, the molar ratio of (Pt:Ru):Ti is 1:1 to 3, Pt loaded on the electrode for electrolysis, A catalyst amount of Ru and Ti is 0.5 to 5 mg/cm 2 It provides an electrode for electrolysis of ballast water, characterized in that it comprises.

본 발명의 선박평형수 전기분해용 전극은 메탈 메쉬, 메탈 폼 및/또는 메탈플레이트 상에 Pt, Ru 및 Ti 촉매층을 코팅하여 제작하며, 상세한 전극 제조 방법은 다음과 같다. 상기 메탈 메쉬, 메탈폼 및/또는 메탈 플레이트는 티타늄, 니켈, 금, 구리, 니켈 합금, 스테인레스 스틸일 수 있지만, 바람직하게는 티타늄, 스테인레스 스틸이며, 가장 바람직하게는 티타늄이다.The electrode for ballast water electrolysis of the present invention is manufactured by coating a Pt, Ru, and Ti catalyst layer on a metal mesh, metal foam and/or metal plate, and the detailed electrode manufacturing method is as follows. The metal mesh, metal foam and/or metal plate may be titanium, nickel, gold, copper, nickel alloy, or stainless steel, but is preferably titanium or stainless steel, most preferably titanium.

먼저, Pt,Ru 및 Ti 금속 혼합물을 시트르산 용액과 에틸렌글리콜 혼합 용액에 용해시킨 후 30분 내지 1시간 30분동안 소성한다. 다음으로, 수득한 촉매를 이소프로필알코올에 넣고 1시간 내지 3시간 초음파 처리하여 입자형태로 만들고, 염산, 황산, 질산과 같은 강산을 처리하여 산화피막을 제거한다. 다음으로, 상기 산화피막이 제거된 Pt,Ru 및 Ti 촉매를 티타늄 메쉬, 티타늄 폼 및/또는 티타늄 플레이트 상에 에어브러쉬를 이용한 스프레이코팅법으로 코팅한다.First, a mixture of Pt, Ru, and Ti metals is dissolved in a mixture of citric acid and ethylene glycol, and then fired for 30 minutes to 1 hour 30 minutes. Next, the obtained catalyst is put in isopropyl alcohol and ultrasonicated for 1 hour to 3 hours to make particles, and the oxide film is removed by treatment with strong acids such as hydrochloric acid, sulfuric acid, and nitric acid. Next, the Pt, Ru, and Ti catalysts from which the oxide film has been removed are coated on the titanium mesh, titanium foam, and/or titanium plate by a spray coating method using an airbrush.

본 발명의 전극은 Pt-Ru-Ti 전극을 작업 전극(working electrode), 포화칼로멜 전극(Saturated Calomel Electrode)을 기준 전극(reference electrode), 백금 또는 티타늄을 포함하는 카운터전극(Counter electrode)으로 한 3전극 시스템으로 전기분해가 이루어지거나, Pt-Ru-Ti 전극을 양극(anode), 백금이나 티타늄을 음극(cathode)로 사용한 2전극 시스템으로 전기분해가 이루어질 수 있다.The electrode of the present invention uses a Pt-Ru-Ti electrode as a working electrode, a Saturated Calomel Electrode as a reference electrode, and a counter electrode containing platinum or titanium. Electrolysis may be performed with an electrode system, or electrolysis may be performed with a two-electrode system using a Pt-Ru-Ti electrode as an anode and platinum or titanium as a cathode.

상기 제조방법으로 제작한 전극의 염소 산화 반응의 효율은 전극에 10 내지 1000 mA/cm2의 전류밀도를 가하여 활성염소종의 생성률을 측정하며, 바람직하게는 60 내지 1000mA/cm2, 더욱 바람직하게는 80 내지 1000mA/cm2, 더욱 바람직하게는 80 내지 800mA/cm2이며, 활성염소종 생성효율은 Pt 및 Ru 몰비 조합비, 촉매량, 소성온도, Ti 혼합 유무에 따라 영향을 받을 수 있다. Pt-Ru-Ti 촉매층에서 Pt 및 Ru의 몰비는 1:9 내지 9:1일 수 있으며, 바람직하게는 2:8 내지 8:2이다. 500 ℃의 소성조건에서는 8:2의 몰비에서 효율이 가장 우수하지만 소성온도의 변화를 통해 다른 몰비 조건의 전극도 우수한 효율 달성이 가능했으며 효율과 귀금속 함량 모두를 고려하여 전극의 몰비를 선택한다. Pt 및 Ru의 몰비가 0:10 내지 1:9 또는 9:1의 몰비를 가진 촉매는 활성염소종 생성율이 낮으므로 전극의 기능을 제대로 할 수 없다.The efficiency of the chlorine oxidation reaction of the electrode manufactured by the above manufacturing method is measured by applying a current density of 10 to 1000 mA / cm 2 to the electrode to measure the generation rate of active chlorine species, preferably 60 to 1000 mA / cm 2 , more preferably is 80 to 1000 mA/cm 2 , more preferably 80 to 800 mA/cm 2 , and the efficiency of generating active chlorine species may be affected by the molar ratio of Pt and Ru, the catalyst amount, the firing temperature, and the presence or absence of Ti mixing. The molar ratio of Pt and Ru in the Pt-Ru-Ti catalyst layer may be 1:9 to 9:1, preferably 2:8 to 8:2. In the firing condition of 500 ° C, the efficiency is the best at a molar ratio of 8: 2, but excellent efficiency can be achieved with electrodes under other molar ratio conditions through a change in firing temperature, and the molar ratio of the electrode is selected in consideration of both efficiency and noble metal content. A catalyst having a molar ratio of Pt and Ru of 0:10 to 1:9 or 9:1 has a low active chlorine species generation rate, so the electrode cannot function properly.

Ti 혼합 후 (Pt:Ru):Ti의 몰비는 3:7 내지 7:3일 수 있으나, 바람직하게는 (Pt:Ru):Ti의 몰비가 1: 1 내지 3 이다. Ti 함량을 높이면 귀금속 함량을 줄일 수 있어서 전극의 경제성을 확보할 수 있으며, 전극의 기능도 안정적으로 유지시킬 수 있다. Ti의 혼합은 소성온도와 관계없이 Pt-Ru-Ti 전극의 활성염소종 생성효율을 92 내지 100%로 전극의 기능을 안정적으로 유지시켜주며, 바람직하게는 (Pt:Ru):Ti의 몰비가 1: 1 내지 3일 때 활성염소종 생성에 대해 98 내지 100%의 선택성을 가진다.After Ti mixing, the molar ratio of (Pt:Ru):Ti may be 3:7 to 7:3, but preferably the molar ratio of (Pt:Ru):Ti is 1:1 to 3. When the Ti content is increased, the noble metal content can be reduced, so that the economic feasibility of the electrode can be secured, and the function of the electrode can be stably maintained. The mixing of Ti stably maintains the function of the electrode with the active chlorine species production efficiency of 92 to 100% of the Pt-Ru-Ti electrode regardless of the firing temperature, and preferably the molar ratio of (Pt:Ru):Ti When 1: 1 to 3, it has a selectivity of 98 to 100% for the generation of active chlorine species.

또한, Ti 혼합 후 (Pt:Ru):Ti의 몰비가 1: 1 내지 3일 때, 전하전달 저항이 가장 낮고 전기화학적활성 면적이 가장 크며, 본 발명의 전극의 전하전달 저항(Rct)은 30 내지 40이며, 전기화학적활성 면적(Electrochemical surface area)는 5 내지 7 mF/cm2이다. 이때 소성온도는 450 내지 550 ℃이며, 가장 바람직하게는 500 ℃이다.In addition, when the molar ratio of (Pt:Ru):Ti after Ti mixing is 1:1 to 3, the charge transfer resistance It has the lowest electrochemically active area and the largest, the charge transfer resistance (R ct ) of the electrode of the present invention is 30 to 40, and the electrochemical surface area is 5 to 7 mF/cm 2 . At this time, the firing temperature is 450 to 550 ° C, most preferably 500 ° C.

전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2이며, 바람직하게는 0.8 내지 4 mg/cm2이다. 촉매량이 0.5 mg/cm2 이하일 때는 전극의 활성염소종 생성율이 현저히 떨어져 선박평형수 전기분해용 전극으로써 기능을 할 수 없으며, 촉매량이 5 mg/cm2이 이상일 때는 촉매량을 0.5 내지 5 mg/cm2 사용했을 때보다 활성염소종 생성율이 현저히 증가하지 않으며, 오히려 전극 제조의 비용이 증가한다.The amounts of Pt, Ru, and Ti catalysts loaded on the electrode for electrolysis are 0.5 to 5 mg/cm 2 , preferably 0.8 to 4 mg/cm 2 . When the catalyst amount is less than 0.5 mg/cm 2 , the rate of generation of active chlorine species of the electrode is significantly reduced, so that it cannot function as an electrode for ballast water electrolysis. When the catalyst amount is 5 mg/cm 2 or more, the catalyst amount is 0.5 to 5 mg/cm The production rate of active chlorine species does not significantly increase compared to the case of using 2 , and rather, the cost of electrode manufacturing increases.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 대해 상세히 설명하기로 한다. 한편, 해당 기술분야의 통상적인 지식을 가진자로부터 용이하게 알 수 있는 구성과 그에 대한 작용 및 효과에 대한 도시 및 상세한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 상세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. On the other hand, the drawings and detailed descriptions of configurations and their actions and effects, which can be easily known by those skilled in the art, are simplified or omitted, and will be described in detail focusing on parts related to the present invention.

<실시예><Example>

실시예 1 - 전극 제작Example 1 - electrode fabrication

(1) Pt-Ru 전극 제작(1) Fabrication of Pt-Ru electrode

Pt 및 Ru을 0:10 내지 9:1의 몰비로 하여, 시트르산 수용액과 에틸렌글리콜 혼합용액에 용해 후 1시간 동안 소성하였다. 이때 수득한 촉매를 이소프로필알코올에 넣고 2시간 동안 초음파처리하여 입자형태로 만든 후 산처리하여 산화피막을 제거한 티타늄 메쉬에 에어브러쉬를 이용하여 스프레이 코팅하였다. 이때, 전극의 내구성 평가를 위해서, 일부 전극은 별도로 스프레이 코팅 후 300 *?*C로 6시간 열처리하였다. 그런 다음, 코팅한 전극을 건조하여 제작 완료하였다.Pt and Ru were dissolved in a mixed solution of citric acid and ethylene glycol at a molar ratio of 0:10 to 9:1, and then calcined for 1 hour. At this time, the obtained catalyst was put in isopropyl alcohol, ultrasonicated for 2 hours to make particles, and then spray-coated using an airbrush on a titanium mesh from which oxide film was removed by acid treatment. At this time, in order to evaluate the durability of the electrode, some electrodes were heat treated at 300 *** C for 6 hours after spray coating separately. Then, the coated electrode was dried to complete the fabrication.

(2) Pt-Ru-Ti 전극 제작(2) Fabrication of Pt-Ru-Ti electrode

Pt-Ru-Ti의 비율은 0.6:2.4:7(mol %)로 하며, 시트르산 수용액과 에틸렌글리콜 혼합용액에 용해 후 1시간 동안 소성하였다. 이때 수득한 촉매를 이소프로필알코올에 넣고 2시간 동안 초음파처리하여 입자형태로 만든 후 산처리하여 산화피막을 제거한 티타늄 메쉬에 에어브러쉬를 이용하여 코팅하였다. 그런 다음, 코팅한 전극을 건조하여 제작 완료하였다.The ratio of Pt-Ru-Ti was 0.6:2.4:7 (mol%), and after dissolving in a mixture of citric acid and ethylene glycol, it was calcined for 1 hour. At this time, the obtained catalyst was put in isopropyl alcohol, ultrasonicated for 2 hours to form particles, and then coated with an airbrush on a titanium mesh from which an oxide film was removed by acid treatment. Then, the coated electrode was dried to complete the fabrication.

실시예 2 - 전극의 성능 분석Example 2 - Performance analysis of the electrode

상기 실시예 1에서 제작한 전극의 염소 산화를 관찰하기 위해 0.137 M, 0.5 M의 NaCl 수용액, 인공해수에서 2전극 시스템으로 전기분해 실험을 진행하였다. Pt-Ru 또는 Pt-Ru-Ti 전극을 양극(anode)으로, 음극(cathode)으로는 백금이나 티타늄을 사용하였다[도 1 참조]. 전극의 성능 분석 실험으로 Pt-Ru 조합 비율, 소성온도, 촉매량에 따른 활성염소종 생성효율 및 potential, 전기화학적 활성면적 및 전하전달 저항을 측정하였다. 전극에 가해진 전류밀도는 80 mA/cm2이며, 성능 분석 방법은 다음과 같다:In order to observe chlorine oxidation of the electrode prepared in Example 1, an electrolysis experiment was conducted with a two-electrode system in 0.137 M, 0.5 M NaCl aqueous solution and artificial seawater. A Pt-Ru or Pt-Ru-Ti electrode was used as an anode and platinum or titanium was used as a cathode (see FIG. 1). As an electrode performance analysis experiment, the active chlorine species production efficiency and potential, electrochemical active area and charge transfer resistance according to the Pt-Ru combination ratio, firing temperature, and catalyst amount were measured. The current density applied to the electrode is 80 mA/cm 2 , and the performance analysis method is as follows:

(1) 활성염소종 생성(1) Generation of active chlorine species

2전극시스템으로 실험 장치를 구성하고 0.137 M, 0.5 M, 0.941 M의 NaCl수용액 혹은 인공해수에서 전기분해 실험을 진행하였다. 전기분해 실험 중 시간에 따라 전해질에서 일정량의 시료를 추출하여 활성염소종과 DPD reagent (N,N-diethyl-p-phenylenediamine)의 반응으로 발생하는 발색의 흡광도를 측정해 농도를 계산하는 방법인 Hach method로 반응 중에 생성된 활성염소종의 양을 측정하고 패러데이 효율을 계산하였다. 효율 계산 시에는 활성 염소종의 생성에 2전자가 필요하므로 2를 곱하여 계산한다:An experimental device was constructed with a two-electrode system, and electrolysis experiments were conducted in 0.137 M, 0.5 M, and 0.941 M NaCl aqueous solutions or artificial seawater. Hach is a method of calculating the concentration by extracting a certain amount of sample from the electrolyte according to time during the electrolysis experiment and measuring the absorbance of color development generated by the reaction between active chlorine species and DPD reagent (N,N-diethyl-p-phenylenediamine). method, the amount of active chlorine species generated during the reaction was measured and the Faradaic efficiency was calculated. When calculating the efficiency, it is calculated by multiplying by 2 because 2 electrons are required to generate active chlorine species:

[수학식 1][Equation 1]

Faradaic Efficiency(%)=

Figure pat00001
Faradaic Efficiency (%)=
Figure pat00001

Q는 전기화학 반응 동안 흐른 전하량(C), F는 패러데이 상수(96485 C/mol), n은 생성된 활성염소종의 몰수(mol)이다.Q is the amount of charge (C) flowing during the electrochemical reaction, F is the Faraday constant (96485 C/mol), and n is the number of moles (mol) of the active chlorine species produced.

(2) 전극의 전기화학적 활성면적 측정(2) Measurement of the electrochemically active area of the electrode

Cyclic voltamogramm (CV)을 통해 ECSA (ElectroChemical Surface Area)를 계산하여 제작한 전극의 활성을 확인하였다. CV는 0.5 M NaCl에서 0.85~0.95 V vs. SCE 범위를 20~100 mV/s로 측정하였다.The activity of the fabricated electrode was confirmed by calculating ECSA (ElectroChemical Surface Area) through cyclic voltamogramm (CV). CV is 0.85-0.95 V vs. 0.5 M NaCl. The SCE range was measured from 20 to 100 mV/s.

(3) 전극의 전하전달저항 측정(3) Measurement of charge transfer resistance of electrodes

임피던스분광법 (Electrochemical impedance spectroscopy, EIS)을 이용해 전기화학반응 중의 저항을 측정하였다. 0.5 M의 NaCl에서 0.01 ~ 50000 Hz (1.1 V vs. SCE)에서 10 mV간격으로 측정하고 계산하였다. 사용한 회로모델은 도 2에 도시하였다.Resistance during the electrochemical reaction was measured using electrochemical impedance spectroscopy (EIS). It was measured and calculated at 10 mV intervals at 0.01 ~ 50000 Hz (1.1 V vs. SCE) in 0.5 M NaCl. The circuit model used is shown in FIG. 2 .

실시예 3 - 전극의 내구성 평가Example 3 - Evaluation of electrode durability

Pt:Ru:Ti=0.6:2.4:7 조건의 전극에 800 mA/cm2의 전류밀도를 가하여 0.941 M NaCl에서 500시간동안 전압측정 실험을 진행하였다.A voltage measurement experiment was conducted for 500 hours in 0.941 M NaCl by applying a current density of 800 mA/cm 2 to the electrode under Pt:Ru:Ti=0.6:2.4:7 conditions.

실시예 4 - 전극의 물성평가Example 4 - Evaluation of physical properties of electrode

(1) SEM 분석(1) SEM analysis

SEM(Scanning Electron Microscope, 주사전자현미경) 분석은 Su-8230(Hitachi) 장비를 이용해 5.0 kV의 accelerating voltage를 가하여 전극 표면의 이미지를 촬영하였다.For SEM (Scanning Electron Microscope, Scanning Electron Microscope) analysis, an image of the electrode surface was taken by applying an accelerating voltage of 5.0 kV using a Su-8230 (Hitachi) equipment.

(2) EDS 분석(2) EDS analysis

SEM에 부착된 OXFORD사의 Ultim Extreme 장비를 이용하여 element mapping을 진행하였다.Element mapping was performed using OXFORD's Ultim Extreme equipment attached to the SEM.

(3) XRD 분석(3) XRD analysis

Panalytical사의 EMPYREAN 장비를 이용하여 1.5406 Å 파장의 Cu-Kα radiation(40 kV, 30 mA)을 가하여 관찰하였다.It was observed by applying Cu-Kα radiation (40 kV, 30 mA) with a wavelength of 1.5406 Å using Panalytical's EMPYREAN equipment.

<결과 및 평가><Results and evaluation>

Pt-Ru의 몰비에 따른 활성염소종 생성효율Active chlorine species production efficiency according to the molar ratio of Pt-Ru

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru 몰비Pt:Ru molar ratio 활성염소종 생성효율Active chlorine species generation efficiency Pt:Ru 몰비Pt:Ru molar ratio 활성염소종 생성효율Active chlorine species generation efficiency 0:100:10 32.34%32.34% 0:100:10 54.84%54.84% 1:91:9 39.37%39.37% 2:82:8 47.80%47.80% 2:82:8 67.49%67.49% 3:73:7 49.21%49.21% 4:64:6 54.83%54.83% 4:64:6 71.71%71.71% 5:55:5 59.06%59.06% 6:46:4 64.7%64.7% 6:46:4 80.15%80.15% 7:37:3 54.84%54.84% 8:28:2 71.71%71.71% 8:28:2 90%90% 9:19:1 36.56%36.56% 9:19:1 81.55%81.55%

표 1은 400 ℃의 소성온도에서 Pt 및 Ru 몰비에 따라 제조된 전극의 활성염소종 생성효율을 나타낸 것이다. 표 1을 참조하면, 활성염소종에 대한 생성효율이 가장 높은 Pt-Ru의 비율은 8:2였으며, 같은 전류밀도를 가했을 때 가장 낮은 potential을 보이는 비율은 2:8인 것을 확인할 수 있었다.Table 1 shows the active chlorine species production efficiency of the prepared electrode according to the molar ratio of Pt and Ru at a firing temperature of 400 °C. Referring to Table 1, it was confirmed that the ratio of Pt-Ru with the highest production efficiency for active chlorine species was 8:2, and the ratio showing the lowest potential when the same current density was applied was 2:8.

소성온도에 따른 활성염소종 생성 효율Active chlorine species production efficiency according to firing temperature

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru
몰비
Pt:Ru
mole ratio
소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species generation efficiency Pt:Ru
몰비
Pt:Ru
mole ratio
소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species generation efficiency
8:28:2 400400 80.15%80.15% 8:28:2 400400 90%90% 500500 100%100% 500500 100%100% 600600 80.15%80.15% 600600 91.4%91.4% 2:82:8 400400 46.40%46.40% 2:82:8 400400 67.49%67.49% 500500 67.49%67.49% 500500 84.37%84.37% 600600 77.33%77.33% 600600 95.62%95.62% 700700 78.74%78.74% 700700 92.80%92.80% 800800 91.40%91.40% 800800 95.62%95.62% 900900 75.93%75.93% 900900 90%90%

표 2는 소성온도에 따른 활성염소종의 효율 및 potential을 나타낸 것이다. 표 2를 참조하면, Pt:Ru의 몰비를 8:2 또는 2:8로 고정하고 400~900 ℃의 온도 범위에서 활성염소종 생성효율을 측정하였으며, 몰비가 8:2일 때 소성온도 500 ℃에서 NaCl 용액의 몰농도와 무관하게 활성염소종 생성효율이 100%임을 확인할 수 있었다. 또한, 몰비가 2:8일때 0.137 M NaCl 수용액에서는 소성온도가 800 ℃에서 91.40%로 가장 높은 활성염소종 생성효율을 나타내었으며, 0.5 M NaCl 수용액에서는 소성온도가 600 ℃에서 95.62%로 가장 높은 활성염소종 생성효율을 나타내었음을 확인하였다.Table 2 shows the efficiency and potential of active chlorine species according to the firing temperature. Referring to Table 2, the molar ratio of Pt:Ru was fixed at 8:2 or 2:8, and the efficiency of generating active chlorine species was measured in the temperature range of 400 to 900 °C. When the molar ratio was 8:2, the firing temperature was 500 °C. It was confirmed that the generation efficiency of active chlorine species was 100% regardless of the molarity of the NaCl solution. In addition, when the molar ratio was 2:8, the 0.137 M NaCl aqueous solution showed the highest active chlorine species generation efficiency at 800 ° C and 91.40%, and the 0.5 M NaCl aqueous solution showed the highest activity at 600 ° C and 95.62%, respectively. It was confirmed that the chlorine species production efficiency was shown.

촉매량에 따른 활성염소종 생성 효율Active chlorine species generation efficiency according to catalyst amount

Pt:Ru=8:2Pt:Ru=8:2 Pt:Ru=2:8Pt:Ru=2:8 전해질electrolyte 촉매량
(mg/cm2)
catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species generation efficiency 전해질electrolyte 촉매량
(mg/cm2)
catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species generation efficiency
0.137 M
NaCl
0.137M
NaCl
3.333.33 100%100% 0.137 M
NaCl
0.137M
NaCl
3.333.33 91.40%91.40%
2.502.50 100%100% 2.502.50 90%90% 1.671.67 100%100% 1.671.67 70.30%70.30% 0.830.83 100%100% 0.830.83 66.09%66.09% 0.5 M
NaCl
0.5M
NaCl
3.333.33 100%100% 0.5 M
NaCl
0.5M
NaCl
3.333.33 95.62%95.62%
0.830.83 97.02%97.02% 0.830.83 100%100%

표 3은 Pt-Ru의 몰비와 소성온도를 고정한 상태에서의 촉매량에 따른 활성염소종 생성효율 및 potential을 나타낸 것이다. 표 3을 참조하면, Pt-Ru의 몰비가 8:2일때 0.137 M NaCl 수용액에서는 촉매량과는 무관하게 활성염소종 생성효율이 100%로 나타났으며, 0.5 M NaCl 수용액에서는 3.33 mg/cm2일때 활성염소종 생성효율이 100%임을 확인하였다. 또한 Pt-Ru의 몰비가 2:8일 때 0.137 M NaCl 수용액에서는 첨가한 촉매량이 증가할수록 활성염소종 생성효율이 높아져 3.33 mg/cm2일때 91.40%로 가장 높게 나타난 반면에, 0.5 M NaCl 수용액에서는 오히려 촉매량이 줄어든 0.83 mg/cm2일 때 활성염소종 생성효율이 100%로 나타남을 확인하였다.Table 3 shows the active chlorine species generation efficiency and potential according to the amount of catalyst in the state where the molar ratio of Pt-Ru and the firing temperature are fixed. Referring to Table 3, when the molar ratio of Pt-Ru is 8:2, the 0.137 M NaCl aqueous solution showed 100% active chlorine species generation efficiency regardless of the catalyst amount, and at 3.33 mg/cm 2 in the 0.5 M NaCl aqueous solution. It was confirmed that the generation efficiency of active chlorine species was 100%. In addition, when the molar ratio of Pt-Ru is 2:8, in 0.137 M NaCl aqueous solution, as the amount of catalyst added increases, the active chlorine species generation efficiency increases, and it is the highest at 3.33 mg/cm 2 at 91.40%, whereas in 0.5 M NaCl aqueous solution Rather, it was confirmed that the generation efficiency of active chlorine species was 100% when the catalyst amount was reduced to 0.83 mg/cm 2 .

Ti 혼합 후 Ti 비율에 따른 전극 성능 관찰Observation of electrode performance according to Ti ratio after Ti mixing

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl (Pt:Ru):Ti 몰비(Pt:Ru):Ti molar ratio 활성염소종 생성효율Active chlorine species generation efficiency (Pt:Ru):Ti 몰비(Pt:Ru):Ti molar ratio 활성염소종 생성효율Active chlorine species generation efficiency 1:91:9 83%83% 1:91:9 85.77%85.77% 2:82:8 85.77%85.77% 2:82:8 91.397%91.397% 3:73:7 98.43%98.43% 3:73:7 100%100%

표 4는 Ti 혼합 후 Ti 비율에 따른 전극 성능 평가를 나타낸 것이다. 표 4를 참조하면, (Pt:Ru):Ti 몰비가 3:7일 때 활성염소종 생성효율이 98% 이상으로 가장 우수한 성능을 가짐을 확인할 수 있었다.Table 4 shows electrode performance evaluation according to Ti ratio after Ti mixing. Referring to Table 4, when the molar ratio of (Pt:Ru):Ti was 3:7, it was confirmed that the efficiency of generating active chlorine species was 98% or more and had the best performance.

Ti 혼합 후 전극 성능 관찰Observation of electrode performance after Ti mixing

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species generation efficiency Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도
(℃)
firing temperature
(℃)
활성염소종 생성효율Active chlorine species generation efficiency
0.6:2.4:70.6:2.4:7 400400 92.80%92.80% 0.6:2.4:70.6:2.4:7 400400 94.21%94.21% 500500 98.43%98.43% 500500 100%100% 600600 99.83%99.83% 600600 100%100% 700700 97.02%97.02% 700700 94.21%94.21% 800800 94.21%94.21% 800800 92.80%92.80% 900900 98.43%98.43% 900900 100%100%

표 5는 Ti 혼합 후 3원 전극의 성능 평가를 나타낸 것이다. 표 5를 참조하면, (Pt:Ru):Ti를 3:7의 몰비로 조합하고 Ti와 조합한 Pt:Ru의 비율은 2:8로 설정한 것을 알 수 있으며 기존의 Pt:Ru=2:8의 몰비로 제작한 전극에 비해 소성 온도와 관계없이 우수한 성능을 보이는 것을 확인하였다.Table 5 shows the performance evaluation of the ternary electrode after Ti mixing. Referring to Table 5, it can be seen that (Pt:Ru):Ti was combined at a molar ratio of 3:7 and the ratio of Pt:Ru combined with Ti was set at 2:8, and the conventional Pt:Ru = 2: Compared to the electrode manufactured with a molar ratio of 8, it was confirmed that it showed excellent performance regardless of the firing temperature.

Ti 혼합 후 전극 특성 관찰Observation of electrode characteristics after Ti mixing

Pt:Ru:Ti 몰비Pt:Ru:Ti molar ratio 소성온도(℃)Firing temperature (℃) EISEIS ECSAECSA Rs R s Rct Rct Cdl(mF/cm2) Cdl (mF/cm 2 ) 0.6:2.4:70.6:2.4:7 400400 6.3586.358 69.6369.63 0.810.81 500500 6.1826.182 35.7135.71 5.7455.745 600600 5.8845.884 95.9295.92 4.3854.385 700700 6.4506.450 259.6259.6 0.630.63 800800 4.7714.771 333.2333.2 1.8751.875 900900 3.7193.719 427.9427.9 0.6850.685

표 6은 Ti 혼합 후 3원 전극의 특성을 관찰한 것을 나타낸 것이다. 표 6을 참조하면, 활성염소종 실험에서 가장 성능이 좋게 나타난 500 ℃의 소성 온도에서 전하전달 저항이 가장 낮고 전기화학적활성면적이 가장 크게 관찰되었으며, 이로써 소성온도 500 ℃가 우수한 제작 조건임을 알 수 있었다.Table 6 shows the observed characteristics of the ternary electrode after Ti mixing. Referring to Table 6, the lowest charge transfer resistance and the largest electrochemical active area were observed at the firing temperature of 500 ° C, which showed the best performance in the active chlorine species experiment, and it can be seen that the firing temperature of 500 ° C is an excellent manufacturing condition. there was.

Ti 혼합 후 촉매량에 따른 전극 성능 관찰Observation of electrode performance according to catalyst amount after Ti mixing

0.137 M NaCl0.137 M NaCl 0.5 M NaCl0.5 M NaCl 촉매량(mg/cm2)Catalytic amount (mg/cm 2 ) 활성염소종 생성효율Active chlorine species generation efficiency 촉매량(mg/cm2)Catalytic amount (mg/cm 2 ) 활성염소종 생성효율Active chlorine species generation efficiency 3.333.33 98.43%98.43% 3.333.33 100%100% 0.830.83 100%100% 0.830.83 100%100%

표 7은 Ti 혼합 후 촉매량에 따른 3원 전극의 성능 평가를 나타낸 것이다. Pt:Ru:Ti=0.6:2.4:7의 몰비, 소성온도 500 ℃로 고정하여 촉매량에 따른 전극 성능을 관찰한 결과, 촉매량에 관계없이 우수한 성능을 보이는 것을 확인하였다. 도 3은 본 발명의 일 실시예에 따른 생성된 활성염소종의 농도와 전류 효율 그래프를 도시한 것이다. 도 3을 참조하면, 전류효율이 95% 이상이며 이는 Pt-Ru-Ti 촉매가 활성염소종 생성에 대해 95% 이상의 선택성을 보이는 것을 의미한다.Table 7 shows the performance evaluation of the three-way electrode according to the catalyst amount after Ti mixing. As a result of observing the electrode performance according to the catalyst amount by fixing the molar ratio of Pt:Ru:Ti = 0.6:2.4:7 and the firing temperature at 500 °C, it was confirmed that the electrode exhibited excellent performance regardless of the catalyst amount. Figure 3 shows a graph of the concentration and current efficiency of the generated active chlorine species according to an embodiment of the present invention. Referring to FIG. 3, the current efficiency is 95% or more, which means that the Pt-Ru-Ti catalyst shows a selectivity of 95% or more for the generation of active chlorine species.

인공 해수에서의 활성염소종 생성 효율Efficiency of production of active chlorine species in artificial seawater

Pt:Ru = 8:2 (500 ℃)Pt:Ru = 8:2 (500 ℃) Pt:Ru = 2:8 (600 ℃)Pt:Ru = 2:8 (600 ℃) Pt:Ru:Ti = 0.6:2.4:7 (500 ℃)Pt:Ru:Ti = 0.6:2.4:7 (500 °C) 촉매량
(mg/cm2)
catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species generation efficiency 촉매량
(mg/cm2)
catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species generation efficiency 촉매량
(mg/cm2)
catalytic amount
(mg/cm 2 )
활성염소종 생성효율Active chlorine species generation efficiency
3.333.33 90.00%90.00% 3.333.33 95.62%95.62% 3.333.33 91.40%91.40% 0.830.83 90.00%90.00% 0.830.83 92.80%92.80% 0.830.83 91.40%91.40%

표 8은 제작한 전극의 인공해수에서의 활성염소종 생성효율을 나타낸 것이다. 표 8을 참조하면, 인공해수에 포함된 다양한 이온의 영향으로 비슷한 농도의 NaCl 용액 조건보다 약간의 효율이 감소했지만 인공해수에서도 90% 이상의 우수한 성능을 보이는 것을 확인하였다.Table 8 shows the efficiency of producing active chlorine species in artificial seawater of the manufactured electrode. Referring to Table 8, it was confirmed that the efficiency was slightly decreased compared to the NaCl solution condition of a similar concentration due to the influence of various ions contained in the artificial seawater, but it showed excellent performance of 90% or more even in artificial seawater.

Pt-Ru-Ti 전극의 내구성 평가Durability evaluation of Pt-Ru-Ti electrode

도 4는 본 발명의 일 실시예에 따른 전극의 내구성 평가를 도시한 것이다. 도 4를 참조하면, 열처리하지 않은 전극은 14시간만에 전극이 손상되어 전압이 크게 증가하는 모습이 관찰되지만, 열처리를 한 전극은 500시간동안 전압의 증가폭이 크지 않아 강한 내구성을 가졌음을 확인하였다. 4 shows durability evaluation of an electrode according to an embodiment of the present invention. Referring to FIG. 4, it was observed that the electrodes that were not heat-treated were damaged and the voltage greatly increased after 14 hours, but the heat-treated electrodes did not increase the voltage for 500 hours, confirming that they had strong durability. .

또한 내구성 평가 실험 전후에 0.941 M NaCl 수용액에서 80 mA/cm2의 전류밀도를 가하며 활성염소종 생성 실험을 진행하고 결과를 비교하여 내구성 평가를 진행하는 동안 전극의 손상 여부를 평가하였다. 표 9는 내구성평가 실험 전후에 전극의 활성염소종 생성 효율을 비교한 결과이다. 내구성평가 이후 전극의 효율이 조금 감소한 것을 확인할 수 있지만 여전히 높은 효율을 유지함을 확인하였다.In addition, before and after the durability evaluation experiment, an active chlorine species generation experiment was performed while applying a current density of 80 mA/cm 2 in a 0.941 M NaCl aqueous solution, and the results were compared to evaluate whether or not the electrode was damaged during the durability evaluation. Table 9 is a result of comparing the efficiency of generating active chlorine species of the electrode before and after the durability evaluation experiment. After the durability evaluation, it was confirmed that the efficiency of the electrode decreased slightly, but it was confirmed that the efficiency was still high.

0.941 M NaCl0.941 M NaCl Pt-Ru-TiPt-Ru-Ti 활성염소종 생성효율Active chlorine species generation efficiency as-synthesizedas-synthesized 97%97% usedused 90%90%

Pt-Ru-Ti 전극의 물성 평가Evaluation of physical properties of Pt-Ru-Ti electrode

도 5는 본 발명의 일 실시예에 따른 전극 표면의 SEM 이미지를 도시한 것이다. 도 5를 참조하면, 티타늄 기판 위에 Pt-Ru-Ti 촉매가 나노파티클 형태로 형성되어 있음을 확인할 수 있었다. 도 6은 본 발명의 일 실시예에 따른 전극의 EDS 분석 이미지를 도시한 것이다. 도 6을 참조하면, 티타늄 기판 위에 Pt-Ru-Ti 촉매는 각 구성원소가 편재되어 있지 않고 전극 전체에 고르게 분포함을 알 수 있었다. 도 7은 본 발명의 일 실시예에 따른 전극의 XRD 분석 이미지를 도시한 것이다. 도 7을 참조하면, RuO2, TiO2 및 Pt의 peak가 나타났는데, 이로써 Ru 및 Ti는 산화물의 형태, Pt는 메탈 형태로 존재함을 알 수 있으며, 또한 RuO2, TiO2 및 금속 Pt이 혼합되어 구성됨을 확인할 수 있다.5 shows a SEM image of an electrode surface according to an embodiment of the present invention. Referring to FIG. 5 , it was confirmed that the Pt-Ru-Ti catalyst was formed in the form of nanoparticles on the titanium substrate. 6 shows an EDS analysis image of an electrode according to an embodiment of the present invention. Referring to FIG. 6, it can be seen that each element of the Pt-Ru-Ti catalyst on the titanium substrate is not unevenly distributed and is evenly distributed over the entire electrode. 7 shows an XRD analysis image of an electrode according to an embodiment of the present invention. Referring to FIG. 7, peaks of RuO 2 , TiO 2 and Pt appeared, whereby it can be seen that Ru and Ti exist in oxide form and Pt exist in metal form, and RuO 2 , TiO 2 and metal Pt are present. It can be seen that they are mixed.

전술한 내용은 후술할 발명의 청구범위를 더욱 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 상술하였다. 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the scope of the invention which follows may be better understood. Those skilled in the art to which the present invention pertains will understand that the present invention can be embodied in other specific forms without changing its technical spirit or essential features. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the claims and equivalent concepts should be construed as being included in the scope of the present invention.

Claims (5)

선박평형수를 살균 처리하기 위한 선박평형수 전기분해용 전극에 있어서,
메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상을 포함하고, 이들 상부에는 Pt, Ru 및 Ti 촉매층이 위치하며,
상기 촉매층의 Pt:Ru의 조합 몰비는 1:9 내지 9:1, (Pt:Ru):Ti의 몰비는 1: 1 내지 3이며,
상기 전기분해용 전극에 로딩된 Pt, Ru 및 Ti 촉매량은 0.5 내지 5 mg/cm2을 포함하는 것을 특징으로 하는 선박평형수 전기분해용 전극.
In the ballast water electrolysis electrode for sterilizing ballast water,
It includes at least one selected from metal mesh, metal foam, and metal plate, and Pt, Ru, and Ti catalyst layers are positioned on top of them,
The combined molar ratio of Pt:Ru in the catalyst layer is 1:9 to 9:1, the molar ratio of (Pt:Ru):Ti is 1:1 to 3,
Electrode for ballast water electrolysis, characterized in that the catalyst amount of Pt, Ru and Ti loaded on the electrode for electrolysis comprises 0.5 to 5 mg/cm 2 .
제 1항에 있어서,
상기 촉매층은 400 내지 900℃에서 소성하여 생성되는 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to claim 1,
The catalyst layer is an electrode for ballast water electrolysis, characterized in that produced by firing at 400 to 900 ℃.
제 1항에 있어서,
상기 촉매층은 산처리하여 산화피막이 제거된 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상에 에어브러쉬로 스프레이 코팅하여 제작하는 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to claim 1,
The catalyst layer is an electrode for ballast water electrolysis, characterized in that produced by spray coating with an airbrush on at least one selected from a metal mesh, metal foam and metal plate from which oxide film is removed by acid treatment.
제 1항에 있어서,
상기 메탈 메쉬, 메탈 폼 및 메탈 플레이트에서 선택된 하나 이상은 티타늄, 니켈, 금, 구리, 니켈 합금 및 스테인레스 스틸인 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to claim 1,
Electrode for ballast water electrolysis, characterized in that at least one selected from the metal mesh, metal foam and metal plate is titanium, nickel, gold, copper, nickel alloy and stainless steel.
제 1항에 있어서,
상기 선박평형수 전기분해용 전극에 10 내지 1000 mA/cm2의 전류밀도를 가하는 것을 특징으로 하는 선박평형수 전기분해용 전극.
According to claim 1,
An electrode for electrolysis of ballast water, characterized in that a current density of 10 to 1000 mA/cm 2 is applied to the electrode for electrolysis of ballast water.
KR1020210177788A 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis KR102648323B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis
PCT/KR2022/019568 WO2023113337A1 (en) 2021-12-13 2022-12-05 Pt-ru-ti catalytic electrode for electrolysis of ballast water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis

Publications (2)

Publication Number Publication Date
KR20230089282A true KR20230089282A (en) 2023-06-20
KR102648323B1 KR102648323B1 (en) 2024-03-14

Family

ID=86772858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210177788A KR102648323B1 (en) 2021-12-13 2021-12-13 Pt-Ru-Ti catalyst electrode for ballast water electrolysis

Country Status (2)

Country Link
KR (1) KR102648323B1 (en)
WO (1) WO2023113337A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116658A (en) * 2008-05-07 2009-11-11 (주) 테크로스 Treatment system for ballast water
KR20130130504A (en) 2012-05-22 2013-12-02 (주) 테크로스 Electrode wiring sturcture of electrolysis device and electrode defect detecting method using thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148111B1 (en) * 2009-07-23 2012-05-22 (주) 테크로스 Manufacturing Method for Electrolytic Sterilization Insoluble Electrode
KR101317669B1 (en) * 2011-12-08 2013-10-15 (주) 테크로스 Ship ballast water electrolysis, sterilized insoluble electrode and method for manufacturing the same
JP7073104B2 (en) * 2015-09-28 2022-05-23 株式会社大阪ソーダ Electrode for chlorine generation and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090116658A (en) * 2008-05-07 2009-11-11 (주) 테크로스 Treatment system for ballast water
KR20130130504A (en) 2012-05-22 2013-12-02 (주) 테크로스 Electrode wiring sturcture of electrolysis device and electrode defect detecting method using thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Lassali, T. A. 외 2인. ‘Structural, morphological and surface properties as a function of composition of Ru+ Ti+ Pt mixed-oxide electrodes.’ Electrochimica acta 43.16-17 (1998): p2515-2525.* *

Also Published As

Publication number Publication date
WO2023113337A1 (en) 2023-06-22
KR102648323B1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
RU2709479C1 (en) Anode for electrolysis of aqueous solution of alkali and method of making anode for electrolysis of aqueous solution of alkali
CN101525755B (en) Cathode for hydrogen generation
KR101082859B1 (en) Precious metal oxide catalyst for water electrolysis
EP3587622B1 (en) Positive electrode, positive electrode for water electrolysis, electrolysis cell, and method for producing hydrogen
US11028491B2 (en) Electrolysis electrode featuring metal-doped nanotube array and methods of manufacture and using same
US20100065420A1 (en) Electrode, method of manufacture and use thereof
JPH11104648A (en) Seawater electrolyzing apparatus
JP3883597B2 (en) Novel stable coating solutions for producing improved electrocatalytic mixed oxide coatings on metal substrates or metal-coated conductive substrates, and dimensionally stable anodes produced from such solutions
Spasojević et al. Microstructure of new composite electrocatalyst and its anodic behavior for chlorine and oxygen evolution
EP0046449B1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
Girenko et al. Selection of the optimal cathode material to synthesize medical sodium hypochlorite solutions in a membraneless electrolyzer
KR101741401B1 (en) Coating solution for electrochemical insoluble electrode and preparation method thereof
EP0046448B1 (en) Electrode with outer coating for effecting an electrolytic process and protective intermediate coating on a conductive base, and method of making same
Lindberg et al. Sources of oxygen produced in the chlorate process utilizing dimensionally stable anode (DSA) electrodes doped by Sn and Sb
KR102648323B1 (en) Pt-Ru-Ti catalyst electrode for ballast water electrolysis
JPH0633489B2 (en) Electrode for dilute salt water electrolysis
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JP7376913B2 (en) electrolyzer
KR890003514B1 (en) Cathode for electrolysis and a process for making the said cathode
JP7330490B2 (en) Electrodes for ozone generation
JPH045493B2 (en)
JP2010219034A (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, fuel cell, and brine electrolytic cell
Mahidashti et al. Design of CoSbyOx/Ti electrocatalyst via facile thermal decomposition method for durable and high temperature chlorine evolution reaction in acidic media
JP2004149848A (en) Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant