JP5320263B2 - Spherical alumina powder, production method and use thereof - Google Patents

Spherical alumina powder, production method and use thereof Download PDF

Info

Publication number
JP5320263B2
JP5320263B2 JP2009252623A JP2009252623A JP5320263B2 JP 5320263 B2 JP5320263 B2 JP 5320263B2 JP 2009252623 A JP2009252623 A JP 2009252623A JP 2009252623 A JP2009252623 A JP 2009252623A JP 5320263 B2 JP5320263 B2 JP 5320263B2
Authority
JP
Japan
Prior art keywords
alumina powder
spherical alumina
groups
spherical
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009252623A
Other languages
Japanese (ja)
Other versions
JP2011098841A (en
Inventor
孝明 田中
昌一 平田
貴久 水本
明範 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009252623A priority Critical patent/JP5320263B2/en
Publication of JP2011098841A publication Critical patent/JP2011098841A/en
Application granted granted Critical
Publication of JP5320263B2 publication Critical patent/JP5320263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は球状アルミナ粉末、その製造方法及び用途に関する。
The present invention relates to spherical alumina powder, a method for producing the same, and use.

近年、電子機器の高性能・高機能化に伴い、電子部品の放熱が問題となっている。電子部材の中でもシリコーン樹脂にアルミナを含有させた放熱シートは、使用方法の手軽さから色々な用途に使用されている。放熱シートの熱伝導性を上げるためには、アルミナ粉末の含有率を高くすればよい。   In recent years, with the high performance and high functionality of electronic devices, heat dissipation of electronic components has become a problem. Among electronic members, a heat-dissipating sheet in which alumina is contained in a silicone resin is used for various applications because of its ease of use. In order to increase the thermal conductivity of the heat dissipation sheet, the content of the alumina powder may be increased.

一般的なバイヤー法アルミナ粉末をシリコーン樹脂に高充填すると著しい増粘現象により、アルミナの熱伝導特性を十分に活かすことが出来ない。これを解決するため、特許文献1では水酸化アルミニウム粉末又は水酸化アルミニウム粉末のスラリーを強力な分散機能を有するフィード管から火炎中に噴霧し、球状アルミナ粉末を得ることが提案された。   When a general Bayer method alumina powder is highly filled in a silicone resin, the heat conduction characteristics of alumina cannot be fully utilized due to a remarkable thickening phenomenon. In order to solve this, Patent Document 1 proposes that a spherical alumina powder is obtained by spraying aluminum hydroxide powder or a slurry of aluminum hydroxide powder into a flame from a feed tube having a strong dispersion function.

アルミナ粉末をシリコーン樹脂に含有させる際は、アルミナ粉末をカップリング剤で処理することが多い。カップリング剤によるアルミナ粉末の処理は、アルミナ粉末と樹脂の密着性を高め、放熱シートの強度を上げる効果がある。特許文献2にはLPGと酸素ガスによって形成された高温火炎中にアルミナ粉末を供給し、平均粒子径50〜2μm、球形度0.90以上、表面OH基数(以後、孤立OH基数)3〜6個/nmの球状アルミナを製造する方法が記されている。球状アルミナ粉末とシリコーン樹脂の密着性をより高めるためには孤立OH基数を多くすることが重要であり、改善の余地があった。 When the alumina powder is contained in the silicone resin, the alumina powder is often treated with a coupling agent. The treatment of the alumina powder with the coupling agent has the effect of increasing the adhesion between the alumina powder and the resin and increasing the strength of the heat dissipation sheet. In Patent Document 2, alumina powder is supplied into a high-temperature flame formed by LPG and oxygen gas, the average particle diameter is 50 to 2 μm, the sphericity is 0.90 or more, the number of surface OH groups (hereinafter, the number of isolated OH groups) is 3 to 6. A method for producing pieces / nm 2 of spherical alumina is described. In order to further improve the adhesion between the spherical alumina powder and the silicone resin, it is important to increase the number of isolated OH groups, and there is room for improvement.

特開2001−19425号公報Japanese Patent Laid-Open No. 2001-19425 特開2005−68258号公報JP 2005-68258 A

本発明は、球状アルミナ粉末と樹脂の密着性をより高めた、孤立OH基の多い球状アルミナ粉末とその製造方法、及びそれを用いた球状アルミナ粉末樹脂組成物を提供するものである。   The present invention provides a spherical alumina powder having a high number of isolated OH groups, a method for producing the same, and a spherical alumina powder resin composition using the spherical alumina powder with improved adhesion between the spherical alumina powder and the resin.

本発明は、以下のような解決手段により、前記課題を解決する。
(1)平均粒子径が100μm以下、平均球形度が0.90以上、孤立OH基数が10〜40個/nmであり、かつ(孤立OH基数/水素結合OH基数)が1.0以上であることを特徴とする球状アルミナ粉末。
(2)前記(1)に記載のアルミナ粉末を含有してなる樹脂組成物。
(3)樹脂がシリコーンである前記(2)に記載の樹脂組成物。
(4)前記(2)又は(3)に記載の樹脂組成物を用いた放熱部材。
(5)平均粒子径が100μm以下のアルミナ原料を2200〜2600℃で火炎溶融し、噴霧量が40〜120L/時間で水噴霧して急冷することを特徴とする前記(1)に記載の球状アルミナ粉末の製造方法。
The present invention solves the above problems by the following means.
(1) The average particle size is 100 μm or less, the average sphericity is 0.90 or more, the number of isolated OH groups is 10 to 40 / nm 2 , and (number of isolated OH groups / number of hydrogen-bonded OH groups) is 1.0 or more. A spherical alumina powder characterized by being.
(2) A resin composition comprising the alumina powder according to (1).
(3) The resin composition according to (2), wherein the resin is silicone.
(4) A heat radiating member using the resin composition according to (2) or (3).
(5) The spherical material as described in (1) above, wherein an alumina raw material having an average particle size of 100 μm or less is flame-melted at 2200 to 2600 ° C., and sprayed with water at a spray amount of 40 to 120 L / hour and rapidly cooled. A method for producing alumina powder.

本発明の孤立OH基の多い球状アルミナ粉末を用いることにより、球状アルミナ粉末と樹脂の密着性を高め、球状アルミナ粉末を含有した樹脂組成物の強度を上げることができる。特にシートの強度を上げることができる。 By using the spherical alumina powder having many isolated OH groups of the present invention, the adhesion between the spherical alumina powder and the resin can be improved, and the strength of the resin composition containing the spherical alumina powder can be increased. In particular, the strength of the sheet can be increased.

アルミナ粉末の製造工程概略図Schematic diagram of alumina powder manufacturing process

以下、本発明を詳細に説明する。
本発明はアルミナ原料を火炎溶融する際に水噴霧処理にて急冷することにより、球状アルミナ粉末の孤立OH基の数を多くするものである。本発明により得られた球状アルミナはカップリング剤との結合がしやすいため、樹脂との密着性を高めることができる。
Hereinafter, the present invention will be described in detail.
In the present invention, the number of isolated OH groups in the spherical alumina powder is increased by quenching the alumina raw material by flame spraying when flame melting. Since the spherical alumina obtained by the present invention is easily bonded to the coupling agent, the adhesion with the resin can be improved.

球状アルミナ粉末の孤立OH基数は、アルミナ原料火炎溶融時の火炎温度と水の噴霧量を変化させることにより、コントロールすることができる。今回、水噴霧処理は炉体中胴部から炉内に常時、水を供給して実施した。冷却媒体については水、氷、水蒸気などを使用することができるが、取り扱い易さを考慮すると水を使用することが好ましい。溶融時の火炎温度は2200〜2600℃であり、2300〜2500℃が好ましく、急冷処理は水を噴霧しない場合に比べ、炉内の温度を100〜250℃低下させる程度が好ましい。 The number of isolated OH groups in the spherical alumina powder can be controlled by changing the flame temperature at the time of melting the alumina raw material flame and the amount of water sprayed. This time, the water spray treatment was carried out by always supplying water from the trunk of the furnace body into the furnace. As the cooling medium, water, ice, water vapor or the like can be used, but it is preferable to use water in consideration of ease of handling. The flame temperature at the time of melting is 2200 to 2600 ° C., preferably 2300 to 2500 ° C., and the rapid cooling treatment is preferably performed to lower the temperature in the furnace by 100 to 250 ° C. compared to the case where water is not sprayed.

アルミナ原料
本発明のアルミナ原料には水酸化アルミニウム、アルミナ又は電融アルミナ粉砕物を使用した。高球形度の球状アルミナ粉末を製造するためには、原料に電融アルミナを使用することが好ましい。
Alumina raw material As the alumina raw material of the present invention, aluminum hydroxide, alumina, or pulverized fused alumina was used. In order to produce a spherical alumina powder having a high sphericity, it is preferable to use fused alumina as a raw material.

火炎溶融処理
アルミナ原料の火炎溶融処理は図1に示す設備を用いて実施した。概説すれば、炉頂部よりアルミナ原料を火炎中に噴射し溶融し、炉体中胴部より炉内に常時、水を供給し急冷を行い、得られた球状アルミナ粉末を排ガスと共にブロワーによってバグフィルターに搬送し捕集する。冷却媒体である水の供給については後述する。火炎の形成は、水素、天然ガス、アセチレンガス、プロパンガス、ブタン等の燃料ガスと、空気、酸素等の助燃ガスとを、炉体に設定された燃焼バーナーから噴射して行う。原料粉末供給用のキャリアガスとしては、空気、窒素、酸素、二酸化炭素等を使用することができる。火炎温度は、2200〜2600℃であり、2300〜2500℃が好ましい。火炎温度が2500℃より高い場合に孤立OH基の数がそれほど増えないのは、孤立OH基が縮合して揮発してしまうためと考えられる。また、火炎温度が2300℃より低い場合にも孤立OH基数はそれほど増えない。これについては、噴霧した水がOH基に分解されないためと考えられる。
Flame melting treatment The flame melting treatment of the alumina raw material was carried out using the equipment shown in FIG. Briefly, alumina raw material is injected into the flame from the top of the furnace and melted, and water is constantly supplied into the furnace from the furnace body to cool the furnace, and the resulting spherical alumina powder is bug-filtered by a blower together with exhaust gas. Transport to and collect. The supply of water as a cooling medium will be described later. The formation of the flame is performed by injecting a fuel gas such as hydrogen, natural gas, acetylene gas, propane gas, or butane and an auxiliary combustion gas such as air or oxygen from a combustion burner set in the furnace body. Air, nitrogen, oxygen, carbon dioxide, or the like can be used as a carrier gas for supplying raw material powder. Flame temperature is 2200-2600 degreeC, and 2300-2500 degreeC is preferable. The reason why the number of isolated OH groups does not increase so much when the flame temperature is higher than 2500 ° C. is considered that the isolated OH groups are condensed and volatilized. Also, the number of isolated OH groups does not increase so much when the flame temperature is lower than 2300 ° C. This is considered because the sprayed water is not decomposed into OH groups.

火炎温度測定
溶融時の火炎温度は炉外にバーナーを設置し、Impac社製放射温度計IS5/F型を使用して測定した。
Flame temperature measurement The flame temperature at the time of melting was measured using an IS5 / F radiation thermometer manufactured by Impac with a burner installed outside the furnace.

急冷処理
急冷処理はアルミナ原料を火炎溶融する際に炉内へ水を常時、噴霧することにより行った。水の噴霧はアトマックス社製アトマックスノズルBN160型を用い、ノズルの分散ガスにはコンプレッサーで5.0kgf/cmに加圧した空気を使用した。噴霧する水の温度は10℃に管理した。急冷処理のノズルは炉の中心から15°おきに2段挿入した。1段目のノズル位置は炉頂から80cmの高さ、2段目の位置は炉頂から100cmの高さに設置した。水の噴霧量は、1時間当たりの噴霧量が40〜120L/Hrであり、40〜80L/Hが好ましい。炉内の温度は水を噴霧していない時に比べて100〜250℃低下させることが好ましい。
Quenching treatment The quenching treatment was performed by always spraying water into the furnace when the alumina raw material was melted by flame. The atomization of water was performed using an Atmax nozzle BN160 type manufactured by Atmax Co., and air pressurized to 5.0 kgf / cm 2 with a compressor was used as a dispersed gas of the nozzle. The temperature of the sprayed water was controlled at 10 ° C. Two rapid cooling nozzles were inserted every 15 ° from the center of the furnace. The first stage nozzle position was 80 cm high from the furnace top, and the second stage position was 100 cm high from the furnace top. The spray amount of water is 40 to 120 L / Hr per hour, and preferably 40 to 80 L / H. It is preferable to lower the temperature in the furnace by 100 to 250 ° C. compared to when the water is not sprayed.

急冷処理時の温度変化測定
急冷処理の程度については、水噴霧前と噴霧後の炉内温度を測定することで、その冷却効果を確認した。温度計測にはR熱電対を使用し、熱電対は炉頂から100cmの高さに、炉壁面まで挿入した。
Measurement of temperature change during quenching The degree of quenching was confirmed by measuring the temperature in the furnace before and after spraying water. An R thermocouple was used for temperature measurement, and the thermocouple was inserted up to the furnace wall at a height of 100 cm from the top of the furnace.

球状アルミナ粉末の平均粒子径は、用途に応じて種々選択される。球状アルミナ粉末の平均粒子径は、アルミナ原料の平均粒子径をコントロールすることによって増減できる。   The average particle diameter of the spherical alumina powder is variously selected depending on the application. The average particle diameter of the spherical alumina powder can be increased or decreased by controlling the average particle diameter of the alumina raw material.

平均粒子径測定
平均粒子径は、レーザー回折式粒度分布測定機シーラスグラニュロメーター「モデル1064」を用いて測定した。平均粒子径25μm以下の粒子についてはサンプル1g、25〜45μmの粒子についてはサンプル2g、45〜120μmの粒子についてはサンプル4gを秤量し、直接シーラスグラニュロメーターのサンプル導入部に投入する。シーラスグラニュロメーター粒度分布測定は溶媒に水を使用し、ポンプ回転数は60rpmで行った。
Average Particle Size Measurement The average particle size was measured using a laser diffraction particle size distribution measuring machine Cirrus granulometer “Model 1064”. For particles having an average particle diameter of 25 μm or less, sample 1 g is measured, for samples 25 to 45 μm, sample 2 g is measured, and for particles 45 to 120 μm, 4 g of sample is weighed and directly put into the sample introduction part of the Cirrus granulometer. Cirrus granulometer particle size distribution measurement was performed using water as a solvent and a pump speed of 60 rpm.

樹脂に球状アルミナ粉末を高充填するには、球状アルミナ粉末の平均球形度を0.90以上とすることが好ましく、特に0.95以上が好ましい。球状アルミナ粉末の球形度は火炎形成に用いる燃料ガス(例えばLPG)量や原料粉末のフィード量を調整することにより増減させることができる。   In order to highly fill the resin with the spherical alumina powder, the average sphericity of the spherical alumina powder is preferably 0.90 or more, particularly preferably 0.95 or more. The sphericity of the spherical alumina powder can be increased or decreased by adjusting the amount of fuel gas (for example, LPG) used for flame formation and the feed amount of the raw material powder.

平均球形度測定
平均球形度は、Sysmex社製フロー式粒子像解析装置「FPIA−3000」を用いて測定する。平均球形度はFPIA−3000から得られる平均円形度の数値を2乗することで得られる。平均円形度は、フロー式粒子像解析装置「FPIA−3000」が、一個の粒子投影像の周囲長と粒子投影像の面積に相当する円の周囲長を解析し、式(円形度)=(粒子投影像の周囲長)/(粒子投影像の面積に相当する円の周囲長)、により求められる。今回の球形度測定に際しては36000個当たりの平均値を自動算出して求めた。本測定は高倍率撮像ユニットで行い、対物レンズにLUCPLFLN20×(倍率20倍)、NDフィルタにAND−40C−70(透過率70%)を使用した。
[平均粒子径20μm以上の粒子の平均球形度]
20mlのガラスビーカー容器に球状アルミナ粉末のサンプルを0.05g計量し、プロピレングリコール25質量%水溶液を10ml加えた後、超音波分散器で3分間分散させる。これをFPIA−3000に全量入れ、LPFモード/定量カウント(トータルカウント数36000個、繰返し測定回数1回)方式で測定する。
[平均粒子径20μm未満の粒子の平均球形度]
20mlのガラスビーカー容器に球状アルミナ粉末のサンプルを0.05g計量し、プロピレングリコール25質量%水溶液を10ml加えた後、超音波分散器で3分間分散させる。これをFPIA−3000に全量入れ、HPFモード/定量カウント(トータルカウント数36000個、繰返し測定回数1回)方式で測定する。
Average sphericity measurement
The average sphericity is measured using a flow type particle image analyzer “FPIA-3000” manufactured by Sysmex. The average sphericity is obtained by squaring the average circularity value obtained from FPIA-3000. For the average circularity, the flow particle image analyzer “FPIA-3000” analyzes the circumference of one particle projection image and the circumference of a circle corresponding to the area of the particle projection image, and the equation (circularity) = ( (Perimeter of particle projection image) / (perimeter of circle corresponding to area of particle projection image). In this sphericity measurement, an average value per 36000 pieces was automatically calculated. This measurement was performed with a high-magnification imaging unit, and LUCPLFLN 20 × (magnification 20 times) was used for the objective lens, and AND-40C-70 (transmittance 70%) was used for the ND filter.
[Average sphericity of particles with an average particle size of 20 μm or more]
0.05 g of a spherical alumina powder sample is weighed in a 20 ml glass beaker container, 10 ml of a 25% by mass aqueous solution of propylene glycol is added, and then dispersed with an ultrasonic disperser for 3 minutes. All of this is put into FPIA-3000 and measured by the LPF mode / quantitative count (total count of 36000, number of repeated measurements once).
[Average sphericity of particles with an average particle diameter of less than 20 μm]
0.05 g of a spherical alumina powder sample is weighed in a 20 ml glass beaker container, 10 ml of a 25% by mass aqueous solution of propylene glycol is added, and then dispersed with an ultrasonic disperser for 3 minutes. This is all put into FPIA-3000 and measured by the HPF mode / quantitative count (total count: 36000, number of repeated measurements once).

OH基数測定
本発明における孤立OH基数と水素結合OH基数の定量はカールフィッシャー法を用いて行った。カールフィッシャー測定は三菱化学社製水分気化装置VA−122と三菱化学社製水分測定装置CA−100を使用し、水分測定装置の陽極液にはアクアミクロンAX(三菱化学社製)、陰極液にはアクアミクロンCXU(三菱化学社製)を使用した。カールフィッシャー測定に際してはバックグラウンド値を0.10(μg/sec)に固定し、検出される水分がバックグラウンド値を下回るまで継続して測定を行った。温度550℃設定で検出されるものが水素結合OH基であり、温度900℃で検出されるものが孤立OH基由来のものである。測定は予めアルミナサンプルを200℃で30分加熱して物理級着水を除去し、それから550℃、900℃の順で測定を行った。加熱処理時はアルミナサンプルを外気にさらさないようにし、水分気化装置から発生した水分を高純度アルゴン300ml/minに同伴させカールフィッシャー装置に導入し、水分量を測定した。水分気化装置に導入するサンプルは4gで行った。
[水分量のOH基数への換算]
カールフィッシャー測定において検出される水分は、OH基2個が縮合して1個の水分子になると考え、OH基数は次式により求める。(OH基数[個/nm])=0.0662×(水分量[ppm])/(球状アルミナ粉末サンプルの比表面積[m/g])
[比表面積測定]
比表面積測定はマイクロデータ社製AUTO MATIC SURFACE ANALYZER MODEL−4232IIを使用して行った。
Measurement of the number of OH groups In the present invention, the number of isolated OH groups and the number of hydrogen-bonded OH groups were determined using the Karl Fischer method. Karl Fischer measurement uses a moisture vaporizer VA-122 manufactured by Mitsubishi Chemical Corporation and a moisture analyzer CA-100 manufactured by Mitsubishi Chemical Corporation. Aquamicron AX (manufactured by Mitsubishi Chemical Corporation) is used as the anolyte of the moisture analyzer, and Used Aquamicron CXU (Mitsubishi Chemical Corporation). In the Karl Fischer measurement, the background value was fixed at 0.10 (μg / sec), and the measurement was continued until the detected water content fell below the background value. What is detected at a temperature of 550 ° C. is a hydrogen-bonded OH group, and what is detected at a temperature of 900 ° C. is derived from an isolated OH group. In the measurement, the alumina sample was previously heated at 200 ° C. for 30 minutes to remove the physical-grade water landing, and then measured in the order of 550 ° C. and 900 ° C. During the heat treatment, the alumina sample was not exposed to the outside air, and the water generated from the water vaporizer was introduced into a Karl Fischer device along with 300 ml / min of high-purity argon, and the water content was measured. The sample introduced into the moisture vaporizer was 4 g.
[Conversion of moisture content to the number of OH groups]
The moisture detected in the Karl Fischer measurement is considered that two OH groups are condensed to form one water molecule, and the number of OH groups is obtained by the following equation. (Number of OH groups [pieces / nm 2 ]) = 0.0662 × (water content [ppm]) / (specific surface area [m 2 / g] of spherical alumina powder sample)
[Specific surface area measurement]
The specific surface area was measured using an AUTOMATIC SURFACE ANALYZER MODEL-4232II manufactured by Microdata.

本発明の球状アルミナ粉末は、カップリング剤の反応サイトが多く、カップリング剤との反応性が高い。本発明に使用できるカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3―グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ジチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシランなどを用いることができる。この中でも、ビニル系のカップリング剤は、引張強度が高くなるので好ましい。
また、カップリング剤の代わりに表面処理剤を使用することもできる。表面処理剤としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシランなどを用いることができる。
The spherical alumina powder of the present invention has many coupling agent reaction sites and is highly reactive with the coupling agent. Examples of coupling agents that can be used in the present invention include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyl Diethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) -Aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3 -Dimethyl-ditylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, etc. Can. Of these, vinyl coupling agents are preferred because of their high tensile strength.
A surface treatment agent can also be used in place of the coupling agent. Examples of surface treatment agents include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethoxysilane, and decyltrimethoxysilane. Can be used.

本発明の球状アルミナ粉末は、カップリング剤との反応性が高い。従って、本発明の球状アルミナ粉末をカップリング剤で処理したものはシリコーン以外の樹脂との密着性も良好である。本発明の球状アルミナ粉末樹脂組成物の樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂、EVA(エチレン酢酸ビニル共重合体)樹脂なども用いることができる。また、ゴムとしては、ウレタンゴム、アクリルゴム、エチレンプロピレンゴム、ウレタンゴムなどを用いることもできる。 The spherical alumina powder of the present invention has high reactivity with the coupling agent. Therefore, the spherical alumina powder of the present invention treated with a coupling agent has good adhesion to resins other than silicone. Examples of the resin of the spherical alumina powder resin composition of the present invention include epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and other polyamides, polybutylene terephthalate, polyethylene Polyester such as terephthalate, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / polypropylene) Diene rubber-styrene) resin, EVA (ethylene vinyl acetate copolymer) resin, and the like can also be used. As the rubber, urethane rubber, acrylic rubber, ethylene propylene rubber, urethane rubber, or the like can be used.

本発明の球状アルミナ粉末樹脂組成物は、本発明の球状アルミナ粉末を樹脂に含有させたものである。球状アルミナ粉末の含有率は用途によって異なるが、熱伝導特性を考慮すると40〜90体積%とすることが好ましい。
本発明の球状アルミナ粉末をシリコーンに含有させたものは放熱部材として好適である。放熱部材として高い熱伝導率を発現させるためには球状アルミナ粉末の含有率を高くすることに越したことはないが、引張強度や柔軟性、成形性等の特性を考慮すると65〜80体積%にすることが好ましい。
The spherical alumina powder resin composition of the present invention is obtained by incorporating the spherical alumina powder of the present invention into a resin. Although the content rate of spherical alumina powder changes with uses, when considering heat conductive characteristics, it is preferable to set it as 40 to 90 volume%.
What contained the spherical alumina powder of this invention in the silicone is suitable as a heat radiating member. In order to develop a high thermal conductivity as a heat radiating member, it has never been better to increase the content of the spherical alumina powder, but considering characteristics such as tensile strength, flexibility, and formability, it is 65 to 80% by volume. It is preferable to make it.

アルミナ原料には、下記に記載のアルミナ原料1〜6を使用した。
[アルミナ原料1]
日本軽金属社製水酸化アルミニウムBHP39(平均粒子径35μm)を使用した。
[アルミナ原料2]
日本軽金属社製アルミナLS−210(平均粒子径4μm)を使用した。
[アルミナ原料3]
日本軽金属社製アルミナLS−21(平均粒子径55μm)を使用した。
[アルミナ原料4〜6]
アルミナ原料2(LS−210)をアーク炉で溶融・冷却・粉砕して電融アルミナ粉砕物を調整し、分級処理によりアルミナ原料4(平均粒子径30μm)とアルミナ原料5(平均粒子径92μm)、アルミナ原料6(平均粒子径120μm)を調製した。
The alumina raw materials 1 to 6 described below were used as the alumina raw materials.
[Alumina raw material 1]
Aluminum hydroxide BHP39 (average particle size 35 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw material 2]
Alumina LS-210 (average particle size 4 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw material 3]
Alumina LS-21 (average particle diameter 55 μm) manufactured by Nippon Light Metal Co., Ltd. was used.
[Alumina raw materials 4-6]
Alumina raw material 2 (LS-210) is melted, cooled and pulverized in an arc furnace to prepare an electrofused alumina pulverized product, and classified into alumina raw material 4 (average particle diameter 30 μm) and alumina raw material 5 (average particle diameter 92 μm). Alumina raw material 6 (average particle size 120 μm) was prepared.

アルミナ原料4〜6調製の粉砕処理はボールミルで行い、粉砕メディアにはアルミナボールを使用した。得られたアルミナ粉砕物を篩、分級処理してアルミナ原料4〜6を調製した。   The pulverization treatment for preparing the alumina raw materials 4 to 6 was performed with a ball mill, and alumina balls were used as the pulverization media. The obtained pulverized alumina was sieved and classified to prepare alumina raw materials 4 to 6.

火炎溶融処理
火炎溶融処理は図1に示す製造装置を用いて行った。アルミナ原料は30kg/Hrを酸素ガス20Nm/Hrに同伴させノズルから火炎中に供給した。
Flame melting treatment Flame melting treatment was performed using the manufacturing apparatus shown in FIG. The alumina raw material was supplied into the flame from a nozzle with 30 kg / Hr accompanied by oxygen gas 20 Nm 3 / Hr.

溶融及び急冷処理
球状アルミナ粉末の孤立OH基数をコントロールするために、アルミナ原料を火炎溶融する際に炉内へ水を噴霧して冷却処理を行った。アルミナ原料の種類、溶融条件及び冷却処理条件について表1に示す。
Melting and quenching treatment In order to control the number of isolated OH groups in the spherical alumina powder, when the alumina raw material was flame-melted, water was sprayed into the furnace for cooling treatment. Table 1 shows the types of alumina raw materials, melting conditions, and cooling treatment conditions.

OH基数
得られた球状アルミナ粉末のサンプルについてカールフィッシャー測定にてOH基数(孤立OH基と水素結合OH基)を測定した。結果を表2に示す。
Number of OH groups The sample of the obtained spherical alumina powder was measured for the number of OH groups (isolated OH groups and hydrogen-bonded OH groups) by Karl Fischer measurement. The results are shown in Table 2.

平均球形度
得られた球状アルミナ粉末の円形度をSysmex社製フロー式粒子像解析装置「FPIA−3000」で測定し、平均球形度を算出した。その結果を表2に示す。
Average sphericity The circularity of the obtained spherical alumina powder was measured with a flow type particle image analyzer “FPIA-3000” manufactured by Sysmex, and the average sphericity was calculated. The results are shown in Table 2.

平均粒子径
平均粒子径は、レーザー回折式粒度分布測定機シーラスグラニュロメーター「モデル1064」を用いて測定した。その結果を表2に示す。
Average particle size The average particle size was measured using a laser diffraction particle size distribution measuring machine Cirrus granulometer "Model 1064". The results are shown in Table 2.

カップリング剤による表面処理
カップリング剤による表面処理については、ボールミル(セイワ技研社製AXB−15)に球状アルミナ粉末1kgとアルミナボール(20φmm)500g、カップリング剤を封入して行った。カップリング剤を添加し、ボールミルの回転数は250rpmで30分間処理を行った。カップリング剤には信越化学社製カップリング剤、KBM−1003(ビニル系)、KBE−1003(ビニル系)、KBM−403(エポキシ系)を用いた。カップリング剤は以下の式で計算した量を添加した。
カップリング剤の添加量[g]=(球状アルミナ粉末の質量[g])×(球状アルミナ粉末の比表面積[m/g])/カップリング剤の最小被覆面積(m/g)。
カップリング剤の最小被覆面積にはKBM−1003(515m/g)、KBM−573(307m/g)、KBM−403(280m/g)を用いた。
[比表面積測定]
比表面積測定はマイクロデータ社製AUTO MATIC SURFACE ANALYZER MODEL−4232IIを使用して行った。
Surface treatment with a coupling agent The surface treatment with a coupling agent was performed by enclosing 1 kg of spherical alumina powder, 500 g of alumina balls (20 mm), and a coupling agent in a ball mill (AXB-15 manufactured by Seiwa Giken Co., Ltd.). A coupling agent was added, and the ball mill was processed at a rotational speed of 250 rpm for 30 minutes. Coupling agents manufactured by Shin-Etsu Chemical Co., Ltd., KBM-1003 (vinyl type), KBE-1003 (vinyl type), KBM-403 (epoxy type) were used as coupling agents. The coupling agent was added in an amount calculated by the following formula.
Addition amount of coupling agent [g] = (mass of spherical alumina powder [g]) × (specific surface area of spherical alumina powder [m 2 / g]) / minimum coating area of coupling agent (m 2 / g).
KBM-1003 (515 m 2 / g), KBM-573 (307 m 2 / g), and KBM-403 (280 m 2 / g) were used as the minimum coating area of the coupling agent.
[Specific surface area measurement]
The specific surface area was measured using an AUTOMATIC SURFACE ANALYZER MODEL-4232II manufactured by Microdata.

引張強度評価
実施例1〜11、比較例1〜6は、表1で調製した球状アルミナ粉末をカップリング剤で表面処理したものを、液状シリコーン35体積%と球状アルミナ粉末65体積%で混合して球状アルミナ粉末含有シリコーン樹脂組成物を作製し、その引張強度を以下に従い評価した。また実施例12では、配合を液状シリコーン25体積%と球状アルミナ粉末75体積%に変えて、実施例1〜11と同様に球状アルミナ粉末含有シリコーン樹脂組成物を作製し、その引張強度を評価した。その結果を表3に示す。
[球状アルミナ粉末含有シリコーン樹脂組成物の作製]
液状シリコーンにはMOMENTIVE performance materials社製YE5822(A),YE5822(B)を使用し、YE5822(A)とYE5822(B)の比率は10:1[質量比]で行った。段落(0032)に記載したカップリング剤で表面処理した球状アルミナ粉末とYE5822(A)とYE5822(B)を遊星式撹拌・脱泡装置(MAZERUSTAR KK−400W)で60秒混合した後、シ−シリコーン樹脂組成物を作製した。球状アルミナ粉末含有シリコーン樹脂組成物の厚さは2.5mmとした。
[引張強度測定用試験片作製]
厚さ2.5mmのシートに成形された球状アルミナ粉末含有シリコーン樹脂組成物を高分子計器株式会社製試験片打抜刃JIS1号でダンベル型に打ち抜いて、引張強度測定用試験片を作成した。
[引張強度測定]
引張強度測定は島津製作所製オートグラフAG−2000Dを使用し、JIS K6251に準拠して行った。
Tensile strength evaluation Examples 1 to 11 and Comparative Examples 1 to 6 were prepared by mixing the spherical alumina powder prepared in Table 1 with a coupling agent and mixing it with 35% by volume of liquid silicone and 65% by volume of spherical alumina powder. A spherical alumina powder-containing silicone resin composition was prepared, and its tensile strength was evaluated according to the following. In Example 12, the composition was changed to 25% by volume of liquid silicone and 75% by volume of spherical alumina powder to produce a silicone resin composition containing spherical alumina powder in the same manner as in Examples 1 to 11, and the tensile strength was evaluated. . The results are shown in Table 3.
[Preparation of spherical alumina powder-containing silicone resin composition]
For liquid silicone, YE5822 (A) and YE5822 (B) manufactured by MOMENTIVE performance materials were used, and the ratio of YE5822 (A) and YE5822 (B) was 10: 1 [mass ratio]. The spherical alumina powder surface-treated with the coupling agent described in paragraph (0032), YE5822 (A), and YE5822 (B) were mixed for 60 seconds with a planetary stirring and defoaming device (MAZERUSTAR KK-400W). A silicone resin composition was prepared. The thickness of the spherical alumina powder-containing silicone resin composition was 2.5 mm.
[Preparation of tensile strength measurement specimen]
A spherical alumina powder-containing silicone resin composition formed into a sheet having a thickness of 2.5 mm was punched into a dumbbell shape with a test piece punching blade JIS1 manufactured by Kobunshi Keiki Co., Ltd. to prepare a test piece for measuring tensile strength.
[Tensile strength measurement]
Tensile strength measurement was performed according to JIS K6251 using Shimadzu Autograph AG-2000D.

熱伝導率測定
球状アルミナ粉末含有シリコーン樹脂組成物を25×25mm、厚さ2.5mmに成形し、これを15×15mmの銅製ヒーターケースと銅板の間に挟み、締め付けトルク5kgf/cmにてセットした後、銅製ヒーターケースに15Wの電力をかけて4分間保持し、銅製ヒーターケースと銅板の温度差を測定し、熱抵抗を測定する。熱抵抗は(熱抵抗[℃/W])=(銅製ヒーターケースと銅板の温度差[℃])/(ヒーター電力[W])で算出できる。熱伝導率は熱抵抗[℃/W]と伝熱面積(銅製ヒーターケースの面積)[m]、締め付けトルク5kgf/cm時の成形体厚[m]から算出することができる。熱伝導率の計算式は(熱伝導率[W/m・K])=(成形体厚[m])/{(熱抵抗[℃/W])×(伝熱面積[m])}である。熱伝導率の結果を表3に示す。
Measurement of thermal conductivity Spherical alumina powder-containing silicone resin composition is molded to 25 x 25 mm and thickness 2.5 mm, sandwiched between a 15 x 15 mm copper heater case and a copper plate, and set with a tightening torque of 5 kgf / cm Then, 15 W of electric power is applied to the copper heater case and held for 4 minutes, the temperature difference between the copper heater case and the copper plate is measured, and the thermal resistance is measured. Thermal resistance can be calculated by (thermal resistance [° C./W])=(temperature difference between copper heater case and copper plate [° C.]) / (Heater power [W]). The thermal conductivity can be calculated from the thermal resistance [° C./W], the heat transfer area (area of the copper heater case) [m 2 ], and the molded body thickness [m] when the tightening torque is 5 kgf / cm. The calculation formula of thermal conductivity is (thermal conductivity [W / m · K]) = (molded body thickness [m]) / {(thermal resistance [° C./W])×(heat transfer area [m 2 ])} It is. The results of thermal conductivity are shown in Table 3.

Figure 0005320263
Figure 0005320263

Figure 0005320263
Figure 0005320263

Figure 0005320263
Figure 0005320263

表3から明らかなように、本発明の球状アルミナ粉末を用いた球状アルミナ粉末含有シリコーン樹脂組成物は、熱伝導率に優れ、かつ引張強度が高いことが示されている。
従って、本発明の球状アルミナ粉末とシリコーン樹脂との密着性が著しく向上しているものと推定される。
本発明の球状アルミナ粉末を用いた樹脂組成物は、特に放熱部材の用途に好適に使用できる。
As is apparent from Table 3, the spherical alumina powder-containing silicone resin composition using the spherical alumina powder of the present invention is excellent in thermal conductivity and high in tensile strength.
Therefore, it is estimated that the adhesion between the spherical alumina powder of the present invention and the silicone resin is remarkably improved.
Especially the resin composition using the spherical alumina powder of this invention can be used conveniently for the use of a heat radiating member.

本発明の球状アルミナ粉末は、樹脂組成物の充填材として使用される。本発明の樹脂組成物は、自動車、携帯電子機器、産業用機器、家庭用電化製品等の放熱シートやモールディングコンパウンド等に使用することができる。   The spherical alumina powder of the present invention is used as a filler for a resin composition. The resin composition of the present invention can be used for heat radiation sheets, molding compounds, etc. for automobiles, portable electronic devices, industrial devices, household appliances and the like.

1 溶融炉
2 バーナー
3 燃料ガス供給管
4 助燃ガス供給管
5 原料粉末供給管
6 冷却媒体供給口
7 バグフィルター
8 ブロワー
9 R熱電対
1 Melting furnace 2 Burner 3 Fuel gas supply pipe 4 Auxiliary combustion gas supply pipe 5 Raw material powder supply pipe 6 Cooling medium supply port 7 Bag filter 8 Blower 9 R Thermocouple

Claims (5)

平均粒子径が100μm以下、平均球形度が0.90以上、孤立OH基数が10〜40個/nmであり、かつ(孤立OH基数/水素結合OH基数)が1.0以上であることを特徴とする球状アルミナ粉末。 The average particle size is 100 μm or less, the average sphericity is 0.90 or more, the number of isolated OH groups is 10 to 40 / nm 2 , and (number of isolated OH groups / number of hydrogen-bonded OH groups) is 1.0 or more. Features spherical alumina powder. 請求項1に記載の球状アルミナ粉末を含有してなる樹脂組成物。   A resin composition comprising the spherical alumina powder according to claim 1. 樹脂がシリコーンである請求項2に記載の樹脂組成物。   The resin composition according to claim 2, wherein the resin is silicone. 請求項2又は3に記載の樹脂組成物を用いた放熱部材。 The heat radiating member using the resin composition of Claim 2 or 3. 平均粒子径が100μm以下のアルミナ原料を2200〜2600℃で火炎溶融し、噴霧量が40〜120L/時間で水噴霧して急冷することを特徴とする請求項1に記載の球状アルミナ粉末の製造方法。
2. The production of spherical alumina powder according to claim 1, wherein an alumina raw material having an average particle size of 100 μm or less is flame-melted at 2200 to 2600 ° C., and sprayed with water at a spraying amount of 40 to 120 L / hour and rapidly cooled. Method.
JP2009252623A 2009-11-04 2009-11-04 Spherical alumina powder, production method and use thereof Active JP5320263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252623A JP5320263B2 (en) 2009-11-04 2009-11-04 Spherical alumina powder, production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252623A JP5320263B2 (en) 2009-11-04 2009-11-04 Spherical alumina powder, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2011098841A JP2011098841A (en) 2011-05-19
JP5320263B2 true JP5320263B2 (en) 2013-10-23

Family

ID=44190351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252623A Active JP5320263B2 (en) 2009-11-04 2009-11-04 Spherical alumina powder, production method and use thereof

Country Status (1)

Country Link
JP (1) JP5320263B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147614B2 (en) * 2013-07-17 2017-06-14 株式会社トクヤマ Dry alumina fine particles and production method thereof
JP6195075B2 (en) * 2014-12-26 2017-09-13 大陽日酸株式会社 Method for producing metal fine particles
DE17723688T1 (en) 2016-05-16 2019-06-13 Martinswerk Gmbh Products and uses thereof
JP6561220B1 (en) * 2019-02-18 2019-08-14 株式会社アドマテックス Particulate material and heat conductive material
CN114763267B (en) * 2021-05-28 2024-04-12 内蒙古先进陶瓷设计院有限公司 Preparation method of spherical alumina and spherical alumina prepared by preparation method
WO2024128316A1 (en) * 2022-12-16 2024-06-20 デンカ株式会社 Spherical alumina powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036332A1 (en) * 1999-11-17 2001-05-25 Cabot Corporation Ceria composition and process for preparing same
JP4197141B2 (en) * 2003-08-22 2008-12-17 電気化学工業株式会社 Spherical alumina powder and use thereof
WO2008053536A1 (en) * 2006-10-31 2008-05-08 Denki Kagaku Kogyo Kabushiki Kaisha Alumina powder, process for producing the same, and use thereof
JP2008162825A (en) * 2006-12-27 2008-07-17 Kao Corp Spherical ceramic particles
KR101505237B1 (en) * 2008-04-30 2015-03-23 덴키 가가쿠 고교 가부시기가이샤 Alumina powder, process for production of the same, and resin compositions containing the same

Also Published As

Publication number Publication date
JP2011098841A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5568399B2 (en) Spherical alumina powder, production method and use thereof
JP5320263B2 (en) Spherical alumina powder, production method and use thereof
TWI412506B (en) Ceramic powder and uses thereof
TWI457286B (en) Alumina powder, its manufacturiing method and resin composition using the same
JP6480863B2 (en) Method for producing crushed silica particles
JP4112125B2 (en) Method for producing fine spherical silica powder
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
WO2021200490A1 (en) Alumina powder, resin composition, and heat dissipation component
JP2004244491A (en) Highly thermally conductive inorganic powder and resin composition compounded therewith
WO2009139425A1 (en) Amorphous siliceous powder, process for production of the same, and use thereof
JP6618144B2 (en) Spherical calcium fluoride
JP2011102215A (en) Spherical alumina powder, and production method and application of the same
TWI402214B (en) An amorphous silica powder, a method for manufacturing the same, and a semiconductor sealing material
JP2010126385A (en) Spherical alumina powder and method for producing the same
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
JP5767863B2 (en) Spherical alumina powder, method for producing the same, and composition using the same
JP2016011224A (en) Hydrophobic silica-based powder, composition for molding rubber comprising the same, and method for producing the same
KR101442034B1 (en) Siliceous powder, process for production of the same, and use thereof
JP2001026417A (en) Spherical inorganic powder and its use
JP5507264B2 (en) Flame retardant for resin material and production method thereof
JP7546044B2 (en) Alumina powder, resin composition, and heat dissipation part
JP6755376B2 (en) Spherical calcium fluoride
WO2023153353A1 (en) Inorganic powder
JP2020158379A (en) Spherical fluorinated magnesium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R151 Written notification of patent or utility model registration

Ref document number: 5320263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250