JP5410245B2 - Spherical alumina powder, its production method and use. - Google Patents

Spherical alumina powder, its production method and use. Download PDF

Info

Publication number
JP5410245B2
JP5410245B2 JP2009258201A JP2009258201A JP5410245B2 JP 5410245 B2 JP5410245 B2 JP 5410245B2 JP 2009258201 A JP2009258201 A JP 2009258201A JP 2009258201 A JP2009258201 A JP 2009258201A JP 5410245 B2 JP5410245 B2 JP 5410245B2
Authority
JP
Japan
Prior art keywords
alumina powder
spherical alumina
alumina
phase
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009258201A
Other languages
Japanese (ja)
Other versions
JP2011102215A (en
Inventor
孝明 田中
貴久 水本
昌一 平田
明範 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009258201A priority Critical patent/JP5410245B2/en
Publication of JP2011102215A publication Critical patent/JP2011102215A/en
Application granted granted Critical
Publication of JP5410245B2 publication Critical patent/JP5410245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は球状アルミナ粉末、その製造方法及び用途に関する。   The present invention relates to spherical alumina powder, a method for producing the same, and use.

近年、IC等の発熱性電子部品の高機能化と高速化の進展に伴い、それが搭載された電子機器の発熱量が増大しており、半導体封止材に対しても高い放熱特性が求められている。半導体封止材の放熱特性を高めるには、熱伝導性の高いアルミナ粉末をゴム又は樹脂に含有させればよいが、一般的なバイヤー法アルミナ粉末では高充填時の著しい増粘現象により、アルミナの熱伝導特性を十分に活かすことが出来ていなかった。   In recent years, with the advancement of high-function and high-speed heat-generating electronic components such as ICs, the amount of heat generated by electronic devices on which they are mounted is increasing, and high heat dissipation characteristics are also required for semiconductor encapsulants. It has been. In order to improve the heat dissipation characteristics of the semiconductor encapsulating material, it is sufficient to contain alumina powder with high thermal conductivity in rubber or resin. However, in general buyer method alumina powder, due to remarkable thickening phenomenon at high filling, alumina powder It was not possible to make full use of the heat conduction characteristics.

これを解決するため、水酸化アルミニウム粉末又は水酸化アルミニウム粉末のスラリーを強力な分散機能を有するフィード管から火炎中に噴霧し、球状アルミナ粉末を得ることが提案された(特許文献1)。この手法で得られた球状アルミナ粒子では、平均球形度0.90以上の粒子であっても水酸化アルミニウム原料由来の表面凹凸があり、改善の余地があった。また、バイヤー法アルミナ粉末を原料に用いた場合においても、表面に原料由来の凹凸が現れており、改善の余地がある。   In order to solve this, it has been proposed to spray a slurry of aluminum hydroxide powder or aluminum hydroxide powder into a flame from a feed tube having a strong dispersion function to obtain a spherical alumina powder (Patent Document 1). In the spherical alumina particles obtained by this method, even particles having an average sphericity of 0.90 or more have surface irregularities derived from the aluminum hydroxide raw material, and there is room for improvement. Further, even when Bayer method alumina powder is used as a raw material, irregularities derived from the raw material appear on the surface, and there is room for improvement.

特開2001−19425号公報Japanese Patent Laid-Open No. 2001-19425

本発明は、急冷処理により表面形状をコントロールした高流動性の球状アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物を提供するものである。   The present invention provides a high-fluidity spherical alumina powder whose surface shape is controlled by a rapid cooling treatment, a production method thereof, and a resin composition using the same.

本発明は、以下のような解決手段により、前記課題を解決する。
(1)X線回折において2θ=45.6°に検出されるδ相ピーク強度と2θ=44.8°に検出されるθ相ピーク強度の比、(δ相ピーク強度/θ相ピーク強度)が1.0以上である、平均球形度が0.90以上、平均粒子径100μm以下の球状アルミナ粉末。
(2)前記(1)に記載の球状アルミナ粉末を含有してなる樹脂組成物。
(3)樹脂がシリコーン樹脂又はエポキシ樹脂である前記(2)に記載の樹脂組成物。
(4)前記(2)又は(3)に記載の樹脂組成物を用いた放熱部材。
(5)前記(2)又は(3)に記載の樹脂組成物を用いた半導体封止材。
(6)アルミナ原料を溶融後、ドライアイスで急冷処理することを特徴とする前記(1)に記載の球状アルミナ粉末の製造方法。
(7)アルミナ原料が電融アルミナであることを特徴とする前記(6)に記載の球状アルミナ粉末の製造方法。
The present invention solves the above problems by the following means.
(1) Ratio of δ phase peak intensity detected at 2θ = 45.6 ° and θ phase peak intensity detected at 2θ = 44.8 ° in X-ray diffraction, (δ phase peak intensity / θ phase peak intensity) Is a spherical alumina powder having an average sphericity of 0.90 or more and an average particle diameter of 100 μm or less.
(2) A resin composition comprising the spherical alumina powder according to (1).
(3) The resin composition according to (2), wherein the resin is a silicone resin or an epoxy resin.
(4) A heat radiating member using the resin composition according to (2) or (3).
(5) The semiconductor sealing material using the resin composition as described in said (2) or (3).
(6) The method for producing spherical alumina powder according to (1), wherein the alumina raw material is melted and then rapidly cooled with dry ice.
(7) The method for producing spherical alumina powder according to (6), wherein the alumina raw material is fused alumina.

本発明の球状アルミナ粉末は、樹脂に高充填した場合にも流動特性が高く、充填材に適している。特に、放熱部材と半導体封止材の充填材に適している。   The spherical alumina powder of the present invention has high flow characteristics even when highly filled in a resin, and is suitable for a filler. In particular, it is suitable for a filler for a heat dissipation member and a semiconductor sealing material.

球状アルミナ粉末の製造工程概略図Production process schematic of spherical alumina powder

以下、本発明を詳細に説明する。
本発明の球状アルミナ粉末は、アルミナ原料を溶融後ドライアイスで急冷処理することにより樹脂に高充填した場合においても、樹脂組成物に高い流動特性を付与することができる。本発明により発現される樹脂組成物の高い流動特性は、球状アルミナ粉末の粒子表面の結晶相(δ相とθ相の構成)をコントロールすることにより粒子表面の凹凸形状が改善されたものと推察される。また、本発明のアルミナ原料に電融アルミナ粉砕物を使用すると、粒子表面の割れを大きく低減することができ、更に樹脂組成物の流動特性を高めることができる。
Hereinafter, the present invention will be described in detail.
The spherical alumina powder of the present invention can impart high flow characteristics to a resin composition even when the alumina raw material is melted and then rapidly cooled with dry ice to be highly filled into the resin. It is inferred that the high flow characteristics of the resin composition expressed by the present invention is that the uneven shape of the particle surface is improved by controlling the crystal phase (configuration of δ phase and θ phase) on the particle surface of the spherical alumina powder. Is done. Moreover, when the electromelted alumina pulverized product is used as the alumina raw material of the present invention, cracks on the particle surface can be greatly reduced, and the flow characteristics of the resin composition can be further enhanced.

球状アルミナ粉末のδ相・θ相のピーク強度は、アルミナ原料の溶融後の急冷処理に使用するドライアイスの供給量を変化させることにより、コントロールすることができる。今回、急冷処理の調整は炉体中胴部から炉内に常時、ドライアイスを供給することにより行った。   The peak intensity of the δ phase / θ phase of the spherical alumina powder can be controlled by changing the supply amount of dry ice used for the rapid cooling treatment after melting the alumina raw material. This time, the rapid cooling treatment was adjusted by always supplying dry ice from the inside of the furnace body into the furnace.

本発明の球状アルミナ粉末を用いた樹脂組成物に高い流動特性を付与させるためには、球状アルミナ粉末のδ相のピーク強度とθ相のピーク強度の比、即ち(δ相ピーク強度/θ相ピーク強度)を1.0以上する必要がある。δ相のピーク強度とθ相のピーク強度の比が1.0未満になると球状アルミナ粉末を用いた樹脂組成物に高い流動特性を付与させることができない。 In order to impart high flow characteristics to the resin composition using the spherical alumina powder of the present invention, the ratio of the peak intensity of the δ phase to the peak intensity of the θ phase of the spherical alumina powder, that is, (δ phase peak intensity / θ phase). The peak intensity) needs to be 1.0 or more. When the ratio between the peak intensity of the δ phase and the peak intensity of the θ phase is less than 1.0, high flow characteristics cannot be imparted to the resin composition using the spherical alumina powder.

球状アルミナ粉末のδ相とθ相のピーク強度測定
X線回折装置には、封入管X線回折装置D8ADVANCE(ブルカー社製)、検出器にはLynxEyeを使用した。測定条件はθ・θスキャン(連続法、ステップ角度:0.017°、計数時間:0.1sec)、管電圧:40kV、管電流:40mA、ターゲット:Cu、測定範囲2θ=40〜50°で行った。
Measurement of peak intensity of δ phase and θ phase of spherical alumina powder An enclosed tube X-ray diffractometer D8ADVANCE (manufactured by Bruker) was used as an X-ray diffractometer, and LynxEye was used as a detector. Measurement conditions are θ · θ scan (continuous method, step angle: 0.017 °, counting time: 0.1 sec), tube voltage: 40 kV, tube current: 40 mA, target: Cu, measurement range 2θ = 40-50 °. went.

球状アルミナ粉末の平均粒子径は、用途に応じて種々選択される。後記する本発明の製造方法によれば、平均粒子径が100μm以下、特に10〜95μmの球状アルミナ粉末を容易に製造することができる。平均粒子径は、原料の平均粒子径をコントロールすることによって増減できる。   The average particle diameter of the spherical alumina powder is variously selected depending on the application. According to the production method of the present invention described later, a spherical alumina powder having an average particle size of 100 μm or less, particularly 10 to 95 μm, can be easily produced. The average particle size can be increased or decreased by controlling the average particle size of the raw material.

本発明における球状アルミナ粉末の平均粒子径を100μm以下としたのは、平均粒子径が100μmを越えると平均球形度を0.90以上にすることが困難となるためである。高い流動特性を実現するためには平均球形度を0.90以上にすることが必要であり、好ましくは平均球形度が0.95以上である。   The reason why the average particle diameter of the spherical alumina powder in the present invention is 100 μm or less is that when the average particle diameter exceeds 100 μm, it becomes difficult to make the average sphericity 0.90 or more. In order to realize high flow characteristics, the average sphericity needs to be 0.90 or more, and preferably the average sphericity is 0.95 or more.

平均粒子径は、レーザー回折式粒度分布測定機シーラスグラニュロメーター「モデル1064」を用いて測定した。平均粒子径25μm以下の粒子についてはサンプル1g、25〜45μmの粒子についてはサンプル2g、45〜120μmの粒子についてはサンプル4gを秤量し、直接シーラスグラニュロメーターのサンプル導入部に投入する。シーラスグラニュロメーター粒度分布測定は溶媒に水を使用し、ポンプ回転数は60rpmで行った。   The average particle diameter was measured using a laser diffraction particle size distribution measuring machine Cirrus granurometer “Model 1064”. For particles having an average particle diameter of 25 μm or less, sample 1 g is measured, for samples 25 to 45 μm, sample 2 g is measured, and for particles 45 to 120 μm, 4 g of sample is weighed and directly put into the sample introduction part of the Cirrus granulometer. Cirrus granulometer particle size distribution measurement was performed using water as a solvent and a pump speed of 60 rpm.

樹脂に球状アルミナ粉末を高充填するには、球状アルミナ粉末の平均球形度を0.90以上にすることが必要であり、特に0.95以上が好ましい。球状アルミナ粉末の平均球形度は火炎形成に用いる燃料ガス(例えばLPG)量や原料粉末のフィード量を変化させることによって増減させることができる。   In order to highly fill the resin with the spherical alumina powder, it is necessary that the average sphericity of the spherical alumina powder be 0.90 or more, and particularly preferably 0.95 or more. The average sphericity of the spherical alumina powder can be increased or decreased by changing the amount of fuel gas (for example, LPG) used for flame formation or the feed amount of the raw material powder.

平均球形度測定
平均球形度は、Sysmex社製フロー式粒子像解析装置「FPIA−3000」を用いて測定する。平均球形度はFPIA−3000から得られる平均円形度の数値を2乗することで得られる。平均円形度は、フロー式粒子像解析装置「FPIA−3000」が、一個の粒子投影像の周囲長と粒子投影像の面積に相当する円の周囲長を解析し、式(円形度)=(粒子投影像の周囲長)/(粒子投影像の面積に相当する円の周囲長)、により求められる。今回の球形度測定に際しては36000個当たりの平均値を自動算出して求めた。本測定は高倍率撮像ユニットで行い、対物レンズにLUCPLFLN20×(倍率20倍)、NDフィルタにAND−40C−70(透過率70%)を使用した。
[平均粒子径20μm以上の粒子の平均球形度]
20mlのガラスビーカー容器に球状アルミナ粉末のサンプルを0.05g計量し、プロピレングリコール25質量%水溶液を10ml加えた後、超音波分散器で3分間分散させる。これをFPIA−3000に全量入れ、LPFモード/定量カウント(トータルカウント数36000個、繰返し測定回数1回)方式で測定する。
[平均粒子径20μm未満の粒子の平均球形度]
20mlのガラスビーカー容器に球状アルミナ粉末のサンプルを0.05g計量し、プロピレングリコール25質量%水溶液を10ml加えた後、超音波分散器で3分間分散させる。これをFPIA−3000に全量入れ、HPFモード/定量カウント(トータルカウント数36000個、繰返し測定回数1回)方式で測定する。
Average sphericity measurement
The average sphericity is measured using a flow type particle image analyzer “FPIA-3000” manufactured by Sysmex. The average sphericity is obtained by squaring the average circularity value obtained from FPIA-3000. For the average circularity, the flow particle image analyzer “FPIA-3000” analyzes the circumference of one particle projection image and the circumference of a circle corresponding to the area of the particle projection image, and the equation (circularity) = ( (Perimeter of particle projection image) / (perimeter of circle corresponding to area of particle projection image). In this sphericity measurement, an average value per 36000 pieces was automatically calculated. This measurement was performed with a high-magnification imaging unit, and LUCPLFLN 20 × (magnification 20 times) was used for the objective lens, and AND-40C-70 (transmittance 70%) was used for the ND filter.
[Average sphericity of particles with an average particle size of 20 μm or more]
0.05 g of a spherical alumina powder sample is weighed in a 20 ml glass beaker container, 10 ml of a 25% by mass aqueous solution of propylene glycol is added, and then dispersed with an ultrasonic disperser for 3 minutes. All of this is put into FPIA-3000 and measured by the LPF mode / quantitative count (total count of 36000, number of repeated measurements once).
[Average sphericity of particles with an average particle diameter of less than 20 μm]
0.05 g of a spherical alumina powder sample is weighed in a 20 ml glass beaker container, 10 ml of a 25% by mass aqueous solution of propylene glycol is added, and then dispersed with an ultrasonic disperser for 3 minutes. This is all put into FPIA-3000 and measured by the HPF mode / quantitative count (total count: 36000, number of repeated measurements once).

本発明の球状アルミナ粉末の製造は、原料粉末として水酸化アルミニウム、仮焼アルミナ又は電融アルミナ粉砕物を、図1に示す設備を用いて処理した。概説すれば、炉頂部より水酸化アルミニウム、仮焼アルミナ又は電融アルミナ粉砕物を火炎中に噴射し溶融し、炉体中胴部より炉内に常時、ドライアイスを供給し急冷処理を行い、得られた球状化物を排ガスと共にブロワーによってバグフィルターに搬送し捕集する。ドライアイスの供給方法については後述する。火炎の形成は、水素、天然ガス、アセチレンガス、プロパンガス、ブタン等の燃料ガスと、空気、酸素等の助燃ガスを、炉体に設定された燃焼バーナーから噴射して行う。火炎温度は2050℃以上、2300℃以下に保持することが好ましい。火炎温度が2250℃より高いと急冷効果が得られにくくなり、2250℃と2300℃で流動特性に差はない。また、火炎温度が2050℃より低いと高い球形度を実現することができない。原料粉末供給用のキャリアガスとしては、空気、窒素、酸素、二酸化炭素等を使用することができる。   In the production of the spherical alumina powder of the present invention, aluminum hydroxide, calcined alumina or electrofused alumina pulverized material was processed as a raw material powder using the equipment shown in FIG. In summary, aluminum hydroxide, calcined alumina or electrofused alumina pulverized product is injected into the flame from the top of the furnace and melted. The obtained spheroidized material is transported to a bag filter by a blower together with exhaust gas and collected. A method for supplying dry ice will be described later. The formation of the flame is performed by injecting a fuel gas such as hydrogen, natural gas, acetylene gas, propane gas, or butane and an auxiliary combustion gas such as air or oxygen from a combustion burner set in the furnace body. The flame temperature is preferably maintained at 2050 ° C. or higher and 2300 ° C. or lower. When the flame temperature is higher than 2250 ° C., it is difficult to obtain a rapid cooling effect, and there is no difference in flow characteristics between 2250 ° C. and 2300 ° C. Further, when the flame temperature is lower than 2050 ° C., high sphericity cannot be realized. Air, nitrogen, oxygen, carbon dioxide, or the like can be used as a carrier gas for supplying raw material powder.

火炎温度測定
溶融時の火炎温度は炉外にバーナーを設置し、Impac社製放射温度計IS5/F型を使用して測定した。
Flame temperature measurement The flame temperature at the time of melting was measured using an IS5 / F radiation thermometer manufactured by Impac with a burner installed outside the furnace.

ドライアイスによる急冷処理は炉の中心から15°おきにフィード管を2段挿入し、ドライアイスを炉体中胴部より炉内に常時供給して行った。1段目のノズル位置は炉頂から80cmの高さ、2段目の位置は炉頂から100cmの高さに設置した。ドライアイスは氷削機で削り出した後、エゼクターにて移送、炉内へ供給した。フィード管については15AのSUSパイプを用いた。 The rapid cooling treatment with dry ice was performed by inserting two stages of feed tubes at intervals of 15 ° from the center of the furnace, and constantly supplying dry ice into the furnace from the body inside the furnace body. The first stage nozzle position was 80 cm high from the furnace top, and the second stage position was 100 cm high from the furnace top. Dry ice was shaved with an ice grinder, transferred with an ejector, and supplied to the furnace. For the feed tube, a 15A SUS pipe was used.

ドライアイスの供給量は炉内温度がドライアイスを供給しない時に比べて50〜150℃低下する程度が好ましい。炉内温度の低下が50℃を下回るとδ相のピークが増加せず、150℃を超えるとδ相のピーク強度は変化しなくなる。   The amount of dry ice supplied is preferably such that the temperature in the furnace is reduced by 50 to 150 ° C. compared to when the dry ice is not supplied. When the temperature inside the furnace falls below 50 ° C., the peak of the δ phase does not increase, and when it exceeds 150 ° C., the peak intensity of the δ phase does not change.

急冷処理時の温度変化測定
急冷処理の程度については、ドライアイス供給前とドライアイス供給後の炉内温度を測定することで、その冷却効果を確認した。温度計測にはR熱電対を使用し、熱電対は炉頂から100cmの高さに、炉壁面まで挿入した。
Measurement of temperature change during quenching treatment The degree of quenching treatment was confirmed by measuring the temperature inside the furnace before and after supplying dry ice. An R thermocouple was used for temperature measurement, and the thermocouple was inserted up to the furnace wall at a height of 100 cm from the top of the furnace.

本発明における、球状アルミナ粉末のδ相とθ相のピーク強度はドライアイスの供給量を調整し、火炎−空気境界面の温度をコントロールすることにより達成できる。ドライアイスの供給量を増やすとθ相のピークが減少しδ相のピークが増加する傾向にある。   In the present invention, the peak intensity of the δ phase and the θ phase of the spherical alumina powder can be achieved by adjusting the amount of dry ice supplied and controlling the temperature of the flame-air interface. Increasing the amount of dry ice tends to decrease the peak of the θ phase and increase the peak of the δ phase.

本発明におけるポイントは、火炎温度を2050℃以上、2300℃以下にして、急冷処理によりδ相とθ相のピーク強度をコントロールすることにある。アルミナ原料のフィード量を増やすと火炎温度が下がってしまい、球状アルミナ粉末の平均球形度を高く維持することが難しい。火炎温度と冷却による温度低下を考慮すると、原料粉末のフィード量は20kg/Hr以下とすることが好ましい。 The point in the present invention is to control the peak intensity of the δ phase and the θ phase by quenching by setting the flame temperature to 2050 ° C. or more and 2300 ° C. or less. When the feed amount of the alumina raw material is increased, the flame temperature is lowered, and it is difficult to keep the average sphericity of the spherical alumina powder high. Considering the flame temperature and the temperature drop due to cooling, the feed amount of the raw material powder is preferably 20 kg / Hr or less.

電融アルミナ破砕物とはバイヤー法アルミナの溶融固化物の粉砕物のことである。バイヤー法アルミナの溶融にはアーク炉を使用することができる。電融アルミナ粉砕物はボールミルで粉砕後、分級処理や篩処理により粒度分布を調整した。ボールミルでの粉砕にはアルミナボールを使用した。   The electrofused alumina crushed material is a pulverized material of a melt-solidified product of Bayer method alumina. An arc furnace can be used to melt the Bayer process alumina. The pulverized electrofused alumina was pulverized by a ball mill, and the particle size distribution was adjusted by classification and sieving. Alumina balls were used for grinding with a ball mill.

本発明の球状アルミナ粉末を半導体封止材に使用する際は、イオン性不純物を低減させる必要がある。イオン性不純物の低減を目的として、電融アルミナ破砕物の火炎処理物の水洗を実施した。水洗処理は特開2005−281063号公報に記載の方法により実施した。 When the spherical alumina powder of the present invention is used for a semiconductor encapsulant, it is necessary to reduce ionic impurities. For the purpose of reducing the ionic impurities, the flame-treated product of the fused alumina crushed material was washed with water. Washing with water was carried out by the method described in JP-A-2005-281063.

本発明の樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂、EVA(エチレン酢酸ビニル共重合体)樹脂、シリコーン樹脂などを用いることができる。
また、樹脂として、シリコーンゴム、ウレタンゴム、アクリルゴム、エチレンプロピレンゴム、ウレタンゴムなどのゴムを用いることができる。
Examples of the resin of the present invention include epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene sulfide , Wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, EVA (Ethylene vinyl acetate copolymer) Resin, silicone resin, etc. can be used.
As the resin, rubbers such as silicone rubber, urethane rubber, acrylic rubber, ethylene propylene rubber, and urethane rubber can be used.

本発明の樹脂組成物は、本発明の球状アルミナ粉末を樹脂に含有させたものである。球状アルミナ粉末の含有率は用途によって異なるが、熱伝導特性を考慮すると40〜90体積%とすることが好ましい。
本発明の球状アルミナ粉末をシリコーン樹脂又はシリコーンゴムに含有させたものは放熱部材として好適である。放熱部材として高い熱伝導率を発現させるためには球状アルミナ粉末の含有率を高くすることに越したことはないが、引っ張り強度や柔軟性等の特性を考慮すると65〜80体積%にすることが好ましい。
本発明の球状アルミナ粉末をエポキシ樹脂に含有させたものは半導体封止材として好適である。半導体封止材用として3W/m・Kを越える高い熱伝導率を発現させるためには、球状アルミナ粉末の含有率を70〜90体積%にすることが好ましい。半導体封止材は、各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等によって混練し冷却後、粉砕することによって製造することができる。半導体の封止方法としては、トランスファーモールドなどを採用することができる。
The resin composition of the present invention is obtained by incorporating the spherical alumina powder of the present invention into a resin. Although the content rate of spherical alumina powder changes with uses, when considering heat conductive characteristics, it is preferable to set it as 40 to 90 volume%.
What contained the spherical alumina powder of this invention in the silicone resin or the silicone rubber is suitable as a heat radiating member. In order to develop high thermal conductivity as a heat radiating member, it has never been better to increase the content of spherical alumina powder, but considering characteristics such as tensile strength and flexibility, it should be 65 to 80% by volume. Is preferred.
What contained the spherical alumina powder of this invention in the epoxy resin is suitable as a semiconductor sealing material. In order to develop a high thermal conductivity exceeding 3 W / m · K for a semiconductor encapsulant, the content of the spherical alumina powder is preferably 70 to 90% by volume. The semiconductor encapsulant can be produced by blending a predetermined amount of each material with a blender, a Henschel mixer or the like, kneading with a heating roll, kneader, uniaxial or biaxial extruder, etc., cooling and then pulverizing. As a semiconductor sealing method, transfer molding or the like can be employed.

アルミナ原料には、下記に記載のアルミナ原料1〜6を使用した。
[アルミナ原料1]
日本軽金属社製水酸化アルミニウムBHP39(平均粒子径35μm)を使用した。
[アルミナ原料2]
日本軽金属社製アルミナLS−210(平均粒子径4μm)を使用した。
[アルミナ原料3]
日本軽金属社製アルミナLS−21(平均粒子径55μm)を使用した。
[アルミナ原料4〜6]
アルミナ原料2(LS−210)をアーク炉で溶融・冷却・粉砕して電融アルミナ粉砕物を調整し、分級処理によりアルミナ原料4(平均粒子径30μm)とアルミナ原料5(平均粒子径92μm)、アルミナ原料6(平均粒子径120μm)を調製した。
The alumina raw materials 1 to 6 described below were used as the alumina raw materials.
[Alumina raw material 1]
Aluminum hydroxide BHP39 (average particle size 35 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw material 2]
Alumina LS-210 (average particle size 4 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw material 3]
Alumina LS-21 (average particle diameter 55 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw materials 4-6]
Alumina raw material 2 (LS-210) is melted, cooled and pulverized in an arc furnace to prepare an electrofused alumina pulverized product, and classified into alumina raw material 4 (average particle diameter 30 μm) and alumina raw material 5 (average particle diameter 92 μm). Alumina raw material 6 (average particle size 120 μm) was prepared.

アルミナ原料4〜6調製の粉砕処理はボールミルで行い、粉砕メディアにはアルミナボールを使用した。得られたアルミナ粉砕物を篩、分級処理してアルミナ原料4〜6を調製した。   The pulverization treatment for preparing the alumina raw materials 4 to 6 was performed with a ball mill, and alumina balls were used as the pulverization media. The obtained pulverized alumina was sieved and classified to prepare alumina raw materials 4 to 6.

火炎溶融処理
火炎溶融処理は図1に示す製造装置を用いて行った。アルミナ原料は酸素ガス20Nm/Hrに同伴させノズルから火炎中に供給した。
Flame melting treatment Flame melting treatment was performed using the manufacturing apparatus shown in FIG. The alumina raw material was supplied with oxygen gas 20 Nm 3 / Hr from the nozzle into the flame.

溶融及びドライアイス急冷処理
球状アルミナ粉末のδ相とθ相のピークをコントロールするために、アルミナ原料を火炎溶融する際に炉内へドライアイスを供給して冷却処理を行った。アルミナ原料の種類、溶融条件及び冷却処理条件について表1に示す。
Melting and dry ice quenching treatment In order to control the peaks of the δ phase and the θ phase of the spherical alumina powder, when the alumina raw material was flame-melted, dry ice was supplied into the furnace for cooling treatment. Table 1 shows the types of alumina raw materials, melting conditions, and cooling treatment conditions.

[イオン性不純物低減処理]
得られた球状アルミナ粉末には水洗処理を施した。水洗処理は原子吸光分光光度計測定においてLi、Na、K成分が未検出であるPH=7のイオン交換水と球状アルミナ粉末を混合して、球状アルミナ粉末濃度が40質量%の水スラリーを調製し、撹拌混合装置(アシザワ・ファインテック株式会社製商品名「スターディスパーサーRSV175」)を用いて1時間撹拌し、フィルタープレスで脱水処理した。ケーキの含水率は全て20質量%以下であった。ケーキは棚段乾燥機にて150℃×48時間乾燥処理した。
[Ionic impurity reduction treatment]
The obtained spherical alumina powder was washed with water. In the water washing treatment, ion-exchanged water of PH = 7 in which Li + , Na + , K + components are not detected in the atomic absorption spectrophotometer measurement and spherical alumina powder are mixed, and water having a spherical alumina powder concentration of 40 mass% is mixed. A slurry was prepared, stirred for 1 hour using a stirring and mixing device (trade name “Star Disperser RSV175” manufactured by Ashizawa Finetech Co., Ltd.), and dehydrated with a filter press. All the moisture content of the cake was 20 mass% or less. The cake was dried by a shelf dryer at 150 ° C. for 48 hours.

平均球形度
得られた球状アルミナ粉末の円形度をSysmex社製フロー式粒子像解析装置「FPIA−3000」で測定し、平均球形度を算出した。その結果を表2に示す。
Average sphericity The circularity of the obtained spherical alumina powder was measured with a flow type particle image analyzer “FPIA-3000” manufactured by Sysmex, and the average sphericity was calculated. The results are shown in Table 2.

平均粒子径
平均粒子径は、レーザー回折式粒度分布測定機シーラスグラニュロメーター「モデル1064」を用いて測定した。その結果を表2に示す。
Average particle size The average particle size was measured using a laser diffraction particle size distribution measuring machine Cirrus granulometer "Model 1064". The results are shown in Table 2.

δ相とθ相のピーク強度測定
X線回折装置には、封入管X線回折装置D8ADVANCE(ブルカー社製)、検出器には、LynxEyeを使用した。その結果を表2に示す。
Peak intensity measurement of δ phase and θ phase An X-ray diffractometer D8ADVANCE (manufactured by Bruker) was used as the X-ray diffractometer, and LynxEye was used as the detector. The results are shown in Table 2.

α相含有率の測定
α相アルミナ粉末AA−05(住友化学社製)とθ相アルミナ粉末タイミクロンTM−100D(大明化学社製)を0:10、5:5、10:0の質量割合で混合した粉末のX線回折測定を行い、2θ=43°に検出されるα相のピークの積分強度を算出し、混合割合と積分強度の検量線を作成した。
次に球状アルミナ粉末のX線回折測定を行い、2θ=43°のピークの積分強度を算出し、検量線からα相含有率を求めた。なお、X線回折にはJDX−3500型X線回折装置(日本電子社製)を使用した。その結果を表2に示す。
Measurement of α-phase content α-phase alumina powder AA-05 (Sumitomo Chemical Co., Ltd.) and θ-phase alumina powder Tymicron TM-100D (Daimei Chemical Co., Ltd.) in a mass ratio of 0:10, 5: 5, 10: 0 X-ray diffraction measurement was performed on the powder mixed in step 1. The integrated intensity of the α-phase peak detected at 2θ = 43 ° was calculated, and a calibration curve of the mixing ratio and the integrated intensity was created.
Next, X-ray diffraction measurement was performed on the spherical alumina powder, the integrated intensity of the peak at 2θ = 43 ° was calculated, and the α phase content was determined from the calibration curve. For X-ray diffraction, a JDX-3500 type X-ray diffractometer (manufactured by JEOL Ltd.) was used. The results are shown in Table 2.

[放熱部材評価]
実施例1〜5、実施例7〜13、比較例1〜5は、表1で調製した球状アルミナ粉末A〜Qについて、液状シリコーンゴム40体積部と球状アルミナ粉末60体積部を混合してシリコーンゴム組成物を調製し、その粘度を以下に従い評価した。また実施例6では、液状シリコーンゴム30体積部と球状アルミナ粉末E70体積部を混合してシリコーンゴム組成物を調製し、その粘度とその硬化物の熱伝導率を評価した。その結果を表3に示す。
[粘度測定]
粘度測定はMomentive Material社製、液状シリコーンゴムYE5822Aに球状アルミナ粉末を投入し、NZ−1100(東京理化器械社製攪拌機)を用いて混合した。混合した組成物は真空脱泡し、東機産業社製、B型粘度計TVB−10で粘度測定を行った。粘度測定はNo7スピンドルを使用し、回転数は20rpm、室温20℃で行った。
なお、上記にて調製した液状シリコーンゴムYE5822Aと球状アルミナ粉末の組成物にMomentive Material社製、液状シリコーンゴムYE5822BをYE5822Aの10質量%添加し、成形した後120℃雰囲気で加熱処理するとシリコーンゴムが硬化し、放熱部材となる。
[Evaluation of heat dissipation member]
Examples 1 to 5, Examples 7 to 13 and Comparative Examples 1 to 5 were prepared by mixing 40 parts by volume of liquid silicone rubber and 60 parts by volume of spherical alumina powder with respect to the spherical alumina powders A to Q prepared in Table 1. A rubber composition was prepared and its viscosity was evaluated according to the following. In Example 6, 30 parts by volume of liquid silicone rubber and 70 parts by volume of spherical alumina powder E were mixed to prepare a silicone rubber composition, and the viscosity and the thermal conductivity of the cured product were evaluated. The results are shown in Table 3.
[Viscosity measurement]
For measurement of viscosity, spherical alumina powder was added to liquid silicone rubber YE5822A manufactured by Momentive Material, and mixed using NZ-1100 (a stirrer manufactured by Tokyo Rika Kikai Co., Ltd.). The mixed composition was vacuum degassed, and the viscosity was measured with a B-type viscometer TVB-10 manufactured by Toki Sangyo Co., Ltd. The viscosity was measured using a No. 7 spindle at a rotation speed of 20 rpm and a room temperature of 20 ° C.
In addition, 10 mass% of liquid silicone rubber YE5822B made by Momentary Material is added to the composition of the liquid silicone rubber YE5822A and spherical alumina powder prepared above, and the silicone rubber is formed by heat treatment at 120 ° C. atmosphere after molding. It hardens and becomes a heat dissipation member.

[半導体封止材評価]
実施例14〜18、実施例20〜26、比較例6〜10は、表1で調製した球状アルミナ粉末A〜Qについて、表4に示される配合物30体積部と球状アルミナ粉末70体積部を混合してエポキシ樹脂組成物を調製し、その流動性を以下に従い評価した。また実施例19では、表4に示される配合物20体積部と球状アルミナ粉末80体積部を混合してエポキシ樹脂組成物を調製し、その流動性とその熱伝導率を以下に従い評価した。その結果を表5に示す。
[流動性]
スパイラルフロー金型を用い、EMMI−66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成型機を用いて、二軸押出混練機で加熱混練して調製した半導体封止材料のスパイラルフロー値を測定した。トランスファー成形条件は、金型温度175℃、成形圧力7.4MPa、保圧時間90秒とした。
[Semiconductor encapsulant evaluation]
Examples 14-18, Examples 20-26, and Comparative Examples 6-10 are 30 parts by volume of the formulation shown in Table 4 and 70 parts by volume of spherical alumina powder for the spherical alumina powders A to Q prepared in Table 1. The epoxy resin composition was prepared by mixing, and the fluidity was evaluated according to the following. In Example 19, 20 parts by volume of the formulation shown in Table 4 and 80 parts by volume of spherical alumina powder were mixed to prepare an epoxy resin composition, and its fluidity and thermal conductivity were evaluated as follows. The results are shown in Table 5.
[Liquidity]
Using a spiral flow mold, heat-kneading with a twin-screw extrusion kneader using a transfer molding machine equipped with a spiral flow measurement mold conforming to EMMI-66 (Epoxy Molding Material Institute; Society of Plastic Industry). The spiral flow value of the prepared semiconductor sealing material was measured. The transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.4 MPa, and a pressure holding time of 90 seconds.

[熱伝導率測定]
樹脂組成物(エポキシ樹脂硬化物・シリコーンゴム硬化物)を25×25mm、厚み3mmに成形し、これを15×15mmの銅製ヒーターケースと銅板の間に挟み、締め付けトルク5kgf/cmにてセットした後、銅製ヒーターケースに15Wの電力をかけて4分間保持し、銅製ヒーターケースと銅板の温度差を測定し、熱抵抗を測定する。
熱抵抗(℃/W)=銅製ヒーターケースと銅板の温度差(℃)/ヒーター電力(W)
熱伝導率は熱抵抗(℃/W)と伝熱面積[銅製ヒーターケースの面積](m)、締め付けトルク5kgf/cm時の成形体厚(m)から算出することができる。
熱伝導率(W/m・K)= 成形体厚(m)/{熱抵抗(℃/W)×伝熱面積(m)}
熱伝導率測定の結果を表3及び表5に示す。
[Thermal conductivity measurement]
A resin composition (cured epoxy resin / cured silicone rubber) was molded to 25 × 25 mm and 3 mm in thickness, sandwiched between a 15 × 15 mm copper heater case and a copper plate, and set with a tightening torque of 5 kgf / cm. Then, 15 W of electric power is applied to the copper heater case and held for 4 minutes, the temperature difference between the copper heater case and the copper plate is measured, and the thermal resistance is measured.
Thermal resistance (℃ / W) = temperature difference between copper heater case and copper plate (℃) / heater power (W)
The thermal conductivity can be calculated from the thermal resistance (° C./W), the heat transfer area [area of the copper heater case] (m 2 ), and the molded body thickness (m) when the tightening torque is 5 kgf / cm.
Thermal conductivity (W / m · K) = formed body thickness (m) / {thermal resistance (° C./W)×heat transfer area (m 2 )}
The results of thermal conductivity measurement are shown in Table 3 and Table 5.

Figure 0005410245
Figure 0005410245

Figure 0005410245
Figure 0005410245

Figure 0005410245
Figure 0005410245

Figure 0005410245
Figure 0005410245

Figure 0005410245
Figure 0005410245

表3及び表5から明らかなように、本発明の球状アルミナ粉末を使用した樹脂組成物は、粘度が低く、スパイラルフロー値が高いため、流動特性が著しく向上している。本発明のアルミナ粉末を使用した樹脂組成物は、放熱部材と半導体封止材の用途に好適である。   As is apparent from Tables 3 and 5, the resin composition using the spherical alumina powder of the present invention has a low viscosity and a high spiral flow value, and therefore has a significantly improved flow characteristic. The resin composition using the alumina powder of the present invention is suitable for use as a heat dissipation member and a semiconductor sealing material.

本発明の球状アルミナ粉末は、樹脂組成物の充填材として使用される。本発明の樹脂組成物は、自動車、携帯電子機器、産業用機器、家庭用電化製品等のモールディングコンパウンドや放熱シート等に用いられる。本発明の半導体封止材は、グラフィックチップ等の放熱特性が重要とされる用途で使用される。   The spherical alumina powder of the present invention is used as a filler for a resin composition. The resin composition of the present invention is used for molding compounds such as automobiles, portable electronic devices, industrial devices, and household appliances, heat dissipation sheets, and the like. The semiconductor sealing material of the present invention is used in applications where heat dissipation characteristics such as graphic chips are important.

1 溶融炉
2 バーナー
3 燃料ガス供給管
4 助燃ガス供給管
5 原料粉末供給管
6 冷却媒体供給口
7 バグフィルター
8 ブロワー
9 R熱電対
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Burner 3 Fuel gas supply pipe 4 Auxiliary combustion gas supply pipe 5 Raw material powder supply pipe 6 Cooling medium supply port 7 Bag filter 8 Blower 9 R thermocouple

Claims (8)

X線回折において2θ=45.6°に検出されるδ相ピーク強度と2θ=44.8°に検出されるθ相ピーク強度の比、(δ相ピーク強度/θ相ピーク強度)が1.0以上である、平均球形度が0.90以上、平均粒子径100μm以下の球状アルミナ粉末。 The ratio of the δ phase peak intensity detected at 2θ = 45.6 ° and the θ phase peak intensity detected at 2θ = 44.8 ° in X-ray diffraction (δ phase peak intensity / θ phase peak intensity) is 1. A spherical alumina powder having an average sphericity of 0.90 or more and an average particle diameter of 100 μm or less, which is 0 or more. アルミナ原料として平均粒径4〜92μmの水酸化アルミニウム又はアルミナをフィード量10〜30kg/hrで供給し、2050〜2300℃で溶融後、ドライアイス供給量を30〜100kg/hrで急冷処理することを特徴とする請求項1に記載の球状アルミナ粉末。Supply aluminum hydroxide or alumina having an average particle diameter of 4 to 92 μm as an alumina raw material at a feed rate of 10 to 30 kg / hr, melt at 2050 to 2300 ° C., and then rapidly cool at a dry ice supply rate of 30 to 100 kg / hr. The spherical alumina powder according to claim 1. 請求項1又は2に記載の球状アルミナ粉末を含有してなる樹脂組成物。 A resin composition comprising the spherical alumina powder according to claim 1 . 樹脂がシリコーン樹脂又はエポキシ樹脂である請求項に記載の樹脂組成物。 The resin composition according to claim 3 , wherein the resin is a silicone resin or an epoxy resin. 請求項3又は4に記載の樹脂組成物を用いた放熱部材。 The heat radiating member using the resin composition of Claim 3 or 4 . 請求項3又は4に記載の樹脂組成物を用いた半導体封止材。 The semiconductor sealing material using the resin composition of Claim 3 or 4 . アルミナ原料として平均粒径4〜92μmの水酸化アルミニウム又はアルミナをフィード量10〜30kg/hrで供給し、2050〜2300℃で溶融後、ドライアイス供給量を30〜100kg/hrで急冷処理することを特徴とする請求項1に記載の球状アルミナ粉末の製造方法。 Supply aluminum hydroxide or alumina having an average particle diameter of 4 to 92 μm as an alumina raw material at a feed rate of 10 to 30 kg / hr, melt at 2050 to 2300 ° C., and then rapidly cool at a dry ice supply rate of 30 to 100 kg / hr. The manufacturing method of the spherical alumina powder of Claim 1 characterized by these. アルミナ原料が電融アルミナであることを特徴とする請求項に記載の球状アルミナ粉末の製造方法。 The method for producing a spherical alumina powder according to claim 7 , wherein the alumina raw material is fused alumina.
JP2009258201A 2009-11-11 2009-11-11 Spherical alumina powder, its production method and use. Active JP5410245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258201A JP5410245B2 (en) 2009-11-11 2009-11-11 Spherical alumina powder, its production method and use.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258201A JP5410245B2 (en) 2009-11-11 2009-11-11 Spherical alumina powder, its production method and use.

Publications (2)

Publication Number Publication Date
JP2011102215A JP2011102215A (en) 2011-05-26
JP5410245B2 true JP5410245B2 (en) 2014-02-05

Family

ID=44192738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258201A Active JP5410245B2 (en) 2009-11-11 2009-11-11 Spherical alumina powder, its production method and use.

Country Status (1)

Country Link
JP (1) JP5410245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230075556A (en) 2021-11-23 2023-05-31 주식회사 대한세라믹스 Manufacturing method of spherical aluminium oxide powder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197649A (en) * 2013-03-29 2014-10-16 株式会社アドマテックス Three-dimensional mount type semiconductor device, resin composition and method for manufacturing the same
JP6323724B2 (en) * 2015-10-13 2018-05-16 大陽日酸株式会社 Method for producing alumina particles
US20210061986A1 (en) * 2018-03-16 2021-03-04 Hitachi Chemical Company, Ltd. Epoxy resin composition and electronic component device
EP3882215B1 (en) 2019-02-18 2022-10-12 Admatechs Co., Ltd. Particulate material and thermally conductive substance
CN113247930B (en) * 2021-06-30 2022-04-01 上海交通大学 Alpha-alumina and preparation method thereof
WO2024128318A1 (en) * 2022-12-16 2024-06-20 デンカ株式会社 Spherical alumina powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429318A (en) * 1977-08-08 1979-03-05 Takeo Nakamura Method and apparatus for spherical glass particulates
IT1184114B (en) * 1985-01-18 1987-10-22 Montedison Spa ALFA ALUMINATES IN THE FORM OF SPHERICAL PARTICLES, NOT AGGREGATED, WITH RESTRIBUTION GRANULOMETRIC RESTRICTED AND OF LESS THAN 2 MICRONS, AND PROCESS FOR ITS PREPARATION
CN1294081C (en) * 1999-12-27 2007-01-10 昭和电工株式会社 Alumina Particles, method for producing the same, composition comprising the same and alumina slurry for polishing
JP2005306718A (en) * 2004-01-08 2005-11-04 Showa Denko Kk Inorganic powder, resin composition filled with the powder, and use thereof
TWI262172B (en) * 2005-03-21 2006-09-21 Univ Nat Cheng Kung Method for producing nano-scale theta-phase alumina microparticles
US8354091B2 (en) * 2006-10-31 2013-01-15 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder and method for preparing the same as well as use thereof
CN102007073B (en) * 2008-04-30 2014-10-08 电气化学工业株式会社 Alumina powder, process for production of the same, and resin compositions containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230075556A (en) 2021-11-23 2023-05-31 주식회사 대한세라믹스 Manufacturing method of spherical aluminium oxide powder

Also Published As

Publication number Publication date
JP2011102215A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
KR101505237B1 (en) Alumina powder, process for production of the same, and resin compositions containing the same
JP5410245B2 (en) Spherical alumina powder, its production method and use.
JP5568399B2 (en) Spherical alumina powder, production method and use thereof
CN106082309B (en) Manufacturing method, heat-releasing filler, resin combination, heat-dissipating grease and the heat-dissipating coating composition of Zinc oxide particles
US20100051855A1 (en) Alumina powder and method for preparing the same as well as use thereof
TW200800841A (en) Ceramic powder and uses thereof
TW201718436A (en) Thermally conductive resin composition
CN115348952B (en) Alumina powder, resin composition, and heat-dissipating member
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
KR20100065271A (en) Silica powder, method for production of the same, and composition using the same
JP5320263B2 (en) Spherical alumina powder, production method and use thereof
WO2022202583A1 (en) Inorganic oxide powder, resin composition, and compression molded article
JP5336374B2 (en) Method for producing alumina powder
JPH11268903A (en) Silicon nitride-based filler and resin composition for sealing semiconductor
WO2024128317A1 (en) Spherical alumina powder
WO2024128318A1 (en) Spherical alumina powder
WO2024128320A1 (en) Spherical alumina powder
WO2023153352A1 (en) Inorganic powder
JP2002179421A (en) Method for manufacturing silica fine powder, silica fine powder and resin composition containing silica fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R151 Written notification of patent or utility model registration

Ref document number: 5410245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250