JP2005306718A - Inorganic powder, resin composition filled with the powder, and use thereof - Google Patents

Inorganic powder, resin composition filled with the powder, and use thereof Download PDF

Info

Publication number
JP2005306718A
JP2005306718A JP2005002299A JP2005002299A JP2005306718A JP 2005306718 A JP2005306718 A JP 2005306718A JP 2005002299 A JP2005002299 A JP 2005002299A JP 2005002299 A JP2005002299 A JP 2005002299A JP 2005306718 A JP2005306718 A JP 2005306718A
Authority
JP
Japan
Prior art keywords
inorganic powder
resin composition
mass
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002299A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuzuki
宏 都築
Hisao Kokoi
久雄 小古井
Atsushi Tanaka
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005002299A priority Critical patent/JP2005306718A/en
Publication of JP2005306718A publication Critical patent/JP2005306718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which has thermal conductivity and can be used as a heat radiating member in the circuit board of an electronic component required to have electrical insulating property and heat radiating performance, and which has high withstand voltage characteristics even when a thin film-like insulative composition is formed, and to provide a thermally conducting inorganic powder useful as a filler for a heat radiating member, which can be filled in the resin composition at a high density large enough to enhance the heat radiating characteristics of the resin composition and can provide the thin film-like insulative resin composition having excellent withstand voltage characteristics. <P>SOLUTION: The inorganic powder has a frequency particle size distribution with multiple peaks and frequency peaks are present at least in particle size regions of 0.2-2 μm and 2-63 μm, and preferably it has the maximum particle size being ≤63 μm, the average particle size in a range of 4-30 μm, and the most frequent size in a range of 2-35 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気絶縁性と放熱性能が要求される電子部品の回路基板等の用途において、放熱部材として有用な熱伝導性を有する樹脂組成物とその用途、および樹脂成分に熱伝導性フィラーとして充填される高熱伝導性を有する無機質粉体に関するものである。   INDUSTRIAL APPLICABILITY The present invention relates to a resin composition having thermal conductivity useful as a heat radiating member in applications such as circuit boards for electronic components that require electrical insulation and heat dissipation performance, and its use, and as a heat conductive filler for resin components. The present invention relates to an inorganic powder having high thermal conductivity to be filled.

近年、半導体素子等の電子部品を搭載した回路基板は、家電製品や自動車の電装用等様々な分野での電子制御装置に用いられているが、装置小型化への急速な進展に伴い回路基板への高集積化と高機能化要求が益々高まっている。その結果、回路上等で局所的に発生する発熱量は増大傾向にある。発熱、蓄熱は回路等の耐久性に対し悪影響を及ぼすため、回路基板には電気絶縁性等の電気的信頼性に加え、より高い放熱性能が要求され、現在、回路基板本体や封止材、および絶縁接着層等の部材に至るまで、放熱性能の改良と伝熱・放熱方法の検討がなされている。   In recent years, circuit boards equipped with electronic components such as semiconductor elements have been used in electronic control devices in various fields such as home appliances and automotive electrical equipment. The demand for higher integration and higher functionality is increasing. As a result, the amount of heat generated locally on the circuit or the like tends to increase. Since heat generation and heat storage adversely affect the durability of circuits, etc., circuit boards are required to have higher heat dissipation performance in addition to electrical reliability such as electrical insulation. In addition, improvements to heat dissipation performance and heat transfer / heat dissipation methods have been studied up to members such as insulating adhesive layers.

放熱方法は、熱伝導性が高い金属製フィンや放熱板と、回路基板等を接して組み付けることで熱を伝達、放散させる方法が一般的である。しかし、両者の接点部で通電、短絡が発生すると回路が破壊されるため、両者間には電気絶縁性が高い公知の有機重合体組成物等からなる樹脂組成物層を挟み絶縁することが一般的である。しかし、有機重合体組成物のみでは一般的に熱伝導率が低く、放熱部材としての性能は低い。   The heat dissipation method is generally a method in which heat is transmitted and dissipated by assembling a metal fin or heat radiating plate having high thermal conductivity and a circuit board in contact with each other. However, if current is applied or short-circuited at both contact points, the circuit will be destroyed. Therefore, it is common to insulate by sandwiching a resin composition layer made of a known organic polymer composition having high electrical insulation between them. Is. However, generally only an organic polymer composition has low thermal conductivity, and its performance as a heat radiating member is low.

有機重合体組成物等からなる樹脂材料に熱伝導性を付加する方法としては、従来から高熱伝導性を有する無機質粉体を熱伝導性フィラーとして充填する技術が知られている。なお、無機質粉体は難燃性、電気絶縁性等の機能を付加するフィラーにもなる。ここで、特に球状の無機質粉体は充填性および流動性の点で優れることから、回路基板の放熱部材、半導体封止材の充填材料として既に多く実用されている。例えば、熱伝導率が高い球状酸化アルミニウム粉体は放熱フィラーとして使用され、球状シリカ粉体はその高い純度から半導体封止剤フィラーとして使用されている。   As a method for adding thermal conductivity to a resin material made of an organic polymer composition or the like, a technique for filling an inorganic powder having high thermal conductivity as a thermal conductive filler has been known. The inorganic powder also serves as a filler that adds functions such as flame retardancy and electrical insulation. Here, in particular, spherical inorganic powders are excellent in terms of fillability and fluidity, and thus have already been put into practical use as heat dissipation members for circuit boards and filling materials for semiconductor encapsulants. For example, spherical aluminum oxide powder having high thermal conductivity is used as a heat dissipating filler, and spherical silica powder is used as a semiconductor encapsulant filler due to its high purity.

球状無機質粉体を得る方法の例としては、原料となる無機質粉体、またはそのスラリーを高温火炎中に導入して熔融状態にし、表面張力により球状化する技術が知られている(例えば、特許文献1;特開2001-19425号公報)。あるいは、原料として金属が用いられることもあり、この場合には金属の高温酸化と熔融球状化が同時並行に起きることになる(例えば、特許文献2;特開平5-193908号公報)。   As an example of a method for obtaining a spherical inorganic powder, a technique is known in which an inorganic powder as a raw material or a slurry thereof is introduced into a high-temperature flame to be in a molten state and spheroidized by surface tension (for example, patents). Document 1: Japanese Patent Laid-Open No. 2001-19425). Alternatively, a metal may be used as a raw material, and in this case, high-temperature oxidation of the metal and melt spheroidization occur simultaneously (for example, Patent Document 2; Japanese Patent Laid-Open No. 5-139908).

球状状態が良好な、いわゆる高球形度の球状無機質粉体は、高充填性や、流動性の指標である樹脂コンパウンドに充填した時の粘度(以降、樹脂コンパウンド粘度と称する。)が低いため、空隙等の樹脂欠陥発生の可能性が少ない。この点が強みとなり、高価であっても樹脂コンパウンドの放熱性能向上が期待できるフィラーとして重用される。ところが、比較的安価な、低球形度あるいは破砕粉のように角がある無機質粉体は、樹脂コンパウンド粘度が比較的高くなり、特にコンパウンドが熱硬化、高粘度化する際の流動不良が著しく樹脂欠陥が発生し易い。樹脂欠陥が多く存在すると電気的信頼性、耐電圧特性の指標となる絶縁破壊電圧に対する強度(以下、絶縁破壊強度と称する。)が低下する傾向があった。   The so-called high sphericity spherical inorganic powder having a good spherical state has a low viscosity (hereinafter referred to as a resin compound viscosity) when filled in a resin compound, which is an index of high filling property and fluidity. Less likely to cause resin defects such as voids. This is an advantage, and it is used as a filler that can be expected to improve the heat dissipation performance of the resin compound even if it is expensive. However, a relatively inexpensive inorganic powder with low sphericity or crushed powder, such as crushed powder, has a relatively high resin compound viscosity. Particularly, the resin has a markedly poor flow when the compound is thermally cured and highly viscous. Defects are likely to occur. When there are many resin defects, the strength against the dielectric breakdown voltage (hereinafter referred to as dielectric breakdown strength), which is an index of electrical reliability and withstand voltage characteristics, tends to decrease.

また、無機質粉体は一般的に表面が親水性であるため、コンパウンドとなるエポキシ樹脂に代表される有機重合体組成物やシリコーン重合体組成物との親和性が低く、特に球状無機質粉体は表面が平滑であるため結合性、接着性が弱いため、界面破壊が生じ易く絶縁破壊強度は低下し易い。このような場合においても、シラン系カップリング剤等で粉体を表面処理し疎水化することで、樹脂成分との接着性を向上させる技術が一般的に知られている。(例えば、特許文献3;特開平5-335446号公報、特許文献4;特開2001-240771号公報、非特許文献1;日本ユニカー株式会社製NUCシランカップリング剤カタログ)   In addition, since inorganic powders generally have a hydrophilic surface, they have low affinity with organic polymer compositions and silicone polymer compositions typified by epoxy resins as compounds. Since the surface is smooth, the bondability and adhesiveness are weak, so that interface breakdown is likely to occur, and the dielectric breakdown strength is likely to decrease. Even in such a case, a technique for improving the adhesiveness with the resin component by surface-treating the powder with a silane coupling agent or the like to make it hydrophobic is generally known. (For example, Patent Document 3; JP-A-5-335446, Patent Document 4; JP-A-2001-240771, Non-Patent Document 1; NUC Silane Coupling Agent Catalog manufactured by Nihon Unicar Co., Ltd.)

回路基板の放熱部材に用いられる樹脂組成物には、有機重合組成物等が本来有する柔軟性、耐電圧特性を維持しつつ、高放熱性能を有することが求められる。高放熱性能を得るために熱伝導性の高い無機質粉体を高充填すると、界面破壊や樹脂欠陥の発生による耐電圧特性の低下、柔軟性低下につながることから、従来技術では流動性が良く(すなわち、樹脂コンパウンド粘度が低く)、高充填性を有する、高価な高球形度の球状無機質粉体が選択され重用されている。更に、分級・混合処理による特殊な粒度分布や粒子性状への制御、表面処理等の追加加工による接着性等の改善を実施した上で使用する技術が知られている(例えば、特許文献5;特開2001-139725号公報、特許文献6;特開2003-137627号公報)。   The resin composition used for the heat dissipation member of the circuit board is required to have high heat dissipation performance while maintaining the flexibility and withstand voltage characteristics inherent in the organic polymerization composition. In order to obtain high heat dissipation performance, high filling with inorganic powder with high thermal conductivity leads to deterioration of withstand voltage characteristics due to the occurrence of interfacial breakage and resin defects, and flexibility reduction. In other words, expensive, highly spherical spherical inorganic powders having a low resin compound viscosity and high filling properties are selected and used. Furthermore, the technique used after implementing the improvement of the adhesiveness etc. by additional processing, such as special particle size distribution and particle property by classification and mixing process, and surface treatment (for example, patent document 5; JP 2001-139725 A, Patent Document 6; JP 2003-137627 A).

すなわち、従来技術では、比較的低コストで入手、製造できる破砕粉や低球形度の粉体等、流動性が比較的良くない(すなわち、樹脂コンパウンド粘度が高い)無機質粉体は高充填が難しく、更に樹脂欠陥等の発生により耐電圧特性が著しく低下するため使用することができず、その結果、放熱性能と高耐電圧特性を有する樹脂組成物を得ることはできなかった。   That is, in the prior art, inorganic powders that are relatively poor in fluidity (that is, high resin compound viscosity) such as crushed powder and low sphericity powder that can be obtained and manufactured at a relatively low cost are difficult to achieve high filling. Furthermore, since the withstand voltage characteristics are remarkably deteriorated due to the occurrence of a resin defect or the like, it cannot be used. As a result, a resin composition having heat dissipation performance and high withstand voltage characteristics cannot be obtained.

特開2001−19425号公報Japanese Patent Laid-Open No. 2001-19425 特開平5−193908号公報JP-A-5-193908 特開平5−335446号公報JP-A-5-335446 特開2001−240771号公報JP 2001-240771 A 特開2001−139725号公報JP 2001-139725 A 特開2003−137627号公報JP 2003-137627 A 日本ユニカー株式会社製NUCシランカップリング剤カタログCatalog of NUC silane coupling agent manufactured by Nihon Unicar Co., Ltd.

本発明では、樹脂材料中に放熱性能を向上させ得るほどに高充填でき、かつ、高耐電圧特性を有する薄膜状絶縁性樹脂組成物(以下、薄膜樹脂シートと称する)の成膜を可能にする熱伝導性無機質粉体を提供し、電気絶縁性と放熱性能が要求される回路基板等の放熱部材として用いることが可能な樹脂組成物を提供することを目的とする。   In the present invention, it is possible to form a thin-film insulating resin composition (hereinafter referred to as a thin-film resin sheet) that can be filled so high that the heat dissipation performance can be improved in the resin material and that has a high withstand voltage characteristic. An object of the present invention is to provide a resin composition that can be used as a heat radiating member such as a circuit board that requires electrical insulation and heat dissipation performance.

本発明者らは、上述の状況を鑑みて鋭意研究した結果、ある特定の粒度分布を有し、さらに好ましくは予め表面疎水化処理が施された、熱伝導性無機質粉体を用いることにより、樹脂コンパウンド粘度が高くなるような低球形度の粉体であるにもかかわらず樹脂材料に高充填でき、高熱伝導性を発現し、かつ、薄膜樹脂シート成膜時において高い絶縁破壊強度が得られることを見出し本発明に至った。   As a result of diligent research in view of the above situation, the present inventors have a specific particle size distribution, and more preferably by using a thermally conductive inorganic powder that has been subjected to a surface hydrophobization treatment in advance. Despite being a low sphericity powder with a high resin compound viscosity, it can be highly filled into resin materials, exhibits high thermal conductivity, and provides high dielectric breakdown strength during thin film resin sheet deposition As a result, the present invention was reached.

すなわち、本発明は、以下の各実施態様を含むものである。
1.多峰性の頻度粒度分布を有し、少なくとも0.2〜2μmと2〜63μmの粒度域に頻度ピークを有する粉体である無機質粉体。
2.最大粒子径が63μm以下で、平均粒子径が4〜30μmの範囲にあり、最頻径が2〜35μmの範囲にある前記1に記載の無機質粉体。
3.粒子径が2μm未満の粒子の割合が0〜20質量%で、粒子径が2μm未満の粒子の最頻径が0.25〜1.5μmの範囲にある前記1記載の無機質粉体。
4.粒子径が8μm以上の粒子の割合が44〜90質量%である前記1記載の無機質粉体。
5.粒度域2〜8μmの粒子の割合が0〜15質量%である前記1記載の無機質粉体。
6.粒度域2〜8μmの粒子の割合が32〜45質量%である前記1記載の無機質粉体。
7.球形度が0.68〜0.95で、球状化率が0.63〜0.95である前記1記載の無機質粉体。
8.粒子径が2μm未満の粒子の球形度が0.5〜0.95、球状化率が0〜0.9である前記1記載の無機質粉体。
9.粒子径が8μm以上の粒子の球形度が0.7〜0.95、球状化率が0.7〜0.95である前記1記載の無機質粉体。
10.無機質粉体の熱伝導性が、単結晶時において30W/m・K以上である前記1記載の無機質粉体。
11.無機質粉体がアルミナ粉体である前記1乃至10に記載の無機質粉体。
12.αアルミナ結晶相分率が30〜75質量%の範囲にある前記11に記載の無機質粉体。
13.2μm未満の粒子のαアルミナ結晶相分率が、90〜100質量%の範囲にある前記11に記載の無機質粉体。
14.8μm以上の粒子のαアルミナ結晶相分率が、30〜70質量%の範囲にある前記11に記載の無機質粉体。
15.金属Alの含有量が、0.05質量%以下である前記1に記載の無機質粉体。
16.硫酸イオンの含有量が、15ppm以下である前記1に記載の無機質粉体。
17.塩素イオンの含有量が、15ppm以下である前記1に記載の無機質粉体。
18.Fe23の含有量が、0.03質量%以下である前記1記載の無機質粉体。
19.50nm未満の粒子を実質的に含有していない前記1記載に無機質粉体。
20.シラン系カップリング剤及びチタネート系カップリング剤から選択される表面処理剤によって表面疎水化処理されている前記1記載の無機質粉体。
21.前記1乃至20のいずれか1項に記載の無機質粉体が充填されている樹脂組成物。
22.無機質粉体が50〜90質量%充填されている前記21に記載の樹脂組成物。
23.樹脂組成物が、膜厚40〜90μmの薄膜状絶縁性樹脂組成物とした場合に、JIS C2110に規定された絶縁破壊電圧試験によって測定される絶縁破壊強度が39kV/mm以上である前記21または22に記載の樹脂組成物。
24.前記21乃至23のいずれか1項に記載の樹脂組成物を使用した自動車搭載用回路基板。
25.前記21乃至23のいずれか1項に記載の樹脂組成物を使用した電子機器搭載用回路基板。
26.前記21乃至23のいずれか1項に記載の樹脂組成物を使用した電子機器内部設置型の放熱部材。
27.前記21乃至23のいずれか1項に記載の樹脂組成物を使用した電子部品用の放熱部材。
28.シート状である前記26または27に記載の放熱部材。
29.ペースト状またはゲル状である前記26または27に記載の放熱部材。
30.アンダーフィル剤型の部材である前記26または27に記載の放熱部材。
31.素子部の発熱箇所に塗布するタイプの放熱部材である前記26または27に記載の放熱部材。
32.前記21乃至23のいずれか1項に記載の樹脂組成物が、絶縁接着層を兼ねた放熱用部材として使用されている金属ベース回路基板、メタルコア型回路基板、またはそれら基板を用いた構造体。
33.前記26乃至31のいずれか1項に記載の放熱部材を用いて、発熱性電子部品と放熱金属部材が接着されている放熱金属部材一体型電子部品の構造体。
34.前記26乃至31のいずれか1項に記載の放熱部材が使用されているLED回路基板。
35.前記32または34に記載の回路基板、または前記32または33に記載の構造体を使用した自動車。
36.前記32または34に記載の回路基板、または前記32または33に記載の構造体を使用した電気製品。
37.前記32または34に記載の回路基板、または前記32または33に記載の構造体を使用した信号照明機。
38.前記32または34に記載の回路基板、または前記32または33に記載の構造体を使用したディスプレイ。
That is, the present invention includes the following embodiments.
1. An inorganic powder which is a powder having a multimodal frequency particle size distribution and having a frequency peak in a particle size range of at least 0.2 to 2 μm and 2 to 63 μm.
2. 2. The inorganic powder as described in 1 above, wherein the maximum particle size is 63 μm or less, the average particle size is in the range of 4 to 30 μm, and the mode diameter is in the range of 2 to 35 μm.
3. 2. The inorganic powder according to 1 above, wherein the proportion of particles having a particle diameter of less than 2 μm is 0 to 20% by mass, and the mode diameter of particles having a particle diameter of less than 2 μm is in the range of 0.25 to 1.5 μm.
4). 2. The inorganic powder as described in 1 above, wherein the proportion of particles having a particle size of 8 μm or more is 44 to 90% by mass.
5). 2. The inorganic powder according to 1 above, wherein the proportion of particles having a particle size range of 2 to 8 μm is 0 to 15% by mass.
6). 2. The inorganic powder as described in 1 above, wherein the proportion of particles having a particle size range of 2 to 8 μm is 32 to 45 mass%.
7). 2. The inorganic powder as described in 1 above, having a sphericity of 0.68 to 0.95 and a spheroidization ratio of 0.63 to 0.95.
8). 2. The inorganic powder as described in 1 above, wherein the particles having a particle diameter of less than 2 μm have a sphericity of 0.5 to 0.95 and a spheroidization ratio of 0 to 0.9.
9. 2. The inorganic powder according to 1 above, wherein the particles having a particle diameter of 8 μm or more have a sphericity of 0.7 to 0.95 and a spheroidization ratio of 0.7 to 0.95.
10. 2. The inorganic powder as described in 1 above, wherein the thermal conductivity of the inorganic powder is 30 W / m · K or more at the time of single crystal.
11. 11. The inorganic powder as described in 1 to 10 above, wherein the inorganic powder is an alumina powder.
12 12. The inorganic powder as described in 11 above, wherein the α-alumina crystal phase fraction is in the range of 30 to 75% by mass.
13. The inorganic powder as described in 11 above, wherein the α-alumina crystal phase fraction of particles less than 13.2 μm is in the range of 90 to 100% by mass.
12. The inorganic powder as described in 11 above, wherein the α alumina crystal phase fraction of particles of 14.8 μm or more is in the range of 30 to 70% by mass.
15. 2. The inorganic powder as described in 1 above, wherein the content of metal Al is 0.05% by mass or less.
16. 2. The inorganic powder as described in 1 above, wherein the sulfate ion content is 15 ppm or less.
17. 2. The inorganic powder as described in 1 above, wherein the chloride ion content is 15 ppm or less.
18. 2. The inorganic powder as described in 1 above, wherein the content of Fe 2 O 3 is 0.03% by mass or less.
19. The inorganic powder as described in 1 above, which does not substantially contain particles of less than 50 nm.
20. 2. The inorganic powder according to 1 above, wherein the surface is hydrophobized with a surface treatment agent selected from a silane coupling agent and a titanate coupling agent.
21. 21. A resin composition filled with the inorganic powder according to any one of 1 to 20 above.
22. 22. The resin composition as described in 21 above, which is filled with 50 to 90% by mass of inorganic powder.
23. When the resin composition is a thin film insulating resin composition having a thickness of 40 to 90 μm, the dielectric breakdown strength measured by a dielectric breakdown voltage test specified in JIS C2110 is 39 kV / mm or more 21 or 22. The resin composition according to 22.
24. 24. A circuit board for mounting on an automobile, wherein the resin composition according to any one of 21 to 23 is used.
25. 24. A circuit board for mounting on electronic equipment using the resin composition according to any one of 21 to 23.
26. 24. A heat dissipating member installed inside an electronic device using the resin composition according to any one of 21 to 23.
27. 24. A heat dissipating member for electronic parts using the resin composition according to any one of 21 to 23.
28. 28. The heat radiating member according to 26 or 27, which is in the form of a sheet.
29. 28. The heat dissipation member as described in 26 or 27 above, which is in a paste form or a gel form.
30. 28. The heat dissipating member according to the above 26 or 27, which is an underfill agent type member.
31. 28. The heat radiating member according to 26 or 27, wherein the heat radiating member is a type of heat radiating member applied to a heat generating portion of the element portion.
32. 24. A metal base circuit board, a metal core type circuit board, or a structure using these boards, wherein the resin composition according to any one of 21 to 23 is used as a heat dissipation member that also serves as an insulating adhesive layer.
33. 32. A heat dissipation metal member-integrated electronic component structure in which a heat generating electronic component and a heat dissipation metal member are bonded using the heat dissipation member according to any one of 26 to 31.
34. 32. An LED circuit board on which the heat dissipating member according to any one of 26 to 31 is used.
35. An automobile using the circuit board according to 32 or 34 or the structure according to 32 or 33.
36. 34. An electrical product using the circuit board according to 32 or 34 or the structure according to 32 or 33.
37. 34. A signal illuminator using the circuit board according to 32 or 34 or the structure according to 32 or 33.
38. A display using the circuit board according to 32 or 34 or the structure according to 32 or 33.

本発明の好ましい実施態様における無機質粉体は、球形度・球状化率が低い場合においても、樹脂材料中に高密度で充填可能であるため、樹脂組成物の放熱性能・絶縁破壊強度を向上させることが可能である。
さらに、本発明の好ましい実施態様における無機質粉体を使用した樹脂薄膜シートは、高耐電圧特性が得られるため、熱伝導性、放熱特性、耐電圧特性に優れた樹脂組成物、樹脂薄膜シート、およびそれらを放熱部材として用いた回路基板および構造体を提供することが可能になる。
すなわち本発明の好ましい実施態様における無機質粉体は、特定の粒度分布を有し、好ましくは一定範囲内の不純物濃度に制御され、さらに好ましくは、表面疎水化処理を施した粉体である効果により、球形度が低く樹脂コンパウンド粘度が高くなる粉体であっても樹脂材料中に高充填できるという長所を有し、この無機質粉体を成分の一つとして用いることで、熱伝導性に優れ、かつ、厚さ40〜90μmの薄膜樹脂シート成膜時において、優れた耐電圧特性を示す樹脂組成物が得られる。
The inorganic powder according to a preferred embodiment of the present invention can be filled in the resin material at a high density even when the sphericity and spheroidization ratio are low, thereby improving the heat dissipation performance and dielectric breakdown strength of the resin composition. It is possible.
Furthermore, since the resin thin film sheet using the inorganic powder in a preferred embodiment of the present invention has high withstand voltage characteristics, the resin composition, the resin thin film sheet having excellent heat conductivity, heat dissipation characteristics, and withstand voltage characteristics, It is also possible to provide a circuit board and a structure using them as heat dissipation members.
That is, the inorganic powder in a preferred embodiment of the present invention has a specific particle size distribution, is preferably controlled to an impurity concentration within a certain range, and more preferably is a powder subjected to surface hydrophobization treatment. In addition, it has the advantage that even a powder with low sphericity and high resin compound viscosity can be filled in a resin material, and by using this inorganic powder as one of the components, it has excellent thermal conductivity, And the resin composition which shows the outstanding withstand voltage characteristic at the time of film-forming of the thin film resin sheet of thickness 40-90 micrometers is obtained.

従って、本発明の好ましい実施態様における樹脂組成物を使用すれば、放熱特性および耐電圧特性に優れた自動車搭載用回路基板、電子機器搭載用回路基板、電子機器内部の放熱用部材、電子部品用の放熱部材が得られる。この場合、当該電子部品用の放熱部材は、絶縁接着層を兼ねることができるシート状部材であってもよい。
また、本発明の好ましい実施態様における樹脂組成物を使用すれば、絶縁接着層等を兼ねた放熱用部材として、金属ベース回路基板、メタルコア型回路基板、およびそれらの構造体などに使用した場合においても優れた機能性を発揮する。
Therefore, if the resin composition according to a preferred embodiment of the present invention is used, a circuit board for mounting on an automobile, a circuit board for mounting on an electronic device, a heat dissipation member inside the electronic device, and an electronic component having excellent heat dissipation characteristics and withstand voltage characteristics The heat radiating member is obtained. In this case, the heat radiation member for the electronic component may be a sheet-like member that can also serve as an insulating adhesive layer.
In addition, if the resin composition according to a preferred embodiment of the present invention is used, when used as a heat radiating member that also serves as an insulating adhesive layer or the like, in a metal base circuit board, a metal core type circuit board, and a structure thereof. Also exhibits excellent functionality.

さらに、本発明の好ましい実施態様における無機質粉体を充填した樹脂組成物を、ペースト状またはゲル状にし、LED等に見られる発熱性素子部を有する電子部品の放熱用封止材や放熱用アンダーフィル剤等として応用することにより、例えば自動車搭載型の室内照明用LED回路基板、メーター照明用LED回路基板およびそれらの構造体、その他パーソナルコンピュータ、DVD、カラープリンタ等の電子機器、TV等の家庭用電子機器、PDA、携帯電話等の移動型電子機器、屋外設置用途の大型フルカラーディスプレイ機材、信号照明機器、家庭照明機器、光通信機器、医療・計測機器用途に用いられるLED回路基板およびそれらの構造体などに使用した場合においても、熱伝導性、絶縁性の面で優れた機能性を発揮する。特に、LED素子を高密度集積した高輝度LED基板の放熱・冷却用途に適用すれば、優れた機能性を発揮するため、面発光標識で有用に使用できる。このように、本発明における放熱部材は、LED基板の輝度向上に貢献する。   Further, the resin composition filled with the inorganic powder in a preferred embodiment of the present invention is made into a paste or gel, and a heat radiation sealing material or heat radiation underlayer for an electronic component having a heat generating element portion found in an LED or the like. By applying it as a filling agent, etc., for example, LED circuit boards for indoor lighting, LED circuit boards for meter lighting and their structures, other electronic devices such as personal computers, DVDs and color printers, homes such as TVs, etc. Electronic devices, mobile electronic devices such as PDAs, mobile phones, large full-color display equipment for outdoor installation, signal lighting equipment, home lighting equipment, optical communication equipment, LED circuit boards used for medical / measuring equipment, and their Even when used in structures, it exhibits excellent functionality in terms of thermal conductivity and insulation. In particular, when applied to a heat dissipation / cooling application of a high-brightness LED substrate in which LED elements are integrated at high density, it exhibits excellent functionality and can be used effectively with a surface emitting sign. Thus, the heat radiating member in this invention contributes to the brightness improvement of a LED board.

これらの放熱部材を用いて、発熱性電子部品と放熱金属部材が接着されている放熱金属部材一体型電子部品の構造体を形成することも可能であり、様々な電子機器類の高性能化に貢献可能である。   Using these heat radiating members, it is possible to form a heat radiating metal member-integrated electronic component structure in which a heat-generating electronic component and a heat radiating metal member are bonded, thereby improving the performance of various electronic devices. Can contribute.

以下、本発明の実施態様について詳細に説明する。
本発明の好ましい実施態様における無機質粉体は、特定の粒度分布を有することにより、樹脂材料中への高充填が可能となる。
Hereinafter, embodiments of the present invention will be described in detail.
The inorganic powder according to a preferred embodiment of the present invention has a specific particle size distribution, so that the resin material can be highly filled.

本発明の好ましい実施態様における無機質粉体は、最大粒子径が63μm以下、かつ、平均粒子径が4〜30μmであることが好ましく、より好ましくは4〜16μmの範囲であり、最頻径が2〜35μmが好ましく、より好ましくは7〜20μmの範囲にあり、頻度粒度分布において多峰性(すなわち、2以上のピークを有する)粉体であることが好ましい。すなわち、頻度粒度分布において少なくとも0.2〜2μmと2〜63μmの粒度域にそれぞれピークを持つ多峰性を有していることが好ましい。球形度は0.68〜0.95が好ましいが、より好ましくは0.68〜0.80であり、かつ、球状化率は0.63〜0.95が好適であって、より好ましくは0.63〜0.77である。
多峰性とすることで、粗大粒子の空隙に微粒子がより多く滑り込み、最密充填が加速されると考えられ、さらに前記の様な粒度域に頻度ピークを有することで、最密充填が促進される。
The inorganic powder in a preferred embodiment of the present invention preferably has a maximum particle size of 63 μm or less and an average particle size of 4 to 30 μm, more preferably 4 to 16 μm, and a mode diameter of 2 ˜35 μm is preferable, more preferably in the range of 7 to 20 μm, and the powder is preferably multimodal (that is, having two or more peaks) in the frequency particle size distribution. That is, it is preferable that the frequency particle size distribution has multimodality having peaks in the particle size ranges of at least 0.2 to 2 μm and 2 to 63 μm. The sphericity is preferably 0.68 to 0.95, more preferably 0.68 to 0.80, and the spheroidization ratio is preferably 0.63 to 0.95, more preferably 0. .63 to 0.77.
By making it multimodal, it is thought that more fine particles slide into the voids of coarse particles and the close packing is accelerated, and further, the close packing is promoted by having a frequency peak in the above particle size range. Is done.

0.2〜2μmの粒度域に含まれる粒子成分としては、無機質粉体を100質量%とした時、粒子径が2μm未満の粒子の割合が0〜25質量%であることが好ましく、より好ましくは0〜11質量%もしくは13〜25質量%で、最頻径が0.25〜1.5μmの範囲にあることが好ましい。球形度は0.5〜0.95が好適であって、より好ましくは0.8〜0.85であり、球状化率は0〜0.9が好適であって、より好ましくは0〜0.5である。   The particle component contained in the particle size range of 0.2 to 2 μm is preferably 0 to 25% by mass, more preferably 0 to 25% by mass, when the inorganic powder is 100% by mass. Is 0 to 11% by mass or 13 to 25% by mass, and the mode diameter is preferably in the range of 0.25 to 1.5 μm. The sphericity is preferably 0.5 to 0.95, more preferably 0.8 to 0.85, and the spheroidization rate is preferably 0 to 0.9, more preferably 0 to 0. .5.

2〜63μmの粒度域に含まれる粒子成分の特徴としては、粒子径が8μm以上の粒子の割合が44〜90質量%が好ましく、より好ましくは48〜86質量%である。球形度は0.7〜0.95が好ましく、より好ましくは0.7〜0.8、更に好ましくは0.7〜0.78であり、球状化率は0.7〜0.9が好ましく、より好ましくは0.7〜0.75である。   As a feature of the particle component contained in the particle size range of 2 to 63 μm, the ratio of particles having a particle diameter of 8 μm or more is preferably 44 to 90% by mass, and more preferably 48 to 86% by mass. The sphericity is preferably 0.7 to 0.95, more preferably 0.7 to 0.8, still more preferably 0.7 to 0.78, and the spheroidization ratio is preferably 0.7 to 0.9. More preferably, it is 0.7-0.75.

更に2〜8μmの粒度域に含まれる粒子の割合は0〜15質量%もしくは32〜45質量%が好ましく、より好ましくは4〜15質量%もしくは34〜45質量%である。
無機質粉体をこのような粒度分布となる様に混合等することにより、粉体の球形度が低くても、充填度の高い無機質粉体とすることが可能である。
Furthermore, the ratio of the particles contained in the particle size range of 2 to 8 μm is preferably 0 to 15% by mass or 32 to 45% by mass, and more preferably 4 to 15% by mass or 34 to 45% by mass.
By mixing the inorganic powder so as to have such a particle size distribution, it is possible to obtain an inorganic powder having a high degree of filling even if the sphericity of the powder is low.

無機質粉体の例としては、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、マグネシア、窒化ホウ素、窒化ケイ素、ベリリア、炭化ケイ素、炭化ホウ素、炭化チタン、ダイヤモンド等が使用可能であるが、好ましくは、熱伝導性(熱伝導率)および絶縁性(体積固有抵抗値)を両立する無機質粉体を使用する。特に好ましくは、単結晶の場合における熱伝導率が30W/m・K以上で、体積固有抵抗値1×1014Ω・cm以上である無機質粉体を使用する。
例えば、酸化アルミニウム、窒化アルミニウム、マグネシア、窒化ホウ素、ベリリア等が特に好ましい無機質粉体として採用可能である。
Examples of inorganic powders include aluminum oxide, aluminum nitride, crystalline silica, magnesia, boron nitride, silicon nitride, beryllia, silicon carbide, boron carbide, titanium carbide, diamond, etc. An inorganic powder having both conductivity (thermal conductivity) and insulation (volume resistivity) is used. Particularly preferably, an inorganic powder having a thermal conductivity of 30 W / m · K or more and a volume resistivity of 1 × 10 14 Ω · cm or more in the case of a single crystal is used.
For example, aluminum oxide, aluminum nitride, magnesia, boron nitride, beryllia and the like can be employed as particularly preferable inorganic powders.

なお、耐湿性や化学的安定性、使用安全性を考慮すると、本発明の無機質粉体としては、酸化アルミニウム、窒化アルミニウムが最も好ましいが、経済性を考慮した場合には酸化アルミニウムが好ましい。無機質粉体は、単体でも混合体でも使用が可能である。   In consideration of moisture resistance, chemical stability, and use safety, aluminum oxide and aluminum nitride are most preferable as the inorganic powder of the present invention, but aluminum oxide is preferable in consideration of economy. The inorganic powder can be used alone or as a mixture.

酸化アルミニウム粉体としては、バイヤー法水酸化アルミニウムを焼結、または電融して得られる酸化アルミニウム粉体を原料として火炎熔融法の球状化工程を経由した球状酸化アルミニウム粉体や、バイヤー法水酸化アルミニウムから製造された低ソーダ微粒酸化アルミニウム粉体、アンモニア明礬熱分解法やアルミニウムアルコキシド加水分解法、アルミニウム水中放電法、あるいは他の方法により製造された高純度微粒酸化アルミニウム粉体が好ましいが、特にこれらには限定されない。   As the aluminum oxide powder, spherical aluminum oxide powder obtained by sintering or electromelting Bayer method aluminum hydroxide as a raw material and passing through the spheroidizing step of the flame melting method, or Bayer method water is used. Low-soda fine aluminum oxide powder produced from aluminum oxide, ammonia alum pyrolysis method or aluminum alkoxide hydrolysis method, aluminum underwater discharge method, or high purity fine aluminum oxide powder produced by other methods are preferred, In particular, it is not limited to these.

窒化アルミニウム粉体としては、直接窒化法や還元窒化法等の方法により製造された窒化アルミニウム粉体が好ましいが、特にこれらには限定されない。
なお、これらの酸化アルミニウムおよび窒化アルミニウムは、単体でも混合体でも使用可能である。さらに、様々な製造方法で得られた酸化アルミニウムおよび窒化アルミニウムを複数組み合わせて使用することも可能である。
The aluminum nitride powder is preferably an aluminum nitride powder produced by a method such as a direct nitriding method or a reduction nitriding method, but is not particularly limited thereto.
These aluminum oxides and aluminum nitrides can be used alone or as a mixture. Furthermore, a plurality of aluminum oxides and aluminum nitrides obtained by various manufacturing methods can be used in combination.

本発明の好ましい実施態様における無機質粉体は、X線回折分析によって測定されるαアルミナ結晶相分率が30〜75質量%のアルミナ粉体が好ましく、より好ましくは30〜67質量%の範囲にあるアルミナ粉体である。   The inorganic powder in a preferred embodiment of the present invention is preferably an alumina powder having an α-alumina crystal phase fraction measured by X-ray diffraction analysis of 30 to 75% by mass, more preferably in the range of 30 to 67% by mass. An alumina powder.

更に本発明の好ましい実施態様における無機質粉体は、粒度域2μm未満の粉体のαアルミナ結晶相分率が90〜100質量%のアルミナ粉体が好ましく、より好ましくは95〜99質量%の範囲であり、かつ、粒度域8μm以上の粉体のαアルミナ結晶相分率が30〜70質量%が好ましく、より好ましくは35〜60質量%の範囲であるアルミナ粉体である。
αアルミナ結晶化率をこの様な範囲に調整することで、熱伝導度の高い無機質粉体(アルミナ粉体)とすることが可能となる。
Furthermore, the inorganic powder in a preferred embodiment of the present invention is preferably an alumina powder having an α-alumina crystal phase fraction of 90 to 100% by mass, more preferably 95 to 99% by mass, in a powder having a particle size range of less than 2 μm. In addition, an alumina powder having an α-alumina crystal phase fraction of a powder having a particle size range of 8 μm or more is preferably 30 to 70% by mass, and more preferably 35 to 60% by mass.
By adjusting the α-alumina crystallization rate in such a range, it is possible to obtain an inorganic powder (alumina powder) having high thermal conductivity.

本発明の好ましい実施態様における無機質粉体の粒度分布は公知の粒度分布測定装置を使用しても求めることができる。例えば、レーザー回折/散乱方式の粒度測定装置を用いることが好ましく、粒度分布測定装置としては、例えばマイクロトラックHRA(日機装(株)社製)やSALD−2000J(株)島津製作所製)で測定することができる。なお、水の屈折率は1.33を用い、例えば無機質粉体が酸化アルミニウム粉体である場合には粉体の屈折率として1.77〜1.8の範囲の値を用いるとよい。   The particle size distribution of the inorganic powder according to a preferred embodiment of the present invention can be obtained using a known particle size distribution measuring apparatus. For example, it is preferable to use a laser diffraction / scattering particle size measuring device, and the particle size distribution measuring device is measured by, for example, Microtrac HRA (manufactured by Nikkiso Co., Ltd.) or SALD-2000J (manufactured by Shimadzu Corporation). be able to. The refractive index of water is 1.33. For example, when the inorganic powder is an aluminum oxide powder, a value in the range of 1.77 to 1.8 may be used as the refractive index of the powder.

本発明でいう最大粒子径とは無機質粉体の累積粒度分布において累積値100%粒子径のことであり、平均粒子径とはメジアン径のことであり、無機質粉体の累積粒度分布において累積値50%粒子径のことである。また、最頻径とは無機質粉体の頻度粒度分布におけるピークのうち最も高い頻度値を示す粒子径のことである。   The maximum particle size referred to in the present invention is a cumulative particle size of 100% in the cumulative particle size distribution of the inorganic powder, and the average particle size is the median size, and the cumulative value in the cumulative particle size distribution of the inorganic powder. 50% particle size. The mode diameter is the particle diameter showing the highest frequency value among the peaks in the frequency particle size distribution of the inorganic powder.

本発明でいう球形度とは平均球形度を示しており、次の方法にて求めることができる。実体顕微鏡や走査型電子顕微鏡等にて撮影した粒子像を画像解析装置などに取り込み、写真から任意の粒子の投影面積(a)と輪郭周長L(a)を計測し、L(a)と同一の輪郭周長を持つ真円の面積を(b)とした場合、
(b)=π×(L(a)/2π)2
と表すことができる。従って、球形度は以下の式で算出することができる。
球形度=(a)/(b)=(a)×4π/(L(a)2
このようにして、ある一定個数の粒子の球形度を求め、平均値を平均球形度とすることができるが、この際、200個以上の粒子を使用して算出することが好ましい。
The sphericity referred to in the present invention indicates an average sphericity and can be determined by the following method. Particle images taken with a stereomicroscope or a scanning electron microscope are taken into an image analyzer or the like, and the projected area (a) and contour circumference L (a) of an arbitrary particle are measured from a photograph, and L (a) When the area of a perfect circle having the same contour circumference is (b),
(B) = π × (L (a) / 2π) 2
It can be expressed as. Therefore, the sphericity can be calculated by the following formula.
Sphericality = (a) / (b) = (a) × 4π / (L (a) ) 2
In this way, the sphericity of a certain number of particles can be obtained, and the average value can be used as the average sphericity. In this case, it is preferable to calculate using 200 or more particles.

なお、上記以外の球形度の測定方法としては、粒子像分析装置、例えば「FPIA−2100」(シスメックス(株)社製)などにて定量的に自動計測された個々の粒子の円形度から、以下の式により換算して球形度を求めることもできる。
球形度=(円形度)2
In addition, as a method for measuring sphericity other than the above, from the circularity of individual particles quantitatively automatically measured by a particle image analyzer, for example, “FPIA-2100” (manufactured by Sysmex Corporation), etc. The sphericity can also be obtained by conversion using the following equation.
Sphericality = (roundness) 2

本発明でいう球状化率とは、いわゆる球形度分布における球形度1.0の個数頻度割合である。これは前述の粒子像分析装置などで定量的に自動計測された粒子の円形度の個数頻度積算から求めることができる。   The spheroidization rate referred to in the present invention is the number frequency ratio of sphericity 1.0 in so-called sphericity distribution. This can be obtained from the number frequency integration of the circularity of the particles quantitatively automatically measured by the above-described particle image analyzer or the like.

なお、上記以外に球状化率を求める方法として、走査型電子顕微鏡にて粉体粒子の大きさに合わせた所定倍率(150〜1000倍の任意の倍率)で撮影した1視野中において、5μm以上の粒子全個数と未球状粒子個数を計数し、以下の式で算出することもできる。
球状化率=(全個数−未球状粒子個数)/全個数
なお、未球状粒子の計数方法については、予め用意した判断標本を用い比較する目視法や公知の画像解析装置を用いた計数法等、何れの方法を用いても良い。
In addition to the above, as a method for obtaining the spheroidization rate, 5 μm or more in one field of view taken with a scanning electron microscope at a predetermined magnification (an arbitrary magnification of 150 to 1000 times) according to the size of the powder particles The total number of particles and the number of non-spherical particles can be counted and calculated by the following formula.
Spheroidization rate = (total number−number of non-spherical particles) / total number As for the counting method of non-spherical particles, a visual method for comparison using a judgment sample prepared in advance, a counting method using a known image analysis device, etc. Any method may be used.

無機質粉体(アルミナ粉体)におけるαアルミナ結晶相分率の測定は特に限定されず、公知の粉末X線回折装置で測定することができ、CuKα線によりスリット0.3mm、スキャンスピード1度/分、スキャン範囲2θ=65〜70度の条件でX線回折分析を実施し、得られた2θ=68.2度のピーク(αアルミナ)高さをA、2θ=67.3度のピーク(中間アルミナ)高さをB、バックグラウンドとして2θ=69.5度のベースラインの値をCとして、
αアルミナ結晶相分率=(A−C)/((A−C)+(B−C))×100
で求めることができる。
The measurement of the α-alumina crystal phase fraction in the inorganic powder (alumina powder) is not particularly limited, and can be measured with a known powder X-ray diffractometer. The slit is 0.3 mm with CuKα rays, the scan speed is 1 degree / X-ray diffraction analysis was performed under the condition of a scan range of 2θ = 65 to 70 °, and the obtained 2θ = 68.2 ° peak (α alumina) height was set to A, 2θ = 67.3 ° peak ( Intermediate alumina) B is the height, C is the baseline value of 2θ = 69.5 degrees as the background,
α alumina crystal phase fraction = (AC) / ((AC) + (BC)) × 100
Can be obtained.

本発明の好ましい実施態様における無機質粉体中に含有される金属アルミニウム成分は、濃度が0.05質量%以下が好ましく、より好ましくは0〜0.01質量%以下である。粉体中に金属アルミニウム成分が多く含まれる無機質粉体を、例えば絶縁層の放熱フィラーとして使用した場合、高い電圧が加わった際に回路銅箔と基板の間での電流短絡(絶縁破壊)が生じ易くなる可能性が高くなり、回路または装置を破壊する危険性が大きくなるためである。   The concentration of the metal aluminum component contained in the inorganic powder in a preferred embodiment of the present invention is preferably 0.05% by mass or less, more preferably 0 to 0.01% by mass. When an inorganic powder containing a large amount of metal aluminum component in the powder is used as a heat dissipation filler for an insulating layer, for example, a short circuit (dielectric breakdown) occurs between the circuit copper foil and the substrate when a high voltage is applied. This is because the possibility of being easily generated increases and the risk of destroying the circuit or device increases.

本発明の好ましい実施態様における無機質粉体中に含有される金属アルミニウム成分の濃度測定方法は特に限定されず、公知の無機分析法であればいずれによっても測定できるが、無機質粉体を塩酸によって酸加熱抽出処理した後、ろ液中に含まれる塩酸可溶成分をICP(高周波誘導結合プラズマ)発光分光分析装置にて測定することが好ましい。分析装置は例えばICPS−7500((株)島津製作所製)を用いて測定することができる。   The method for measuring the concentration of the metal aluminum component contained in the inorganic powder in a preferred embodiment of the present invention is not particularly limited and can be measured by any known inorganic analysis method, but the inorganic powder is acidified with hydrochloric acid. After the heat extraction treatment, it is preferable to measure hydrochloric acid-soluble components contained in the filtrate with an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer. The analyzer can be measured using, for example, ICPS-7500 (manufactured by Shimadzu Corporation).

本発明の好ましい実施態様における無機質粉体は、粉体中に含有する硫酸イオンの濃度が15ppm以下であることが好ましく、より好ましくは5ppm以下である。例えば、フィラーとしてシランカップリング剤で表面処理された無機質粉体を使用する場合やシリコーン系材料を絶縁樹脂化合物として使用する場合、粉体表面上のシラノ−ル基周辺やシリコーン樹脂自体にシロキサン結合が存在するが、粉体中の硫酸イオンの含有濃度が高いほど、その酸成分によってシロキサン結合の分断が助長され、低分子シロキサンのガスが発生し易くなるためである。シロキサン結合の分断によって、樹脂組成物自体の柔軟性低下や粒子との結合界面の強度低下が生じる場合があり、さらに低分子シロキサンは機器内等の高温かつ密閉環境下においては揮散し、部品や接点端子表面等にシリカ結晶として付着再結晶化する場合がある。結果としてこの結晶が電気絶縁物となり接点不良等の問題を引き起こす可能性が高まるため、含有する硫酸イオンはできる限り少ないことが望ましい。   In the inorganic powder according to a preferred embodiment of the present invention, the concentration of sulfate ions contained in the powder is preferably 15 ppm or less, more preferably 5 ppm or less. For example, when using inorganic powder surface-treated with a silane coupling agent as a filler or when using a silicone-based material as an insulating resin compound, a siloxane bond is formed around the silanol group on the powder surface or on the silicone resin itself. This is because, as the concentration of sulfate ions in the powder is higher, the acid component promotes the breaking of the siloxane bond and the gas of low molecular siloxane is more likely to be generated. The splitting of the siloxane bond may cause a decrease in flexibility of the resin composition itself and a decrease in the strength of the bonding interface with the particles, and the low molecular weight siloxane is volatilized at a high temperature and in a sealed environment such as in a device. In some cases, the surface of the contact terminal is recrystallized as silica crystals. As a result, since this crystal becomes an electrical insulator and increases the possibility of causing problems such as contact failure, it is desirable that the amount of sulfate ion contained is as small as possible.

本発明の好ましい実施態様における無機質粉体は、粉体中に含有する塩素イオンの濃度が15ppm以下であることが好ましく、より好ましくは10ppm以下である。塩素イオンについても前述の硫酸イオンと同様に、樹脂組成物中にあるシロキサン結合の分断による樹脂特性低下や回路接点不良等を生じる場合があり、そしてその酸成分による絶縁層樹脂の腐食破損の可能性が考えられ、絶縁樹脂化合物および回路基板の信頼性を確保する意味では、含有塩素イオン濃度もできる限り低いことが望ましい。   In the inorganic powder according to a preferred embodiment of the present invention, the concentration of chlorine ions contained in the powder is preferably 15 ppm or less, more preferably 10 ppm or less. As with the above-mentioned sulfate ion, chlorine ion may cause degradation of resin characteristics and circuit contact failure due to siloxane bond breakage in the resin composition, and the acid component may cause corrosion damage to the insulating layer resin. In view of ensuring the reliability of the insulating resin compound and the circuit board, it is desirable that the chlorine ion concentration is as low as possible.

本発明における無機質粉体中に含有する硫酸イオンと塩素イオンの濃度測定方法は特に限定されず、微量無機陰イオン・陽イオン類、有機酸の濃度測定に有効な公知の分離分析法であればいずれによっても測定できるが、無機質粉体を純水による煮沸加熱抽出処理した後、溶液中の水可溶成分をイオンクロマトグラフィーにて測定することが好ましい。分析装置は例えばShodex(昭和電工(株)社製)を用いて測定することができる。   The method for measuring the concentration of sulfate ion and chloride ion contained in the inorganic powder in the present invention is not particularly limited as long as it is a known separation analysis method effective for measuring the concentration of trace amounts of inorganic anions / cations and organic acids. Although it can be measured by either method, it is preferable to measure the water-soluble component in the solution by ion chromatography after boiling and extracting the inorganic powder with pure water. The analyzer can be measured using, for example, Shodex (manufactured by Showa Denko KK).

硫酸イオンと塩素イオンの存在形態は特に限定されず、イオンでない状態で存在するものもあると推測されるが、本発明における硫酸イオンおよび塩素イオンは、無機質粉体の純水による煮沸加熱によって抽出され、イオンクロマトグラフィーによって硫酸イオンあるいは塩素イオンとして検出される成分として定義することが可能である。   The existence form of sulfate ions and chloride ions is not particularly limited, and it is assumed that some ions exist in a non-ion state, but sulfate ions and chloride ions in the present invention are extracted by boiling heating of inorganic powder with pure water. It can be defined as a component that is detected as sulfate ion or chloride ion by ion chromatography.

本発明の好ましい実施態様における無機質粉体は、粉体中に含有するFe23成分の濃度が0.03質量%以下が好ましく、より好ましくは0.005〜0.015質量%である。粉体中に存在するFe23成分の含有濃度が高いほど、前述の金属Alと同様に回路銅箔と基板の間での電流短絡が生じる可能性が高くなることから、回路基板の高信頼性を確保するためにはできるだけ低濃度であることが望ましい。 In the inorganic powder according to a preferred embodiment of the present invention, the concentration of the Fe 2 O 3 component contained in the powder is preferably 0.03% by mass or less, more preferably 0.005 to 0.015% by mass. The higher the content concentration of the Fe 2 O 3 component present in the powder, the higher the possibility of a short circuit between the circuit copper foil and the substrate as in the case of the metal Al described above. In order to ensure reliability, it is desirable that the concentration be as low as possible.

本発明の好ましい実施態様における無機質粉体中に含有するFe23成分の濃度測定方法は特に限定されず公知の無機分析法であればいずれによっても測定できるが、無機質粉体試料に燐酸を加えた後、マイクロウェーブ酸分解装置で分解処理した溶液中に含まれる成分をICP発光分光分析装置にて測定することが好ましい。分析装置は、金属アルミニウム成分と同様に、例えばICPS−7500((株)島津製作所製)を用いて測定することができる。
本発明の好ましい実施態様における無機質粉体は、50nm未満の粒子を実質的に含有しないことが好ましい。50nm未満の微粒子が必要以上に存在すると無機質粉体を充填した際、樹脂コンパウンドの粘度が著しく増粘化するため、充填度の高い無機質粉体としての特性を損なう場合がある。その意味から本発明の好ましい実施態様における無機質粉体には、このような微粒子が含有しないことが好ましい。
The method for measuring the concentration of the Fe 2 O 3 component contained in the inorganic powder in a preferred embodiment of the present invention is not particularly limited and can be measured by any known inorganic analysis method, but phosphoric acid is added to the inorganic powder sample. After the addition, it is preferable to measure the components contained in the solution subjected to the decomposition treatment with the microwave acid decomposition apparatus with an ICP emission spectroscopic analysis apparatus. The analyzer can be measured using, for example, ICPS-7500 (manufactured by Shimadzu Corporation) in the same manner as the metal aluminum component.
The inorganic powder in a preferred embodiment of the present invention preferably contains substantially no particles of less than 50 nm. When the fine particles of less than 50 nm are present more than necessary, when the inorganic powder is filled, the viscosity of the resin compound is remarkably increased, which may impair the characteristics of the inorganic powder having a high filling degree. In that sense, it is preferable that the inorganic powder in a preferred embodiment of the present invention does not contain such fine particles.

無機質粉体中に50nm未満の粒子を実質的に含有しないこととは、走査型電子顕微鏡により倍率50,000倍で撮影した任意の100視野以上の写真中において、50nm未満の粒子個数を数え、写真1視野あたりの平均値として換算した値が50個未満程度であることを意味する。50nm未満の粒子はより少ない方が好ましいが、平均粒子数50個以上となると、本発明の効果が急激に失われるということはなく、この程度の個数ならば間違いなく発明の効果が発現されるという値である。   The fact that particles of less than 50 nm are not substantially contained in the inorganic powder means that the number of particles less than 50 nm is counted in an arbitrary photograph of 100 or more fields taken at a magnification of 50,000 times with a scanning electron microscope, It means that the value converted as an average value per view of a photograph is less than about 50. The number of particles of less than 50 nm is preferably smaller, but when the average number of particles is 50 or more, the effect of the present invention is not lost suddenly. It is a value.

本発明の好ましい実施態様で用いる無機質粉体はシラン系カップリング剤やチタネート系カップリング剤による表面疎水化処理を実施した粉体であることが好ましく、表面疎水化処理の実施方法としては特に限定されないが、せん断力のある撹拌ミキサー等を用いた乾式法、水系または有機溶剤系等で分散処理する湿式スラリー法、流体ノズルを用いたスプレー法といった公知の方法が挙げられる。   The inorganic powder used in a preferred embodiment of the present invention is preferably a powder subjected to a surface hydrophobization treatment with a silane coupling agent or a titanate coupling agent, and the method for performing the surface hydrophobization treatment is particularly limited. However, there are known methods such as a dry method using a stirring mixer having a shearing force, a wet slurry method in which a dispersion treatment is performed in an aqueous or organic solvent system, and a spray method using a fluid nozzle.

なお、これらの表面疎水化処理実施に際しては、撹拌力を伴う方法の場合には粉体の形状破壊等が生じないように注意を払い、撹拌時間等の条件については表面疎水化処理を施す無機質粉体の粒度、シラン系カップリング剤やチタネート系カップリング剤の種類、および粉体の目標特性に応じて適宜決定すれば良い。   In carrying out these surface hydrophobizing treatments, care should be taken so that the shape of the powder does not break in the case of a method involving a stirring force, and the conditions such as the stirring time are applied to the surface hydrophobizing treatment. What is necessary is just to determine suitably according to the particle size of powder, the kind of silane coupling agent or titanate coupling agent, and the target characteristic of powder.

表面疎水化処理に使用するシラン系カップリング剤については特に限定されないが、例えばβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン等のエポキシ系シラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノ系シラン、ウレイドプロピルトリエトキシシランが好ましく、これらは単独、あるいは複数で用いることができる。絶縁層等を構成する樹脂成分と無機質粉体の接着性、分散性を考慮して選定すれば良い。   Although it does not specifically limit about the silane coupling agent used for the surface hydrophobization process, For example, epoxy-type silanes, such as (beta)-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, (gamma) -glycidoxypropyl trimethoxysilane, Amino-based silanes such as γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, and ureidopropyltriethoxysilane are preferable, Or it can be used in plural. What is necessary is just to select in consideration of the adhesiveness and dispersibility of the resin component which comprises an insulating layer etc., and inorganic powder.

チタネート系カップリング剤についても同様に特に限定されないが、例えばテトラ(2,2−ジアリロキシメチル−1−ブチル)−ビス(ジトリデシル−フォスファイト)チタネート、テトラオクチル−ビス(ジトリデシル−フォスファイト)チタネート、テトライソプロピル−ビス(ジトリデシル−フォスファイト)チタネート、ビス(ジオクチルピロフォスフェート)−オキシアセテートチタネート、イソプロピルトリ(N−アミノエチル・アミノエチル)チタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ−i−ドデシルベンゼン−スルフォニルチタネート、イソプロピルトリ−n−ドデシルベンゼン−スルフォニルチタネート、イソプロピル−トリ(ジオクチルピロ−ジオクチルピロ−フォスフェート)チタネート、ビス(ジオクチルピロフォスフェート)−エチレンチタネート、イソプロピルトリクミルフェニルチタネート、ジクミルフェニルオキシアセテートチタネート等が好ましく、絶縁層等を構成する樹脂成分と無機質粉体の接着性、分散性を考慮して選定すれば良い。   Similarly, the titanate coupling agent is not particularly limited. For example, tetra (2,2-diallyloxymethyl-1-butyl) -bis (ditridecyl-phosphite) titanate, tetraoctyl-bis (ditridecyl-phosphite). Titanate, tetraisopropyl-bis (ditridecyl-phosphite) titanate, bis (dioctyl pyrophosphate) -oxyacetate titanate, isopropyltri (N-aminoethylaminoethyl) titanate, isopropyltriisostearoyl titanate, isopropyltri-i- Dodecylbenzene-sulfonyl titanate, isopropyl tri-n-dodecylbenzene-sulfonyl titanate, isopropyl-tri (dioctyl pyro-dioctyl pyro-phosphate) Titanate, bis (dioctyl pyrophosphate) -ethylene titanate, isopropyl tricumylphenyl titanate, dicumylphenyloxyacetate titanate, etc. are preferable, considering the adhesiveness and dispersibility of the resin component constituting the insulating layer and the inorganic powder. To be selected.

本発明の好ましい実施態様における無機質粉体の充填された樹脂組成物のマトリックスとして用いられる有機重合体(樹脂)の具体例としては、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフイン、メラミン樹脂、ユリア樹脂、フェノール樹脂、ポリエチレンテレフタレート、不飽和ポリエステルなどのポリエステル、ナイロン6、ナイロン66、アラミドなどのポリアミド、ポリブタジエン、ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、酢酸ビニル樹脂、セルロースおよびレーヨンその他のセルロース誘導体、ポリウレタン、ポリカーボネート、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、セルロイド、キチン、澱粉シート、アクリル樹脂、アルキド樹脂等といった公知の樹脂、およびこれらの混合物が好ましいが、特にこれらに限定されない。なお、これらは単独、あるいは複数で用いることも可能である。   Specific examples of the organic polymer (resin) used as the matrix of the resin composition filled with the inorganic powder in a preferred embodiment of the present invention include epoxy resin, polyimide resin, silicone resin, polyethylene, polypropylene, polystyrene, and the like. Polyolefin, melamine resin, urea resin, phenolic resin, polyethylene terephthalate, polyester such as unsaturated polyester, nylon 6, nylon 66, polyamide such as aramid, polybutadiene, polyester, polyvinyl chloride, polyvinylidene chloride, polyethylene oxide, polyethylene glycol, Polyvinyl alcohol, vinyl acetal resin, polyacetate, ABS resin, vinyl acetate resin, cellulose, rayon and other cellulose derivatives, polyurethane, Polycarbonate, urea resin, fluororesin, polyvinylidene fluoride, celluloid, chitin, starch sheet, acrylic resin, known resins such as alkyd resins, and mixtures thereof are preferred, not particularly limited thereto. These can be used alone or in plural.

この中で特に、金属板や金属箔と接着力が比較的強く、無機質粉体との親和性が比較的高いエポキシ樹脂やポリイミド樹脂を用いることが好ましい。また、前述の樹脂組成物には、必要に応じて硬化促進剤等を用いることもできる。   Among these, it is particularly preferable to use an epoxy resin or a polyimide resin that has a relatively strong adhesive force with a metal plate or metal foil and a relatively high affinity with the inorganic powder. Moreover, a hardening accelerator etc. can also be used for the above-mentioned resin composition as needed.

硬化促進剤については、使用する樹脂と反応して硬化させるものであれば特に限定されないが、例えばエポキシ樹脂と反応して硬化させる公知の促進剤としては、フェノール、クレゾール、イミダゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、ビスフェノールAやビスフェノールS等のビスフェノール化合物、無水マレイン酸等の酸無水物等が好ましく、使用する樹脂材料との反応性を考慮して選定すれば良い。   The curing accelerator is not particularly limited as long as it can be cured by reacting with a resin to be used. For example, known accelerators that react and cure with an epoxy resin include phenol, cresol, imidazole, xylenol, resorcinol, Chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, bisphenol compounds such as bisphenol A and bisphenol S, and acid anhydrides such as maleic anhydride are preferred, and may be selected in consideration of reactivity with the resin material used. .

本発明における樹脂組成物の混錬・充填方法としては、特に限定されないが、遠心式混錬機、公転自転式混錬機、ロールミル、バンバリーミキサー、ニーダー等を用いて均一混錬することが好ましく、脱泡効果を付加した装置を用いて樹脂組成物中の気泡を除去しながら混錬することがより好ましい。   The kneading / filling method of the resin composition in the present invention is not particularly limited, but it is preferable to uniformly knead using a centrifugal kneader, a revolutionary rotary kneader, a roll mill, a Banbury mixer, a kneader, or the like. It is more preferable to knead while removing bubbles in the resin composition using an apparatus to which a defoaming effect is added.

本発明の好ましい実施態様における樹脂組成物の成膜方法は特に制限されるものではないが、ドクターブレード法や、樹脂コンパウンド粘度によっては押出し法、プレス法、カレンダーロール法等を用いることが好ましい。   The film formation method of the resin composition in a preferred embodiment of the present invention is not particularly limited, but it is preferable to use a doctor blade method, an extrusion method, a press method, a calender roll method, or the like depending on the resin compound viscosity.

本発明の好ましい実施態様における無機質粉体の流動性を示す指標である樹脂コンパウンド粘度の評価、および粉体を充填し薄膜シートに成形した樹脂組成物の耐電圧特性評価は、実施例に記載する評価方法により行うことができる。   The evaluation of the resin compound viscosity, which is an index indicating the fluidity of the inorganic powder in a preferred embodiment of the present invention, and the withstand voltage characteristic evaluation of the resin composition filled with the powder and formed into a thin film sheet are described in the examples. It can be performed by an evaluation method.

本発明の好ましい実施態様における無機質粉体は、特定の粒度分布を有し、さらに好ましくは、表面疎水化処理を施した粉体である効果により、球形度が低く樹脂コンパウンド粘度が高くなる粉体であっても樹脂成分中に高充填できるという長所を有する。このような無機質粉体を成分の一つとして用いることで、熱伝導性に優れ、かつ、厚さ40〜90μmの薄膜樹脂シート成膜時において、優れた耐電圧特性を示す樹脂組成物が得られる。   The inorganic powder in a preferred embodiment of the present invention has a specific particle size distribution, and more preferably a powder having low sphericity and high resin compound viscosity due to the effect of being subjected to surface hydrophobization treatment. Even so, the resin component can be highly filled. By using such an inorganic powder as one of the components, a resin composition having excellent heat resistance and excellent withstand voltage characteristics when a thin film resin sheet having a thickness of 40 to 90 μm is formed can be obtained. It is done.

さらに、本発明の好ましい実施態様における無機粉体を使用した樹脂組成物を使用すれば、公知の方法により自動車搭載用回路基板、電子機器搭載用回路基板、電子機器内部の放熱用部材、電子部品用の放熱部材とすることが可能となる。さらに、当該電子部品用の放熱部材は、絶縁接着層を兼ねることができるシート状部材であってもよく、金属ベース回路基板、またはメタルコア型回路基板、およびそれらの構造体とすることも可能である(例えば、電子技術1985年12月臨時増刊号,39〜50頁、サーキットテクノロジ,Vol.5、No.2,96〜103頁(1990))。   Furthermore, if the resin composition using the inorganic powder in a preferred embodiment of the present invention is used, a circuit board for mounting on an automobile, a circuit board for mounting on an electronic device, a heat radiating member inside the electronic device, an electronic component by a known method It becomes possible to make it a heat radiating member. Further, the heat dissipation member for the electronic component may be a sheet-like member that can also serve as an insulating adhesive layer, and may be a metal base circuit board, a metal core type circuit board, or a structure thereof. (For example, electronic technology special issue in December 1985, pages 39-50, Circuit Technology, Vol. 5, No. 2, pages 96-103 (1990)).

また、公知の方法を採用して、発熱性電子部品と放熱金属部材が接着されている放熱金属部材一体型電子部品の構造体とすることも可能である。
さらに、本発明の好ましい実施態様における無機質粉体を充填した樹脂組成物をペースト状またはゲル状にし、LED等に見られる発熱性素子部を有する電子部品の放熱用封止材や放熱用アンダーフィル剤として応用することで、LED回路基板およびそれらの構造体とすることも可能である。
Moreover, it is also possible to employ a known method to obtain a structure of a heat dissipation metal member integrated electronic component in which the heat generating electronic component and the heat dissipation metal member are bonded.
Further, the resin composition filled with the inorganic powder in a preferred embodiment of the present invention is made into a paste or gel, and a heat radiation sealing material or heat radiation underfill for an electronic component having a heat generating element portion found in an LED or the like. By applying as an agent, it is also possible to make LED circuit boards and their structures.

この場合、例えば自動車搭載型の室内照明用LED回路基板、メーター照明用LED回路基板およびそれらの構造体、その他パーソナルコンピュータ、DVD、カラープリンタ等の電子機器、TV等の家庭用電子機器、PDA、携帯電話等の移動型電子機器、屋外設置用途の大型フルカラーディスプレイ機材、信号照明機器、家庭照明機器、光通信機器、医療・計測機器用途に用いられるLED回路基板およびそれらの構造体などに使用すれば、熱伝導性、絶縁性の面で優れた機能性を発揮し、電子機器類の高性能化に有用である。特に、LED素子を高密度集積した高輝度LED基板の放熱・冷却用途に適用すれば、優れた機能性を発揮するため、面発光標識で有効に使用できる。このように、本発明の好ましい実施態様における放熱部材は、LED基板の輝度向上に貢献可能である。   In this case, for example, a vehicle-mounted indoor lighting LED circuit board, a meter lighting LED circuit board and their structures, other electronic devices such as personal computers, DVDs, color printers, household electronic devices such as TVs, PDAs, Used for mobile electronic devices such as mobile phones, large full-color display equipment for outdoor installation, signal lighting equipment, home lighting equipment, optical communication equipment, LED circuit boards and their structures used in medical and measuring equipment applications, etc. For example, it exhibits excellent functionality in terms of thermal conductivity and insulation, and is useful for improving the performance of electronic devices. In particular, when applied to a heat dissipation / cooling application of a high-intensity LED substrate in which LED elements are integrated at a high density, it exhibits excellent functionality and can be used effectively with a surface emitting sign. Thus, the heat radiating member in the preferable embodiment of the present invention can contribute to the improvement of the luminance of the LED substrate.

また、本発明の好ましい実施態様における放熱部材を用いて、発熱性電子部品と放熱金属部材が接着されている放熱金属部材一体型電子部品の構造体を形成することも可能であり、様々な電子機器類の高性能化に貢献可能である。   In addition, it is possible to form a heat dissipation metal member-integrated electronic component structure in which a heat-generating electronic component and a heat dissipation metal member are bonded by using the heat dissipation member in a preferred embodiment of the present invention. It can contribute to high performance of equipment.

以下、実施例、比較例によって本発明について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention concretely, the present invention is not limited to these examples.

実施例1〜8:
シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(A−187;日本ユニカー社製)を用いて、予め表面疎水化処理を施した後、粒度分布条件を表1の如く調整した酸化アルミニウム粉体A、B、C、D、E、F、G、Hを準備した。
所定条件にて樹脂組成物に混練充填後、ドクターブレード法により、乾燥硬化後の膜厚が約60μm以下になるように成膜した。
所定の乾燥条件にて乾燥硬化した薄膜樹脂シートについて、各々の絶縁破壊強度を測定した。絶縁破壊強度はJISC2110に規定された絶縁破壊電圧試験方法に基づき測定した。表1に記載の酸化アルミニウム粉体について樹脂コンパウンド粘度評価としてエポキシ樹脂粘度を測定した。
表1に示した結果の通り、平均球形度が0.89未満の球形度粉体の場合、エポキシ樹脂粘度が1000〜1400Pの粘性となり、膜厚45〜55μmにおいて絶縁破壊強度67〜93kV/mmを得ることができたが(実施例5〜8)、球形度が0.81未満の低球形度粉体で、エポキシ樹脂粘度が5000P以上になるほど粘性が高くなった場合においても、膜厚44〜53μmにおいて絶縁破壊強度39〜78kV/mmを得ることができた(実施例1〜4)。
Examples 1-8:
Aluminum oxide having a particle size distribution condition adjusted as shown in Table 1 after surface hydrophobization treatment in advance using γ-glycidoxypropyltrimethoxysilane (A-187; manufactured by Nihon Unicar Co., Ltd.) as a silane coupling agent Powders A, B, C, D, E, F, G, and H were prepared.
After kneading and filling the resin composition under predetermined conditions, a film was formed by a doctor blade method so that the film thickness after drying and curing was about 60 μm or less.
With respect to the thin film resin sheet dried and cured under predetermined drying conditions, each dielectric breakdown strength was measured. The dielectric breakdown strength was measured based on the dielectric breakdown voltage test method specified in JISC2110. The epoxy resin viscosity was measured as the resin compound viscosity evaluation for the aluminum oxide powders listed in Table 1.
As shown in Table 1, in the case of a sphericity powder having an average sphericity of less than 0.89, the viscosity of the epoxy resin is 1000 to 1400 P, and the dielectric breakdown strength is 67 to 93 kV / mm at a film thickness of 45 to 55 μm. (Examples 5 to 8), even when the low sphericity powder having a sphericity of less than 0.81 and the viscosity becomes higher as the epoxy resin viscosity becomes 5000 P or more, the film thickness 44 is increased. A dielectric breakdown strength of 39 to 78 kV / mm could be obtained at ˜53 μm (Examples 1 to 4).

なお、薄膜樹脂シート作成における粉体と樹脂成分の混練・充填条件、成膜・乾燥条件、シート耐電圧測定方法、およびエポキシ樹脂粘度測定方法を以下に示す。   The powder and resin component kneading / filling conditions, film forming / drying conditions, sheet withstand voltage measuring method, and epoxy resin viscosity measuring method in preparing the thin film resin sheet are shown below.

(1)粉体と樹脂成分の混練・充填条件
粉体 :25g
樹脂 :エポキシ樹脂化合物 10g
硬化剤 :イミダゾール 0.1g
上記混合物を公転自転混和方式脱泡混練器((株)シンキー社製AR−250)を用いて、混練時間5分、脱泡時間1分の条件で混練した。
(1) Kneading and filling conditions of powder and resin component Powder: 25 g
Resin: Epoxy resin compound 10g
Curing agent: 0.1 g of imidazole
The above mixture was kneaded using a revolutionary rotation mixing type defoaming kneader (AR-250, manufactured by Shinky Corporation) under conditions of kneading time of 5 minutes and defoaming time of 1 minute.

(2)成膜・乾燥条件
前記混練スラリーを自動フィルム塗布器((有)セプロ社製)とブレードエッジ(75μm)を用いて、ドクターブレード法にて成膜後、直ちに定温恒温乾燥器にて40〜50℃で30以上乾燥後、120℃で15分、180℃で30分、の3段階に分けて乾燥した。
(2) Film formation / drying conditions The kneaded slurry is formed by the doctor blade method using an automatic film applicator (manufactured by Sepro Co., Ltd.) and a blade edge (75 μm), then immediately in a constant temperature and constant temperature drier. After drying at 40 to 50 ° C. for 30 or more, it was dried in three stages of 120 ° C. for 15 minutes and 180 ° C. for 30 minutes.

(3)絶縁破壊強度測定方法
乾燥して得た薄膜樹脂シートを、耐電圧試験器(菊水電子工業(株)製TOS−8870A型)を用い、印加電圧AC5kVで、JISC2110に記載の絶縁破壊電圧試験方法に準拠した方法にて測定した。
(3) Dielectric breakdown strength measurement method Using a withstand voltage tester (TOS-8870A type, manufactured by Kikusui Electronics Co., Ltd.), the dielectric breakdown voltage described in JIS C2110 is applied to the thin film resin sheet obtained by drying. It measured by the method based on the test method.

(4)エポキシ樹脂粘度測定方法
粉体250質量部、エポキシ樹脂(旭化成(株)社製エポキシ樹脂AER−250)100質量部を混練器にて混練し、恒温水槽にて25℃に調整した後、BH型粘度計にて粘度を測定した。
(5)金属アルミニウム成分の濃度測定
無機質粉体を塩酸によって酸加熱抽出処理した後、ろ液中に含まれる塩酸可溶成分をICP(高周波誘導結合プラズマ)発光分光分析装置にて測定した。分析装置はICPS−7500((株)島津製作所製)を用いた。
(6)硫酸イオンおよび塩素イオンの濃度測定
無機質粉体を純水による煮沸加熱抽出処理した後、溶液中の水可溶成分をイオンクロマトグラフィーにて測定した。分析装置はShodex(昭和電工(株)社製)を用いた。
(7)Fe23成分の濃度測定
無機質粉体試料に燐酸を加えた後、マイクロウェーブ酸分解装置で分解処理した溶液中に含まれる成分をICP発光分光分析装置にて測定した。分析装置は、金属アルミニウム成分と同様に、ICPS−7500((株)島津製作所製)を用いて測定した。
(4) Method for measuring viscosity of epoxy resin After kneading 250 parts by mass of powder and 100 parts by mass of epoxy resin (epoxy resin AER-250 manufactured by Asahi Kasei Co., Ltd.) and adjusting the temperature to 25 ° C. in a constant temperature water bath. The viscosity was measured with a BH viscometer.
(5) Concentration measurement of metallic aluminum component After the inorganic powder was subjected to an acid heating extraction treatment with hydrochloric acid, the hydrochloric acid-soluble component contained in the filtrate was measured with an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer. As an analyzer, ICPS-7500 (manufactured by Shimadzu Corporation) was used.
(6) Concentration measurement of sulfate ion and chloride ion After subjecting the inorganic powder to boiling heat extraction treatment with pure water, the water-soluble component in the solution was measured by ion chromatography. As the analyzer, Shodex (manufactured by Showa Denko KK) was used.
(7) After addition of phosphoric acid to the concentration measuring inorganic powder sample of Fe 2 O 3 component was measured component contained in the solution were decomposed with microwave acid decomposition apparatus by ICP emission spectrophotometer. The analyzer was measured using ICPS-7500 (manufactured by Shimadzu Corporation) in the same manner as the metal aluminum component.

比較例1〜4:
表2に記載の酸化アルミニウム粉体I、J、K、Lを、実施例と同様の手順、条件にて樹脂成分に充填後、薄膜樹脂シートを成膜して絶縁破壊強度を測定すると共に、粉体各々についてエポキシ樹脂粘度を測定した。
表2に示した結果の通り、何れも膜厚47〜50μmで絶縁破壊強度28〜32kV/mmであった。
Comparative Examples 1-4:
After filling the aluminum oxide powders I, J, K, and L shown in Table 2 into the resin components in the same procedure and conditions as in the examples, a thin film resin sheet was formed and the dielectric breakdown strength was measured. The epoxy resin viscosity was measured for each powder.
As shown in Table 2, the film thickness was 47 to 50 μm and the dielectric breakdown strength was 28 to 32 kV / mm.

参考例1:
酸化アルミニウム粉体が非常に高い球形度を有する場合の例として、表3に記載の酸化アルミニウム粉体I(アドマテックス社製、球状酸化アルミニウム「アドマファイン(登録商標)AO−502」を20質量%、「アドマファイン(登録商標)AO−509」を80質量%の割合で混合した粉体)を準備した。
実施例と同様の方法で薄膜樹脂シートを成膜した後、絶縁破壊強度を測定し、粉体についてエポキシ樹脂粘度を測定した。
表3に示した通り、市販されている高球形度の粉体の場合には、エポキシ樹脂粘度は1080Pと低く、膜厚55μmで絶縁破壊強度39kV/mmが得られることを確認した。
Reference example 1:
As an example when the aluminum oxide powder has a very high sphericity, 20 masses of aluminum oxide powder I (manufactured by Admatechs, spherical aluminum oxide “Admafine (registered trademark) AO-502” shown in Table 3) %, “Admafine (registered trademark) AO-509” mixed at a ratio of 80 mass%).
After forming a thin film resin sheet by the same method as in the examples, the dielectric breakdown strength was measured, and the epoxy resin viscosity of the powder was measured.
As shown in Table 3, in the case of commercially available high sphericity powder, the epoxy resin viscosity was as low as 1080 P, and it was confirmed that a dielectric breakdown strength of 39 kV / mm was obtained at a film thickness of 55 μm.

Figure 2005306718
Figure 2005306718

Figure 2005306718
Figure 2005306718

Figure 2005306718
Figure 2005306718

Claims (38)

多峰性の頻度粒度分布を有し、少なくとも0.2〜2μmと2〜63μmの粒度域に頻度ピークを有する粉体である無機質粉体。   An inorganic powder which is a powder having a multimodal frequency particle size distribution and having a frequency peak in a particle size range of at least 0.2 to 2 μm and 2 to 63 μm. 最大粒子径が63μm以下で、平均粒子径が4〜30μmの範囲にあり、最頻径が2〜35μmの範囲にある請求項1に記載の無機質粉体。   The inorganic powder according to claim 1, wherein the maximum particle size is 63 µm or less, the average particle size is in the range of 4 to 30 µm, and the mode diameter is in the range of 2 to 35 µm. 粒子径が2μm未満の粒子の割合が0〜20質量%で、粒子径が2μm未満の粒子の最頻径が0.25〜1.5μmの範囲にある請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the proportion of particles having a particle diameter of less than 2 µm is 0 to 20% by mass, and the mode diameter of particles having a particle diameter of less than 2 µm is in the range of 0.25 to 1.5 µm. 粒子径が8μm以上の粒子の割合が44〜90質量%である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the proportion of particles having a particle diameter of 8 µm or more is 44 to 90 mass%. 粒度域2〜8μmの粒子の割合が0〜15質量%である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the proportion of particles having a particle size range of 2 to 8 μm is 0 to 15% by mass. 粒度域2〜8μmの粒子の割合が32〜45質量%である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the proportion of particles having a particle size range of 2 to 8 µm is 32 to 45 mass%. 球形度が0.68〜0.95で、球状化率が0.63〜0.95である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, having a sphericity of 0.68 to 0.95 and a spheroidization ratio of 0.63 to 0.95. 粒子径が2μm未満の粒子の球形度が0.5〜0.95、球状化率が0〜0.9である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the particles having a particle diameter of less than 2 µm have a sphericity of 0.5 to 0.95 and a spheroidization ratio of 0 to 0.9. 粒子径が8μm以上の粒子の球形度が0.7〜0.95、球状化率が0.7〜0.95である請求項1記載の無機質粉体。   2. The inorganic powder according to claim 1, wherein particles having a particle diameter of 8 μm or more have a sphericity of 0.7 to 0.95 and a spheroidization ratio of 0.7 to 0.95. 無機質粉体の熱伝導性が、単結晶時において30W/m・K以上である請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the thermal conductivity of the inorganic powder is 30 W / m · K or more in the single crystal state. 無機質粉体がアルミナ粉体である請求項1乃至10に記載の無機質粉体。   The inorganic powder according to claim 1, wherein the inorganic powder is an alumina powder. αアルミナ結晶相分率が30〜75質量%の範囲にある請求項11に記載の無機質粉体。   The inorganic powder according to claim 11, wherein the α-alumina crystal phase fraction is in the range of 30 to 75 mass%. 2μm未満の粒子のαアルミナ結晶相分率が、90〜100質量%の範囲にある請求項11に記載の無機質粉体。   The inorganic powder according to claim 11, wherein the α-alumina crystal phase fraction of particles less than 2 μm is in the range of 90 to 100 mass%. 8μm以上の粒子のαアルミナ結晶相分率が、30〜70質量%の範囲にある請求項11に記載の無機質粉体。   The inorganic powder according to claim 11, wherein the α-alumina crystal phase fraction of particles of 8 μm or more is in the range of 30 to 70 mass%. 金属Alの含有量が、0.05質量%以下である請求項1に記載の無機質粉体。   The inorganic powder according to claim 1, wherein the content of metal Al is 0.05% by mass or less. 硫酸イオンの含有量が、15ppm以下である請求項1に記載の無機質粉体。   The inorganic powder according to claim 1, wherein the content of sulfate ions is 15 ppm or less. 塩素イオンの含有量が、15ppm以下である請求項1に記載の無機質粉体。   The inorganic powder according to claim 1, wherein the chloride ion content is 15 ppm or less. Fe23の含有量が、0.03質量%以下である請求項1記載の無機質粉体。 The inorganic powder according to claim 1, wherein the content of Fe 2 O 3 is 0.03% by mass or less. 50nm未満の粒子を実質的に含有していない請求項1記載に無機質粉体。   The inorganic powder according to claim 1, which contains substantially no particles of less than 50 nm. シラン系カップリング剤及びチタネート系カップリング剤から選択される表面処理剤によって表面疎水化処理されている請求項1記載の無機質粉体。   The inorganic powder according to claim 1, wherein the surface is hydrophobized with a surface treatment agent selected from a silane coupling agent and a titanate coupling agent. 請求項1乃至20のいずれか1項に記載の無機質粉体が充填されている樹脂組成物。   The resin composition with which the inorganic powder of any one of Claims 1 thru | or 20 is filled. 無機質粉体が50〜90質量%充填されている請求項21に記載の樹脂組成物。   The resin composition according to claim 21, wherein the inorganic powder is filled in an amount of 50 to 90% by mass. 樹脂組成物が、膜厚40〜90μmの薄膜状絶縁性樹脂組成物とした場合に、JIS C2110に規定された絶縁破壊電圧試験によって測定される絶縁破壊強度が39kV/mm以上である請求項21または22に記載の樹脂組成物。   The dielectric breakdown strength measured by a dielectric breakdown voltage test specified in JIS C2110 is 39 kV / mm or more when the resin composition is a thin-film insulating resin composition having a film thickness of 40 to 90 μm. Or the resin composition of 22. 請求項21乃至23のいずれか1項に記載の樹脂組成物を使用した自動車搭載用回路基板。   24. A circuit board for mounting on an automobile using the resin composition according to any one of claims 21 to 23. 請求項21乃至23のいずれか1項に記載の樹脂組成物を使用した電子機器搭載用回路基板。   24. A circuit board for mounting on electronic equipment using the resin composition according to any one of claims 21 to 23. 請求項21乃至23のいずれか1項に記載の樹脂組成物を使用した電子機器内部設置型の放熱部材。   24. A heat dissipating member installed inside an electronic device, using the resin composition according to any one of claims 21 to 23. 請求項21乃至23のいずれか1項に記載の樹脂組成物を使用した電子部品用の放熱部材。   A heat dissipating member for electronic parts using the resin composition according to any one of claims 21 to 23. シート状である請求項26または27に記載の放熱部材。   The heat dissipating member according to claim 26 or 27, wherein the heat dissipating member is in a sheet form. ペースト状またはゲル状である請求項26または27に記載の放熱部材。   The heat dissipating member according to claim 26 or 27, which is in a paste form or a gel form. アンダーフィル剤型の部材である請求項26または27に記載の放熱部材。   28. The heat dissipating member according to claim 26 or 27, which is an underfill agent type member. 素子部の発熱箇所に塗布するタイプの放熱部材である請求項26または27に記載の放熱部材。   28. The heat radiating member according to claim 26 or 27, wherein the heat radiating member is a type of heat radiating member applied to a heat generating portion of the element portion. 請求項21乃至23のいずれか1項に記載の樹脂組成物が、絶縁接着層を兼ねた放熱用部材として使用されている金属ベース回路基板、メタルコア型回路基板、またはそれら基板を用いた構造体。   A metal base circuit board, a metal core type circuit board, or a structure using these boards, wherein the resin composition according to any one of claims 21 to 23 is used as a heat radiating member also serving as an insulating adhesive layer. . 請求項26乃至31のいずれか1項に記載の放熱部材を用いて、発熱性電子部品と放熱金属部材が接着されている放熱金属部材一体型電子部品の構造体。   A heat dissipation metal member-integrated electronic component structure in which a heat-generating electronic component and a heat dissipation metal member are bonded using the heat dissipation member according to any one of claims 26 to 31. 請求項26乃至31のいずれか1項に記載の放熱部材が使用されているLED回路基板。   An LED circuit board on which the heat dissipating member according to any one of claims 26 to 31 is used. 請求項32または34に記載の回路基板、または請求項32または33に記載の構造体を使用した自動車。   An automobile using the circuit board according to claim 32 or 34 or the structure according to claim 32 or 33. 請求項32または34に記載の回路基板、または請求項32または33に記載の構造体を使用した電気製品。   An electrical product using the circuit board according to claim 32 or 34 or the structure according to claim 32 or 33. 請求項32または34に記載の回路基板、または請求項32または33に記載の構造体を使用した信号照明機。   A signal illuminator using the circuit board according to claim 32 or 34, or the structure according to claim 32 or 33. 請求項32または34に記載の回路基板、または請求項32または33に記載の構造体を使用したディスプレイ。
A display using the circuit board according to claim 32 or 34 or the structure according to claim 32 or 33.
JP2005002299A 2004-01-08 2005-01-07 Inorganic powder, resin composition filled with the powder, and use thereof Pending JP2005306718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002299A JP2005306718A (en) 2004-01-08 2005-01-07 Inorganic powder, resin composition filled with the powder, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004003377 2004-01-08
JP2004085269 2004-03-23
JP2005002299A JP2005306718A (en) 2004-01-08 2005-01-07 Inorganic powder, resin composition filled with the powder, and use thereof

Publications (1)

Publication Number Publication Date
JP2005306718A true JP2005306718A (en) 2005-11-04

Family

ID=35435888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002299A Pending JP2005306718A (en) 2004-01-08 2005-01-07 Inorganic powder, resin composition filled with the powder, and use thereof

Country Status (1)

Country Link
JP (1) JP2005306718A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
EP2023414A1 (en) * 2006-05-31 2009-02-11 Denki Kagaku Kogyo Kabushiki Kaisha Led light source unit
EP2109156A1 (en) * 2007-01-30 2009-10-14 Denki Kagaku Kogyo Kabushiki Kaisha Led light source unit
JP2011102215A (en) * 2009-11-11 2011-05-26 Denki Kagaku Kogyo Kk Spherical alumina powder, and production method and application of the same
JP2013121903A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Filler, composition for forming insulating layer, film for forming insulating layer, and substrate
JP2014240351A (en) * 2008-04-30 2014-12-25 電気化学工業株式会社 Alumina powder, method for manufacturing the same, and resin composition using the same
WO2015115481A1 (en) * 2014-02-03 2015-08-06 住友ベークライト株式会社 Thermally conductive sheet and semiconductor device
WO2015115482A1 (en) * 2014-02-03 2015-08-06 住友ベークライト株式会社 Thermally conductive sheet and semiconductor device
JP2015207669A (en) * 2014-04-21 2015-11-19 住友ベークライト株式会社 Metal base board, metal base circuit board, and electronic device
JPWO2014021427A1 (en) * 2012-08-02 2016-07-21 学校法人早稲田大学 Metal-based printed wiring board
JPWO2015056523A1 (en) * 2013-10-17 2017-03-09 住友ベークライト株式会社 Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
WO2018021192A1 (en) * 2016-07-29 2018-02-01 住友化学株式会社 Alumina and method for producing automotive catalyst using same
KR20180049763A (en) * 2016-11-03 2018-05-11 버사플렉스 주식회사 Preparing method of heat radiating powder and film using diffusion and scattering of heat and heat radiating powder and film prepared thereby
JP2018172541A (en) * 2017-03-31 2018-11-08 太平洋セメント株式会社 Magnesium oxide powder and composite material
JP2019176100A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Heat dissipation substrate
JP2022007554A (en) * 2020-06-26 2022-01-13 三菱マテリアル株式会社 Insulating heat radiation material, insulating film and method for producing insulating film

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601497B2 (en) * 2005-06-28 2010-12-22 電気化学工業株式会社 Spherical alumina powder, production method and use thereof
JP2007008730A (en) * 2005-06-28 2007-01-18 Denki Kagaku Kogyo Kk Spherical alumina powder, method for producing the same, and its use
EP2023414A1 (en) * 2006-05-31 2009-02-11 Denki Kagaku Kogyo Kabushiki Kaisha Led light source unit
EP2023414A4 (en) * 2006-05-31 2010-02-17 Denki Kagaku Kogyo Kk Led light source unit
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
EP2109156A1 (en) * 2007-01-30 2009-10-14 Denki Kagaku Kogyo Kabushiki Kaisha Led light source unit
EP2109156A4 (en) * 2007-01-30 2010-02-24 Denki Kagaku Kogyo Kk Led light source unit
JP2014240351A (en) * 2008-04-30 2014-12-25 電気化学工業株式会社 Alumina powder, method for manufacturing the same, and resin composition using the same
JP5775692B2 (en) * 2008-04-30 2015-09-09 電気化学工業株式会社 Method for producing alumina powder
JP2011102215A (en) * 2009-11-11 2011-05-26 Denki Kagaku Kogyo Kk Spherical alumina powder, and production method and application of the same
JP2013121903A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Filler, composition for forming insulating layer, film for forming insulating layer, and substrate
JPWO2014021427A1 (en) * 2012-08-02 2016-07-21 学校法人早稲田大学 Metal-based printed wiring board
JPWO2015056523A1 (en) * 2013-10-17 2017-03-09 住友ベークライト株式会社 Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP2015146387A (en) * 2014-02-03 2015-08-13 住友ベークライト株式会社 Heat conductive sheet and semiconductor device
US10269689B2 (en) 2014-02-03 2019-04-23 Sumitomo Bakelite Company Limited Thermally conductive sheet and semiconductor device
WO2015115482A1 (en) * 2014-02-03 2015-08-06 住友ベークライト株式会社 Thermally conductive sheet and semiconductor device
WO2015115481A1 (en) * 2014-02-03 2015-08-06 住友ベークライト株式会社 Thermally conductive sheet and semiconductor device
US9859189B2 (en) 2014-02-03 2018-01-02 Sumitomo Bakelite Co., Ltd. Thermally conductive sheet and semiconductor device
JP2015207669A (en) * 2014-04-21 2015-11-19 住友ベークライト株式会社 Metal base board, metal base circuit board, and electronic device
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same
WO2018021192A1 (en) * 2016-07-29 2018-02-01 住友化学株式会社 Alumina and method for producing automotive catalyst using same
KR20180049763A (en) * 2016-11-03 2018-05-11 버사플렉스 주식회사 Preparing method of heat radiating powder and film using diffusion and scattering of heat and heat radiating powder and film prepared thereby
JP2018172541A (en) * 2017-03-31 2018-11-08 太平洋セメント株式会社 Magnesium oxide powder and composite material
JP2019176100A (en) * 2018-03-29 2019-10-10 Tdk株式会社 Heat dissipation substrate
JP7069967B2 (en) 2018-03-29 2022-05-18 Tdk株式会社 Heat dissipation board
JP2022007554A (en) * 2020-06-26 2022-01-13 三菱マテリアル株式会社 Insulating heat radiation material, insulating film and method for producing insulating film
JP7468190B2 (en) 2020-06-26 2024-04-16 三菱マテリアル株式会社 Insulating heat dissipation material, insulating film, and method for producing insulating film

Similar Documents

Publication Publication Date Title
JP2005306718A (en) Inorganic powder, resin composition filled with the powder, and use thereof
US20090188701A1 (en) Inorganic powder, resin composition filled with the powder and use thereof
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
TWI505985B (en) Boron nitride powder and a resin composition containing the same
TWI431032B (en) A resin composition, and a circuit substrate using the same
TWI734552B (en) Manufacturing method of silicon dioxide-coated boron nitride particles and manufacturing method of heat-dissipating resin composition
TWI834900B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and silicon-containing oxide-coated aluminum nitride particles
US10681808B2 (en) Metal-base printed circuit board
JP7434818B2 (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing heat dissipating resin composition
WO2021020540A1 (en) Inorganic particle dispersion resin composition and manufacturing method of inorganic particle dispersion resin composition
TW201335260A (en) Resin cured product, semi-cured resin film and resin composition
EP3805152B1 (en) Method for producing glass-coated aluminum nitride particles, and method for producing heat-dissipating resin composition containing said glass-coated aluminum nitride particles
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2006134869A (en) Dielectric composition
WO2022059661A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
JP6473597B2 (en) Method for producing high thermal conductivity organic / inorganic composite material
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP2015193704A (en) High heat conductive ceramic powder-containing resin composition and cured article thereof
KR20070026375A (en) Inorganic powder, resin composition filled with the powder and use thereof
JP2015193703A (en) Resin composition containing highly thermally-conductive ceramic powder
US20100028689A1 (en) B-stage thermal conductive dielectric coated metal-plate and method of making same
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
WO2022059660A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
JP2021181381A (en) Inorganic powder composition, resin composition containing the same and heat radiation material
JP2010167385A (en) Method of manufacturing base material with resin

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705