JPS6296313A - Production of high-purity spherical silica filler - Google Patents

Production of high-purity spherical silica filler

Info

Publication number
JPS6296313A
JPS6296313A JP23637085A JP23637085A JPS6296313A JP S6296313 A JPS6296313 A JP S6296313A JP 23637085 A JP23637085 A JP 23637085A JP 23637085 A JP23637085 A JP 23637085A JP S6296313 A JPS6296313 A JP S6296313A
Authority
JP
Japan
Prior art keywords
particles
spherical silica
particle group
particle diameter
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23637085A
Other languages
Japanese (ja)
Inventor
Kazuo Takahashi
和男 高橋
Yoshio Kimura
好男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23637085A priority Critical patent/JPS6296313A/en
Publication of JPS6296313A publication Critical patent/JPS6296313A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce a dense high-purity spherical silica filler having a sharp grain size distribution without cracking, by slurrying fine synthetic silica particles having a specific particle size distribution, spray granulating the resultant slurry and firing or spraying and fusing the resultant grains. CONSTITUTION:Fine synthetic silica particles without containing impurities, e.g. U, Th, etc., is mixed with a binder without containing an impurity to prepare a slurry in about 5-50wt% concentration, which is then spray granulated in a spray dryer. The resultant granulated grains having about <=300mum grain size are then fired and/or sprayed and fused at about >=1,700 deg.C. The particle size distribution of the above-mentioned fine synthetic silica particles is a mixture of 40-80wt% group of maximum particle diameter having 0.5D-D particle diameter with 10-40wt% group of medium particles having 0.2D-0.5D particle diameter and 10-40wt% group of minimum particles having <=0.2D particle diameter (the maximum particle diameter is expressed by D). The value of the above-mentioned D is preferably 0.05-0.1mum. Thereby, the aimed dense and firm high-purity spherical silica filler having high roundness without cracking and breaking is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度球状シリカフィラーの製造方法、詳しく
は半導体素子封止用樹脂組成物の充填剤に適した高純度
球状シリカフィラーの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high-purity spherical silica filler, specifically a method for producing a high-purity spherical silica filler suitable as a filler for a resin composition for encapsulating semiconductor elements. Regarding.

〔従来技術と問題点〕[Prior art and problems]

現在、半導体素子の樹脂による封止法は経済性、量産性
に優れるため、半導体素子の封止方法全体の約80チを
占めている。
Currently, resin encapsulation methods for semiconductor devices account for about 80 of all semiconductor device encapsulation methods because they are economical and mass-producible.

樹脂封止の材料における充填剤は主にシリカが用いられ
ているが、半導体素子の高集積化に伴って、フィラー中
にわずかに含まれるUXThからのα線による誤動作が
問題となシ、今後さらに集積化が進むであろうLSI、
特には1メガピツト、4メガビツトのダイナミックRA
Mの設計にも大きく影響を与えている。
Silica is mainly used as a filler in resin sealing materials, but as semiconductor devices become more highly integrated, malfunctions due to alpha rays from UXTh contained in the filler are becoming a problem. LSIs will become more integrated,
Especially 1 megabit and 4 megabit dynamic RA
It also greatly influenced the design of M.

一方、半導体素子の高集積化に伴って樹脂封止の際の成
形性、流動性の向上及び低応力化に対する要請が強くな
ってきた。
On the other hand, as semiconductor devices become more highly integrated, there is a growing demand for improved moldability and fluidity and lower stress during resin encapsulation.

今まで樹脂対土用フィラーとしては主に天然珪石の溶融
・粉砕品が用いられてきたが、この粉砕フィラーは多く
の鋭角な角を持つ不定形のものであり、流動性が悪いの
みならず、素子表面に応力を与え素子の特性を狂わせた
シ、更には成型の際に素子を損傷する危険性もある。
Until now, melted and crushed natural silica stone has been mainly used as filler for resin and soil, but this crushed filler has an irregular shape with many sharp corners, and not only has poor fluidity but also There is also the risk of stress being applied to the surface of the element, which may upset the characteristics of the element, and furthermore, of damaging the element during molding.

これらの問題に対する対策として特開昭60−1318
68号公報において、高純度球状シリカフィラーの製造
方法として、合成シリカ微粒子を造粒した後、溶射溶融
処理をして高純度球状シリカフィラーを製造する方法が
提案されている。
As a countermeasure to these problems, JP-A-60-1318
No. 68 proposes a method for producing high-purity spherical silica filler by granulating synthetic silica particles and then subjecting them to thermal spray melting treatment.

しかしながら、この方法においては、焼成や溶射溶融の
熱処理工程において球状シリカ粒子の形がくずれたシフ
ラックが入ったシする欠点がある。
However, this method has the disadvantage that the spherical silica particles become misshapen during the heat treatment process such as baking or thermal spray melting.

本発明はこのような欠点のない緻密で強固な、かつ粒度
分布がシャープな球状シリカフィラーを製造することを
目的とする。
The object of the present invention is to produce a spherical silica filler that is dense, strong, and has a sharp particle size distribution without such drawbacks.

〔問題点を解決するための手段〕 この問題を解決するため、本発明者らが鋭意検討した結
果、合成シリカ微粒子として粒子径の異なるものを適当
な割合で配合したものを用いることによって緻密で強固
な造粒球状品を得ることができるということを見い出し
た。
[Means for solving the problem] In order to solve this problem, the inventors of the present invention have made extensive studies and found that by using synthetic silica fine particles that are a mixture of different particle sizes in an appropriate ratio, it is possible to achieve a dense structure. It has been found that a strong granulated spherical product can be obtained.

すなわち、合成シリカ微粒子をスラリー化し、スプレー
ドライヤーにより噴霧造粒した後、焼成及び/又は溶射
溶融処理をして高純度球状シリカフィラーを製造する方
法において、前記合成シリカ微粒子が最大粒子群、中間
杓子群、及び最小粒子群の6つの杓子群から成り、最大
粒子径をDで表わした時に最大粒子群がQ、5D〜D、
中間杓子群が0.2D〜0.5DX*小粒子群が0.2
D以下の大きさであって、しかも各々の配合割合が最大
粒子群40〜80重量%、中間粒子群10〜40重量%
、最小粒子群10〜40重量%とすることによって上記
目的が達成される。
That is, in a method of producing a high-purity spherical silica filler by slurrying synthetic silica fine particles, spraying and granulating the slurry using a spray dryer, and then performing firing and/or thermal spray melting treatment, the synthetic silica fine particles form the largest particle group and the intermediate ladle. When the maximum particle diameter is expressed as D, the maximum particle group is Q, 5D to D,
Intermediate ladle group is 0.2D~0.5DX * Small particle group is 0.2
D or less in size, and each blending ratio is 40 to 80% by weight for the largest particle group and 10 to 40% by weight for the intermediate particle group
The above object is achieved by setting the minimum particle group to 10 to 40% by weight.

以下、さらに詳しく本発明について説明すると、本発明
において、原料とする合成シリカ微粒子は、例えば、ハ
ロゲン化シリコン化合物等の揮発しやすい珪素化合物及
びシラン等を加水分解、酸化分解あるいはアルコール存
在下でアルコシトとし加水分解することにより生成した
もので、UXThの含有量は10 ppb以下のものが
好適である。本発明において、特に重要なことは、種々
実験の結果、この合成シリカ微粒子の粒度構成を前記の
ようにすることによって、真球度の高い、しかもクラッ
クの発生もない緻密な球状シリカフィラーを製造したこ
とである。この場合、最大粒子径りが0.05〜0.1
μmであるときに最も緻密で強固なフィラーが得られる
ことを併わせ確認した。なお、粒子径はTEM (透過
型電子顕微鏡)やSEMにより測定できる。
The present invention will be described in more detail below. In the present invention, synthetic silica fine particles used as a raw material are used to convert easily volatile silicon compounds such as halogenated silicon compounds, silanes, etc. into alkoxylic acids by hydrolysis, oxidative decomposition, or in the presence of alcohol. The UXTh content is preferably 10 ppb or less. What is particularly important in the present invention is that, as a result of various experiments, by setting the particle size structure of the synthetic silica fine particles as described above, a dense spherical silica filler with high sphericity and no cracking can be produced. That's what I did. In this case, the maximum particle size is 0.05 to 0.1
It was also confirmed that the densest and strongest filler can be obtained when the thickness is μm. Note that the particle size can be measured by TEM (transmission electron microscope) or SEM.

このような粒度構成をもつ合成シリカ微粒子を用いて本
発明の球状シリカフィラーを製造するには、この合成シ
リカ微粒子と結合剤を混合してスラリーを調製し、それ
をスプレードライヤーで噴霧造粒した後焼成及び/又は
溶射溶融の熱処理をすればよい。
In order to produce the spherical silica filler of the present invention using synthetic silica fine particles having such a particle size structure, a slurry is prepared by mixing the synthetic silica fine particles and a binder, and the slurry is sprayed and granulated using a spray dryer. Heat treatment such as post-baking and/or thermal spray melting may be performed.

スラリー濃度としては5〜50重量%が好ましく特に1
5〜60!量チである。結合剤としては、UやTh等の
放射性不純物を実質的に含有しない水やアルコール等に
、エチルシリケート、コロイダルシリカ、ポリビニルア
ルコール、カルボキシメチルセルロースなどを必要に応
じて添加したものを用いる。スプレードライヤーの操業
条件としては、造粉粒子の大きさが、粒径600μm以
下、特に200μm以下のものが得られるように、スラ
リー供給量、温度、デスクの回転数等をコントロールす
る。造粒粒子が300μmよりも大きくなると溶射溶融
する際にバーナーに詰まシが発生するおそれがあり、ま
た、シャープな粒度構成をもった球状シリカフィラーは
得られにくくなる、一方、造粉粒子の熱処理条件として
は、あらかじめ温度1,300°C以下で予備焼成した
のち温度L700℃以上の雰囲気下で瞬時に焼成及び/
又は溶融することが望ましい。
The slurry concentration is preferably 5 to 50% by weight, especially 1
5-60! It's quantity. As the binder, ethyl silicate, colloidal silica, polyvinyl alcohol, carboxymethyl cellulose, or the like is added as necessary to water or alcohol that does not substantially contain radioactive impurities such as U or Th. As for the operating conditions of the spray dryer, the amount of slurry supplied, temperature, rotation speed of the desk, etc. are controlled so that the size of powdered particles is 600 μm or less, particularly 200 μm or less. If the granulated particles are larger than 300 μm, there is a risk that the burner will become clogged during thermal spray melting, and it will be difficult to obtain spherical silica filler with a sharp particle size structure. The conditions are that after pre-firing at a temperature of 1,300°C or less, the firing is performed instantly in an atmosphere at a temperature of 700°C or more.
Or it is desirable to melt it.

〔作用〕[Effect]

合成シリカ微粒子として、例えば0.1μm程度の比較
的大きなかつ均一な粒径のものを用いた場合、乾燥・ケ
9ル化する際に微粒子間の空隙が大きくなるため、水等
の分散媒による微粒子間の凝集力が小さくなり、柔いデ
ルになってしまうので、応力に弱くその後の焼成工程や
溶射溶融工程において容易に形がくずれてしまう。また
逆に、合成シリカ微粉子として、例えば肌01μm程度
の比較的小さなかつ均一な粒径のものを用いた場合、微
粉子間の凝集力は大きくなり強固なデルとなるが、微粉
子の比表面積が大きくなるために、スラリーはかなりの
低濃度でも粘性の大きなものとなり、そのため低濃度の
粒子分散状態のまま乾燥・デル化するので、生成ゲルに
はクラックが入りやすくなる。
When using synthetic silica fine particles with a relatively large and uniform particle size of, for example, about 0.1 μm, the voids between the fine particles become large during drying and kelization, so it is difficult to use a dispersion medium such as water. Since the cohesive force between the fine particles decreases, resulting in a soft del, it is susceptible to stress and easily loses its shape during the subsequent firing process or thermal spray melting process. Conversely, if synthetic silica fine powder is used that has a relatively small and uniform particle size of approximately 01 μm, the cohesive force between the fine particles will increase and a strong del will result, but compared to the fine powder Due to the increased surface area, the slurry becomes highly viscous even at a fairly low concentration, and as a result, the slurry dries and becomes viscous while the particles are dispersed at a low concentration, making the resulting gel more likely to crack.

これに対し、本発明のように、前記した粒度構成をもっ
た合成シリカ微粒子を用いてスラリーを調整すれば、最
大粒子(粒径0.5D−D)間の空隙に中間粒子(粒径
0.2〜0.5 D )が充填され、さらに中間粒子間
及び最大粒子と中間粒子間の空隙に最小粒子(粒径< 
0.2 D )が充填される。その結果、粒子間の凝集
力が犬きく、シかも高濃度のスラリー調整が可能となる
ので、デル化の際に強固でクラックの入らない球状デル
を得ることができる。
On the other hand, if a slurry is prepared using synthetic silica fine particles having the particle size structure described above as in the present invention, intermediate particles (particle size 0. .2 to 0.5 D) is filled, and the spaces between the intermediate particles and between the largest particle and the intermediate particle are filled with the smallest particle (particle size <
0.2 D) is filled. As a result, the cohesive force between the particles is strong, and it is possible to prepare a slurry with a high concentration, so that it is possible to obtain a strong, crack-free spherical delta during delta formation.

〔実施例〕〔Example〕

本発明の実施例、及び比較例をあげてさらに詳しく説明
する。
The present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例 下記に示す粒径と組成を持つ合成シリカ微粒子合計10
に9を純水34に9と混合してスラリーを調整した。
Example A total of 10 synthetic silica fine particles having the particle size and composition shown below.
9 was mixed with 34 of pure water to prepare a slurry.

最大粒子群;0.06〜0.1μmを6 kl?中間籾
子群: 0.03〜0.05 μmを3kg最小粒子群
: 0..01〜0.02 μmを1 kqこのスラリ
ーを回転ディスク方式のスプレードライヤーに151 
/ Hrの速度で供給し、ディスク回転数15,000
 rpm、乾燥空気温度26000の条件で噴霧造粒し
、粒径5〜50μmの造粒品を得た。この造粒品を温度
1150℃で2時間焼成し、その後水素がス30 Nm
3/ Hr (43,9m/ 8)、酸素ガス15 N
m3/Hr (8,3m/ S )のガス組成の7レー
ム中に投入し、温度1850°Cで溶射溶融して球状シ
リカを得た。
Largest particle group; 6 kl for 0.06-0.1 μm? Intermediate rice grain group: 0.03-0.05 μm, 3 kg Minimum particle group: 0. .. 01 to 0.02 μm to 1 kq of this slurry to a rotating disk spray dryer.
/ Hr speed, disk rotation speed 15,000
Spray granulation was carried out under the conditions of rpm and dry air temperature of 26,000 to obtain granulated products with a particle size of 5 to 50 μm. This granulated product was fired at a temperature of 1150°C for 2 hours, and then hydrogen was heated to 30 Nm.
3/Hr (43,9m/8), oxygen gas 15N
The silica was poured into a 7mm gas composition having a gas composition of m3/Hr (8.3 m/S), and was thermally sprayed and melted at a temperature of 1850°C to obtain spherical silica.

得られた球状シリカはSEM観察したところ、第1図で
示す通り真球度の高い球状シリカ粒子であり、クラック
の入ったものや割れたもの、またはフロック状のものは
全く見られなかった。
When the obtained spherical silica was observed by SEM, it was found to be spherical silica particles with high sphericity as shown in FIG. 1, and no cracks, breaks, or flocs were observed.

比較例1 粒径が0.01〜0.02 μm程度(TEM観察)の
比較的均一な粒径の合成シリカ微粒子2 kqを純水2
3に9と混合してスラリーを調整した。このスラリーを
実施例と同じ条件で噴霧造粒し、粒径10〜60μmの
造粒品を得た。この造粒品を実施例と同じ条件で溶射溶
融して球状シリカを得た。得られた球状シリカをSEM
観察したところ、第2図で示す通り球状粒子の他に割れ
て粉々になった粒子が多数見られた。
Comparative Example 1 2 kq of synthetic silica fine particles with a relatively uniform particle size of about 0.01 to 0.02 μm (TEM observation) were mixed with 2 kq of pure water.
3 and 9 were mixed to prepare a slurry. This slurry was sprayed and granulated under the same conditions as in the examples to obtain granulated products with a particle size of 10 to 60 μm. This granulated product was thermally sprayed and melted under the same conditions as in the examples to obtain spherical silica. SEM of the obtained spherical silica
Upon observation, as shown in FIG. 2, in addition to spherical particles, many cracked and shattered particles were observed.

比較例2 粒径が0.07〜0.1μm程度の比較的均一な粒径の
合成シリカ微粒子10に9を純水23に9と混合してス
ラリーを調整した。このスラリーを比較例1と同じ条件
で処理して球状シリカを得た。得られた球状シリカをS
EM観察したところ第6図で示す通り球状粒子の他にフ
ロック状の微小粒子群が多数見られた。
Comparative Example 2 Synthetic silica fine particles 10 and 9 having a relatively uniform particle size of about 0.07 to 0.1 μm were mixed with 9 in pure water 23 to prepare a slurry. This slurry was treated under the same conditions as in Comparative Example 1 to obtain spherical silica. The obtained spherical silica is
Upon EM observation, as shown in FIG. 6, in addition to spherical particles, many groups of floc-like microparticles were observed.

〔発明の効果〕〔Effect of the invention〕

本発明によればクラックや割れがなく、緻密で真球度の
高い、かつ粉度分布がシャープな高純度の球状シリカフ
ィラーを製造することができる。
According to the present invention, it is possible to produce a highly pure spherical silica filler that is free from cracks and breaks, is dense, has high sphericity, and has a sharp particle size distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた球状シリカの倍率1000倍
のSEM写真である。 第2図は比較例1で得られた球状シリカの倍率500倍
のS訓写真である。 第3図は比較例2で得られた球状シリカの倍率650倍
のSEM写真である。 特許出願人 電気化学工業株式会社 第1図 第2図 手続補j1−ギ1(方式) %式% 1、事件の表示 昭q−a 60年特許願第2ろ6う70号2、発明の名
称 高純度球状シリカノイラ−の製造方法 ろ、補正をする者 事件との関係  !(°¥許出願人 〒100 東京都千代EEI区有楽町IJ目4番1−3′昭和61
年1月28rJ  (発送El )5゜補正の対象 明細書の図面の簡単な説明の桐j 6、補正の内容 別紙のとおり 明細表第10貞第7−12行を次のとお・り訂l−1す
る。 「 第1図は実施例7″得らノ′lf7二f・1り状シ
リカの粒j’構造金示ず倍率11]O1″J倍のSFM
写りである、。 第2図は比較例1で得ら、t1/ζ球状ソリ力の粒子構
造を示す倍率50白倍のζ庫M写真である。
FIG. 1 is an SEM photograph at a magnification of 1000 times of the spherical silica obtained in the example. FIG. 2 is a photograph of the spherical silica obtained in Comparative Example 1 at a magnification of 500 times. FIG. 3 is an SEM photograph of the spherical silica obtained in Comparative Example 2 at a magnification of 650 times. Patent Applicant Denki Kagaku Kogyo Co., Ltd. Figure 1 Figure 2 Procedure Supplement J1-Gi 1 (Method) % Formula % 1, Incident Display Shoq-A 1960 Patent Application No. 2 Ro6-70 2, Invention The name: High-purity spherical silica noiler manufacturing method, and its relationship with the case of the person making the amendment! (°¥Applicant address: 4-1-3, Yurakucho IJ, ChiyoEEI-ku, Tokyo 100) 1986
January 28rJ (Delivery El) 5゜Paulownia j of a brief explanation of the drawings of the specification subject to the amendment 6. Details of the amendment As shown in the attached sheet, lines 7-12 of No. 10 of the detailed schedule have been revised as follows. -1. "Figure 1 shows the structure of grains of silica obtained in Example 7".
It's a photo. FIG. 2 is a ζ warehouse M photograph obtained in Comparative Example 1 and showing the particle structure of t1/ζ spherical warping force at a magnification of 50 times white.

Claims (2)

【特許請求の範囲】[Claims] (1)合成シリカ微粒子をスラリー化し、スプレードラ
イヤーにより噴霧造粒した後、焼成及び/又は溶射溶融
処理をして高純度球状シリカフィラーを製造する方法に
おいて、前記合成シリカ微粒子が最大粒子群、中間粒子
群、及び最小粒子群の3つの粒子群から成り、最大粒子
径をDで表わした時に最大粒子群が0.5D〜D、中間
粒子群が0.2D〜0.5D、最小粒子群が0.2D以
下の大きさであつてしかも各々の配合割合が最大粒子群
40〜80重量%、中間粒子群10〜40重量%、最小
粒子群10〜40重量%であることを特徴とする高純度
球状シリカフィラーの製造方法。
(1) In a method of producing a high-purity spherical silica filler by slurrying synthetic silica particles, spraying and granulating them with a spray dryer, and then performing firing and/or thermal spray melting treatment, the synthetic silica particles are the largest particle group, the middle particle group, and the like. It consists of three particle groups: a particle group and a minimum particle group, and when the maximum particle diameter is expressed as D, the maximum particle group is 0.5D to D, the intermediate particle group is 0.2D to 0.5D, and the minimum particle group is High particle size particles having a size of 0.2D or less and having a blending ratio of 40 to 80% by weight for the largest particle group, 10 to 40% by weight for the intermediate particle group, and 10 to 40% by weight for the smallest particle group. Method for manufacturing purity spherical silica filler.
(2)合成シリカ微粒子の最大粒子径Dが0.05〜0
.1μmであることを特徴とする特許請求範囲第1項記
載の高純度球状シリカフィラーの製造方法。
(2) Maximum particle diameter D of synthetic silica fine particles is 0.05 to 0
.. A method for producing a high-purity spherical silica filler according to claim 1, wherein the filler has a diameter of 1 μm.
JP23637085A 1985-10-24 1985-10-24 Production of high-purity spherical silica filler Pending JPS6296313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23637085A JPS6296313A (en) 1985-10-24 1985-10-24 Production of high-purity spherical silica filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23637085A JPS6296313A (en) 1985-10-24 1985-10-24 Production of high-purity spherical silica filler

Publications (1)

Publication Number Publication Date
JPS6296313A true JPS6296313A (en) 1987-05-02

Family

ID=16999789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23637085A Pending JPS6296313A (en) 1985-10-24 1985-10-24 Production of high-purity spherical silica filler

Country Status (1)

Country Link
JP (1) JPS6296313A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028360A (en) * 1989-04-17 1991-07-02 Nitto Chemical Industries Co., Ltd. Method of manufacturing spherical silica particles
US6365269B1 (en) 1997-11-20 2002-04-02 Infineon Technologies Ag Plastic compositions for sheathing a metal or semiconductor body
JP2009242768A (en) * 2008-02-29 2009-10-22 Admatechs Co Ltd Light ray reflective coating material and manufacturing method thereof
CN103864082A (en) * 2014-03-11 2014-06-18 深圳先进技术研究院 Spherical nano-silica material with dual particle size distribution and preparation method thereof
KR20160037945A (en) 2013-08-01 2016-04-06 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing crushed silica particles, and resin composition containing said particles
CN105659711A (en) * 2013-10-17 2016-06-08 住友电木株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028360A (en) * 1989-04-17 1991-07-02 Nitto Chemical Industries Co., Ltd. Method of manufacturing spherical silica particles
US6365269B1 (en) 1997-11-20 2002-04-02 Infineon Technologies Ag Plastic compositions for sheathing a metal or semiconductor body
JP2009242768A (en) * 2008-02-29 2009-10-22 Admatechs Co Ltd Light ray reflective coating material and manufacturing method thereof
KR20160037945A (en) 2013-08-01 2016-04-06 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing crushed silica particles, and resin composition containing said particles
US10358353B2 (en) 2013-08-01 2019-07-23 Jgc Catalysts And Chemicals Ltd. Method for producing disintegrated silica particles
CN105659711A (en) * 2013-10-17 2016-06-08 住友电木株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device
CN103864082A (en) * 2014-03-11 2014-06-18 深圳先进技术研究院 Spherical nano-silica material with dual particle size distribution and preparation method thereof
CN103864082B (en) * 2014-03-11 2015-12-02 深圳先进技术研究院 Spherical nano-silicon dioxide material of two size distribution and preparation method thereof

Similar Documents

Publication Publication Date Title
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
JP2545282B2 (en) Method for producing spherical silica particles
JPH02500972A (en) Improvements in and related to vitreous silica
JP2004131378A (en) Process for manufacturing opaque quartz glass material
CN112645699A (en) Whisker and MAX phase toughened rare earth silicate material and preparation method thereof
JPS6296313A (en) Production of high-purity spherical silica filler
JP4371565B2 (en) Quartz glass precursor and method for producing the same
JPS62176928A (en) Production of quartz glass powder
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JP2001097712A (en) Method for producing minute and globular silica
JPS6296311A (en) Production of high-purity spherical silica filler
KR102622058B1 (en) Manufacturing method of high purity quartz powder
JP2000191317A (en) Production of fused spherical silica
CN105540767B (en) A kind of ore ball for improving water microstructure performance
JPH05294610A (en) Production of formed amorphous silica
JPS6296312A (en) Production of high-purity spherical silica filler
RU2559259C1 (en) Method for preparing glass batch
JPS6296537A (en) Fine particle having irregular profile and production thereof
JPS6296309A (en) Production of siliceous spherule
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JPH02158637A (en) Silica filler and sealing resin composition using the same
JPH041018B2 (en)
KR102625963B1 (en) Manufacturing method of spherical aluminium oxide powder
KR101618579B1 (en) Method for Manufacturing Amorphous Silica
JP2665539B2 (en) Silica filler and sealing resin composition using the same