KR102625963B1 - Manufacturing method of spherical aluminium oxide powder - Google Patents

Manufacturing method of spherical aluminium oxide powder Download PDF

Info

Publication number
KR102625963B1
KR102625963B1 KR1020210161847A KR20210161847A KR102625963B1 KR 102625963 B1 KR102625963 B1 KR 102625963B1 KR 1020210161847 A KR1020210161847 A KR 1020210161847A KR 20210161847 A KR20210161847 A KR 20210161847A KR 102625963 B1 KR102625963 B1 KR 102625963B1
Authority
KR
South Korea
Prior art keywords
aluminum oxide
oxide powder
spherical aluminum
content
less
Prior art date
Application number
KR1020210161847A
Other languages
Korean (ko)
Other versions
KR20230075556A (en
Inventor
이종근
박민교
Original Assignee
주식회사 대한세라믹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대한세라믹스 filed Critical 주식회사 대한세라믹스
Priority to KR1020210161847A priority Critical patent/KR102625963B1/en
Publication of KR20230075556A publication Critical patent/KR20230075556A/en
Application granted granted Critical
Publication of KR102625963B1 publication Critical patent/KR102625963B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/023Grinding, deagglomeration or disintegration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/4922Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은, α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집하는 단계와, 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 포집된 구상 산화알루미늄 분말을 세척하는 단계 및 세척된 구상 산화알루미늄 분말을 건조하는 단계를 포함하는 구상 산화알루미늄 분말의 제조방법에 관한 것이다. 본 발명에 의하면, 구상 산화알루미늄 분말을 이용한 수지 조성물 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아질 수 있다.The present invention includes the steps of flame spraying α-alumina powder and collecting the spherical aluminum oxide powder, washing the collected spherical aluminum oxide powder until the electrical conductivity of the supernatant is in the range of 80 to 300 ㎲/cm, and washing. It relates to a method for producing spherical aluminum oxide powder including the step of drying the spherical aluminum oxide powder. According to the present invention, when forming a resin composition using spherical aluminum oxide powder, viscosity and fluidity can be improved and bonding strength with the resin can be improved.

Description

구상 산화알루미늄 분말의 제조방법{Manufacturing method of spherical aluminium oxide powder}Manufacturing method of spherical aluminum oxide powder

본 발명은 산화알루미늄 분말의 제조방법에 관한 것으로, 더욱 상세하게는 산화알루미늄 분말을 이용한 수지 조성물 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아질 수 있는 구상 산화알루미늄 분말의 제조방법에 관한 것이다.The present invention relates to a method for producing aluminum oxide powder, and more specifically, to a method for producing spherical aluminum oxide powder in which viscosity and fluidity can be improved and bonding strength with resin can be improved when forming a resin composition using aluminum oxide powder. will be.

산화알루미늄(Al2O3), 특히 알파-산화알루미늄(α-Al2O3)은 높은 내열성, 내화학성, 내식성, 고강도 등과 같은 우수한 물성을 가진다. 알파-산화알루미늄(α-Al2O3)은 분자량이 101.96이고, 비중이 3.965 정도이며, 용융점이 2,072℃ 정도인 백색의 분말로서, 육방정(a=4.758, c=12.991Å)의 결정구조를 가진 물질이다.Aluminum oxide (Al 2 O 3 ), especially alpha-aluminum oxide (α-Al 2 O 3 ), has excellent physical properties such as high heat resistance, chemical resistance, corrosion resistance, and high strength. Alpha-aluminum oxide (α-Al 2 O 3 ) is a white powder with a molecular weight of 101.96, a specific gravity of about 3.965, and a melting point of about 2,072°C, with a hexagonal (a=4.758, c=12.991Å) crystal structure. It is a substance with

이러한 우수한 물성을 갖는 산화알루미늄(Al2O3)은 집적회로(IC) 기판, LCD(Liquid crystal display) 또는 PDP(Plasma display panel)용 부품 등의 전자세라믹스, 분쇄장치, 성형·가공기계 등의 기계 및 구조 세라믹스, 충진재, 촉매, 촉매담체 등의 에너지 및 환경 세라믹스, 인공치골, 인공관절 등의 생체 세라믹스 등의 용도로 광범위하게 사용되고 있다.Aluminum oxide (Al 2 O 3 ), which has such excellent physical properties, is used in electronic ceramics such as integrated circuit (IC) substrates, parts for LCD (liquid crystal display) or PDP (plasma display panel), grinding equipment, molding and processing machines, etc. It is widely used for mechanical and structural ceramics, energy and environmental ceramics such as fillers, catalysts, and catalyst carriers, and bioceramics such as artificial pubis and artificial joints.

특히, 구상 산화알루미늄은 다양한 분야에서 적용되고 있으며, 열전도 특성이 우수하여 최근 들어 전자기기의 방열 소재 등으로 널리 적용되고 있다.In particular, spherical aluminum oxide is applied in various fields, and has excellent heat conduction properties, so it has recently been widely applied as a heat dissipation material for electronic devices.

구상 산화알루미늄은 그 순도에 따라 열전도성이 달라지며, 순도가 높을수록 열전도성이 높아지므로 방열 특성도 우수하게 된다.The thermal conductivity of spherical aluminum oxide varies depending on its purity, and the higher the purity, the higher the thermal conductivity, resulting in excellent heat dissipation characteristics.

더욱이 방열 수지 또는 기타 방열 재료에 구상 산화알루미늄을 충진재(Filler)로 혼합하여 사용할 경우, 고순도를 사용하고 충진율을 높여 높은 밀도를 유지해야 방열 특성이 우수한 방열 소재를 얻을 수 있게 된다.Furthermore, when mixing spherical aluminum oxide with heat dissipation resin or other heat dissipation materials as a filler, high purity must be used and the filling rate must be increased to maintain high density to obtain a heat dissipation material with excellent heat dissipation characteristics.

따라서, 방열 소재로 활용되는 구상 산화알루미늄은 고순도에 구상화율이 높을 필요가 있다. Therefore, spherical aluminum oxide used as a heat dissipation material needs to be of high purity and have a high spheroidization rate.

구상 산화알루미늄이 전자부품에 활용될 경우, Na, Cl 등의 휘발성 이온이 과다하게(예컨대, 100ppm 이상) 포함되어 있으면, 사용 중 이온의 용출에 의해 전자제품에 이상을 일으킬 수 있기 때문에 이러한 휘발성 이온의 함량이 낮을 필요가 있다.When spherical aluminum oxide is used in electronic components, if it contains excessive amounts of volatile ions such as Na and Cl (for example, more than 100 ppm), it may cause problems in electronic products due to the elution of the ions during use. The content needs to be low.

종래의 방법으로 제조된 산화알루미늄에는 Na2O, K2O 등의 알카리 성분이 다량 함유되어 있는데, 이러한 알칼리 성분은 전기 절연성능을 저하시킨다.Aluminum oxide manufactured by conventional methods contains a large amount of alkaline components such as Na 2 O and K 2 O, and these alkaline components reduce electrical insulation performance.

대부분의 산화알루미늄은 바이어법(Bayer process)을 이용하여 제조되고 있다. 상기 바이어법에 따르면, 보오크사이트를 수산화나트륨 용액에 용해시켜 모액을 만들고 이 모액에 수산화알루미늄 시드(seed)를 첨가하여 30 내지 100 ㎛의 수산화알루미늄을 제조한 후, 이를 1,200℃ 이상의 고온에서 알파-알루미나로 상전이시키고, 이를 분쇄하여 산화알루미늄을 제조한다. Most aluminum oxide is manufactured using the Bayer process. According to the Bayer method, bauxite is dissolved in a sodium hydroxide solution to prepare a mother liquor, and aluminum hydroxide seeds are added to the mother liquor to produce 30 to 100 ㎛ aluminum hydroxide, which is then alpha-activated at a high temperature of 1,200°C or higher. -Phase transfer to alumina and crush it to produce aluminum oxide.

그러나, 상기 바이어법은 보크사이트를 수산화나트륨(NaOH)을 용매로 사용하여 고온에서 알루민산나트륨 수용액으로 용출시킨 후 석출하여 수산화알루미늄을 수득하기 때문에, 수산화알루미늄에 소다(soda, Na2O 등)가 불순물로 잔존하게 된다. 그 결과 바이어법을 통해 얻은 수산화나트륨을 고온 소성하여 얻은 산화알루미늄은 높은 소다 함량으로 인하여 전기전자 분야에서 사용하기에 적합하지 않은 특성을 나타내게 된다.However, in the Bayer method, bauxite is eluted with an aqueous solution of sodium aluminate at a high temperature using sodium hydroxide (NaOH) as a solvent and then precipitated to obtain aluminum hydroxide, so soda (soda, Na 2 O, etc.) is added to the aluminum hydroxide. remains as impurities. As a result, aluminum oxide obtained by high-temperature sintering of sodium hydroxide obtained through the Bayer method exhibits characteristics that are unsuitable for use in the electrical and electronic fields due to its high soda content.

일본 등록특허공보 제05410245호Japanese Patent Publication No. 05410245

본 발명이 해결하고자 하는 과제는 산화알루미늄 분말을 이용한 수지 조성물 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아질 수 있는 구상 산화알루미늄 분말의 제조방법을 제공함에 있다. The problem to be solved by the present invention is to provide a method for producing spherical aluminum oxide powder that can improve viscosity and fluidity and improve bonding strength with resin when forming a resin composition using aluminum oxide powder.

본 발명은, (a) α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집하는 단계와, (b) 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 포집된 구상 산화알루미늄 분말을 세척하는 단계 및 (c) 세척된 구상 산화알루미늄 분말을 건조하는 단계를 포함하는 구상 산화알루미늄 분말의 제조방법을 제공한다.The present invention includes the steps of (a) flame spraying α-alumina powder and collecting the spherical aluminum oxide powder, and (b) collecting the spherical aluminum oxide powder until the electrical conductivity of the supernatant is in the range of 80 to 300 ㎲/cm. A method for producing spherical aluminum oxide powder is provided, including the step of washing and (c) drying the washed spherical aluminum oxide powder.

상기 상등액의 pH는 7.0∼8.5이 되게 하는 것이 바람직하다.The pH of the supernatant is preferably between 7.0 and 8.5.

상기 세척은 교반하면서 수행하고, 상기 교반은 10∼60 rpm의 회전속도로 실시하는 것이 바람직하다.The washing is performed while stirring, and the stirring is preferably carried out at a rotation speed of 10 to 60 rpm.

상기 건조는 100∼130℃의 온도로 수행하는 것이 바람직하다.The drying is preferably performed at a temperature of 100 to 130°C.

상기 (c) 단계 후에, 구상 산화알루미늄 분말을 400∼900℃의 온도에서 열처리하는 단계를 더 포함할 수 있다.After step (c), the step of heat treating the spherical aluminum oxide powder at a temperature of 400 to 900 ° C. may be further included.

상기 (c) 단계 후에, 구상 산화알루미늄 분말을 실란으로 표면처리하는 단계를 더 포함할 수 있다.After step (c), the step of surface treating the spherical aluminum oxide powder with silane may be further included.

상기 (a) 단계 전에, 상기 α-알루미나 분말을 분쇄하는 단계를 더 포함할 수 있고, 분쇄된 α-알루미나 분말의 평균 입경이 5∼20㎛가 되게 분쇄하는 것이 바람직하다.Before step (a), the step of pulverizing the α-alumina powder may be further included, and it is preferable to pulverize the pulverized α-alumina powder so that the average particle size is 5 to 20 μm.

상기 분쇄 시에 상기 α-알루미나 분말에 에틸렌글리콜을 혼합하여 분쇄할 수 있다.During the pulverization, the α-alumina powder may be mixed with ethylene glycol and pulverized.

상기 분쇄 시에 상기 α-알루미나 분말에 폴리아크릴산(polyacrylic acid)을 혼합하여 분쇄할 수 있다.During the pulverization, polyacrylic acid may be mixed with the α-alumina powder and pulverized.

상기 α-알루미나 분말은 그 화학성분에서 Fe2O3 함량이 0.02wt% 보다 작고, Na2O의 함량이 0.5wt% 보다 작으며, SiO2의 함량이 0.02wt% 보다 작고, CaO의 함량이 0.04wt% 보다 작은 것이 바람직하다.In terms of its chemical composition, the α-alumina powder has a Fe 2 O 3 content of less than 0.02 wt%, a Na 2 O content of less than 0.5 wt%, a SiO 2 content of less than 0.02 wt%, and a CaO content of It is preferable to be less than 0.04wt%.

상기 α-알루미나 분말은 비표면적이 0.5∼1.5 ㎡/g 범위인 것이 바람직하다.The α-alumina powder preferably has a specific surface area in the range of 0.5 to 1.5 m2/g.

상기 (c) 단계 후에 수득된 구상 산화알루미늄 분말은, 이온성 불순물인 Na+의 함량이 500ppm 보다 작고, K+의 함량이 200ppm 보다 작으며, Ca2+의 함량이 300ppm 보다 작고, NO2 2-의 함량이 100ppm 보다 작으며, NO3 -의 함량이 100ppm 보다 작을 수 있다.The spherical aluminum oxide powder obtained after step (c) has an ionic impurity Na + content of less than 500 ppm, K + content of less than 200 ppm, Ca 2+ content of less than 300 ppm, and NO 2 2 The content of - may be less than 100ppm, and the content of NO 3 - may be less than 100ppm.

본 발명에 의하면, 구상 산화알루미늄 분말을 이용한 수지 조성물 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아진다.According to the present invention, when forming a resin composition using spherical aluminum oxide powder, viscosity and fluidity are improved and bonding strength with the resin is improved.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the attached drawings. However, the following examples are provided to enable those skilled in the art to fully understand the present invention, and may be modified into various other forms, and the scope of the present invention is limited to the examples described below. It doesn't work.

발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.When it is said that one component "includes" another component in the detailed description or claims of the invention, this shall not be construed as being limited to consisting of only that component, unless specifically stated to the contrary, and other components may not be added. It must be understood that it can be included.

본 발명의 바람직한 실시예에 따른 구상 산화알루미늄 분말의 제조방법은, (a) α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집하는 단계와, (b) 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 포집된 구상 산화알루미늄 분말을 세척하는 단계 및 (c) 세척된 구상 산화알루미늄 분말을 건조하는 단계를 포함한다.A method for producing spherical aluminum oxide powder according to a preferred embodiment of the present invention includes the steps of (a) flame spraying α-alumina powder and collecting the spherical aluminum oxide powder, and (b) the electrical conductivity of the supernatant is 80 to 300 ㎲. /cm range, washing the collected spherical aluminum oxide powder and (c) drying the washed spherical aluminum oxide powder.

상기 상등액의 pH는 7.0∼8.5이 되게 하는 것이 바람직하다.The pH of the supernatant is preferably between 7.0 and 8.5.

상기 세척은 교반하면서 수행하고, 상기 교반은 10∼60 rpm의 회전속도로 실시하는 것이 바람직하다.The washing is performed while stirring, and the stirring is preferably carried out at a rotation speed of 10 to 60 rpm.

상기 건조는 100∼130℃의 온도로 수행하는 것이 바람직하다.The drying is preferably performed at a temperature of 100 to 130°C.

상기 (c) 단계 후에, 구상 산화알루미늄 분말을 400∼900℃의 온도에서 열처리하는 단계를 더 포함할 수 있다.After step (c), the step of heat treating the spherical aluminum oxide powder at a temperature of 400 to 900 ° C. may be further included.

상기 (c) 단계 후에, 구상 산화알루미늄 분말을 실란으로 표면처리하는 단계를 더 포함할 수 있다.After step (c), the step of surface treating the spherical aluminum oxide powder with silane may be further included.

상기 (a) 단계 전에, 상기 α-알루미나 분말을 분쇄하는 단계를 더 포함할 수 있고, 분쇄된 α-알루미나 분말의 평균 입경이 5∼20㎛가 되게 분쇄하는 것이 바람직하다.Before step (a), the step of pulverizing the α-alumina powder may be further included, and it is preferable to pulverize the pulverized α-alumina powder so that the average particle size is 5 to 20 μm.

상기 분쇄 시에 상기 α-알루미나 분말에 에틸렌글리콜을 혼합하여 분쇄할 수 있다.During the pulverization, the α-alumina powder may be mixed with ethylene glycol and pulverized.

상기 분쇄 시에 상기 α-알루미나 분말에 폴리아크릴산(polyacrylic acid)을 혼합하여 분쇄할 수 있다.During the pulverization, polyacrylic acid may be mixed with the α-alumina powder and pulverized.

상기 α-알루미나 분말은 그 화학성분에서 Fe2O3 함량이 0.02wt% 보다 작고, Na2O의 함량이 0.5wt% 보다 작으며, SiO2의 함량이 0.02wt% 보다 작고, CaO의 함량이 0.04wt% 보다 작은 것이 바람직하다.In terms of its chemical composition, the α-alumina powder has a Fe 2 O 3 content of less than 0.02 wt%, a Na 2 O content of less than 0.5 wt%, a SiO 2 content of less than 0.02 wt%, and a CaO content of It is preferable to be less than 0.04wt%.

상기 α-알루미나 분말은 비표면적이 0.5∼1.5 ㎡/g 범위인 것이 바람직하다.The α-alumina powder preferably has a specific surface area in the range of 0.5 to 1.5 m2/g.

상기 (c) 단계 후에 수득된 구상 산화알루미늄 분말은, 이온성 불순물인 Na+의 함량이 500ppm 보다 작고, K+의 함량이 200ppm 보다 작으며, Ca2+의 함량이 300ppm 보다 작고, NO2 2-의 함량이 100ppm 보다 작으며, NO3 -의 함량이 100ppm 보다 작을 수 있다.The spherical aluminum oxide powder obtained after step (c) has an ionic impurity Na + content of less than 500 ppm, K + content of less than 200 ppm, Ca 2+ content of less than 300 ppm, and NO 2 2 The content of - may be less than 100ppm, and the content of NO 3 - may be less than 100ppm.

이하에서, 본 발명의 바람직한 실시예에 따른 구상 산화알루미늄 분말의 제조방법을 더욱 구체적으로 설명한다. Hereinafter, the method for producing spherical aluminum oxide powder according to a preferred embodiment of the present invention will be described in more detail.

본 발명은 구상 산화알루미늄 분말을 이용한 수지 조성물 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아질 수 있는 구상 산화알루미늄 분말의 제조방법을 제시한다. The present invention provides a method for producing spherical aluminum oxide powder that can improve viscosity and fluidity and improve bonding strength with resin when forming a resin composition using spherical aluminum oxide powder.

본 발명에서는 구상 산화알루미늄을 제조하기 위한 원료로 α-알루미나 분말을 사용한다. 상기 α-알루미나 분말은 평균입도가 1∼100㎛ 정도이고 비표면적이 0.5∼1.5 ㎡/g 정도인 것이 바람직하다. α-알루미나 분말의 평균 입자 크기가 1㎛ 미만일 경우에는 가격이 고가여서 비경제적이며, 100㎛를 초과하는 경우에는 후속의 분쇄 공정에서 시간이 오래 걸리고 일정 크기 이하로 미립화하는데 어려움이 있을 수 있다. 상기 α-알루미나 분말은 그 화학성분에서 Na2O의 함량이 0.5wt%보다 작은 것이 바람직하다. 예컨대, 상기 α-알루미나 분말은 그 화학성분에서 Na2O의 함량이 0.001∼0.499wt% 정도일 수 있다. 더욱 구체적으로, 상기 α-알루미나 분말은 그 화학성분에서 Fe2O3 함량이 0.02wt% 보다 작고, Na2O의 함량이 0.5wt% 보다 작으며, SiO2의 함량이 0.02wt% 보다 작고, CaO의 함량이 0.04wt% 보다 작은 것이 바람직하다. 예컨대, 상기 α-알루미나 분말은 Fe2O3 0.001∼0.019 wt%이고, Na2O 0.001∼0.499 wt%, SiO2 0.001∼0.019 wt%, CaO 0.001∼0.039 wt%, Al2O3 99.50∼99.99 wt%를 화학성분으로 포함하는 분말인 것이 바람직하다. In the present invention, α-alumina powder is used as a raw material for producing spherical aluminum oxide. The α-alumina powder preferably has an average particle size of about 1 to 100㎛ and a specific surface area of about 0.5 to 1.5 m2/g. If the average particle size of α-alumina powder is less than 1㎛, it is expensive and uneconomical, and if it exceeds 100㎛, the subsequent grinding process takes a long time and there may be difficulties in atomizing it below a certain size. The α-alumina powder preferably has a Na 2 O content of less than 0.5 wt% in its chemical composition. For example, the α-alumina powder may have a Na 2 O content of about 0.001 to 0.499 wt% in its chemical composition. More specifically, the α-alumina powder has a Fe 2 O 3 content of less than 0.02 wt%, a Na 2 O content of less than 0.5 wt%, and a SiO 2 content of less than 0.02 wt% in its chemical composition, It is preferable that the CaO content is less than 0.04wt%. For example, the α-alumina powder contains Fe 2 O 3 0.001 to 0.019 wt%, Na 2 O 0.001 to 0.499 wt%, SiO 2 0.001 to 0.019 wt%, CaO 0.001 to 0.039 wt%, and Al 2 O 3 99.50 to 99.99 wt%. It is preferable that it is a powder containing wt% as a chemical component.

상기 α-알루미나 분말을 목표하는 크기로 분쇄할 수도 있다. 상기 분쇄는 건식 분쇄 방법을 이용하는 것이 바람직하며, 분쇄에 의해 목표하는 크기, 예컨대 평균입도가 5∼20㎛ 정도가 되게 하는 것이 바람직하다. The α-alumina powder may be pulverized to a target size. It is preferable to use a dry grinding method for the grinding, and it is desirable to achieve the target size by grinding, for example, the average particle size is about 5 to 20㎛.

상기 α-알루미나 분말에 에틸렌글리콜을 혼합하여 분쇄할 수 있다. 상기 에틸렌글리콜은 상기 α-알루미나 분말 100중량부에 대하여 0.01∼10중량부 혼합하는 것이 바람직하다. 상기 에틸렌글리콜을 혼합하게 되면 분쇄 효율을 높일 수가 있고, 이에 따라 분쇄 입도가 더 낮아질 수 있으며, 분쇄된 분말의 입도가 더욱 균일할 수 있다. The α-alumina powder can be mixed with ethylene glycol and ground. It is preferable to mix 0.01 to 10 parts by weight of ethylene glycol with respect to 100 parts by weight of the α-alumina powder. By mixing the ethylene glycol, grinding efficiency can be increased, and thus the grinding particle size can be lowered, and the particle size of the pulverized powder can be more uniform.

상기 α-알루미나 분말에 폴리아크릴산(polyacrylic acid)을 혼합하여 분쇄할 수 있다. 상기 폴리아크릴산은 상기 α-알루미나 분말에 100중량부에 대하여 0.01∼10중량부 혼합하는 것이 바람직하다. 상기 폴리아크릴산을 혼합하게 되면 분쇄 효율을 높일 수가 있고, 이에 따라 분쇄 입도가 더 낮아질 수 있고, 분쇄된 분말의 입도가 더욱 균일할 수 있다. The α-alumina powder can be mixed with polyacrylic acid and ground. It is preferable to mix 0.01 to 10 parts by weight of polyacrylic acid with respect to 100 parts by weight of the α-alumina powder. By mixing the polyacrylic acid, grinding efficiency can be increased, and thus the grinding particle size can be lowered, and the particle size of the pulverized powder can be more uniform.

상기 분쇄는 볼밀링(ball milling), 진동밀, 제트밀, 어트리션밀(attrition mill) 등의 방법을 이용할 수 있다. The grinding can be done using methods such as ball milling, vibration mill, jet mill, and attrition mill.

이하에서, 볼밀링 공정을 예로 들어 설명한다. Below, the ball milling process will be described as an example.

소성된 결과물을 볼과 함께 볼밀링기(ball milling machine)에 장입한다. The fired result is charged into a ball milling machine together with the balls.

상기 볼밀링기의 내벽은 고순도의 알루미나 재질로 라이닝(linning) 되어 있는 것이 바람직하다. 상기 볼밀링기의 내벽은 구상 산화알루미늄 성분과 동일한 알루미나 재질로 라이닝 되어 있으므로 다른 재질로 이루어진 경우에 비하여 불순물의 발생을 억제할 수 있고 고순도의 구상 산화알루미늄을 제조할 수 있는 장점이 있다. The inner wall of the ball mill is preferably lined with high-purity alumina material. Since the inner wall of the ball mill is lined with the same alumina material as the spherical aluminum oxide component, it has the advantage of suppressing the generation of impurities and producing high purity spherical aluminum oxide compared to cases made of other materials.

볼밀링기를 이용하여 일정 속도로 회전시켜 α-알루미나 분말을 기계적으로 균일하게 분쇄한다. 볼밀링에 사용되는 볼은 고순도의 알루미나 재질로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다. 구상 산화알루미늄 성분과 동일한 고순도의 알루미나 재질로 이루어진 볼을 사용함으로써 다른 재질의 볼을 사용하는 경우에 비하여 불순물의 발생을 억제할 수 있고 고순도의 구상 산화알루미늄을 제조할 수 있는 장점이 있다. The α-alumina powder is mechanically and uniformly pulverized by rotating at a constant speed using a ball mill. The balls used in ball milling can be made of high-purity alumina material. The balls may all be of the same size, or balls of two or more sizes may be used together. By using a ball made of the same high-purity alumina material as the spherical aluminum oxide component, there is an advantage in that the generation of impurities can be suppressed and high-purity spherical aluminum oxide can be produced compared to the case of using balls of other materials.

목표하는 입자의 크기로 분쇄하기 위하여 볼의 크기, 밀링 시간, 볼밀링기의 분당 회전속도 등을 조절한다. 예를 들면, 목표하는 α-알루미나 분말의 크기를 고려하여 볼의 크기는 5㎜∼50㎜ 정도의 범위로 설정하고, 볼밀링기의 회전속도는 10∼30rpm 정도의 범위로 설정할 수 있다. 볼밀링은 목표하는 입자의 크기 등을 고려하여 1∼72 시간, 바람직하게는 6∼30시간 동안 실시하는 것이 바람직하다. In order to grind to the target particle size, adjust the ball size, milling time, and rotation speed per minute of the ball mill. For example, considering the target size of α-alumina powder, the size of the ball can be set in the range of about 5 mm to 50 mm, and the rotation speed of the ball mill can be set in the range of about 10 to 30 rpm. Ball milling is preferably performed for 1 to 72 hours, preferably 6 to 30 hours, considering the target particle size.

상기 볼밀링에 의해 α-알루미나 분말은 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 된다. By the ball milling, α-alumina powder is pulverized into fine particles and has a uniform particle size distribution.

α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집한다. α-알루미나 분말을 로 내에 형성된 화염으로 용융하여 구형화 처리하고, 로 외에서 구상 산화알루미늄 분말을 포집한다. 상기 α-알루미나 분말을 가열 용융하기 위한 화염을 발생하기 위한 장치는 버너일 수 있고, 화염 용융에 의해 형성된 구형 산화알루미늄 분말을 포집하기 위한 장치로는 사이클론, 백필터 등일 수 있다. 화염 온도는 2600∼2800℃ 정도인 것이 바람직하다. 상기 버너에는 연료 가스와 산소 가스가 공급되어 화염을 형성할 수 있다. 상기 연료 가스는 LNG(liquefied natural gas) 가스일 수 있다. 상기 연료 가스는 100∼140 N㎥/hr, 더욱 바람직하게는 120 N㎥/hr 정도의 유량으로 공급하는 것이 바람직하다. 상기 산소 가스는 240∼280 N㎥/hr, 더욱 바람직하게는 260 N㎥/hr 정도의 유량으로 공급하는 것이 바람직하다. 원료인 α-알루미나 분말이 상기 화염으로 공급되고, 화염으로 공급된 α-알루미나 분말은 가열 용융되어 분말 사이즈가 감소되고 구상화되게 된다. α-알루미나 분말의 공급량(피드량)은 80∼100 kg/hr 정도인 것이 바람직하다. 화염 용사하기 위한 로는 포집장치와 연결되어 있다. 화염 용사로를 거친 분말은 포집장치에서 포집되어 수득된다. 연소 가스(배기가스)는 포집장치를 거쳐 외부로 배출될 수 있다. 포집장치로 사이클론과 백필터를 사용하는 경우에, 사이클론은 비교적 큰 입자를 포집할 수 있고, 백필터는 비교적 작은 입자를 포집할 수 있다. α-Alumina powder is flame sprayed and spherical aluminum oxide powder is collected. The α-alumina powder is melted with a flame formed in the furnace to make it spherical, and the spherical aluminum oxide powder is collected outside the furnace. The device for generating a flame for heating and melting the α-alumina powder may be a burner, and the device for collecting the spherical aluminum oxide powder formed by flame melting may be a cyclone, bag filter, etc. The flame temperature is preferably about 2600 to 2800°C. Fuel gas and oxygen gas may be supplied to the burner to form a flame. The fuel gas may be LNG (liquefied natural gas) gas. The fuel gas is preferably supplied at a flow rate of about 100 to 140 N㎥/hr, more preferably about 120 N㎥/hr. The oxygen gas is preferably supplied at a flow rate of about 240 to 280 N㎥/hr, more preferably about 260 N㎥/hr. α-alumina powder as a raw material is supplied to the flame, and the α-alumina powder supplied to the flame is heated and melted, thereby reducing the powder size and becoming spherical. The supply amount (feed amount) of α-alumina powder is preferably about 80 to 100 kg/hr. The furnace for flame spraying is connected to a collection device. The powder that has passed through the flame spraying furnace is collected and obtained in a collection device. Combustion gas (exhaust gas) can be discharged to the outside through a collection device. When using a cyclone and a bag filter as a collection device, the cyclone can collect relatively large particles, and the bag filter can collect relatively small particles.

포집된 구상 산화알루미늄 분말을 세척하는데, 이때 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 포집된 구상 산화알루미늄 분말을 세척하는 것이 바람직하다. 포집된 구상 산화알루미늄 분말을 세정액(예컨대, 물(H2O))과 함께 세정조에 담고 교반하면서 세척한다. 상기 세척 시에 세정조의 상부에 있는 상등액의 전기전도도를 측정하면서 세척하되, 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 세척하게 되면, 구상 산화알루미늄을 이용하여 수지 조성물을 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아진다. 실험에 따르면, 상등액의 전기전도도가 300㎲/cm을 초과하면 점도가 높아지는 단점이 있을 수 있고, 상등액의 전기전도도가 80∼300㎲/cm 범위인 경우와 비교하여 상등액의 전기전도도가 80㎲/cm 미만일 경우에 점도가 오히려 높아질 수 있다. 상기 세척에 의해, 구상 산화알루미늄 분말은, 이온성 불순물인 Na+의 함량이 500ppm 보다 작고, K+의 함량이 200ppm 보다 작으며, Ca2+의 함량이 300ppm 보다 작고, NO2 2-의 함량이 100ppm 보다 작으며, NO3 -의 함량이 100ppm 보다 작을 수 있다.When washing the collected spherical aluminum oxide powder, it is preferable to wash the collected spherical aluminum oxide powder until the electrical conductivity of the supernatant is in the range of 80 to 300 ㎲/cm. The collected spherical aluminum oxide powder is placed in a washing tank along with a washing liquid (e.g., water (H 2 O)) and washed while stirring. During the washing, the electrical conductivity of the supernatant at the top of the washing tank is measured and washed until the electrical conductivity of the supernatant is in the range of 80 to 300 ㎲/cm. When forming a resin composition using spherical aluminum oxide, Viscosity and fluidity are improved and bonding power with resin is improved. According to experiments, if the electrical conductivity of the supernatant exceeds 300㎲/cm, there may be a disadvantage of increased viscosity, and compared to the case where the electrical conductivity of the supernatant is in the range of 80 to 300㎲/cm, the electrical conductivity of the supernatant is 80㎲/cm. If it is less than cm, the viscosity may actually increase. By the above washing, the spherical aluminum oxide powder has a content of Na + as an ionic impurity less than 500 ppm, a content of K + less than 200 ppm, a content of Ca 2+ less than 300 ppm, and a content of NO 2 2- This is less than 100ppm, and the NO 3 - content may be less than 100ppm.

상기 상등액의 pH가 7.0∼8.5 정도가 되게 하는 것이 바람직하며, 상기 상등액의 pH가 상기 범위일 때 구상 산화알루미늄을 이용하여 수지 조성물을 형성시에 점도 및 유동성이 개선되고 수지와의 결합력이 좋아진다. It is preferable that the pH of the supernatant is around 7.0 to 8.5, and when the pH of the supernatant is in the above range, the viscosity and fluidity are improved when forming a resin composition using spherical aluminum oxide, and the bonding strength with the resin is improved. .

상기 교반은 10∼60 rpm, 더욱 바람직하게는 30∼40 rpm 정도로 수행하는 것이 바람직하다. 교반하면서 세척함으로써 구상 산화알루미늄 분말의 표면에 존재하는 Na+를 성분을 효율적으로 저감할 수 있다.The stirring is preferably performed at about 10 to 60 rpm, more preferably about 30 to 40 rpm. By washing while stirring, the Na + component present on the surface of the spherical aluminum oxide powder can be efficiently reduced.

세척된 구상 산화알루미늄 분말을 건조한다. 상기 건조는 100∼130℃ 정도의 온도에서 수행하는 것이 바람직하다. 후술하는 실험에 의하면, 100∼130℃의 온도에서 건조 시에 가장 낮은 점도를 나타내는 것으로 확인되었다. The washed spherical aluminum oxide powder is dried. The drying is preferably performed at a temperature of about 100 to 130°C. According to an experiment described later, it was confirmed that the lowest viscosity was observed when dried at a temperature of 100 to 130°C.

건조된 구상 산화알루미늄 분말을 열처리할 수도 있다. 구상 산화알루미늄 분말을 슬러리화 할 경우에 슬러리의 점도를 낮추고 유동성을 개선하기 위하여 상기 열처리를 수행한다. 상기 열처리는 400∼900℃ 정도의 온도에서 수행하는 것이 바람직하다. 상기 열처리는 산화 분위기(oxidizing atmosphere)(예컨대, 산소(O2) 또는 공기(air) 분위기) 또는 중성 분위기(neutral atmosphere)(예컨대, 아르곤(Ar), 헬륨(He), 질소(N2) 등의 비활성 가스 분위기)에서 실시하는 것이 바람직하다.Dried spherical aluminum oxide powder can also be heat treated. When slurrying spherical aluminum oxide powder, the above heat treatment is performed to lower the viscosity of the slurry and improve fluidity. The heat treatment is preferably performed at a temperature of about 400 to 900°C. The heat treatment is performed in an oxidizing atmosphere (e.g., oxygen (O 2 ) or air atmosphere) or a neutral atmosphere (e.g., argon (Ar), helium (He), nitrogen (N 2 ), etc. It is preferable to carry out in an inert gas atmosphere.

건조된 구상 산화알루미늄 분말을 실란으로 표면처리 할 수도 있다. 구상 산화알루미늄 분말을 슬러리화 할 경우에 슬러리의 점도를 낮추고 유동성을 개선하기 위하여 상기 표면처리를 수행한다. 상기 실란은 테트라메톡시실란, 테트라에톡시실란, 메틸트리메톡시 실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 페닐트리에톡시실란, 헥사메틸디실라잔, 헥실트리메톡시실란, 데실트리메톡시 실란, 비닐트리클로로실란, 비닐트리메톡시실란, 비닐트리에톡시실란 등일 수 있다. Dried spherical aluminum oxide powder can also be surface treated with silane. When slurrying spherical aluminum oxide powder, the above surface treatment is performed to lower the viscosity of the slurry and improve fluidity. The silanes include tetramethoxysilane, tetraethoxysilane, methyltrimethoxy silane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, and decyltri It may be methoxy silane, vinyl trichlorosilane, vinyl trimethoxy silane, vinyl triethoxy silane, etc.

이렇게 제조된 구상 산화알루미늄 분말은 코런덤(corundum) 결정구조(crystal structure)를 가지며, α-Al2O3 결정상(crystal phase)으로 이루어지게 된다. 상기 구상 산화알루미늄 분말은 구형도가 0.9 이상이고, 비표면적이 0.8∼1.2 g/㎡ 정도이다. 본 발명에 의해 제조된 구상 산화알루미늄 분말은, 이온성 불순물인 Na+의 함량이 500ppm 보다 작고, K+의 함량이 200ppm 보다 작으며, Ca2+의 함량이 300ppm 보다 작고, NO2 2-의 함량이 100ppm 보다 작으며, NO3 -의 함량이 100ppm 보다 작을 수 있다.The spherical aluminum oxide powder prepared in this way has a corundum crystal structure and consists of an α-Al 2 O 3 crystal phase. The spherical aluminum oxide powder has a sphericity of 0.9 or more and a specific surface area of about 0.8 to 1.2 g/m2. The spherical aluminum oxide powder produced by the present invention has an ionic impurity Na + content of less than 500 ppm, K + content of less than 200 ppm, Ca 2+ content of less than 300 ppm, and NO 2 2- The content is less than 100ppm, and the NO 3 - content may be less than 100ppm.

이하에서, 본 발명에 따른 실험예들을 구체적으로 제시하며, 다음에 제시하는 실험예들에 본 발명이 한정되는 것은 아니다. Below, experimental examples according to the present invention are presented in detail, but the present invention is not limited to the experimental examples presented below.

<실험예 1><Experimental Example 1>

구상 산화알루미늄 분말을 제조하기 위한 원료로 α-알루미나 분말을 준비하였다. 상기 α-알루미나 분말은 평균입도가 50㎛ 정도인 것을 사용하였다. α-Alumina powder was prepared as a raw material for producing spherical aluminum oxide powder. The α-alumina powder was used with an average particle size of about 50㎛.

상기 α-알루미나 분말을 평균입도가 20㎛ 정도가 되게 분쇄하였다. 상기 분쇄는 건식 볼밀링 방법을 이용하였다. 상기 볼밀링기의 내벽은 산화알루미늄 성분과 동일한 알루미나 재질로 라이닝(linning) 되어 있고, 알루미나 재질로 이루어진 볼을 사용하였다. 볼밀링기를 이용하여 일정 속도로 회전시켜 α-알루미나 분말을 기계적으로 분쇄하였다. 볼의 크기는 30㎜ 정도 였고, 볼밀링기의 회전속도는 21rpm 정도 였으며, 볼밀링은 26 시간 동안 실시하였다. The α-alumina powder was ground to an average particle size of about 20㎛. The grinding was done using a dry ball milling method. The inner wall of the ball mill was lined with alumina material, which is the same as the aluminum oxide component, and balls made of alumina material were used. The α-alumina powder was mechanically pulverized by rotating at a constant speed using a ball mill. The size of the ball was about 30 mm, the rotation speed of the ball mill was about 21 rpm, and ball milling was performed for 26 hours.

분쇄된 α-알루미나 분말은 그 화학성분에서 Fe2O3 함량이 0.02wt% 보다 작고, Na2O의 함량이 0.5wt% 보다 작으며, SiO2의 함량이 0.02wt% 보다 작고, CaO의 함량이 0.04wt% 보다 작다. The pulverized α-alumina powder has a Fe 2 O 3 content of less than 0.02 wt%, a Na 2 O content of less than 0.5 wt%, a SiO 2 content of less than 0.02 wt%, and a CaO content of its chemical composition. This is less than 0.04wt%.

분쇄된 α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집하였다. 분쇄된 α-알루미나 분말을 로 내에 형성된 화염으로 용융하여 구형화 처리하고, 로 외에서 구상 산화알루미늄 분말을 포집하였다. 상기 α-알루미나 분말을 가열 용융하기 위한 화염을 발생하기 위한 장치는 버너이고, 화염 용융에 의해 형성된 구형 산화알루미늄 분말을 포집하기 위한 장치로는 사이클론과 백필터를 사용하였다. 화염 온도는 2600∼2800℃ 정도였다. 상기 버너에는 연료 가스와 산소 가스가 공급되어 화염을 형성하였다. 상기 연료 가스는 LNG(liquefied natural gas) 가스이고, 상기 연료 가스는 120 N㎥/hr 정도의 유량으로 공급하였다. 상기 산소 가스는 260 N㎥/hr 정도의 유량으로 공급하였다. 원료인 α-알루미나 분말은 화염으로 공급되고, 화염으로 공급된 α-알루미나 분말은 가열 용융되어 분말 사이즈가 감소되고 구상화되게 된다. α-알루미나 분말의 공급량(피드량)은 90 kg/hr 정도였다. 화염 용사하기 위한 로는 포집장치와 연결되어 있다. 화염 용사로를 거친 분말은 포집장치에서 포집되어 수득된다. 연소 가스(배기가스)는 포집장치를 거쳐 외부로 배출되게 하였다. The pulverized α-alumina powder was flame sprayed and the spherical aluminum oxide powder was collected. The pulverized α-alumina powder was spheronized by melting it with a flame formed in the furnace, and the spherical aluminum oxide powder was collected outside the furnace. The device for generating a flame to heat and melt the α-alumina powder was a burner, and the device for collecting the spherical aluminum oxide powder formed by flame melting was a cyclone and a bag filter. The flame temperature was about 2600-2800℃. Fuel gas and oxygen gas were supplied to the burner to form a flame. The fuel gas was LNG (liquefied natural gas) gas, and the fuel gas was supplied at a flow rate of about 120 N㎥/hr. The oxygen gas was supplied at a flow rate of about 260 N㎥/hr. The α-alumina powder as the raw material is supplied through a flame, and the α-alumina powder supplied through the flame is heated and melted to reduce the powder size and become spherical. The supply amount (feed amount) of α-alumina powder was about 90 kg/hr. The furnace for flame spraying is connected to a collection device. The powder that has passed through the flame spraying furnace is collected and obtained in a collection device. Combustion gas (exhaust gas) was discharged to the outside through a collection device.

포집된 구상 산화알루미늄 분말을 증류수와 함께 세정조에 담고 세척하였다. 구상 산화알루미늄 분말과 증류수를 1:1의 중량비로 세정조에 담고 5분 동안 교반을 실시하였다. 1시간∼2시간 정도 침전시킨 후 상등액을 취하여 전기전도도를 측정하였으며, 남은 원료는 건조기를 사용하여 130℃에서 24시간 동안 건조시킨 후 점도를 측정하였다. 점도 측정의 경우 실리콘 겔(gel) 8g에 구상 산화알루미늄 분말 40g을 혼합하여 스핀들(spindle) 64번을 사용하여 측정하였다. The collected spherical aluminum oxide powder was placed in a washing tank with distilled water and washed. Globular aluminum oxide powder and distilled water were placed in a washing tank at a weight ratio of 1:1 and stirred for 5 minutes. After settling for about 1 to 2 hours, the supernatant was taken to measure electrical conductivity, and the remaining raw materials were dried at 130°C for 24 hours using a dryer and then viscosity was measured. For viscosity measurement, 40 g of spherical aluminum oxide powder was mixed with 8 g of silicone gel and measured using spindle number 64.

구분division 조건condition 전기전도도(㎲/cm)Electrical conductivity (㎲/cm) 점도(cP)Viscosity (cP) 세척 횟수Number of washes 1One 351.1351.1 135,200135,200 22 81.2181.21 133,600133,600 33 32.3832.38 134,400134,400 44 19.3319.33 134,800134,800 55 16.6416.64 140,600140,600

세척 횟수에 따른 전기전도도 및 점도 평가 결과, 세척 횟수가 증가함에 따라 전기전도도는 감소하는 경향을 나타내었으며, 세척 횟수 4회부터는 세척 시 전기전도도의 변화가 크지 않은 것을 확인하였다. 세척을 통해 불순물의 함량이 감소함에 따라 점도가 낮아질 것으로 판단하였으나, 세척 횟수가 증가할수록 점도가 증가하는 경향을 나타내었으며, 세척 횟수 2회 시 점도는 133,600cP로 나타나 가장 낮은 점도 특성을 나타내었다.As a result of evaluating electrical conductivity and viscosity according to the number of washings, electrical conductivity tended to decrease as the number of washings increased, and it was confirmed that there was no significant change in electrical conductivity after washing from 4 times. It was judged that the viscosity would decrease as the content of impurities decreased through washing, but the viscosity tended to increase as the number of washings increased. When the number of washings was 2, the viscosity was 133,600 cP, showing the lowest viscosity characteristic.

<실험예 2><Experimental Example 2>

상기 상등액의 pH를 측정하여 pH에 따른 점도 특성을 평가하여 아래의 표 2에 나타내었다. 상기 교반은 30 rpm 정도로 수행하였다. 상등액 pH 조건에 따른 실험은 세척 1회 후 2회 세척 시 pH를 낮추기 위해 DI를 추가로 첨가하였으며, pH를 높이기 위해 원료를 추가로 첨가하였다. 상등액 pH는 6.6, 7.2, 7.6, 8.0, 8.5로 조절한 후 30분 간 방치한 후 상등액은 제거 후 건조하여 점도를 측정하였다. The pH of the supernatant was measured to evaluate viscosity characteristics according to pH, and are shown in Table 2 below. The stirring was performed at about 30 rpm. In experiments based on supernatant pH conditions, DI was additionally added to lower the pH when washing once and then twice, and additional raw materials were added to increase the pH. The pH of the supernatant was adjusted to 6.6, 7.2, 7.6, 8.0, and 8.5 and left for 30 minutes. The supernatant was removed, dried, and the viscosity was measured.

구분division 조건(pH)Condition (pH) 점도(cP)Viscosity (cP)

상등액 pH


Supernatant pH
6.66.6 137,800137,800
7.27.2 136,600136,600 7.67.6 127,800127,800 8.08.0 123,800123,800 8.58.5 125,000125,000

상등액 pH 조건에 따른 점도 측정 결과, 상등액 pH 8.0에서 점도는 123,800cP로 나타나 가장 낮은 것으로 나타났다.As a result of viscosity measurement according to supernatant pH conditions, the viscosity was found to be the lowest at 123,800 cP at supernatant pH 8.0.

<실험예 3><Experimental Example 3>

실험예 1에 따라 세척된 구상 산화알루미늄 분말을 건조하였다. 상기 건조는 100∼180℃ 정도의 온도에서 수행하였는데, 건조 온도에 따른 점도 특성을 평가하여 아래의 표 3에 나타내었다. 건조 온도에 따른 점도 변화 측정은 위의 결과를 바탕으로하여 세척 2회 시 상등액 pH를 8.0으로 조절한 후, 건조 온도 100℃, 130℃, 150℃, 180℃에서 각각 건조 후 점도를 측정하였다.The washed spherical aluminum oxide powder was dried according to Experimental Example 1. The drying was performed at a temperature of about 100 to 180°C, and the viscosity characteristics according to the drying temperature were evaluated and are shown in Table 3 below. To measure the change in viscosity according to drying temperature, based on the above results, the pH of the supernatant was adjusted to 8.0 during two washes, and then the viscosity was measured after drying at drying temperatures of 100°C, 130°C, 150°C, and 180°C, respectively.

구분division 조건(℃)Conditions (℃) 점도(cP)Viscosity (cP)
건조 온도

drying temperature
100100 123,400123,400
130130 123,800123,800 150150 150,800150,800 180180 155,400155,400

측정 결과 건조 온도 100℃에서 가장 낮은 점도를 나타내었으며, 130℃로 건조한 경우 큰 차이는 없는 것으로 확인되었다. 150℃로 건조하였을 경우 약 20,000cP의 점도가 증가하는 것으로 나타내어 건조 온도가 높아짐에 따라 점도가 높아지는 것으로 나타내었다. The measurement results showed the lowest viscosity at a drying temperature of 100°C, and it was confirmed that there was no significant difference when dried at 130°C. When dried at 150°C, the viscosity increased by about 20,000 cP, indicating that the viscosity increased as the drying temperature increased.

이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.Above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art.

Claims (12)

(a) α-알루미나 분말을 화염 용사하고 구상 산화알루미늄 분말을 포집하는 단계;
(b) 상등액의 전기전도도가 80∼300㎲/cm 범위가 될 때까지 포집된 구상 산화알루미늄 분말을 세척하는 단계; 및
(c) 세척된 구상 산화알루미늄 분말을 건조하는 단계를 포함하며,
상기 상등액의 pH는 7.0∼8.5이 되게 하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
(a) flame spraying α-alumina powder and collecting spherical aluminum oxide powder;
(b) washing the collected spherical aluminum oxide powder until the electrical conductivity of the supernatant is in the range of 80 to 300 ㎲/cm; and
(c) drying the washed spherical aluminum oxide powder,
A method for producing spherical aluminum oxide powder, characterized in that the pH of the supernatant is 7.0 to 8.5.
삭제delete 제1항에 있어서, 상기 세척은 교반하면서 수행하고,
상기 교반은 10∼60 rpm의 회전속도로 실시하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein the washing is performed while stirring,
A method for producing spherical aluminum oxide powder, characterized in that the stirring is performed at a rotation speed of 10 to 60 rpm.
제1항에 있어서, 상기 건조는 100∼130℃의 온도로 수행하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method for producing spherical aluminum oxide powder according to claim 1, wherein the drying is performed at a temperature of 100 to 130°C.
제1항에 있어서, 상기 (c) 단계 후에,
구상 산화알루미늄 분말을 400∼900℃의 온도에서 열처리하는 단계를 더 포함하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein after step (c),
A method for producing spherical aluminum oxide powder, characterized in that it further comprises the step of heat treating the spherical aluminum oxide powder at a temperature of 400 to 900 ° C.
제1항에 있어서, 상기 (c) 단계 후에,
구상 산화알루미늄 분말을 실란으로 표면처리하는 단계를 더 포함하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein after step (c),
A method for producing spherical aluminum oxide powder, characterized in that it further comprises the step of surface treating the spherical aluminum oxide powder with silane.
제1항에 있어서, 상기 (a) 단계 전에,
상기 α-알루미나 분말을 분쇄하는 단계를 더 포함하고,
분쇄된 α-알루미나 분말의 평균 입경이 5∼20㎛가 되게 분쇄하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein before step (a),
Further comprising the step of pulverizing the α-alumina powder,
A method for producing spherical aluminum oxide powder, characterized in that pulverizing the pulverized α-alumina powder so that the average particle diameter is 5 to 20 ㎛.
제7항에 있어서, 상기 분쇄 시에 상기 α-알루미나 분말에 에틸렌글리콜을 혼합하여 분쇄하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method for producing spherical aluminum oxide powder according to claim 7, wherein ethylene glycol is mixed with the α-alumina powder during the pulverization.
제7항에 있어서, 상기 분쇄 시에 상기 α-알루미나 분말에 폴리아크릴산(polyacrylic acid)을 혼합하여 분쇄하는 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method for producing spherical aluminum oxide powder according to claim 7, wherein polyacrylic acid is mixed with the α-alumina powder during pulverization.
제1항에 있어서, 상기 α-알루미나 분말은 그 화학성분에서 Fe2O3 함량이 0.02wt% 보다 작고, Na2O의 함량이 0.5wt% 보다 작으며, SiO2의 함량이 0.02wt% 보다 작고, CaO의 함량이 0.04wt% 보다 작은 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein the α-alumina powder has a Fe 2 O 3 content of less than 0.02 wt%, a Na 2 O content of less than 0.5 wt%, and a SiO 2 content of less than 0.02 wt% in its chemical composition. A method for producing spherical aluminum oxide powder, characterized in that it is small and the CaO content is less than 0.04wt%.
제1항에 있어서, 상기 α-알루미나 분말은 비표면적이 0.5∼1.5 ㎡/g 범위인 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein the α-alumina powder has a specific surface area in the range of 0.5 to 1.5 m2/g.
제1항에 있어서, 상기 (c) 단계 후에 수득된 구상 산화알루미늄 분말은,
이온성 불순물인 Na+의 함량이 500ppm 보다 작고, K+의 함량이 200ppm 보다 작으며, Ca2+의 함량이 300ppm 보다 작고, NO2 2-의 함량이 100ppm 보다 작으며, NO3 -의 함량이 100ppm 보다 작은 것을 특징으로 하는 구상 산화알루미늄 분말의 제조방법.
The method of claim 1, wherein the spherical aluminum oxide powder obtained after step (c) is,
The content of Na + as an ionic impurity is less than 500 ppm, the content of K + is less than 200 ppm, the content of Ca 2+ is less than 300 ppm, the content of NO 2 2- is less than 100 ppm, and the content of NO 3 - A method for producing spherical aluminum oxide powder, characterized in that it is less than 100 ppm.
KR1020210161847A 2021-11-23 2021-11-23 Manufacturing method of spherical aluminium oxide powder KR102625963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210161847A KR102625963B1 (en) 2021-11-23 2021-11-23 Manufacturing method of spherical aluminium oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210161847A KR102625963B1 (en) 2021-11-23 2021-11-23 Manufacturing method of spherical aluminium oxide powder

Publications (2)

Publication Number Publication Date
KR20230075556A KR20230075556A (en) 2023-05-31
KR102625963B1 true KR102625963B1 (en) 2024-01-17

Family

ID=86543941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210161847A KR102625963B1 (en) 2021-11-23 2021-11-23 Manufacturing method of spherical aluminium oxide powder

Country Status (1)

Country Link
KR (1) KR102625963B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281063A (en) 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk High purity spherical alumina powder, method for manufacturing the same and composition
JP2007528787A (en) 2004-03-12 2007-10-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Spray-dried alumina catalyst support material and catalyst containing the same
JP2009542572A (en) * 2006-07-13 2009-12-03 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Method for producing nanoparticles comprising aluminum spinel and use thereof
JP2010126385A (en) 2008-11-26 2010-06-10 Denki Kagaku Kogyo Kk Spherical alumina powder and method for producing the same
JP4936101B2 (en) * 2005-11-02 2012-05-23 電化皮膜工業株式会社 Low impurity elution aluminum material and method for producing the same
JP6323724B2 (en) * 2015-10-13 2018-05-16 大陽日酸株式会社 Method for producing alumina particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936101B1 (en) * 1969-02-19 1974-09-27
JPS55139003A (en) * 1979-04-17 1980-10-30 Mitsubishi Electric Corp Rolling stock starting control system and its device
JP5410245B2 (en) 2009-11-11 2014-02-05 電気化学工業株式会社 Spherical alumina powder, its production method and use.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528787A (en) 2004-03-12 2007-10-18 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Spray-dried alumina catalyst support material and catalyst containing the same
JP2005281063A (en) 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk High purity spherical alumina powder, method for manufacturing the same and composition
JP4936101B2 (en) * 2005-11-02 2012-05-23 電化皮膜工業株式会社 Low impurity elution aluminum material and method for producing the same
JP2009542572A (en) * 2006-07-13 2009-12-03 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Method for producing nanoparticles comprising aluminum spinel and use thereof
JP2010126385A (en) 2008-11-26 2010-06-10 Denki Kagaku Kogyo Kk Spherical alumina powder and method for producing the same
JP6323724B2 (en) * 2015-10-13 2018-05-16 大陽日酸株式会社 Method for producing alumina particles

Also Published As

Publication number Publication date
KR20230075556A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
JP5689985B2 (en) BN Sintered Particles with Recesses, Method for Producing the Same, and Polymer Material
JP2003192339A5 (en)
KR20040071265A (en) Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
JPWO2015016359A1 (en) Method for producing crushed silica particles and resin composition containing the fine particles
US20050182172A1 (en) Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
CN103482665A (en) Preparation method of high-purity spherical alpha-Al2O3
EP0276321B1 (en) Spherical corundum particles, process for their production, and highly heat-conductive rubber or plastic composition containing them
CN115724434A (en) Preparation method of high-purity superfine silicon powder
JP4920141B2 (en) Alumina particles and method for producing the same
EP0629580B1 (en) Synthetic quartz glass powder and process for producing the same
WO2002098796A1 (en) Spherical alumina particles and production process thereof
KR102625963B1 (en) Manufacturing method of spherical aluminium oxide powder
JPS62191420A (en) Spherical corundum particle and production thereof
WO2007020855A1 (en) Process for producing spherical inorganic particle
JP2003201116A (en) Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
JP2624069B2 (en) Spherical corundum particles
CN115818690A (en) Electronic grade spheroidal alpha-Al 2 O 3 Method for preparing powder
CN108455617B (en) Preparation method of spherical cristobalite
KR101643361B1 (en) Method for preparing easy sintering super-fine alumina of low viscosity
JP2005104818A (en) Aluminum nitride sintered powder, method of manufacturing the same, amd its application
KR102655040B1 (en) Manufacturing method of easy-sintering aluminium oxide
JPS6296313A (en) Production of high-purity spherical silica filler
JPH041018B2 (en)
CN115057469B (en) Spherical calcium titanate preparation method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right