JP2022007554A - Insulating heat radiation material, insulating film and method for producing insulating film - Google Patents

Insulating heat radiation material, insulating film and method for producing insulating film Download PDF

Info

Publication number
JP2022007554A
JP2022007554A JP2020110593A JP2020110593A JP2022007554A JP 2022007554 A JP2022007554 A JP 2022007554A JP 2020110593 A JP2020110593 A JP 2020110593A JP 2020110593 A JP2020110593 A JP 2020110593A JP 2022007554 A JP2022007554 A JP 2022007554A
Authority
JP
Japan
Prior art keywords
volume
less
particle size
alumina particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020110593A
Other languages
Japanese (ja)
Other versions
JP7468190B2 (en
Inventor
慎太郎 原
Shintaro Hara
史朗 石川
Shiro Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020110593A priority Critical patent/JP7468190B2/en
Publication of JP2022007554A publication Critical patent/JP2022007554A/en
Application granted granted Critical
Publication of JP7468190B2 publication Critical patent/JP7468190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an insulating heat radiation material and an insulating film which improve both voltage resistance and thermal conductivity in a balanced manner.SOLUTION: An insulating heat radiation material contains a resin and a filler, in which the filler contains aluminum nitride particles having an average particle diameter of 1.0 μm or more and 3.0 μm or less, alumina particles having a particle diameter of 1.0 μm or less, and alumina particles having a particle diameter of 0.3 μm or less, a content of the aluminum nitride particles is within a range of 25 vol.% or more and 40 vol.% or less of volume concentration in the insulating heat radiation material, a content of the alumina particles having the particle diameter of 1.0 μm or less is within a range of 20 vol.% or more and 40 vol.% or less of volume concentration in the insulating heat radiation material, and a content of the alumina particles having the particle diameter of 0.3 μm or less μm is within a range of 10 vol.% or more and 20 vol.% or less of volume concentration in the insulating heat radiation material.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁性放熱材料、絶縁膜及び絶縁膜の製造方法に関する。 The present invention relates to an insulating heat radiating material, an insulating film, and a method for manufacturing the insulating film.

絶縁性放熱材料は、例えば、金属ベース基板の絶縁膜の材料として用いられる。金属ベース基板は、半導体素子やLEDなどの電子部品を実装するための基板の一つである。金属ベース基板は、金属基板と、絶縁膜と、回路層とがこの順で積層された積層体である。電子部品は、回路層の上にはんだを介して実装される。このような構成とされた金属ベース基板では、電子部品にて発生した熱は、絶縁膜を介して金属基板に伝達され、金属基板から外部に放熱される。このため、絶縁膜は、耐電圧性に優れ、かつ熱伝導性が高いことが要求される。このような絶縁膜の材料として用いられる絶縁性放熱材料は、一般に、絶縁性や耐電圧性に優れる樹脂と、熱伝導性に優れるフィラーとを含む。 The insulating heat radiating material is used, for example, as a material for an insulating film of a metal base substrate. The metal base substrate is one of the substrates for mounting electronic components such as semiconductor elements and LEDs. The metal base substrate is a laminate in which a metal substrate, an insulating film, and a circuit layer are laminated in this order. Electronic components are mounted on the circuit layer via solder. In the metal-based substrate having such a configuration, the heat generated in the electronic component is transferred to the metal substrate via the insulating film and dissipated from the metal substrate to the outside. Therefore, the insulating film is required to have excellent withstand voltage resistance and high thermal conductivity. The insulating heat radiating material used as the material of such an insulating film generally includes a resin having excellent insulating property and withstand voltage resistance and a filler having excellent thermal conductivity.

絶縁性放熱材料に含まれるフィラーとしては、アルミナ、窒化アルミニウム、マグネシア、炭化珪素、結晶シリカなどの無機物粒子が利用されている。また、絶縁性放熱材料に含まれる無機物粒子として平均粒径が異なるものを使用することが検討されている(特許文献1~3)。 As the filler contained in the insulating heat radiating material, inorganic particles such as alumina, aluminum nitride, magnesia, silicon carbide, and crystalline silica are used. Further, it has been studied to use inorganic particles having different average particle diameters contained in the insulating heat radiating material (Patent Documents 1 to 3).

特開2012-31402号公報Japanese Unexamined Patent Publication No. 2012-31402 特開2014-189701号公報Japanese Unexamined Patent Publication No. 2014-189701 特開2015-207669号公報JP-A-2015-207669

ところで、近年の電子機器の高集積化や小型化にともなって、金属ベース基板はさらなる耐電圧性と熱伝導性の向上が望まれている。このため、金属ベース基板の絶縁膜の材料として用いられる絶縁性放熱材料に対してもさらなる耐電圧性と熱伝導性の向上が要求されている。しかしながら、フィラーは絶縁性放熱材料の熱伝導性の向上に対しては有効であるが、フィラーの含有量を多くして、樹脂の含有量を少なくすると、絶縁性放熱材料内の耐電圧性が低下することがある。このため、耐電圧性と熱伝導性の両者をバランスよく向上させることは難しい。 By the way, with the recent increase in integration and miniaturization of electronic devices, it is desired that the metal base substrate has further improved withstand voltage and thermal conductivity. Therefore, further improvement of withstand voltage and thermal conductivity is required for the insulating heat radiating material used as the material of the insulating film of the metal base substrate. However, although the filler is effective for improving the thermal conductivity of the insulating heat-dissipating material, if the filler content is increased and the resin content is decreased, the withstand voltage in the insulating heat-dissipating material becomes higher. May decrease. Therefore, it is difficult to improve both withstand voltage and thermal conductivity in a well-balanced manner.

本発明は、上記事情に鑑みてなされたものであって、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁性放熱材料及び絶縁膜を提供することを目的とする。本発明はまた、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁膜の製造方法を提供することもその目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an insulating heat radiating material and an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner. It is also an object of the present invention to provide a method for producing an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner.

上記の課題を解決するために、本発明の絶縁性放熱材料は、樹脂とフィラーとを含む絶縁性放熱材料であって、前記フィラーは、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子と、粒径が1.0μm以下のアルミナ粒子と、粒径が0.3μm以下のアルミナ粒子とを含み、前記窒化アルミニウム粒子の含有量が前記絶縁性放熱材料中の体積濃度で25体積%以上40体積%以下の範囲内にあって、前記粒径が1.0μm以下のアルミナ粒子の含有量が前記絶縁性放熱材料中の体積濃度で20体積%以上40体積%以下の範囲内にあり、前記粒径が0.3μm以下のアルミナ粒子の含有量が前記絶縁性放熱材料中の体積濃度で10体積%以上20体積%以下の範囲内にある。 In order to solve the above problems, the insulating heat radiating material of the present invention is an insulating heat radiating material containing a resin and a filler, and the filler has an average particle size in the range of 1.0 μm or more and 3.0 μm or less. It contains aluminum nitride particles inside, alumina particles having a particle size of 1.0 μm or less, and alumina particles having a particle size of 0.3 μm or less, and the content of the aluminum nitride particles is the volume in the insulating heat dissipation material. The content of alumina particles having a concentration within the range of 25% by volume or more and 40% by volume or less and having a particle size of 1.0 μm or less is 20% by volume or more and 40% by volume or less in terms of volume concentration in the insulating heat dissipation material. The content of alumina particles having a particle size of 0.3 μm or less is in the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the insulating heat radiating material.

本発明の絶縁性放熱材料によれば、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子と、粒径が1.0μm以下のアルミナ粒子と、粒径が0.3μm以下のアルミナ粒子とを含み、窒化アルミニウム粒子の粒子間に微細なアルミナ粒子を効率よく介在させることができる。よって、無機物粒子の添加による耐電圧性の低下を抑えつつ、絶縁性放熱材料の熱伝導性を向上させることができる。特に、本発明の絶縁性放熱材料によれば、窒化アルミニウム粒子の含有量が上記の範囲内とされ、粒径が1.0μm以下であるアルミナ粒子と、さらに微細な粒子径が0.3μm以下のアルミナ粒子の含有量が上記の範囲内とされているので、耐電圧性を低下させずに、熱伝導性をより向上させることができる。 According to the insulating heat radiating material of the present invention, the aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less, the alumina particles having a particle size of 1.0 μm or less, and the particle size of 0. It contains alumina particles of 3 μm or less, and fine alumina particles can be efficiently interposed between the aluminum nitride particles. Therefore, it is possible to improve the thermal conductivity of the insulating heat radiating material while suppressing the decrease in withstand voltage due to the addition of inorganic particles. In particular, according to the insulating heat-dissipating material of the present invention, the content of the aluminum nitride particles is within the above range, the alumina particles having a particle size of 1.0 μm or less and the finer particle diameters of 0.3 μm or less. Since the content of the alumina particles in the above range is within the above range, the thermal conductivity can be further improved without lowering the withstand voltage.

ここで、本発明の絶縁性放熱材料においては、前記フィラーは、前記フィラーの粒度分布が、0.01μm以上1.0μm未満の範囲内において、少なくとも2つのピークを有することが好ましい。
この場合、相対的に粒子径が大きいアルミナ粒子と相対的に粒子径が小さいアルミナ粒子との差が明確になるので、相対的に粒子径が大きいアルミナ粒子の粒子間に、相対的に粒子径が小さいアルミナ粒子をより効率よく介在させることができる。よって、絶縁性放熱材料の熱伝導性をより向上させることができる。なお、粒度分布は、体積基準の度数分布である。体積基準の度数分布は、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
Here, in the insulating heat radiating material of the present invention, it is preferable that the filler has at least two peaks in the particle size distribution of the filler within the range of 0.01 μm or more and less than 1.0 μm.
In this case, since the difference between the alumina particles having a relatively large particle size and the alumina particles having a relatively small particle size becomes clear, the particle size is relatively large between the particles of the alumina particles having a relatively large particle size. Alumina particles with a small diameter can be intervened more efficiently. Therefore, the thermal conductivity of the insulating heat radiating material can be further improved. The particle size distribution is a volume-based frequency distribution. The volume-based frequency distribution can be measured by a particle size distribution measuring device or the like using a laser diffraction / scattering method.

また、本発明の絶縁性放熱材料において、前記樹脂は、ポリイミド、又はポリアミドイミド、もしくはこれらの混合物であることが好ましい。
この場合、絶縁性放熱材料の絶縁性、耐電圧性、化学的耐性及び機械特性を向上させることができる。
Further, in the insulating heat radiating material of the present invention, the resin is preferably polyimide, polyamide-imide, or a mixture thereof.
In this case, the insulating property, withstand voltage property, chemical resistance and mechanical properties of the insulating heat radiating material can be improved.

また、本発明の絶縁性放熱材料においては、前記窒化アルミニウム粒子の体積濃度が、前記粒径が1.0μm以下のアルミナ粒子の体積濃度よりも高いことが好ましい。
この場合、フィラーに含まれる相対的に粒径が大きい窒化アルミニウム粒子の粒子間を、相対的に粒径が小さい1.0μm以下のアルミナ粒子が埋めて、ボイド(気孔)の発生を抑制するため、熱伝導性と絶縁性をより向上させることができる。
Further, in the insulating heat radiating material of the present invention, it is preferable that the volume concentration of the aluminum nitride particles is higher than the volume concentration of the alumina particles having a particle size of 1.0 μm or less.
In this case, in order to suppress the generation of voids (pores) by filling the space between the particles of the aluminum nitride particles having a relatively large particle size contained in the filler with the alumina particles having a relatively small particle size of 1.0 μm or less. , Thermal conductivity and insulation can be further improved.

本発明の絶縁膜は、上述の絶縁性放熱材料を含む。
本発明の絶縁膜は、上述の絶縁性放熱材料を含むので、耐電圧性と熱伝導性の両者をバランスよく向上させることができる。
The insulating film of the present invention includes the above-mentioned insulating heat radiating material.
Since the insulating film of the present invention contains the above-mentioned insulating heat radiating material, both withstand voltage resistance and thermal conductivity can be improved in a well-balanced manner.

本発明の絶縁膜の製造方法は、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子を固形分中の体積濃度で25体積%以上40体積%以下の範囲内、平均粒径が0.01μm以上 1.0μm未満 の範囲内にあるアルミナ粒子を固形分中の体積濃度で20体積%以上40体積%以下の範囲内、残部が樹脂となる割合で含有する固形分と、溶媒とを含む液状組成物であって、前記窒化アルミニウム粒子の含有量が固形分中の体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が固形分中の体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にある液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する工程と、前記湿潤絶縁性組成物膜を加熱して絶縁膜を形成する工程と、を有する。 In the method for producing an insulating film of the present invention, aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less are contained in a volume concentration of 25% by volume or more and 40% by volume or less in the solid content. Solid content containing alumina particles with an average particle size of 0.01 μm or more and less than 1.0 μm in a volume concentration of 20% by volume or more and 40% by volume or less in the solid content, with the balance being a resin. A liquid composition containing the above and a solvent, wherein the content of the aluminum nitride particles is in the range of 25% by volume or more and 40% by volume or less in terms of volume concentration in the solid content, and the particle size is 1.0 μm or less. The content of alumina particles in the solid content is in the range of 20% by volume or more and 40% by volume or less in terms of volume concentration in the solid content, and the content of alumina particles having a particle size of 0.3 μm or less is 10 in volume concentration in solid content. A step of forming a wet insulating composition film on a substrate using a liquid composition in the range of 50% by volume or more and 20% by volume or less, and heating the wet insulating composition film to form an insulating film. It has a step of forming.

上記の本発明の絶縁膜の製造方法によれば、相対的に平均粒径が大きい窒化アルミニウム粒子と相対的に平均粒径が小さいアルミナ粒子を、固形分中の体積濃度が上記の範囲内となる割合で使用するので、相対的に粒子径が大きい窒化アルミニウム粒子の粒子間に、相対的に粒子径が小さいアルミナ粒子を効率よく介在させることができる。よって、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁膜を製造することができる。なお、平均粒径は、体積平均粒径を意味する。体積平均粒径は、粒子の全体積を100%とした体積基準の累積度数分布曲線において、体積50%に相当する点の粒径である。体積基準の累積度数分布曲線は、レーザー回折散乱法を用いた粒度分布測定装置で測定することができる。 According to the above-mentioned method for producing an insulating film of the present invention, aluminum nitride particles having a relatively large average particle size and alumina particles having a relatively small average particle size have a volume concentration in the solid content within the above range. Since it is used in such a proportion, alumina particles having a relatively small particle size can be efficiently interposed between the particles of aluminum nitride particles having a relatively large particle size. Therefore, it is possible to manufacture an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner. The average particle size means a volume average particle size. The volume average particle size is a particle size at a point corresponding to a volume of 50% in a volume-based cumulative frequency distribution curve with the total volume of particles as 100%. The volume-based cumulative frequency distribution curve can be measured by a particle size distribution measuring device using a laser diffraction / scattering method.

また、本発明の絶縁膜の製造方法は、平均粒径が1.0μm以上3.0μm以下の範囲にある窒化アルミニウム粒子を固形分中の体積濃度で25体積%以上40体積%以下の範囲内、平均粒径が0.01μm以上0.3μm未満の範囲内にあるアルミナ粒子を固形分中の体積濃度で10体積%以上20体積%以下の範囲内、平均粒径が0.3μm以上1.0μm未満 の範囲内にあるアルミナ粒子を固形分中の体積濃度で10体積%以上20体積%以下の範囲内、残部が樹脂となる割合で含有する固形分と、溶媒とを含む液状組成物であって、前記窒化アルミニウム粒子の含有量が固形分中の体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が固形分中の体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にある液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する工程と、前記湿潤絶縁性組成物膜を加熱して絶縁膜を形成する工程と、を有する。 Further, in the method for producing an insulating film of the present invention, aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less are contained in a volume concentration in the solid content of 25% by volume or more and 40% by volume or less. 1. Alumina particles having an average particle size in the range of 0.01 μm or more and less than 0.3 μm are contained in a volume concentration of 10% by volume or more and 20% by volume or less in the solid content, and the average particle size is 0.3 μm or more. A liquid composition containing a solid content containing alumina particles in the range of less than 0 μm in a volume concentration of 10% by volume or more and 20% by volume or less in the volume concentration of the solid content, with the balance being a resin, and a solvent. The content of the aluminum nitride particles is in the range of 25% by volume or more and 40% by volume or less in terms of volume concentration in the solid content, and the content of alumina particles having a particle size of 1.0 μm or less is in the solid content. The content of alumina particles with a particle size of 0.3 μm or less is within the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the solid content. It has a step of forming a wet insulating composition film on a substrate by using the liquid composition in the above, and a step of heating the wet insulating composition film to form an insulating film.

上記の本発明の絶縁膜の方法によれば、平均粒径が異なる2種類のアルミナ粒子を、固形分中の体積濃度が上記の範囲内となる割合で使用するので、相対的に粒子径が大きい窒化アルミニウム粒子の粒子間に、相対的に粒子径が小さいアルミナ粒子を効率よく介在させることができる。よって、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁膜を製造することができる。 According to the above-mentioned method of the insulating film of the present invention, two types of alumina particles having different average particle sizes are used at a ratio in which the volume concentration in the solid content is within the above range, so that the particle size is relatively large. Alumina particles having a relatively small particle size can be efficiently interposed between the particles of the large aluminum nitride particles. Therefore, it is possible to manufacture an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner.

本発明によれば、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁性放熱材料及び絶縁膜を提供することが可能となる。また、本発明によれば、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁膜の製造方法を提供することも可能となる。 According to the present invention, it is possible to provide an insulating heat radiating material and an insulating film having both withstand voltage and thermal conductivity improved in a well-balanced manner. Further, according to the present invention, it is also possible to provide a method for manufacturing an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner.

本発明の一実施形態に係る絶縁性放熱材料の概略断面図である。It is a schematic sectional drawing of the insulating heat dissipation material which concerns on one Embodiment of this invention.

以下に、本発明の一実施形態について添付した図面を参照して説明する。
図1は、本発明の一実施形態に係る絶縁性放熱材料の概略断面図である。
図1において、絶縁性放熱材料1は、樹脂2とフィラー3とを含む。
Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings.
FIG. 1 is a schematic cross-sectional view of an insulating heat radiating material according to an embodiment of the present invention.
In FIG. 1, the insulating heat radiating material 1 contains a resin 2 and a filler 3.

樹脂2は、ポリイミド樹脂、ポリアミドイミド樹脂、又はこれらの混合物を含むことが好ましい。これらの樹脂は、絶縁性、耐電圧性、化学的耐性及び機械特性などの特性に優れるので、絶縁性放熱材料1のこれらの特性が向上する。 The resin 2 preferably contains a polyimide resin, a polyamide-imide resin, or a mixture thereof. Since these resins are excellent in properties such as insulation, withstand voltage, chemical resistance, and mechanical properties, these properties of the insulating heat dissipation material 1 are improved.

フィラー3は、樹脂2に分散されている。フィラー3は、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子と、粒径が1.0μm以下のアルミナ粒子と、粒径が0.3μm以下のアルミナ粒子とを含む。すなわち、フィラー3は、窒化アルミニウム粒子4と、粒径が1.0μm以下で0.3μmを超える中径アルミナ粒子5aと、粒径が0.3μm以下の小径アルミナ粒子5bとを含む。窒化アルミニウム粒子4の粒子間に中径アルミナ粒子5aと小径アルミナ粒子5bとが介在し、窒化アルミニウム粒子4と中径アルミナ粒子5aの間及び中径アルミナ粒子5aの粒子間に小径アルミナ粒子5bが介在する。相対的に粒径が大きい粒子間に、相対的に粒径が小さい粒子を介在させることによって、粒子間の熱伝導性が向上する。 The filler 3 is dispersed in the resin 2. The filler 3 includes aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less, alumina particles having a particle size of 1.0 μm or less, and alumina particles having a particle size of 0.3 μm or less. include. That is, the filler 3 includes aluminum nitride particles 4, medium-diameter alumina particles 5a having a particle size of 1.0 μm or less and exceeding 0.3 μm, and small-diameter alumina particles 5b having a particle size of 0.3 μm or less. Medium-diameter alumina particles 5a and small-diameter alumina particles 5b are interposed between the particles of the aluminum nitride particles 4, and small-diameter alumina particles 5b are formed between the aluminum nitride particles 4 and the medium-diameter alumina particles 5a and between the particles of the medium-diameter alumina particles 5a. Intervene. By interposing the particles having a relatively small particle size between the particles having a relatively large particle size, the thermal conductivity between the particles is improved.

窒化アルミニウム粒子4は、粒子形状に特に制限ない。窒化アルミニウム粒子4は、例えば、球状、楕円球状、柱状、板状などの形状を有していてもよいし、均一な形状を持たない不定形であってもよい。 The aluminum nitride particles 4 are not particularly limited in particle shape. The aluminum nitride particles 4 may have, for example, a spherical shape, an elliptical spherical shape, a columnar shape, a plate shape, or the like, or may have an amorphous shape that does not have a uniform shape.

中径アルミナ粒子5a及び小径アルミナ粒子5bは、例えば、球状、楕円球状、柱状、板状などの形状を有していてもよいし、均一な形状を持たない不定形であってもよい。樹脂2に対する分散性や凝集のしにくさ、充填のしやすさなどの観点から、中径アルミナ粒子5a及び小径アルミナ粒子5bは、球状又は楕円球状であることが好ましい。 The medium-diameter alumina particles 5a and the small-diameter alumina particles 5b may have a shape such as a spherical shape, an elliptical spherical shape, a columnar shape, or a plate shape, or may have an irregular shape having no uniform shape. The medium-diameter alumina particles 5a and the small-diameter alumina particles 5b are preferably spherical or elliptical spheres from the viewpoints of dispersibility with respect to the resin 2, difficulty in agglomeration, ease of filling, and the like.

窒化アルミニウム粒子4の含有量は、絶縁性放熱材料1中の体積濃度で25体積%以上40体積%以下の範囲内にある。粒径が1.0μm以下のアルミナ粒子(中径アルミナ粒子5aと小径アルミナ粒子5bの合計)の含有量が絶縁性放熱材料1中の体積濃度で20体積%以上40体積%以下の範囲内にある。粒径が0.3μm以下のアルミナ粒子(小径アルミナ粒子5b)の含有量が絶縁性放熱材料1中の体積濃度で10体積%以上20体積%以下の範囲内にある。すなわち、中径アルミナ粒子5aの含有量は、10体積%以上20体積%以下の範囲内にある。フィラー3の含有量(窒化アルミニウム粒子4、中径アルミナ粒子5a及び小径アルミナ粒子5bの合計量)は、絶縁性放熱材料1中の体積濃度で50体積%以上80体積%以下の範囲内にあることが好ましい。 The content of the aluminum nitride particles 4 is in the range of 25% by volume or more and 40% by volume or less in terms of volume concentration in the insulating heat radiating material 1. The content of alumina particles with a particle size of 1.0 μm or less (total of medium-diameter alumina particles 5a and small-diameter alumina particles 5b) is within the range of 20% by volume or more and 40% by volume or less in terms of volume concentration in the insulating heat-dissipating material 1. be. The content of alumina particles (small diameter alumina particles 5b) having a particle size of 0.3 μm or less is within the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the insulating heat radiating material 1. That is, the content of the medium-diameter alumina particles 5a is in the range of 10% by volume or more and 20% by volume or less. The content of the filler 3 (total amount of aluminum nitride particles 4, medium-diameter alumina particles 5a, and small-diameter alumina particles 5b) is in the range of 50% by volume or more and 80% by volume or less in terms of volume concentration in the insulating heat-dissipating material 1. Is preferable.

窒化アルミニウム粒子4、中径アルミナ粒子5a及び小径アルミナ粒子5bの含有量が上記の範囲内にあると、絶縁性放熱材料1の耐電圧性の低下を抑えつつ、絶縁性放熱材料1の熱伝導性を向上させることができる。フィラー3は、粒径が1.0μmを超える粗大アルミナ粒子を含んでいてもよい。粒径が1.0μmを超える粗大アルミナ粒子は絶縁性放熱材料1中の体積濃度で5体積%以上含まないことが好ましい。 When the contents of the aluminum nitride particles 4, the medium-diameter alumina particles 5a and the small-diameter alumina particles 5b are within the above ranges, the heat conduction of the insulating heat-dissipating material 1 is suppressed while suppressing the deterioration of the withstand voltage of the insulating heat-dissipating material 1. It is possible to improve the sex. The filler 3 may contain coarse alumina particles having a particle size of more than 1.0 μm. It is preferable that the coarse alumina particles having a particle size of more than 1.0 μm do not contain 5% by volume or more in volume concentration in the insulating heat radiating material 1.

中径アルミナ粒子5a及び小径アルミナ粒子5bの含有量が上記の範囲内にあると、窒化アルミニウム粒子4の粒子間に、十分に中径アルミナ粒子5a及び小径アルミナ粒子5bを介在させることができる。このため、絶縁性放熱材料1の耐電圧性の維持しつつ、絶縁性放熱材料1の熱伝導性を向上させることができる。 When the contents of the medium-diameter alumina particles 5a and the small-diameter alumina particles 5b are within the above ranges, the medium-diameter alumina particles 5a and the small-diameter alumina particles 5b can be sufficiently interposed between the particles of the aluminum nitride particles 4. Therefore, it is possible to improve the thermal conductivity of the insulating heat radiating material 1 while maintaining the withstand voltage of the insulating heat radiating material 1.

絶縁性放熱材料1の窒化アルミニウム粒子4の平均粒径、及び窒化アルミニウム粒子4とアルミナ粒子(中径アルミナ粒子5a及び小径アルミナ粒子5b)の含有量(体積濃度)は、次のようにして求めることができる。
絶縁性放熱材料1を大気中で加熱して、樹脂2を除去し、残分のフィラー3を回収する。加熱温度は、樹脂2が熱分解し、かつフィラー3が熱分解しない温度であれば特に制限はない。加熱時間は、例えば、12時間である。回収したフィラー3の重量を測定して、加熱前の絶縁性放熱材料1の重量とから、フィラー3の重量ベースの含有量(重量濃度)を算出する。
The average particle size of the aluminum nitride particles 4 of the insulating heat radiating material 1 and the content (volume concentration) of the aluminum nitride particles 4 and the alumina particles (medium-diameter alumina particles 5a and small-diameter alumina particles 5b) are determined as follows. be able to.
The insulating heat radiating material 1 is heated in the atmosphere to remove the resin 2 and the remaining filler 3 is recovered. The heating temperature is not particularly limited as long as the resin 2 is thermally decomposed and the filler 3 is not thermally decomposed. The heating time is, for example, 12 hours. The weight of the recovered filler 3 is measured, and the weight-based content (weight concentration) of the filler 3 is calculated from the weight of the insulating heat radiating material 1 before heating.

具体的には、加熱して回収したフィラー3の重量をWa(g)、加熱前の絶縁性放熱材料1の重量をWf(g)、フィラー3の密度をDa(g/cm)、樹脂2の密度をDr(g/cm)として、フィラー3の含有量(重量%)を下記の式より算出する。
フィラー3の含有量(重量%)=Wa/Wf×100
=Wa/{Wa+(Wf-Wa)}×100
Specifically, the weight of the filler 3 recovered by heating is Wa (g), the weight of the insulating heat radiating material 1 before heating is Wf (g), the density of the filler 3 is Da (g / cm 3 ), and the resin. The content (% by weight) of the filler 3 is calculated from the following formula, where the density of 2 is Dr (g / cm 3 ).
Content of filler 3 (% by weight) = Wa / Wf × 100
= Wa / {Wa + (Wf-Wa)} x 100

次に、フィラー3のアルミナ粒子と窒化アルミニウム粒子の粒度分布を測定する。
加熱回収したフィラー3に対して、SEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光器)を用いて、元素マッピングを実施して、アルミナ粒子と窒化アルミニウム粒子を判別する。次いで、SEM画像を用いて、アルミナ粒子と窒化アルミニウム粒子の粒径をそれぞれ計測する。粒径を計測したアルミナ粒子と窒化アルミニウム粒子を球形近似することにより、体積基準の粒度分布を求める。窒化アルミニウム粒子の粒度分布から窒化アルミニウム粒子の平均粒径を算出する。また、アルミナ粒子の粒度分布から粒径が1.0μm以下の粒子の体積濃度(体積%)をVxとし、粒径が0.2μm以下の粒子の体積濃度(体積%)をVyとして算出する。
Next, the particle size distribution of the alumina particles and the aluminum nitride particles of the filler 3 is measured.
Element mapping is performed on the heat-recovered filler 3 using SEM-EDX (scanning electron microscope-energy dispersive X-ray spectroscope) to discriminate between alumina particles and aluminum nitride particles. Next, the particle sizes of the alumina particles and the aluminum nitride particles are measured using the SEM image. The volume-based particle size distribution is obtained by spherically approximating the alumina particles whose particle size has been measured and the aluminum nitride particles. The average particle size of the aluminum nitride particles is calculated from the particle size distribution of the aluminum nitride particles. Further, from the particle size distribution of the alumina particles, the volume concentration (volume%) of the particles having a particle size of 1.0 μm or less is calculated as Vx, and the volume concentration (volume%) of the particles having a particle size of 0.2 μm or less is calculated as Vy.

フィラー3の酸素と窒素の含有量を、酸素・窒素分析装置を用いて計測する。得られた窒素含有量を窒化アルミニウム粒子量に、酸素含有量をアルミナ粒子にそれぞれ換算して、窒化アルミニウム粒子に対するアルミナ粒子の質量比(アルミナ粒子/窒化アルミニウム粒子)をCとして算出する。上記の粒度分布から窒化アルミニウム粒子に対するアルミナ粒子の質量比(アルミナ粒子/窒化アルミニウム粒子)をC’として算出する。酸素・窒素分析装置を用いて求めた質量比Cと粒度分布から求めた質量比C’との差[(X-Y)/X×100]が3%未満であることを確認する。質量比Cと質量比C’との差が3%以上である場合は、その差が3%未満となるように、アルミナ粒子と窒化アルミニウム粒子の粒度分布について重みづけを実施する。 The oxygen and nitrogen contents of the filler 3 are measured using an oxygen / nitrogen analyzer. The obtained nitrogen content is converted into the aluminum nitride particle amount, and the oxygen content is converted into the alumina particle, and the mass ratio of the alumina particle to the aluminum nitride particle (alumina particle / aluminum nitride particle) is calculated as C. From the above particle size distribution, the mass ratio of the alumina particles to the aluminum nitride particles (alumina particles / aluminum nitride particles) is calculated as C'. It is confirmed that the difference [(XY) / X × 100] between the mass ratio C obtained by using the oxygen / nitrogen analyzer and the mass ratio C'determined from the particle size distribution is less than 3%. When the difference between the mass ratio C and the mass ratio C'is 3% or more, the particle size distribution of the alumina particles and the aluminum nitride particles is weighted so that the difference is less than 3%.

フィラー3の密度Daを、質量比Cと、窒化アルミニウム粒子の密度Dn(g/cm)、アルミナ粒子の密度Dо(g/cm)を用いて、下記の式より算出する。
Da(g/cm)=Dn×{1/(1+C)}+Do×{C/(1+C)}
The density Da of the filler 3 is calculated by the following formula using the mass ratio C, the density Dn (g / cm 3 ) of the aluminum nitride particles, and the density Dо (g / cm 3 ) of the alumina particles.
Da (g / cm 3 ) = Dn × {1 / (1 + C)} + Do × {C / (1 + C)}

次に、フィラー3の含有量Va(体積%)を、加熱回収したフィラー3の重量Wa(g)と、フィラー3の密度Da(g/cm)と、加熱前の絶縁性放熱材料1の重量Wf(g)と、樹脂2の密度Dr(g/cm)を用いて、下記の式より算出する。
Va(体積%)=(Wa/Da)/{(Wa/Da)+(Wf-Wa)/Dr}×100
Next, the content Va (% by volume) of the filler 3 was measured by the weight Wa (g) of the filler 3 recovered by heating, the density Da (g / cm 3 ) of the filler 3, and the insulating heat radiating material 1 before heating. It is calculated from the following formula using the weight Wf (g) and the density Dr (g / cm 3 ) of the resin 2.
Va (% by volume) = (Wa / Da) / {(Wa / Da) + (Wf-Wa) / Dr} × 100

窒化アルミニウム粒子の体積濃度Vn(体積%)を、下記の式より算出する。
Vn(体積%)=Va×{1/(1+C×Dn/Dо)
The volume concentration Vn (volume%) of the aluminum nitride particles is calculated from the following formula.
Vn (% by volume) = Va × {1 / (1 + C × Dn / Dо)

粒径が1.0μm以下のアルミナ粒子の体積濃度Vo1.0(体積%)を、下記の式より算出する。
Vo1.0(体積%)=(Va-Vn)×Vx/100
The volume concentration Vo 1.0 (volume%) of the alumina particles having a particle size of 1.0 μm or less is calculated from the following formula.
Vo 1.0 (% by volume) = (Va-Vn) x Vx / 100

粒径が0.2μm以下のアルミナ粒子の体積濃度Vo0.2(体積%)を、下記の式より算出する。
Vo0.2(体積%)=(Va-Vn)×Vy/100
The volume concentration Vo 0.2 (volume%) of the alumina particles having a particle size of 0.2 μm or less is calculated from the following formula.
Vo 0.2 (% by volume) = (Va-Vn) × Vy / 100

フィラー3は、フィラー3の粒度分布が0.01μm以上1.0μm未満の範囲内において、少なくとも2つのピークを有していてもよい。
粒径が相対的に大きいピークは、0.5μm以上0.9μm以下の範囲内にあることが好ましい。粒径が相対的に小さいピークは、0.05μm以上0.3μm未満の範囲内にあることが好ましい。大径側のピークと小径側のピークとの差は、0.2μm以上0.8μm以下の範囲内にあることが好ましく、0.3μm以上0.7μm以下の範囲内にあることがより好ましい。
The filler 3 may have at least two peaks in the range where the particle size distribution of the filler 3 is 0.01 μm or more and less than 1.0 μm.
The peak having a relatively large particle size is preferably in the range of 0.5 μm or more and 0.9 μm or less. The peak having a relatively small particle size is preferably in the range of 0.05 μm or more and less than 0.3 μm. The difference between the peak on the large diameter side and the peak on the small diameter side is preferably in the range of 0.2 μm or more and 0.8 μm or less, and more preferably in the range of 0.3 μm or more and 0.7 μm or less.

本実施形態の絶縁性放熱材料1は、例えば、金属ベース基板などの回路基板において、金属箔(回路パターン)と基板の間に配置する絶縁膜として用いることができる。また、電子部品や回路基板の表面を保護する保護膜として用いることができる。さらに、単独のシート又はフィルムとして、例えば、フレキシブルプリント基板などの回路基板用の絶縁膜として用いることができる。またさらに、エナメル線のエナメル膜のように、コイルやモータに利用される絶縁導体の絶縁膜として用いることができる。 The insulating heat radiating material 1 of the present embodiment can be used as an insulating film arranged between the metal foil (circuit pattern) and the substrate in a circuit board such as a metal base substrate. It can also be used as a protective film that protects the surface of electronic components and circuit boards. Further, it can be used as a single sheet or film, for example, as an insulating film for a circuit board such as a flexible printed circuit board. Furthermore, it can be used as an insulating film for an insulating conductor used in a coil or a motor, such as an enamel film for an enamel wire.

次に、本実施形態の絶縁性放熱材料1を含む絶縁膜の製造方法を説明する。
本実施形態の絶縁膜の製造方法は、例えば、固形分と溶媒とを含む液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する工程と、得られた湿潤絶縁性組成物膜を加熱して絶縁膜を形成する工程と、を有する。
Next, a method of manufacturing an insulating film containing the insulating heat radiating material 1 of the present embodiment will be described.
The method for producing an insulating film of the present embodiment includes, for example, a step of forming a wet insulating composition film on a substrate using a liquid composition containing a solid content and a solvent, and the obtained wet insulating property. It comprises a step of heating a composition film to form an insulating film.

液状組成物に含まれる固形分は、液状組成物を加熱して溶媒を除去したときに固体として残留する成分である。固形分は、窒化アルミニウム粒子、アルミナ粒子及び樹脂である。液状組成物中の樹脂は、溶媒に溶解していてもよい。 The solid content contained in the liquid composition is a component that remains as a solid when the liquid composition is heated to remove the solvent. The solid content is aluminum nitride particles, alumina particles and a resin. The resin in the liquid composition may be dissolved in a solvent.

窒化アルミニウム粒子は、平均粒径が1.0μm以上3.0μm以下の範囲にある。窒化アルミニウム粒子は、粒径が1.0μm未満の粒子の含有量が40体積%以下であることが好ましく、3.0μm以上の粒子の含有量が5体積%以下 であることが好ましい。 The aluminum nitride particles have an average particle size in the range of 1.0 μm or more and 3.0 μm or less. The content of the aluminum nitride particles having a particle size of less than 1.0 μm is preferably 40% by volume or less, and the content of particles having a particle size of 3.0 μm or more is preferably 5% by volume or less.

アルミナ粒子は、一種のアルミナ粒子もしくは平均粒径が異なる二種のアルミナ粒子を含む。アルミナ粒子が一種のアルミナ粒子である場合、アルミナ粒子の平均粒径は、0.01μm以上1.0μm未満の範囲内、より好ましくは0.01μm以上0.8μm以下範囲内にある。窒化アルミニウム粒子とアルミナ粒子の平均粒径の差は、0.5μm以上1.3μm以下の範囲内にあることが好ましく、0.5μm以上1.0μm以下の範囲内にあることがより好ましい。アルミナ粒子は、1.0μmを超える粒子の含有量が5体積%以下であることが好ましい。 Alumina particles include one type of alumina particles or two types of alumina particles having different average particle sizes. When the alumina particles are a kind of alumina particles, the average particle size of the alumina particles is in the range of 0.01 μm or more and less than 1.0 μm, more preferably in the range of 0.01 μm or more and 0.8 μm or less. The difference in the average particle size between the aluminum nitride particles and the alumina particles is preferably in the range of 0.5 μm or more and 1.3 μm or less, and more preferably in the range of 0.5 μm or more and 1.0 μm or less. The alumina particles preferably have a particle content of more than 1.0 μm of 5% by volume or less.

液状組成物の固形分の配合割合は、窒化アルミニウム粒子が体積濃度で25体積%以上40体積%以下の範囲内にあって、アルミナ粒子が体積濃度で20体積%以上40体積%以下の範囲内にあり、残部が樹脂となる割合である。また、液状組成物の固形分の組成は、窒化アルミニウム粒子の含有量が体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が体積濃度で10体積%以上20体積%以下の範囲内にある。 The mixing ratio of the solid content of the liquid composition is within the range of 25% by volume or more and 40% by volume or less for the aluminum nitride particles and 20% by volume or more and 40% by volume or less for the alumina particles. It is the ratio that the balance becomes resin. Further, the composition of the solid content of the liquid composition is such that the content of aluminum nitride particles is in the range of 25% by volume or more and 40% by volume or less in volume concentration, and the content of alumina particles having a particle size of 1.0 μm or less. Is in the range of 20% by volume or more and 40% by volume or less in volume concentration, and the content of alumina particles having a particle size of 0.3 μm or less is in the range of 10% by volume or more and 20% by volume or less in volume concentration.

窒化アルミニウム粒子と、アルミナ粒子と、樹脂との混合方法は特に制限はない。例えば、窒化アルミニウム粒子とアルミナ粒子と溶媒を含む粒子混合物分散液と、樹脂溶液とを混合してもよい。また、窒化アルミニウム粒子分散液と、アルミナ粒子分散液と、樹脂溶液とを同時に混合してもよい。 The method of mixing the aluminum nitride particles, the alumina particles, and the resin is not particularly limited. For example, a particle mixture dispersion containing aluminum nitride particles, alumina particles, and a solvent may be mixed with a resin solution. Further, the aluminum nitride particle dispersion, the alumina particle dispersion, and the resin solution may be mixed at the same time.

アルミナ粒子が二種のアルミナ粒子を含む場合、平均粒径が相対的に小さい第1アルミナ粒子は、平均粒径が0.01μm以上0.3μm未満の範囲内にある。第1アルミナ粒子は、粒径が0.01μm未満の粒子の含有量が1体積%以下であることが好ましく、粒径が0.3μm以上の粒子の含有量が20体積%以下であることが好ましい。また、平均粒径が相対的に大きい第2アルミナ粒子は、平均粒径が0.3μm以上1.0μm未満の範囲内にある。第2アルミナ粒子は、粒径が0.3μm未満の粒子の含有量が3体積%以下であることが好ましく、1.0μmを超える粒子の含有量が30体積%以下であることが好ましい。 When the alumina particles include two types of alumina particles, the first alumina particles having a relatively small average particle size are in the range of 0.01 μm or more and less than 0.3 μm. The content of the first alumina particles is preferably 1% by volume or less, and the content of particles having a particle size of 0.3 μm or more is 20% by volume or less. preferable. Further, the second alumina particles having a relatively large average particle size are in the range where the average particle size is 0.3 μm or more and less than 1.0 μm. The content of the second alumina particles having a particle size of less than 0.3 μm is preferably 3% by volume or less, and the content of particles having a particle size of more than 1.0 μm is preferably 30% by volume or less.

液状組成物の固形分の配合割合は、窒化アルミニウム粒子が固形分中の体積濃度で25体積%以上40体積%以下の範囲内にあって、第1アルミナ粒子が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にあり、第2アルミナ粒子が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にあって、残部が樹脂となる割合である。また、液状組成物の固形分の組成は、窒化アルミニウム粒子の含有量が体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が体積濃度で10体積%以上20体積%以下の範囲内にある。 The mixing ratio of the solid content of the liquid composition is such that the aluminum nitride particles are in the range of 25% by volume or more and 40% by volume or less in terms of the volume concentration in the solid content, and the first alumina particles are 10 in volume concentration in the solid content. It is in the range of 10% by volume or more and 20% by volume or less, the second alumina particles are in the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the solid content, and the balance is the ratio of resin. Further, the composition of the solid content of the liquid composition is such that the content of aluminum nitride particles is in the range of 25% by volume or more and 40% by volume or less in volume concentration, and the content of alumina particles having a particle size of 1.0 μm or less. Is in the range of 20% by volume or more and 40% by volume or less in volume concentration, and the content of alumina particles having a particle size of 0.3 μm or less is in the range of 10% by volume or more and 20% by volume or less in volume concentration.

窒化アルミニウム粒子と、第1アルミナ粒子と、第2アルミナ粒子と、樹脂との混合方法は特に制限はない。例えば、窒化アルミニウム粒子と第1アルミナ粒子と第2アルミナ粒子と溶媒を含む粒子混合物分散液と、樹脂溶液とを混合してもよい。また、窒化アルミニウム粒子分散液と、第1アルミナ粒子分散液と、第2アルミナ粒子分散液と、樹脂溶液とを同時に混合してもよい。 The method of mixing the aluminum nitride particles, the first alumina particles, the second alumina particles, and the resin is not particularly limited. For example, a particle mixture dispersion containing aluminum nitride particles, first alumina particles, second alumina particles, and a solvent may be mixed with a resin solution. Further, the aluminum nitride particle dispersion, the first alumina particle dispersion, the second alumina particle dispersion, and the resin solution may be mixed at the same time.

上記の液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する方法としては、塗布法又は電着法を用いることができる。 As a method for forming a wet insulating composition film on a substrate by using the above liquid composition, a coating method or an electrodeposition method can be used.

塗布法は、基板の上に、液状組成物を塗布して塗布層を形成する方法である。液状組成物を塗布する方法としては、スピンコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法、ディップコート法などを用いることができる。 The coating method is a method of coating a liquid composition on a substrate to form a coating layer. As a method for applying the liquid composition, a spin coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, a dip coating method and the like can be used.

電着法は、樹脂粒子と無機物粒子とを含む液状組成物(電着液)に金属基板を浸漬して、金属基板の表面に樹脂粒子と無機物粒子とを電着させて電着層を形成する方法である。電着液としては、無機物粒子混合物が分散された分散液と樹脂が溶解した樹脂溶液とを混合して得られた無機物粒子分散樹脂溶液に、樹脂の貧溶媒を加えて樹脂を粒子として析出させることによって調製したものを用いることができる。 In the electrodeposition method, a metal substrate is immersed in a liquid composition (electrodeposition liquid) containing resin particles and inorganic particles, and the resin particles and the inorganic particles are electrodeposited on the surface of the metal substrate to form an electrodeposition layer. How to do it. The electrodeposition solution is an inorganic particle dispersion resin solution obtained by mixing a dispersion in which an inorganic particle mixture is dispersed and a resin solution in which a resin is dissolved, and a poor solvent for the resin is added to precipitate the resin as particles. It is possible to use the prepared product.

湿潤絶縁性組成物膜を加熱して絶縁膜を形成する方法としては、特に制限はなく、溶媒の揮発温度以上の温度で加熱すればよい。加熱温度は、通常は、200℃以上であり、好ましくは250℃以上である。 The method for forming the insulating film by heating the wet insulating composition film is not particularly limited, and may be heated at a temperature equal to or higher than the volatilization temperature of the solvent. The heating temperature is usually 200 ° C. or higher, preferably 250 ° C. or higher.

以上のような構成とされた本実施形態の絶縁性放熱材料1によれば、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子4と、粒径が1.0μm以下で0.3μmを超える中径アルミナ粒子5aと、粒径が0.3μm以下の小径アルミナ粒子5bとを含み、窒化アルミニウム粒子4の粒子間に微細なアルミナ粒子(中径アルミナ粒子5aと小径アルミナ粒子5b)を効率よく介在させることができる。よって、無機物粒子の添加による耐電圧性の低下を抑えつつ、絶縁性放熱材料の熱伝導性を向上させることができる。特に、本実施形態の絶縁性放熱材料1によれば、窒化アルミニウム粒子4、中径アルミナ粒子5aおよび小径アルミナ粒子5bの含有量がそれぞれ上記の範囲内とされているので、耐電圧性を低下させずに、熱伝導性をより向上させることができる。 According to the insulating heat radiating material 1 of the present embodiment having the above configuration, the aluminum nitride particles 4 having an average particle size in the range of 1.0 μm or more and 3.0 μm or less and the particle size of 1.0 μm. Below, medium-diameter alumina particles 5a having a particle size of more than 0.3 μm and small-diameter alumina particles 5b having a particle size of 0.3 μm or less are included, and fine alumina particles (medium-diameter alumina particles 5a and small diameters) are included between the particles of the aluminum nitride particles 4. Alumina particles 5b) can be efficiently interposed. Therefore, it is possible to improve the thermal conductivity of the insulating heat radiating material while suppressing the decrease in withstand voltage due to the addition of inorganic particles. In particular, according to the insulating heat radiating material 1 of the present embodiment, the contents of the aluminum nitride particles 4, the medium-diameter alumina particles 5a, and the small-diameter alumina particles 5b are each within the above ranges, so that the withstand voltage resistance is lowered. It is possible to further improve the thermal conductivity without causing it.

本実施形態の絶縁性放熱材料1において、フィラー3の粒度分布が、0.01μm以上1.0μm未満の範囲内において、少なくとも2つのピークを有する場合は、相対的に粒子径が大きいアルミナ粒子と相対的に粒子径が小さいアルミナ粒子との差が明確になるので、相対的に粒子径が大きいアルミナ粒子の粒子間に、相対的に粒子径が小さいアルミナ粒子をより効率よく介在させることができる。よって、絶縁性放熱材料の熱伝導性をより向上させることができる。また、本実施形態の絶縁性放熱材料1において、樹脂2がポリイミド、又はポリアミドイミド、もしくはこれらの混合物である場合は、絶縁性放熱材料1の絶縁性、耐電圧性、化学的耐性及び機械特性を向上させることができる。さらに、本実施形態の絶縁性放熱材料1において、フィラー3に含まれる相対的に粒径が大きい窒化アルミニウム粒子4の体積濃度が、相対的に粒径が小さい粒径が1.0μm以下のアルミナ粒子(中径アルミナ粒子5aと小径アルミナ粒子5bの合計)の体積濃度よりも高い場合は、フィラー3と樹脂2との界面での熱抵抗を低くできるので、熱伝導性をより向上させることができる。 In the insulating heat radiating material 1 of the present embodiment, when the particle size distribution of the filler 3 has at least two peaks within the range of 0.01 μm or more and less than 1.0 μm, the alumina particles have a relatively large particle size. Since the difference from the alumina particles having a relatively small particle size becomes clear, the alumina particles having a relatively small particle size can be more efficiently interposed between the particles of the alumina particles having a relatively large particle size. .. Therefore, the thermal conductivity of the insulating heat radiating material can be further improved. Further, in the insulating heat radiating material 1 of the present embodiment, when the resin 2 is polyimide, polyamideimide, or a mixture thereof, the insulating heat insulating material 1 has insulating properties, withstand voltage properties, chemical resistance, and mechanical properties. Can be improved. Further, in the insulating heat radiating material 1 of the present embodiment, the volume concentration of the aluminum nitride particles 4 having a relatively large particle size contained in the filler 3 is such that the particle size having a relatively small particle size is 1.0 μm or less. When the volume concentration of the particles (total of medium-diameter alumina particles 5a and small-diameter alumina particles 5b) is higher, the thermal resistance at the interface between the filler 3 and the resin 2 can be lowered, so that the thermal conductivity can be further improved. can.

また、本実施形態の絶縁膜は、上述の絶縁性放熱材料を含むので、耐電圧性と熱伝導性の両者をバランスよく向上させることができる。 Further, since the insulating film of the present embodiment contains the above-mentioned insulating heat radiating material, both withstand voltage resistance and thermal conductivity can be improved in a well-balanced manner.

さらに、本実施形態の絶縁膜の製造方法によれば、平均粒径が相対的に大きい窒化アルミニウム粒子と平均粒径が相対的に小さいアルミナ粒子とを、固形分中の体積濃度が上記の範囲内となる割合で使用するので、相対的に粒子径が大きい無機物粒子の粒子間に、相対的に粒子径が小さい無機物粒子を効率よく介在させることができる。よって、耐電圧性と熱伝導性の両者がバランスよく向上した絶縁膜を製造することができる。 Further, according to the method for producing an insulating film of the present embodiment, the volume concentration in the solid content of the aluminum nitride particles having a relatively large average particle size and the alumina particles having a relatively small average particle size is in the above range. Since it is used in the inner ratio, the inorganic particles having a relatively small particle size can be efficiently interposed between the particles of the inorganic particles having a relatively large particle size. Therefore, it is possible to manufacture an insulating film having both withstand voltage resistance and thermal conductivity improved in a well-balanced manner.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.

実施例では、樹脂として、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミドイミドとポリイミドを質量比で50:50の割合で含む混合物(PI+PAI)を用い、フィラーとして、平均粒径が5.0μm、1.5μmの窒化アルミニウム粒子と、平均粒径が0.7μm、0.1μmのアルミナ粒子を用いた。平均粒径0.7μmのアルミナ粒子に含まれる2.5μm以下の粒子の含有率は100体積%、0.6μm以下の粒子の含有率は43体積%、平均粒径0.1μmのアルミナ粒子に含まれる0.6μm以下の粒子の含有率は100体積%、0.2μm以下の粒子の含有率は79体積%であった。 In the examples, polyimide (PI), polyamide-imide (PAI), and a mixture (PI + PAI) containing polyamide-imide and polyimide in a mass ratio of 50:50 are used as the resin, and the average particle size is 5.0 μm as the filler. , 1.5 μm aluminum nitride particles and alumina particles having an average particle size of 0.7 μm and 0.1 μm were used. The content of particles of 2.5 μm or less contained in alumina particles with an average particle size of 0.7 μm is 100% by volume, the content of particles of 0.6 μm or less is 43% by volume, and the content of alumina particles with an average particle size of 0.1 μm is The content of the particles of 0.6 μm or less contained was 100% by volume, and the content of the particles of 0.2 μm or less was 79% by volume.

[本発明例1]
樹脂を体積濃度で33体積%、平均粒径が1.5μmの窒化アルミニウム粒子を体積濃度で35体積%、平均粒径が0.7μmのアルミナ粒子を体積濃度で20体積%、平均粒径が0.1μmのアルミナ粒子を体積濃度12体積%の割合で含むフィラー分散樹脂溶液を、次のようにして調製した。樹脂としては、ポリアミドイミドを用いた。
[Example 1 of the present invention]
The resin is 33% by volume, the aluminum nitride particles having an average particle size of 1.5 μm are 35% by volume, the alumina particles having an average particle size of 0.7 μm are 20% by volume, and the average particle size is. A filler-dispersed resin solution containing 0.1 μm alumina particles at a volume concentration of 12% by volume was prepared as follows. Polyamideimide was used as the resin.

先ず、平均粒径が1.5μmの窒化アルミニウム粒子と、平均粒径が0.7μmのアルミナ粒子と、平均粒径が0.1μmのアルミナ粒子とを上記の割合で混合してフィラー混合物を作成した。得られたフィラー混合物1.0gを、NMP(N-メチル-2-ピロリドン)を62.5g、1M2P(1-メトキシ-2-プロパノール)を10g、AE(アミノエーテル)を0.22gの割合で含む混合溶媒に投入し、30分間超音波処理して、フィラー分散液を調製した。また、ポリアミドイミドをNMPに溶解して樹脂溶液を調製した。
上記のフィラー分散液と上記の樹脂溶液とを、樹脂とフィラーの含有量が上記の割合となるように、かつ樹脂の濃度が5質量%となるように混合して、フィラー分散樹脂溶液を調製した。このフィラー分散樹脂溶液を用いて、電着法により絶縁性樹脂材料からなる絶縁膜を、次のようにして成膜して、絶縁膜付き銅基板を作製した。
First, aluminum nitride particles having an average particle size of 1.5 μm, alumina particles having an average particle size of 0.7 μm, and alumina particles having an average particle size of 0.1 μm are mixed at the above ratios to prepare a filler mixture. did. 1.0 g of the obtained filler mixture, 62.5 g of NMP (N-methyl-2-pyrrolidone), 10 g of 1M2P (1-methoxy-2-propanol), and 0.22 g of AE (amino ether). It was put into a mixed solvent containing the mixture and subjected to ultrasonic treatment for 30 minutes to prepare a filler dispersion. In addition, polyamide-imide was dissolved in NMP to prepare a resin solution.
The above filler dispersion and the above resin solution are mixed so that the content of the resin and the filler is the above ratio and the concentration of the resin is 5% by mass to prepare a filler dispersion resin solution. did. Using this filler-dispersed resin solution, an insulating film made of an insulating resin material was formed into a film by an electrodeposition method as follows to prepare a copper substrate with an insulating film.

上記のフィラー分散樹脂溶液を、5000rpmの回転速度で撹拌しながら、そのフィラー分散樹脂溶液に水を21g滴下して、樹脂を析出させることによって、フィラー分散電着液を調製した。得られたフィラー分散電着液に、厚み0.3mmで30mm×20mmの銅基板と、ステンレス電極とを浸漬し、銅基板を正極、ステンレス電極を負極として、100Vの直流電圧を印加して、銅基板の表面に電着膜を形成した。なお、銅基板の裏面は保護テープを貼り付けて、電着膜が形成されないように保護した。電着膜の膜厚は、加熱によって生成する絶縁膜の膜厚が20μmとなる厚みとした。次いで、電着膜を形成した銅基板を、大気雰囲気下、250℃で3分間加熱して、電着膜を乾燥させて、絶縁膜付き銅基板を作製した。 While stirring the above filler-dispersed resin solution at a rotation speed of 5000 rpm, 21 g of water was added dropwise to the filler-dispersed resin solution to precipitate the resin, thereby preparing a filler-dispersed electrodeposition solution. A copper substrate having a thickness of 0.3 mm and a thickness of 30 mm × 20 mm and a stainless electrode were immersed in the obtained filler dispersion electrodeposition liquid, and a DC voltage of 100 V was applied with the copper substrate as the positive electrode and the stainless electrode as the negative electrode. An electrodeposition film was formed on the surface of the copper substrate. A protective tape was attached to the back surface of the copper substrate to protect it from forming an electrodeposition film. The film thickness of the electrodeposition film was set so that the film thickness of the insulating film generated by heating was 20 μm. Next, the copper substrate on which the electrodeposition film was formed was heated at 250 ° C. for 3 minutes in an atmospheric atmosphere to dry the electrodeposition film, thereby producing a copper substrate with an insulating film.

[本発明例2、比較例1~2]
樹脂の種類とフィラー分散樹脂溶液の組成を、下記の表1に示すとおりに代えたこと以外は、本発明例1と同様にして絶縁膜付き銅基板を作製した。なお、表1の樹脂の種類におけるPIはポリイミド、PAIはポリアミドイミドを示す。
[Example 2 of the present invention, Comparative Examples 1 and 2]
A copper substrate with an insulating film was produced in the same manner as in Example 1 of the present invention, except that the type of resin and the composition of the filler-dispersed resin solution were changed as shown in Table 1 below. In Table 1, PI indicates polyimide and PAI indicates polyamide-imide in the resin types.

[本発明例3]
樹脂を体積濃度で42体積%、平均粒径が1.5μmの窒化アルミニウム粒子を体積濃度で27体積%、平均粒径が0.7μmのアルミナ粒子を体積濃度で18体積%、平均粒径が0.1μmのアルミナ粒子を体積濃度13体積%の割合で含むフィラー分散樹脂溶液を、次のようにして調製した。樹脂としては、ポリアミドイミドとポリイミドの混合物を用いた。
[Example 3 of the present invention]
42% by volume of resin, 27% by volume of aluminum nitride particles with an average particle size of 1.5μm, 18% by volume of alumina particles with an average particle size of 0.7μm, average particle size A filler-dispersed resin solution containing 0.1 μm alumina particles at a volume concentration of 13% by volume was prepared as follows. As the resin, a mixture of polyamide-imide and polyimide was used.

先ず、平均粒径が1.5μmの窒化アルミニウム粒子と、平均粒径が0.7μmのアルミナ粒子と、平均粒径が0.1μmのアルミナ粒子とを上記の割合で混合してフィラー混合物を作成した。得られたフィラー混合物1.0gをシクロヘキサン10gに投入し、30分間超音波処理して、フィラー分散液を調製した。また、ポリアミドイミドをシクロヘキサンに溶解して樹脂の樹脂溶液を調製した。
上記のフィラー分散液と上記の樹脂溶液とを、樹脂とフィラーの含有量が上記の割合となるように、かつ樹脂の濃度が5質量%となるように混合して、フィラー分散樹脂溶液を調製した。
First, aluminum nitride particles having an average particle size of 1.5 μm, alumina particles having an average particle size of 0.7 μm, and alumina particles having an average particle size of 0.1 μm are mixed at the above ratios to prepare a filler mixture. did. 1.0 g of the obtained filler mixture was added to 10 g of cyclohexane and sonicated for 30 minutes to prepare a filler dispersion. In addition, polyamide-imide was dissolved in cyclohexane to prepare a resin solution of the resin.
The above filler dispersion and the above resin solution are mixed so that the content of the resin and the filler is the above ratio and the concentration of the resin is 5% by mass to prepare a filler dispersion resin solution. did.

得られたフィラー分散樹脂溶液を、スギノマシン社製スターバーストを用い、圧力50MPaの高圧噴射処理を10回繰り返すことにより分散処理を行なって、フィラー分散樹脂塗布液を調製した。得られたフィラー分散樹脂塗布液を、厚み0.3mmで30mm×20mmの銅基板の表面に、加熱後の膜厚が20μmとなるように塗布して塗布膜を形成した。次いで塗布膜を形成した銅基板をホットプレート上に配置して、3℃/分の昇温速度で室温から60℃まで昇温し、60℃で100分間加熱した後、さらに1℃/分の昇温速度で120℃まで昇温し、120℃で100分間加熱して、乾燥して乾燥膜とした。その後、乾燥膜を250℃で1分間、次いで400℃で1分間加熱して、絶縁膜付き銅基板を作製した。 The obtained filler-dispersed resin solution was dispersed by repeating a high-pressure injection treatment at a pressure of 50 MPa 10 times using a starburst manufactured by Sugino Machine Limited to prepare a filler-dispersed resin coating liquid. The obtained filler dispersion resin coating liquid was applied to the surface of a copper substrate having a thickness of 0.3 mm and a thickness of 30 mm × 20 mm so that the film thickness after heating was 20 μm to form a coating film. Next, the copper substrate on which the coating film was formed was placed on a hot plate, the temperature was raised from room temperature to 60 ° C. at a heating rate of 3 ° C./min, heated at 60 ° C. for 100 minutes, and then further 1 ° C./min. The temperature was raised to 120 ° C. at a heating rate, heated at 120 ° C. for 100 minutes, and dried to obtain a dry film. Then, the dry film was heated at 250 ° C. for 1 minute and then at 400 ° C. for 1 minute to prepare a copper substrate with an insulating film.

[本発明例4~5、比較例3~5]
樹脂の種類とフィラー分散樹脂溶液の組成を、下記の表1に示すとおりに代えたこと以外は、本発明例3と同様にして絶縁膜付き銅基板を作製した。
[Examples 4 to 5 of the present invention, Comparative Examples 3 to 5]
A copper substrate with an insulating film was produced in the same manner as in Example 3 of the present invention, except that the type of resin and the composition of the filler-dispersed resin solution were changed as shown in Table 1 below.

Figure 2022007554000002
Figure 2022007554000002

[評価]
本発明例1~5及び比較例1~5で得られた絶縁膜付き銅基板について、下記の評価を行なった。その結果を、下記の表2に示す。
[evaluation]
The copper substrates with an insulating film obtained in Examples 1 to 5 of the present invention and Comparative Examples 1 to 5 were evaluated as follows. The results are shown in Table 2 below.

(絶縁膜中の窒化アルミニウム粒子とアルミナ粒子の体積濃度)
絶縁膜付き銅基板を塩化ナトリウム水溶液中にて通電し、銅基板から気体を発生させることにより、銅基板と絶縁膜とを分離した。得られた絶縁膜を用いて、前述の方法により絶縁膜中の窒化アルミニウム粒子とアルミナ粒子の体積濃度を測定した。次いで、前述の方法により粒径が1.0μm以下のアルミナ粒子と粒径が0.3μm以下のアルミナ粒子の体積濃度を測定した。
(Volume concentration of aluminum nitride particles and alumina particles in the insulating film)
The copper substrate with an insulating film and the insulating film were separated by energizing the copper substrate with an insulating film in an aqueous sodium chloride solution to generate gas from the copper substrate. Using the obtained insulating film, the volume concentrations of the aluminum nitride particles and the alumina particles in the insulating film were measured by the above-mentioned method. Then, the volume concentration of the alumina particles having a particle size of 1.0 μm or less and the alumina particles having a particle size of 0.3 μm or less was measured by the above-mentioned method.

(膜厚当たりの耐電圧)
耐電圧は、株式会社計測技術研究所の多機能安全試験器7440を用いて測定した。絶縁膜付銅基板の絶縁膜の表面に電極(φ6mm)を配置した。絶縁膜付銅基板の銅基板と絶縁膜の表面に配置した電極をそれぞれ電源に接続し、6000Vまで30秒で昇圧した。銅基板と電極との間に流れる電流値が5000μAになった時点の電圧を絶縁膜の耐電圧とした。
(Withstand voltage per film thickness)
The withstand voltage was measured using a multifunctional safety tester 7440 of Measurement Technology Laboratory Co., Ltd. An electrode (φ6 mm) was placed on the surface of the insulating film of the copper substrate with an insulating film. The copper substrate of the copper substrate with an insulating film and the electrodes arranged on the surface of the insulating film were connected to each power source, and the voltage was increased to 6000 V in 30 seconds. The voltage at the time when the current value flowing between the copper substrate and the electrode reached 5000 μA was defined as the withstand voltage of the insulating film.

(絶縁膜の熱伝導率)
熱伝導率(絶縁膜の厚さ方向の熱伝導率)は、NETZSCH-GeratebauGmbH製のLFA477 Nanoflashを用いて、レーザーフラッシュ法により測定した。熱伝導率は、界面熱抵抗を考慮しない2層モデルを用いて算出した。なお、銅基板の厚みは既述したように0.3mm、銅基板の熱拡散率は117.2mm/秒とした。絶縁膜の熱伝導率の計算には、窒化アルミニウム粒子の密度3.40g/cm、窒化アルミニウム粒子の比熱0.72J/gK、アルミナ粒子の密度3.89g/cm、アルミナ粒子の比熱0.78J/gK、ポリアミドイミド樹脂の密度1.41g/cm、ポリアミドイミド樹脂の比熱1.09J/gK、ポリイミドの密度1.4g/cm、ポリイミドの比熱1.13J/gKを用いた。
(Thermal conductivity of the insulating film)
The thermal conductivity (thermal conductivity in the thickness direction of the insulating film) was measured by a laser flash method using LFA477 Nanoflash manufactured by NETZSCH-Geratebau GmbH. The thermal conductivity was calculated using a two-layer model that does not consider the interfacial thermal resistance. As described above, the thickness of the copper substrate was 0.3 mm, and the thermal diffusivity of the copper substrate was 117.2 mm 2 / sec. To calculate the thermal conductivity of the insulating film, the density of the aluminum nitride particles is 3.40 g / cm 3 , the specific heat of the aluminum nitride particles is 0.72 J / gK, the density of the alumina particles is 3.89 g / cm 3 , and the specific heat of the alumina particles is 0. The specific heat of .78 J / gK, the density of the polyamideimide resin 1.41 g / cm 3 , the specific heat of the polyamideimide resin 1.09 J / gK, the density of the polyimide 1.4 g / cm 3 , and the specific heat of the polyimide 1.13 J / gK were used.

(性能値)
下記の式より得られた値を性能値とした。
性能値=膜厚当たりの耐電圧(kW/mm)×絶縁膜の熱伝導率(W/mK)
(Performance value)
The value obtained from the following formula was used as the performance value.
Performance value = Withstand voltage per film thickness (kW / mm) x Thermal conductivity of insulating film (W / mK)

(ボイドの有無)
絶縁膜付き銅基板を樹脂埋めし、機械研磨によって断面を露出させた。次いで、露出した絶縁膜付き銅基板の絶縁膜の断面を、SEM(走査型電子顕微鏡)を用いて観察した。絶縁膜の断面積100μmに対して、最大径が0.3μm以上のボイド(気孔)が1個以上見られた場合を、ボイド有りとした。
(Presence / absence of voids)
A copper substrate with an insulating film was embedded in resin, and the cross section was exposed by mechanical polishing. Next, the cross section of the insulating film of the exposed copper substrate with the insulating film was observed using an SEM (scanning electron microscope). The case where one or more voids (pores) having a maximum diameter of 0.3 μm or more were found with respect to the cross-sectional area of 100 μm 2 of the insulating film was considered to have voids.

Figure 2022007554000003
Figure 2022007554000003

窒化アルミニウム粒子とアルミナ粒子の粒子径及び体積濃度がそれぞれ本発明の範囲内にある本発明例1~5は、性能値がいずれも高いことから、耐電圧性と熱伝導性とがバランスよく向上していることが確認された。特に、窒化アルミニウム粒子の体積濃度が粒径1.0μm以下のアルミナ粒子の体積濃度よりも高い本発明例1~2、4~5は、性能値が特に向上した。 In Examples 1 to 5 of the present invention in which the particle size and volume concentration of the aluminum nitride particles and the alumina particles are within the range of the present invention, the performance values are both high, so that the withstand voltage and the thermal conductivity are improved in a well-balanced manner. It was confirmed that it was done. In particular, the performance values of Examples 1 to 2, 4 to 5 of the present invention, in which the volume concentration of the aluminum nitride particles is higher than the volume concentration of the alumina particles having a particle size of 1.0 μm or less, are particularly improved.

窒化アルミニウム粒子の平均粒径が本発明の範囲を超える比較例1は、耐電圧性が低下する傾向が見られた。界面で絶縁破壊は進行しやすく、相対的に粒径の大きな粒子を利用すると、界面に沿った絶縁破壊経路が形成しやすくなるためである。 In Comparative Example 1 in which the average particle size of the aluminum nitride particles exceeds the range of the present invention, the withstand voltage tends to decrease. This is because dielectric breakdown tends to proceed at the interface, and if particles having a relatively large particle size are used, a dielectric breakdown path along the interface is likely to be formed.

窒化アルミニウム粒子の体積濃度が本発明の範囲を超える比較例2は、耐電圧性が低下する傾向が見られた。これは、窒化アルミニウム粒子の粒子間を埋めるのに十分なアルミナ粒子が存在せず、絶縁膜中にボイド(気孔)が形成されたためである。 In Comparative Example 2 in which the volume concentration of the aluminum nitride particles exceeded the range of the present invention, the withstand voltage tended to decrease. This is because there were not enough alumina particles to fill the spaces between the aluminum nitride particles, and voids (pores) were formed in the insulating film.

粒径が1.0μm以下(特に、粒径が0.3μm以下)のアルミナ粒子の体積濃度が本発明の範囲を超える比較例3は、耐電圧が低下する傾向が見られた。これは、相対的に粒径が小さいアルミナ粒子の割合が多くなったことによって、フィラーと樹脂との界面での熱抵抗が高くなったためである。 In Comparative Example 3 in which the volume concentration of the alumina particles having a particle size of 1.0 μm or less (particularly, the particle size is 0.3 μm or less) exceeds the range of the present invention, the withstand voltage tended to decrease. This is because the thermal resistance at the interface between the filler and the resin has increased due to the increase in the proportion of alumina particles having a relatively small particle size.

粒径が1.0μm以下のアルミナ粒子の体積濃度が本発明の範囲よりも少ない比較例4は、熱伝導率が低下する傾向が見られた。これは、窒化アルミニウム粒子の粒子間に介在する粒径が0.3μm以下のアルミナ粒子の量が低減したことによって、窒化アルミニウム粒子の粒子間にボイドが形成されたためである。 In Comparative Example 4 in which the volume concentration of the alumina particles having a particle size of 1.0 μm or less was smaller than the range of the present invention, the thermal conductivity tended to decrease. This is because the amount of alumina particles having a particle size of 0.3 μm or less intervening between the aluminum nitride particles is reduced, so that voids are formed between the particles of the aluminum nitride particles.

窒化アルミニウム粒子の体積濃度が本発明の範囲よりも低い比較例5は、熱伝導率が低くなる傾向が見られた。これは、絶縁膜中の窒化アルミニウム粒子の含有量が少なくなりすぎたことにより、熱を伝えるパスが充分に形成されなかったためである。 In Comparative Example 5 in which the volume concentration of the aluminum nitride particles was lower than the range of the present invention, the thermal conductivity tended to be low. This is because the content of the aluminum nitride particles in the insulating film is too low, so that a path for transferring heat is not sufficiently formed.

1 絶縁性放熱材料
2 樹脂
3 フィラー
4 窒化アルミニウム粒子
5a 中径アルミナ粒子
5b 小径アルミナ粒子
1 Insulating heat dissipation material 2 Resin 3 Filler 4 Aluminum nitride particles 5a Medium diameter alumina particles 5b Small diameter alumina particles

Claims (7)

樹脂とフィラーとを含む絶縁性放熱材料であって、
前記フィラーは、平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子と、粒径が1.0μm以下のアルミナ粒子と、粒径が0.3μm以下のアルミナ粒子とを含み、
前記窒化アルミニウム粒子の含有量が前記絶縁性放熱材料中の体積濃度で25体積%以上40体積%以下の範囲内にあって、前記粒径が1.0μm以下のアルミナ粒子の含有量が前記絶縁性放熱材料中の体積濃度で20体積%以上40体積%以下の範囲内にあり、前記粒径が0.3μm以下のアルミナ粒子の含有量が前記絶縁性放熱材料中の体積濃度で10体積%以上20体積%以下の範囲内にある絶縁性放熱材料。
An insulating heat-dissipating material containing a resin and a filler.
The filler includes aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less, alumina particles having a particle size of 1.0 μm or less, and alumina particles having a particle size of 0.3 μm or less. Including,
The content of the aluminum nitride particles is within the range of 25% by volume or more and 40% by volume or less in terms of volume concentration in the insulating heat dissipation material, and the content of the alumina particles having a particle size of 1.0 μm or less is the insulation. The content of alumina particles having a volume concentration of 20% by volume or more and 40% by volume or less in the heat-dissipating material and having a particle size of 0.3 μm or less is 10% by volume in the insulating heat-dissipating material. Insulating heat dissipation material within the range of 20% by volume or more.
前記フィラーは、前記フィラーの粒度分布が、0.01μm以上1.0μm未満の範囲内において、少なくとも2つのピークを有する請求項1に記載の絶縁性放熱材料。 The insulating heat-dissipating material according to claim 1, wherein the filler has at least two peaks in a particle size distribution of the filler of 0.01 μm or more and less than 1.0 μm. 前記樹脂は、ポリイミド、又はポリアミドイミド、もしくはこれらの混合物である請求項1又は2に記載の絶縁性放熱材料。 The insulating heat-dissipating material according to claim 1 or 2, wherein the resin is polyimide, polyamide-imide, or a mixture thereof. 前記窒化アルミニウム粒子の体積濃度が、前記粒径が1.0μm以下のアルミナ粒子の体積濃度よりも高い請求項1から3のいずれか一項に記載の絶縁性放熱材料。 The insulating heat-dissipating material according to any one of claims 1 to 3, wherein the volume concentration of the aluminum nitride particles is higher than the volume concentration of the alumina particles having a particle size of 1.0 μm or less. 請求項1から4のいずれか一項に記載の絶縁性放熱材料を含む絶縁膜。 An insulating film containing the insulating heat radiating material according to any one of claims 1 to 4. 平均粒径が1.0μm以上3.0μm以下の範囲内にある窒化アルミニウム粒子を固形分中の体積濃度で25体積%以上40体積%以下の範囲内、平均粒径が0.01μm以上1.0μm未満の範囲内にあるアルミナ粒子を固形分中の体積濃度で20体積%以上40体積%以下の範囲内、残部が樹脂となる割合で含有する固形分と、溶媒とを含む液状組成物であって、前記窒化アルミニウム粒子の含有量が固形分中の体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が固形分中の体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にある液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する工程と、
前記湿潤絶縁性組成物膜を加熱して絶縁膜を形成する工程と、を有する絶縁膜の製造方法。
1. The volume concentration of aluminum nitride particles in the range of 1.0 μm or more and 3.0 μm or less in the solid content is in the range of 25% by volume or more and 40% by volume or less, and the average particle size is 0.01 μm or more. A liquid composition containing a solid content containing alumina particles in the range of less than 0 μm in a volume concentration of 20% by volume or more and 40% by volume or less in the volume concentration of the solid content, with the balance being a resin, and a solvent. The content of the aluminum nitride particles is in the range of 25% by volume or more and 40% by volume or less in terms of volume concentration in the solid content, and the content of alumina particles having a particle size of 1.0 μm or less is in the solid content. The content of alumina particles with a particle size of 0.3 μm or less is within the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the solid content. A step of forming a wet insulating composition film on a substrate using the liquid composition in
A method for producing an insulating film, comprising a step of heating the wet insulating composition film to form an insulating film.
平均粒径が1.0μm以上3.0μm以下の範囲にある窒化アルミニウム粒子を固形分中の体積濃度で25体積%以上40体積%以下の範囲内、平均粒径が0.01μm以上0.3μm未満の範囲内にあるアルミナ粒子を固形分中の体積濃度で10体積%以上20体積%以下の範囲内、平均粒径が0.3μm以上1.0μm未満の範囲内にあるアルミナ粒子を固形分中の体積濃度で10体積%以上20体積%以下の範囲内、残部が樹脂となる割合で含有する固形分と、溶媒とを含む液状組成物であって、前記窒化アルミニウム粒子の含有量が固形分中の体積濃度で25体積%以上40体積%以下の範囲内にあって、粒径が1.0μm以下のアルミナ粒子の含有量が固形分中の体積濃度で20体積%以上40体積%以下の範囲内にあり、粒径が0.3μm以下のアルミナ粒子の含有量が固形分中の体積濃度で10体積%以上20体積%以下の範囲内にある液状組成物を用いて、基板の上に、湿潤絶縁性組成物膜を形成する工程と、
前記湿潤絶縁性組成物膜を加熱して絶縁膜を形成する工程と、を有する絶縁膜の製造方法。
Aluminum nitride particles having an average particle size in the range of 1.0 μm or more and 3.0 μm or less are contained in a volume concentration in the solid content of 25% by volume or more and 40% by volume or less, and the average particle size is 0.01 μm or more and 0.3 μm. Alumina particles in the range of less than 10% by volume or more and 20% by volume or less in volume concentration in the solid content, and alumina particles having an average particle size in the range of 0.3 μm or more and less than 1.0 μm are solid content. It is a liquid composition containing a solid content and a solvent contained in a volume concentration of 10% by volume or more and 20% by volume or less in a ratio in which the balance becomes a resin, and the content of the aluminum nitride particles is solid. The content of alumina particles having a particle size of 1.0 μm or less in the range of 25% by volume or more and 40% by volume or less in the volume concentration in the minute is 20% by volume or more and 40% by volume or less in the volume concentration in the solid content. On the substrate using a liquid composition in which the content of alumina particles having a particle size of 0.3 μm or less is in the range of 10% by volume or more and 20% by volume or less in terms of volume concentration in the solid content. In the process of forming a wet insulating composition film,
A method for producing an insulating film, comprising a step of heating the wet insulating composition film to form an insulating film.
JP2020110593A 2020-06-26 2020-06-26 Insulating heat dissipation material, insulating film, and method for producing insulating film Active JP7468190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020110593A JP7468190B2 (en) 2020-06-26 2020-06-26 Insulating heat dissipation material, insulating film, and method for producing insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110593A JP7468190B2 (en) 2020-06-26 2020-06-26 Insulating heat dissipation material, insulating film, and method for producing insulating film

Publications (2)

Publication Number Publication Date
JP2022007554A true JP2022007554A (en) 2022-01-13
JP7468190B2 JP7468190B2 (en) 2024-04-16

Family

ID=80111219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110593A Active JP7468190B2 (en) 2020-06-26 2020-06-26 Insulating heat dissipation material, insulating film, and method for producing insulating film

Country Status (1)

Country Link
JP (1) JP7468190B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091743A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2005306718A (en) * 2004-01-08 2005-11-04 Showa Denko Kk Inorganic powder, resin composition filled with the powder, and use thereof
JP2007153969A (en) * 2005-12-02 2007-06-21 Showa Denko Kk Highly heat-conductive resin composition and substrate for wiring
JP2009164093A (en) * 2007-12-14 2009-07-23 Sekisui Chem Co Ltd Insulating sheet and multilayer structure
WO2019151488A1 (en) * 2018-02-05 2019-08-08 三菱マテリアル株式会社 Insulating film, insulated conductor, metal base substrate
CN111117259A (en) * 2019-12-31 2020-05-08 兆舜科技(广东)有限公司 Double-component heat-conducting interface material and use method and application thereof
WO2020129335A1 (en) * 2018-12-21 2020-06-25 富士高分子工業株式会社 Thermally conductive silicone rubber composition, sheet thereof, and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091743A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Thermal conductive grease
JP2005306718A (en) * 2004-01-08 2005-11-04 Showa Denko Kk Inorganic powder, resin composition filled with the powder, and use thereof
JP2007153969A (en) * 2005-12-02 2007-06-21 Showa Denko Kk Highly heat-conductive resin composition and substrate for wiring
JP2009164093A (en) * 2007-12-14 2009-07-23 Sekisui Chem Co Ltd Insulating sheet and multilayer structure
WO2019151488A1 (en) * 2018-02-05 2019-08-08 三菱マテリアル株式会社 Insulating film, insulated conductor, metal base substrate
WO2020129335A1 (en) * 2018-12-21 2020-06-25 富士高分子工業株式会社 Thermally conductive silicone rubber composition, sheet thereof, and production method therefor
CN111117259A (en) * 2019-12-31 2020-05-08 兆舜科技(广东)有限公司 Double-component heat-conducting interface material and use method and application thereof

Also Published As

Publication number Publication date
JP7468190B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP6884285B2 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
JP5647945B2 (en) Insulating resin composition for circuit board, insulating sheet for circuit board, laminated board for circuit board, and metal base circuit board
JP6562147B2 (en) Insulating film, insulated conductor, metal base substrate
KR102073532B1 (en) Heat dissipation circuit board
JP2019131669A (en) Resin composition and insulation heat conductive sheet
JP3879749B2 (en) Conductive powder and method for producing the same
WO2018025538A1 (en) Insulating film
JP2018026320A (en) Insulation film
WO2020203530A1 (en) Composition for pressure bonding, and bonded structure of conductive bodies and production method therefor
JP7468190B2 (en) Insulating heat dissipation material, insulating film, and method for producing insulating film
WO2021192479A1 (en) Insulation film, metal base plate and metal base plate production method
JP2022007405A (en) Insulating heat radiation material, insulating film and method for producing insulating film
JP6007016B2 (en) Circuit board laminate and metal base circuit board
WO2019151488A1 (en) Insulating film, insulated conductor, metal base substrate
JP2019150997A (en) Laminate
WO2021192480A1 (en) Insulating film, metal base substrate, and method for producing metal base substrate
TW201938376A (en) Laminated body
JP2008004838A (en) Heat-conductive, electrically insulating circuit board
JP2013222770A (en) Circuit board and electronic component mounting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318