KR102606494B1 - 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용 - Google Patents

적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용 Download PDF

Info

Publication number
KR102606494B1
KR102606494B1 KR1020227045338A KR20227045338A KR102606494B1 KR 102606494 B1 KR102606494 B1 KR 102606494B1 KR 1020227045338 A KR1020227045338 A KR 1020227045338A KR 20227045338 A KR20227045338 A KR 20227045338A KR 102606494 B1 KR102606494 B1 KR 102606494B1
Authority
KR
South Korea
Prior art keywords
glu
leu
gly
pro
thr
Prior art date
Application number
KR1020227045338A
Other languages
English (en)
Other versions
KR20230003452A (ko
Inventor
자스비르 세라
로버츠 스코트 피어사르
라빈드라 쿠마르
Original Assignee
악셀레론 파마 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/583,177 external-priority patent/US8058229B2/en
Application filed by 악셀레론 파마 인코포레이티드 filed Critical 악셀레론 파마 인코포레이티드
Publication of KR20230003452A publication Critical patent/KR20230003452A/ko
Application granted granted Critical
Publication of KR102606494B1 publication Critical patent/KR102606494B1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/15Depsipeptides; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/1103Receptor protein serine/threonine kinase (2.7.11.30)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Abstract

특정 측면에서, 본 발명에서는 설치류와 영장류를 비롯한 척추동물, 그리고 특히 인간에서 적혈구 및/또는 헤모글로빈 수준을 증가시키기 위한 조성물과 방법을 제시한다.

Description

적혈구 수준을 증가시키기 위한 GDF 트랩과 에리트로포이에틴 수용체 활성인자의 병용{COMBINED USE OF GDF TRAPS AND ERYTHROPOIETIN RECEPTOR ACTIVATORS TO INCREASE RED BLOOD CELL LEVELS}
본 발명은 설치류와 영장류를 비롯한 척추동물, 그리고 특히 인간에서 적혈구 및/또는 헤모글로빈 수준을 증가시키기 위한 조성물과 방법에 관계한다.
성숙 적혈구(red blood cell 또는 erythrocyte)는 척추동물의 순환계(circulatory system)에서 산소 전달(oxygen transport)을 담당한다. 적혈구는 폐 내에서 상대적으로 높은 산소 분압(partial pressure of oxygen)(pO2)에서 산소에 결합하고 산소를 상대적으로 낮은 pO2를 갖는 신체 부위로 전달하는 단백질인 헤모글로빈(hemoglobin)을 고농도로 포함한다.
성숙 적혈구는 적혈구생성(erythropoiesis)으로 명명된 과정 동안 다능성 조혈 줄기 세포(pluripotent hematopoietic stem cell)로부터 생산된다. 생후(post-natal) 적혈구생성은 일차적으로, 골수(bone marrow)와 비장(spleen)의 적비수(red pulp)에서 발생한다. 다양한 신호전달 경로(signaling pathway)의 공조된 작용은 세포 증식(proliferation), 분화(differentiation), 생존(survival)과 사멸(death)의 균형을 제어한다. 정상적인 조건 하에, 적혈구는 체내에서 일정한 적혈구량(red cell mass)을 유지하는 속도로 생산되고, 생산은 증가되거나 감소된 산소 분압(oxygen tension) 또는 조직 요구(tissue demand)를 비롯한 다양한 자극에 반응하여 증가하거나 감소할 수 있다. 적혈구생성 과정은 계통 수임된 전구 세포(lineage committed precursor cell)의 형성으로 시작되고, 일련의 독특한 전구 세포 유형을 통하여 진행된다. 적혈구생성의 최종 단계는 망상적혈구(reticulocyte)가 혈류(bloodstream) 내로 방출되고, 성숙 적혈구의 형태(morphology)를 취하면서 그들의 미토콘드리아(mitochondria)와 리보솜(ribosome)을 상실함에 따라 발생한다. 혈액 내에서 상승된 수준의 망상적혈구, 또는 상승된 망상적혈구:적혈구 비율은 증가된 적혈구 생산 속도를 지시한다.
에리트로포이에틴(erythropoietin, Epo)은 생후 척추동물에서 적혈구생성의 가장 유의미한 양성 조절인자로서 폭넓게 인정되고 있다. Epo는 감소된 조직 산소 분압(저산소증(hypoxia))과 낮은 적혈구 수준 또는 낮은 헤모글로빈 수준에 대한 보상적 적혈구생성 반응(compensatory erythropoietic response)을 조절한다. 인간에서, 상승된 Epo 수준은 골수와 비장 내에서 적혈구 전구체(erythroid progenitor)의 생산을 자극함으로써 적혈구 형성을 촉진한다. 생쥐에서, Epo는 일차적으로, 비장 내에서 적혈구생성을 강화시킨다.
EPO의 효과는 사이토킨 수용체 대과에 속하는 세포-표면 수용체에 의해 매개된다. 인간 EPO 수용체 유전자는 483개 아미노산 막통과 단백질을 인코딩하는 반면, 활성 EPO 수용체는 리간드의 부재시에도 다합체성 복합체로서 존재하는 것으로 생각된다(참조: U.S. Pat. No. 6,319,499). 포유동물 세포에서 발현되는 클로닝된 전장 EPO 수용체는 적혈구 전구체 세포(erythroid progenitor cell) 상에서 고유 수용체의 친화성과 유사한 친화성으로 EPO에 결합한다. 수용체에 EPO의 결합은 형태적 변화(conformational change)를 유발하여 적혈구 전구체 세포에서 수용체 활성화, 그리고 미성숙 적아세포(erythroblast)의 증가된 증식, 미성숙 적아세포의 증가된 분화 및 감소된 아폽토시스(apoptosis)를 비롯한 생물학적 효과를 결과한다(Liboi et al., 1993, Proc Natl Acad Sci USA 90:11351-11355; Koury et al., 1990, Science 248:378-381).
다양한 형태의 재조합 Epo는 다양한 임상적 환경(clinical setting)에서, 그리고 특히 빈혈(anemia)의 치료를 위한 적혈구 수준을 증가시키기 위하여 의사에 의해 이용된다. 빈혈은 혈액 내에서 헤모글로빈 또는 적혈구의 정상보다 낮은 수준으로 특징되는 넓게-정의된 질환이다. 일부 사례에서, 빈혈은 적혈구의 생산 또는 생존에서 원발성 장애(primary disorder)에 의해 유발된다. 더욱 빈번하게는, 빈혈은 다른 체계의 질환에 속발성(secondary)이다(Weatherall & Provan (2000) Lancet 355, 1169-1175). 빈혈은 적혈구의 감소된 생산 속도 또는 증가된 파괴 속도, 또는 출혈(bleeding)에 기인한 적혈구의 상실에 기인할 수 있다. 빈혈은 예로써, 만성 신부전(chronic renal failure), 화학요법 치료, 골수이형성증(myelodysplastic syndrome), 류머티스성 관절염(rheumatoid arthritis), 골수 이식(bone marrow transplantation) 등을 비롯한 다양한 질환에 기인할 수도 있다.
Epo로 치료는 전형적으로, 수주 기간 동안 건강한 인간에서 대략 1-3 g/㎗로 헤모글로빈에서 증가를 유도한다. 빈혈 개체에 투여될 때, 이러한 치료 섭생(treatment regimen)은 종종, 헤모글로빈과 적혈구 수준에서 실질적인 증가를 제공하고, 삶의 질에서 향상과 연장된 생존을 결과한다. Epo는 균일하게 효과적이지 않으며, 많은 개체가 높은 용량에도 반응하지 않는다(Horl et al. (2000) Nephrol Dial Transplant 15, 43-50). 암 환자 중에서 50% 이상이 Epo에 부적절한 반응을 나타내고, 말기 신장 질환(end-stage renal disease) 환자 중에서 대략 10%가 저반응(hyporesponsive)을 나타내고(Glaspy et al. (1997) J Clin Oncol 15, 1218-1234; Demetri et al. (1998) J Clin Oncol 16, 3412-3425), 골수이형성증 환자 중에서 10% 미만이 긍정적으로 반응한다(Estey (2003) Curr Opin Hematol 10, 60-67). 염증, 철과 비타민 결핍, 부적절한 투석(dialysis), 알루미늄 독성, 부갑상선기능항진증(hyperparathyroidism) 등을 비롯한 여러 인자가 불량한 치료 반응(therapeutic response)을 예언한다. EPO 내성의 분자 기전은 아직 명확하지 않다. 최근의 증거는 더욱 높은 용량의 EPO가 일부 환자 개체군에서 심혈관 병적 상태, 종양 성장, 그리고 사망의 증가된 위험과 연관될 수 있다는 것을 암시한다(Krapf et al., 2009, Clin J Am Soc Nephrol 4:470-480; Glaspy, 2009, Annu Rev Med 60:181-192). 이런 이유로, EPO-기초된 치료 화합물 (에리트로포이에틴-자극제, ESA)은 적혈구 수혈(transfusion)의 요구를 피할 수 있을 만큼 충분한 최저 용량으로 투여되도록 권장되었다(Jelkmann et al., 2008, Crit Rev Oncol. Hematol 67:39-61).
따라서, 본 발명의 목적은 에리트로포이에틴 수용체 활성인자의 감소된 용량의 이용을 가능하게 하는, 환자에서 적혈구 수준을 증가시키는 대안적 방법을 제공하는 것이다.
본 발명의 요약
부분적으로, 본 발명에서는 병든 환자에서 적혈구 수준을 증가시키거나(적혈구생성) 빈혈을 치료하기 위하여, GDF 트랩이 EPO 수용체 활성인자와 병용(가령, 동일한 시점 또는 상이한 시점에, 그러나 일반적으로 중복 약리학적 효과를 달성하는 방식으로 투여)될 수 있다는 것을 증명한다. 부분적으로, 본 발명에서는 GDF 트랩이 환자에서 적혈구의 형성을 상승적으로 증가시키기 위하여 EPO 수용체 활성인자와 공동으로 투여될 수 있다는 것을 증명한다. 따라서 이러한 복합 치료의 효과는 GDF 트랩과 EPO 수용체 활성인자가 그들의 개별 용량에서 별개로 투여될 때 GDF 트랩과 EPO 수용체 활성인자의 효과의 합계보다 훨씬 클 수 있다. 특정 구체예에서, 이러한 상승 작용(synergism)은 유익할 수 있는데, 그 이유는 이것이 EPO 수용체 활성인자의 더욱 적은 용량으로 적혈구의 표적 수준이 달성될 수 있도록 하여 더욱 높은 수준의 EPO 수용체 활성화와 연관된 잠재적 부작용 또는 기타 문제점이 예방되기 때문이다.
EPO 수용체 활성인자는 EPO 수용체와 직접적으로 접촉하고 이를 활성화시킴으로써 적혈구생성을 자극할 수 있다. 특정 구체예에서, EPO 수용체 활성인자는 고유 EPO의 165개 아미노산 서열에 기초되고 일반적으로, 적혈구생성-자극제(ESA)로 알려져 있는 일군의 화합물 중의 하나인데, 이들 화합물의 실례는 에포에틴 알파(epoetin alfa), 에포에틴 베타(epoetin beta), 에포에틴 델타(epoetin delta), 그리고 에포에틴 오메가(epoetin omega)이다. 다른 구체예에서, ESA에는 바람직한 약물동력학적 특성(연장된 순환 반감기)을 공여하는 비펩티드성 변형을 갖는 합성 EPO 단백질(SEP) 및 EPO 유도체가 포함되는데, 이들의 실례는 다르베포에틴 알파(darbepoetin alfa)와 메톡시-폴리에틸렌-글리콜 에포에틴 베타(methoxy-polyethylene-glycol epoetin beta)이다. 특정 구체예에서, EPO 수용체 활성인자는 EPO 폴리펩티드 중추를 통합하지 않거나, 또는 일반적으로 ESA로 분류되지 않는 EPO 수용체 작동약일 수 있다. 이런 EPO 수용체 작동약에는 EPO의 펩티드성과 비펩티드성 유사작용제, EPO 수용체를 표적으로 하는 작동성 항체, EPO 유사작용 도메인을 포함하는 융합 단백질, 그리고 에리트로포이에틴 수용체 연장된 지속 기간 한정된 작동약(EREDLA)이 포함되지만 이들에 국한되지 않는다.
특정 구체예에서, EPO 수용체 활성인자는 내인성 EPO의 생산을 증강시킴으로써, EPO 수용체 자체에 접촉하지 않으면서 적혈구생성을 간접적으로 자극할 수 있다. 가령, 저산소증-유도성 전사 인자(hypoxia-inducible transcription factor, HIF)는 정상 산소 농도 조건 하에 세포 조절 기전에 의해 억제되는(불안정화되는) EPO 유전자 발현의 내인성 자극물질이다. 부분적으로, 본 발명에서는 GDF 트랩 및 HIF 안정화 특성을 갖는 간접적 EPO 수용체 활성인자, 예를 들면, 프롤릴 수산화효소 저해물질로 복합 치료에 의해 환자에서 증가된 적혈구생성을 제공한다.
다른 ActRIIB 리간드, 예를 들면, GDF11 및/또는 미오스타틴에 비하여 액티빈(가령, 액티빈 A 및/또는 액티빈 B)에 대한 현저하게 감소된 친화성을 갖는 변이체 ActRIIB 폴리펩티드는 GDF 트랩(trap)으로 지칭된다. 본 명세서에서 기술된 ActRIIB 변이체는 달리 명시되지 않으면 GDF 트랩이다. 특히, 본 발명에서는 서열 번호: 1의 위치 79에서 산성 잔기를 갖는 ActRIIB 폴리펩티드의 가용성 형태인 GDF 트랩이 생체내 투여될 때, 혈액 내에서 적혈구 수준을 증가시킨다는 것을 증명한다. 이런 이유로, 특정 구체예에서, 본 발명에서는 환자에서 적혈구와 헤모글로빈 수준을 증가시키고, 그리고 병든 환자에서 낮은 적혈구 또는 헤모글로빈 수준과 연관된 장애를 치료하기 위하여 GDF 트랩을 이용하는 방법을 제시한다. 본 발명에 참조로서 편입되는 U.S. Patent Application No. 12/012,652에서 기술된 바와 같이, GDF 트랩은 근육량(muscle mass)을 증가시키고 지방량(fat mass)을 감소시키는데 이용될 수 있다.
특정 측면에서, 본 발명에서는 아미노-와 카르복시-말단 절두 및 서열 변경을 보유하는 ActRIIB 폴리펩티드를 비롯한 변이체 ActRIIB 폴리펩티드인 GDF 트랩을 제시한다. 임의적으로, 본 발명의 GDF 트랩은 ActRIIB 수용체의 하나 이상의 리간드, 예를 들면, GDF8(일명, 미오스타틴), GDF11, 노달, 그리고 BMP7(일명, OP-1)을 우선적으로 길항하도록 설계될 수 있다. GDF 트랩의 실례에는 액티빈에 대한 현저하게 감소된 친화성을 갖는 ActRIIB로부터 유래된 일단의 변이체가 포함된다. 이들 변이체는 적혈구에 대한 바람직한 효과를 나타내고, 반면 다른 조직에 대한 효과가 감소한다. 이런 변이체의 실례에는 서열 번호: 1의 위치 79에 상응하는 위치에서 산성 아미노산(가령, 아스파르트산, D, 또는 글루타민산, E)을 갖는 것들이 포함된다. 특정 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 7, 26, 28, 29, 32, 37 또는 38의 아미노산 서열을 포함하거나, 이러한 아미노산 서열로 본질적으로 구성되거나, 또는 이러한 아미노산 서열로 구성되는 아미노산 서열, 그리고 전술한 것들 중에서 한 가지와 최소한 80%, 85%, 90%, 95%, 97%, 98%, 또는 99% 동일한 폴리펩티드를 포함한다.
특정 측면에서, 본 발명에서는 ActRIIB 리간드, 예를 들면, GDF8, GDF11, 액티빈(가령, 액티빈 B), BMP7 또는 노달에 결합하는 GDF 트랩, 그리고 제약학적으로 허용되는 담체를 포함하는 제약학적 제조물을 제시한다. 임의적으로, GDF 트랩은 10 마이크로몰 이하, 1 마이크로몰 이하, 100 나노몰 이하, 10 나노몰 이하, 또는 1 나노몰 이하의 Kd로 ActRIIB 리간드에 결합한다. 임의적으로, GDF 트랩은 ActRIIB 신호전달, 예를 들면, ActRIIB 리간드에 의해 촉발되는 세포내 신호 전달 사건을 저해한다. 이런 제조물에 이용되는 GDF 트랩은 예로써, 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38 또는 40에서 선택되는 아미노산 서열을 갖는 GDF 트랩, 또는 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38 또는 40에서 선택되는 아미노산 서열에 최소한 80%, 85%, 90%, 95%, 97% 또는 99% 동일한 아미노산 서열을 갖는 GDF 트랩, 또는 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38 또는 40에서 선택되는 아미노산 서열에 최소한 80%, 85%, 90%, 95%, 97% 또는 99% 동일한 아미노산 서열을 갖는 GDF 트랩(여기서, 서열 번호: 1에서 L79에 상응하는 위치가 산성 아미노산이다)을 비롯하여, 본 명세서에서 개시된 것들 중에서 한 가지일 수 있다. 이런 제조물에 이용되는 바람직한 GDF 트랩은 서열 번호: 26의 아미노산 서열로 구성되거나, 또는 본질적으로 구성된다. GDF 트랩은 자연 ActRIIB 폴리펩티드의 기능적 단편, 예를 들면, 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38 또는 40에서 선택되는 서열의 최소한 10개, 20개 또는 30개 아미노산을 포함하는 서열, 또는 C-말단에서 1개, 2개, 3개, 4개, 5개 또는 10개 내지 15개 아미노산이 없고 N-말단에서 1개, 2개, 3개, 4개 또는 5개 아미노산이 없는 서열 번호: 2의 서열을 포함할 수 있다. 바람직한 폴리펩티드는 서열 번호: 2 또는 40과 비교하여 N-말단에서 2개 내지 5개 아미노산 및 C-말단에서 3개 이하 아미노산의 절두를 포함할 것이다. GDF 트랩은 자연 발생 ActRIIB 폴리펩티드와 비교하여 ActRIIB 폴리펩티드의 아미노산 서열에서 하나 이상의 변경(가령, 리간드-결합 도메인 내에서)을 보유할 수 있다. 아미노산 서열에서 변경은 예로써, 포유동물, 곤충 또는 다른 진핵 세포(eukaryotic cell)에서 생산될 때, 폴리펩티드의 글리코실화(glycosylation)를 변화시키거나, 또는 자연 발생 ActRIIB 폴리펩티드와 비교하여 폴리펩티드의 단백분해 절단(proteolytic cleavage)을 변화시킨다.
GDF 트랩은 하나의 도메인(domain)으로서 ActRIIB 폴리펩티드(가령, 하나 이상의 변이를 갖는 ActRIIB의 리간드-결합 도메인) 및 바람직한 특성, 예를 들면, 향상된 약물 동력학(improved pharmacokinetics), 더욱 용이한 정제, 특정 조직으로 표적화 등을 제공하는 하나 이상의 부가적인 도메인을 포함하는 융합 단백질(fusion protein)일 수 있다. 가령, 융합 단백질의 도메인은 생체내 안정성, 생체내 반감기, 흡입/투여, 조직 국지화 또는 분포, 단백질 복합체의 형성, 융합 단백질의 다중화(multimerization) 및/또는 정제 중에서 한 가지 이상을 향상시킬 수 있다. GDF 트랩 융합 단백질은 면역글로불린 Fc 도메인(야생형(wild-type) 또는 돌연변이형(mutant)) 또는 혈청 알부민을 포함할 수 있다. 특정 구체예에서, GDF 트랩 융합체는 Fc 도메인과 세포외(extracellular) ActRIIB 도메인 사이에 배치된 상대적으로 체계화되지 않은 링커(linker)를 포함한다. 이러한 체계화되지 않은 링커는 ActRIIB의 세포외 도메인의 C-말단 단부("꼬리")에서 대략 15개의 아미노산 체계화되지 않은 영역에 상응하거나, 또는 이차 구조가 상대적으로 없는 3개 내지 5개, 15개, 20개, 30개, 50개 또는 그 이상의 아미노산의 인공 서열(artificial 서열)일 수 있다. 링커는 글리신(glycine)과 프롤린(proline) 잔기가 풍부하고, 예로써 트레오닌/세린과 글리신의 반복 서열(repeating 서열)(가령, TG4(서열 번호:13) 또는 SG4(서열 번호:14) 단일항(singlet) 또는 반복) 또는 일련의 3개 글리신을 보유할 수 있다. 융합 단백질은 정제 하위서열(purification sub서열), 예를 들면, 에피토프 태그(epitope tag), FLAG 태그, 폴리히스티딘 서열(polyhistidine 서열), 그리고 GST 융합을 포함할 수 있다. 특정 구체예에서, GDF 트랩 융합은 리더 서열을 포함한다. 리더 서열은 고유 ActRIIB 리더 서열 또는 이종기원성 리더 서열일 수 있다. 특정 구체예에서, 리더 서열은 조직 플라스미노겐 활성인자(TPA) 리더 서열이다. 한 구체예에서, GDF 트랩 융합 단백질은 화학식 A-B-C에 열거된 바와 같은 아미노산 서열을 포함한다. B 부분은 서열 번호: 2 또는 40의 아미노산 25-131에 상응하는 아미노산 서열로 구성되는 N-과 C-말단 절두된 ActRIIB 폴리펩티드이다. A와 C 부분은 독립적으로, 0개, 1개 또는 그 이상의 아미노산일 수 있고, 그리고 A와 C 부분 둘 모두 B에 이종기원성이다. A 및/또는 C 부분은 링커 서열을 거쳐 B 부분에 부착될 수 있다.
임의적으로, GDF 트랩에는 글리코실화된 아미노산, PEG화된 아미노산, 파르네실화된 아미노산, 아세틸화된 아미노산, 비오틴화된 아미노산, 지질 모이어티(lipid moiety)에 접합된 아미노산, 그리고 유기 유도체화제(organic derivatizing agent)에 접합된 아미노산에서 선택되는 하나 이상의 변형된 아미노산 잔기를 갖는 변이체 ActRIIB 폴리펩티드가 포함된다. 제약학적 제조물은 또한, 하나 이상의 추가 화합물, 예를 들면, ActRIIB-연관된 질환을 치료하는데 이용되는 화합물을 포함할 수 있다. 바람직하게는, 제약학적 제조물은 실질적으로, 발열원(pyrogen)이 없다. 일반적으로, GDF 트랩은 환자에서 부정적인 면역 반응(immune response)의 가능성을 낮추기 위하여 GDF 트랩의 자연적인 글리코실화를 적절하게 매개하는 포유동물 세포주(mammalian cell line)에서 발현시키는 것이 바람직하다. 인간과 CHO 세포주(cell line)가 성공적으로 이용되고 있고, 다른 통상적인 포유동물 발현 벡터(expression vector)가 유용할 것으로 기대된다.
특정 측면에서, 본 발명에서는 본 명세서에서 기술되고 인간에서 적혈구 수준을 증가시키는데 이용되는 것으로 표지된 제약학적 제조물을 포함하는 포장된 약제를 제시한다.
특정 측면에서, 본 발명에서는 변경된 리간드-결합(가령, GDF8-결합) 도메인을 포함하는 가용성 ActRIIB 폴리펩티드인 GDF 트랩을 제시한다. 변경된 리간드-결합 도메인을 보유하는 GDF 트랩은 예로써, 인간 ActRIIB의 아미노산 잔기, 예를 들면, E37, E39, R40, K55, R56, Y60, A64, K74, W78, L79, D80, F82 및 F101에서 하나 이상의 돌연변이를 포함할 수 있다(넘버링은 서열 번호: 1에 기초한다). 임의적으로, 변경된 리간드-결합 도메인은 ActRIIB 수용체의 야생형 리간드-결합 도메인과 비교하여 리간드, 예를 들면, GDF8/GDF11에 대한 증가된 선택성(selectivity)을 가질 수 있다. 예로써, 이들 돌연변이는 액티빈에 비하여 GDF11(및 아마도, GDF8)에 대한 변경된 리간드-결합 도메인의 선택성을 증가시키는 것으로 본 발명에서 증명된다: K74Y, K74F, K74I, L79D, L79E 및 D80I. 하기 돌연변이는 GDF11에 비하여 액티빈 결합의 비율을 증가시키는 역효과를 나타낸다: D54A, K55A, L79A 및 F82A. 전체(GDF11과 액티빈) 결합 활성은 “꼬리” 영역 또는, 아마도 체계화되지 않은 링커 영역의 포함에 의해, 그리고 K74A 돌연변이의 이용에 의해 증가될 수 있다. 리간드 결합 친화성에서 전반적인 감소를 유발하는 기타 돌연변이에는 R40A, E37A, R56A, W78A, D80K, D80R, D80A, D80G, D80F, D80M and D80N이 포함된다. 돌연변이는 원하는 효과를 달성하기 위하여 결합될 수 있다. 가령, GDF11:액티빈 결합의 비율에 영향을 주는 많은 돌연변이는 리간드 결합에 대한 전반적인 부정적 효과를 나타내고, 따라서 이들은 리간드 선택성을 갖는 향상된 결합 단백질을 생산하기 위하여 리간드 결합을 전반적으로 증가시키는 돌연변이와 결합될 수 있다. 예시적인 구체예에서, GDF 트랩은 임의적으로, 추가의 아미노산 치환, 부가 또는 결실과 공동으로 L79D 또는 L79E 돌연변이를 포함하는 ActRIIB 폴리펩티드이다.
임의적으로, 변경된 리간드-결합 도메인을 포함하는 GDF 트랩은 야생형 리간드-결합 도메인에 대한 비율과 비교하여 최소한 2, 5, 10, 또는 심지어 100배 높은, 액티빈 결합에 대한 Kd 대(對) GDF8 결합에 Kd의 비율을 갖는다. 임의적으로, 변경된 리간드-결합 도메인을 포함하는 GDF 트랩은 야생형 ActRIIB 리간드-결합 도메인과 비교하여 최소한 2, 5, 10, 또는 심지어 100배 높은, 액티빈 저해에 대한 IC50 대(對) GDF8/GDF11 저해에 대한 IC50의 비율을 갖는다. 임의적으로, 변경된 리간드-결합 도메인을 포함하는 GDF 트랩은 액티빈 저해에 대한 IC50보다 최소한 2, 5, 10, 또는 심지어 100배 낮은 IC50으로 GDF8/GDF11을 저해한다. 이들 GDF 트랩은 면역글로불린 Fc 도메인(야생형 또는 돌연변이형)을 보유하는 융합 단백질일 수 있다. 특정 경우에, 본 발명의 가용성 GDF 트랩은 GDF8 및/또는 GDF11의 길항약(저해물질)이다.
하기와 같은 기타 GDF 트랩이 계획된다: 서열 번호: 1 또는 39의 ActRIIB 서열로부터 유래된 부분 및 두 번째 폴리펩티드 부분을 포함하는 GDF 트랩 융합 단백질, 여기서 ActRIIB로부터 유래된 부분은 서열 번호: 1 또는 39의 아미노산 21-29 중의 하나에서 시작되고(임의적으로, 서열 번호: 1 또는 39의 22-25에서 시작되고) 서열 번호: 1 또는 39의 아미노산 109-134 중의 하나에서 종결되는 서열에 상응하고, 그리고 상기 GDF 트랩 융합 단백질은 세포-기초된 분석에서 액티빈, 미오스타틴 및/또는 GDF11에 의한 신호전달을 저해한다; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-29 중의 하나에서 시작되고(임의적으로, 서열 번호: 1 또는 39의 22-25에서 시작되고) 서열 번호: 1 또는 39의 아미노산 109-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-24 중의 하나에서 시작되고(임의적으로, 서열 번호: 1 또는 39의 22-25에서 시작되고) 서열 번호: 1 또는 39의 아미노산 109-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 21-24 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 109-134 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-24 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 118-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 21-24 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 118-134 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-24 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 128-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-24 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 128-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 21-29 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 118-134 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-29 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 118-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 21-29 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 128-134 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질; ActRIIB로부터 유래된 부분이 서열 번호: 1 또는 39의 아미노산 20-29 중의 하나에서 시작되고 서열 번호: 1 또는 39의 아미노산 128-133 중의 하나에서 종결되는 서열에 상응하는 상기 GDF 트랩 융합 단백질. 놀랍게도, 서열 번호: 1 또는 39의 22-25에서 시작되는 구조체는 인간 ActRIIB의 완전 세포외 도메인을 보유하는 단백질보다 큰 활성 수준을 갖는다. 바람직한 구체예에서, GDF 트랩 융합 단백질은 서열 번호: 1 또는 39의 아미노산 위치 25에서 시작되고 서열 번호: 1 또는 39의 아미노산 위치 131에서 종결되는 아미노산 서열을 포함하거나, 이러한 아미노산 서열로 본질적으로 구성되거나, 또는 이러한 아미노산 서열로 구성된다. 다른 바람직한 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 7, 26, 28, 29, 32, 37 또는 38의 아미노산 서열로 구성되거나, 또는 이러한 아미노산 서열로 본질적으로 구성된다. 이들 GDF 트랩 융합 단백질 중에서 임의의 한 가지는 동종이합체로서 생산될 수 있다. 이들 GDF 트랩 융합 단백질 중에서 임의의 한 가지는 IgG 중쇄로부터 불변 영역, 예를 들면, Fc 도메인을 포함하는 이종기원성 부분을 보유할 수 있다. 이들 GDF 트랩 융합 단백질 중에서 임의의 한 가지는 서열 번호: 1과 비교하여 임의적으로, 하나 이상의 추가 아미노산 치환, 결실 또는 삽입과 공동으로 서열 번호: 1의 위치 79에 상응하는 위치에서 산성 아미노산을 포함할 수 있다.
하기와 같은 기타 GDF 트랩 단백질이 계획된다: 서열 번호: 1 또는 39의 아미노산 29-109의 서열에 최소한 80% 동일한 아미노산 서열을 포함하는 GDF 트랩 단백질, 여기서 서열 번호: 1의 64에 상응하는 위치는 R 또는 K이고, 그리고 상기 GDF 트랩 단백질은 세포-기초된 분석에서 액티빈, 미오스타틴 및/또는 GDF11에 의한 신호전달을 저해한다; 서열 번호: 1 또는 39의 서열에 대하여 최소한 하나의 변경이 리간드 결합 포켓 외부에 위치하는 상기 GDF 트랩 단백질; 서열 번호: 1 또는 39의 서열에 대하여 최소한 하나의 변경이 리간드 결합 포켓 내부에 배치되는 보존성 변경인 상기 GDF 트랩 단백질; 서열 번호: 1 또는 39의 서열에 대하여 최소한 하나의 변경이 K74, R40, Q53, K55, F82 및 L79로 구성된 군에서 선택되는 하나 이상의 위치에서 변경인 상기 GDF 트랩 단백질; ActRIIB의 내인성 N-X-S/T 서열 이외의 위치에서, 그리고 리간드 결합 포켓 외부의 위치에서 최소한 하나의 N-X-S/T 서열을 포함하는 상기 GDF 트랩 단백질.
하기와 같은 기타 GDF 트랩 단백질이 계획된다: 서열 번호: 1 또는 39의 아미노산 29-109의 서열에 최소한 80% 동일한 아미노산 서열을 포함하는 GDF 트랩 단백질, 여기서 상기 단백질은 ActRIIB의 내인성 N-X-S/T 서열 이외의 위치에서, 그리고 리간드 결합 포켓 외부의 위치에서 최소한 하나의 N-X-S/T 서열을 포함한다; 서열 번호: 1 또는 39의 위치 24에 상응하는 위치에서 N을 포함하고, 그리고 서열 번호: 1 또는 39의 위치 26에 상응하는 위치에서 S 또는 T를 포함하는 상기 GDF 트랩 단백질, 여기서 이러한 GDF 트랩 단백질은 세포-기초된 분석에서 액티빈, 미오스타틴 및/또는 GDF11에 의한 신호전달을 저해한다; 서열 번호: 1 또는 39의 위치 64에 상응하는 위치에서 R 또는 K를 포함하는 상기 GDF 트랩 단백질; ActRIIB 단백질이 서열 번호: 1 또는 39의 위치 79에 상응하는 위치에서 D 또는 E를 포함하는 상기 GDF 트랩 단백질, 여기서 이러한 GDF 트랩 단백질은 세포-기초된 분석에서 액티빈, 미오스타틴 및/또는 GDF11에 의한 신호전달을 저해한다; 서열 번호: 1 또는 39의 서열에 대하여 최소한 하나의 변경이 리간드 결합 포켓 내에 배치되는 보존성 변경인 상기 GDF 트랩 단백질; 서열 번호: 1 또는 39의 서열에 대하여 최소한 하나의 변경이 K74, R40, Q53, K55, F82 및 L79로 구성된 군에서 선택되는 하나 이상의 위치에서 변경인 상기 GDF 트랩 단백질; 이종기원성 부분을 더욱 포함하는 융합 단백질인 상기 GDF 트랩 단백질. 이들 GDF 트랩 융합 단백질 중에서 임의의 한 가지는 동종이합체로서 생산될 수 있다. 이들 GDF 트랩 융합 단백질 중에서 임의의 한 가지는 IgG 중쇄로부터 불변 영역, 예를 들면, Fc 도메인을 포함하는 이종기원성 부분을 보유할 수 있다.
특정 측면에서, 본 발명에서는 GDF 트랩 폴리펩티드를 인코딩하는 핵산을 제시한다. 분리된 폴리뉴클레오티드는 앞서 기술된 바와 같이, 가용성 GDF 트랩 폴리펩티드에 대한 코딩 서열을 포함할 수 있다. 가령, 분리된 핵산은 하나 이상의 서열 변이를 갖는 ActRIIB 폴리펩티드의 세포외 도메인(가령, 리간드-결합 도메인)을 포함하는 GDF 트랩을 코딩하는 서열 및 ActRIIB 폴리펩티드의 막통과 도메인 및/또는 세포질 도메인의 일부 또는 전부를 코딩하지만 막통과 도메인 또는 세포질 도메인 내에 배치된, 또는 세포외 도메인과 막통과 도메인 또는 세포질 도메인 사이에 배치된 종결 코돈(stop codon)을 코딩하지 않는 서열을 보유할 수 있다. 가령, GDF 트랩을 코딩하는 분리된 폴리뉴클레오티드는 하나 이상의 변이를 갖는 서열 번호: 4와 같은 전장 ActRIIB 폴리뉴클레오티드 서열, 또는 부분적으로 절두된 이형을 포함할 수 있고, 상기 분리된 폴리뉴클레오티드는 폴리뉴클레오티드의 번역이 전장 ActRIIB의 절두된 일부분에 임의적으로 융합된 세포외 도메인을 발생시키기 위하여, 3'-말단 앞에 또는 달리 배치된 최소한 600개 뉴클레오티드(뉴클레오티드)의 전사 종결 코돈(transcription termination codon)을 더욱 포함할 수 있다. 본 명세서에 개시된 핵산은 발현을 위한 프로모터(promoter)에 작동가능하게 연결될 수 있고, 본 발명에서는 이런 재조합 폴리뉴클레오티드로 형질전환된 세포를 제시한다. 바람직하게는, 상기 세포는 CHO 세포와 같은 포유동물 세포이다.
특정 측면에서, 본 발명에서는 GDF 트랩 폴리펩티드를 만드는 방법을 제시한다. 이런 방법에는 적절한 세포, 예를 들면, 중국 햄스터 난소(Chinese hamster ovary, CHO) 세포에서 본 명세서에 개시된 임의의 핵산(가령, 서열 번호: 5, 25, 27, 30 또는 31)을 발현시키는 것이 포함될 수 있다. 이런 방법은 a) GDF 트랩 폴리펩티드의 발현에 적합한 조건 하에서 세포를 배양하는 단계, 여기서 상기 세포는 GDF 트랩 발현 구조체로 형질전환되고; b) 이렇게 발현된 GDF 트랩 폴리펩티드를 회수하는 단계를 포함한다. GDF 트랩 폴리펩티드는 세포 배양액으로부터 단백질을 획득하기 위한 임의의 널리 공지된 기술을 이용하여, 정제되지 않은, 부분적으로 정제된 또는 고도로 정제된 분획물(fraction)로서 회수될 수 있다.
특정 측면에서, 본 명세서에 개시된 GDF 트랩 폴리펩티드는 개체에서 적혈구 생산을 촉진하거나 적혈구 수준을 증가시키는 방법에 이용될 수 있다. 특정 구체예에서, 본 발명에서는 병든 환자에서 적은 적혈구 수 또는 낮은 헤모글로빈 수준과 연관된 질환(가령, 빈혈)을 치료하거나, 또는 적혈구 생산을 촉진하는 방법을 제시한다. 이러한 방법은 병든 개체에 효과량의 GDF 트랩 폴리펩티드를 투여하는 단계를 포함한다. 특정 측면에서, 본 발명에서는 본 명세서에 기술된 바와 같은 질환이나 장애의 치료를 위한 약제의 제조에서 GDF 트랩 폴리펩티드의 용도를 제시한다.
특정 측면에서, 본 발명에서는 GDF 트랩 폴리펩티드를 환자에 투여하는 방법을 제시한다. 부분적으로, 본 발명에서는 GDF 트랩 폴리펩티드가 적혈구 및 헤모글로빈 수준을 증가시키는데 이용될 수 있다는 것을 증명한다. GDF 트랩 폴리펩티드는 또한, 기타 치료적 용도를 치료하거나 예방하는, 예를 들면, 근육 성장을 촉진하는데 이용될 수 있다. 특정 경우에, 근육 성장 촉진을 위하여 GDF 트랩 폴리펩티드를 투여할 때, 적혈구에 대한 바람직하지 않은 효과를 감소시키기 위하여 GDF 트랩 폴리펩티드의 투여 동안 적혈구에 대한 효과를 모니터링하거나, 또는 GDF 트랩 폴리펩티드의 투약을 결정하거나 조정하는 것이 바람직하다. 가령, 적혈구 수준, 헤모글로빈 수준, 또는 헤마토크릿 수준의 증가는 혈압의 증가를 유발할 수 있다.
본 발명의 상세한 설명
1. 개요
EPO는 적혈구 전구체 세포의 성장 및 이들 세포의 적혈구로의 성숙에 관여하는 당단백질 호르몬이다. EPO는 태아 단계 동안 간에 의해 생산되고 성체에서 신장에 의해 생산된다. 성체에서 신부전의 결과로서 통상적으로 발생하는 EPO의 감소된 생산은 빈혈을 유발한다. EPO는 EPO 유전자로 형질감염된 숙주 세포로부터 단백질이 발현과 분비에 기초된 유전자 조작 기술에 의해 생산되고 있다. 이런 재조합 EPO의 투여는 빈혈의 치료에 효과적이다. 가령, Eschbach et al., 1987, N Engl J Med 316:73에서는 만성 신부전에 의해 유발된 빈혈을 치료하기 위한 EPO의 용도를 기술한다.
EPO의 효과는 사이토킨 수용체 대과에 속하고 EPO 수용체로 명명된 세포 표면 수용체에 이의 결합, 그리고 세포 표면 수용체의 활성화를 통해 매개된다. 인간과 뮤린 EPO 수용체는 클로닝되고 발현되었다(D’Andrea et al., 1989, Cell 57:277; Jones et al., 1990, Blood 76:31; Winkelman et al., 1990, Blood 76:24; WO 90/08822/U.S. Pat. No. 5,278,065). 인간 EPO 수용체 유전자는 대략 224개 아미노산의 세포외 도메인을 포함하는 483개 아미노산 막통과 단백질을 인코딩하고 뮤린 EPO 수용체와 대략 82% 아미노산 서열 동일성을 나타낸다(참조: U.S. Pat. No. 6,319,499). 포유동물 세포에서 발현된 클로닝된 전장 EPO 수용체(66-72 kDa)는 적혈구 전구체 세포 상에서 고유 수용체의 것과 유사한 친화성(KD = 100-300 nM)으로 EPO에 결합한다. 따라서 이러한 형태는 주요 EPO 결합 결정부위를 내포하는 것으로 생각되고 EPO 수용체로서 지칭된다. 다른 밀접하게 관련된 사이토킨 수용체와의 유사성에 의해, EPO 수용체는 작동약 결합 시에 이합체화되는 것으로 생각된다. 그럼에도 불구하고, EPO 수용체의 상세한 구조는 다합체성 복합체일 수 있고, 그리고 이의 특정한 활성화 기전은 완전하게 이해되지 않고 있다(U.S. Pat. No. 6,319,499).
EPO 수용체의 활성화는 여러 생물학적 효과를 결과한다. 이들에는 미성숙 적아세포의 증가된 증식, 미성숙 적아세포의 증가된 분화, 그리고 적혈구 전구체 세포에서 감소된 아폽토시스가 포함된다(Liboi et al., 1993, Proc Natl Acad Sci USA 90:11351-11355; Koury et al., 1990, Science 248:378-381). 증식과 분화를 매개하는 EPO 수용체 신호 전달 경로는 상이한 것으로 보인다(Noguchi et al., 1988, Mol Cell Biol 8:2604; Patel et al., 1992, J Biol Chem 1992, 267:21300; Liboi et al., ibid). 일부 결과는 분화 신호의 매개를 위하여 보조 단백질이 필요할 수도 있음을 암시한다(Chiba et al., 1993, Nature 362:646; Chiba et al., 1993, Proc Natl Acad Sci USA 90:11593); 하지만, 분화에서 보조 단백질의 역할에 관하여 논쟁이 있는데, 그 이유는 이러한 수용체의 구조성으로 활성화된 형태가 증식과 분화 둘 모두를 자극할 수 있기 때문이다(Pharr et al., 1993, Proc Natl Acad Sci USA 90:938).
EPO 수용체 활성인자에는 소형-분자 적혈구생성-자극제(ESA) 및 EPO-기초된 화합물이 포함된다. 전자의 실례는 폴리에틸렌 글리콜에 공유 연결된 이합체성 펩티드-기초된 작동약(상표명 Hematide)인데, 이것은 건강한 지원자에서 및 만성 신장 질환과 내인성 항-EPO 항체 둘 모두를 나타내는 환자에서 적혈구생성-자극 특성을 보였다(Stead et al., 2006, Blood 108:1830-1834; Macdougall et al., 2009, N Engl J Med 361:1848-1855). 다른 실례에는 비펩티드-기초된 ESA가 포함된다(Qureshi et al., 1999, Proc Natl Acad Sci USA 96:12156-12161).
EPO 수용체 활성인자에는 또한, 내인성 EPO의 생산을 증강시킴으로써, EPO 수용체 자체에 접촉하지 않으면서 적혈구생성을 간접적으로 자극하는 화합물이 포함된다. 가령, 저산소증-유도성 전사 인자(hypoxia-inducible transcription factor, HIF)는 정상 산소 농도 조건 하에 세포 조절 기전에 의해 억제되는(불안정화되는) EPO 유전자 발현의 내인성 자극물질이다. 이런 이유로, HIF 프롤릴 수산화효소 효소의 저해물질은 생체내 EPO-유도 활성에 대하여 조사되고 있다. EPO 수용체의 다른 간접적 활성인자에는 EPO 유전자 발현을 강직성으로 저해하는 GATA-2 전사 인자의 저해물질(Nakano et al., 2004, Blood 104:4300-4307), 그리고 EPO 수용체 신호 전달의 음성 조절인자로서 기능하는 조혈 세포 포스파타아제의 저해물질(HCP 또는 SHP-1)(Klingmuller et al., 1995, Cell 80:729-738)이 포함된다.
전환 성장 인자(transforming growth factor)-베타(TGF-beta) 대과(superfamily)는 공통의 서열 요소(서열 element)와 구조 모티프(structural motif)를 공유하는 다양한 성장 인자를 포함한다. 이들 단백질은 척추동물과 무척추동물 모두에서 다양한 세포 유형에 대한 생물학적 효과를 나타내는 것으로 알려져 있다. 이러한 대과의 구성원은 배 발생(embryonic development) 동안 패턴 형성(pattern formation)과 조직 특정화(tissue specification)에서 중요한 기능을 수행하고, 지방생성(adipogenesis), 근육발생(myogenesis), 연골형성(chondrogenesis), 심형성(cardiogenesis), 혈액생성(hematopoiesis), 신경생성(neurogenesis), 그리고 상피 세포 분화(differentiation)를 비롯한 다양한 분화 과정(differentiation process)에 영향을 줄 수 있다. 이러한 집단은 2가지 분과: BMP/GDF와 TGF-베타/액티빈/BMP10 분과로 분류되는데, 이들의 구성원은 다양하고, 종종 보충적인 효과를 나타낸다. TGF-베타 과의 구성원의 활성을 조종함으로써, 생물체 내에서 현저한 생리학적 변화를 유도하는 것이 종종 가능하다. 가령, 산록(piedmont)과 벨기에 블루 소(Belgian Blue cattle) 품종은 GDF8(일명, 미오스타틴(myostatin)) 유전자에서 기능 상실 돌연변이(loss-of-function mutation)를 보유하는데, 이는 근육량(muscle mass)에서 눈에 띄는 증가를 유도한다(Grobet et al., Nat Genet. 1997, 17(1):71-4). 더 나아가, 인간에서, GDF8의 비활성 대립형질(allele)은 증가된 근육량 및 보고된 바에 의하면, 특별한 체력(exceptional strength)에 연관된다(Schuelke et al., N Engl J Med 2004, 350:2682-8).
TGF-β 신호는 I형과 II형 세린/트레오닌 키나아제 수용체(kinase receptor)의 이가동의 복합체(heteromeric complex)에 의해 매개되고, 이들은 리간드 자극 이후에 하류 Smad 단백질을 인산화시키고 활성화시킨다(Massague, 2000, Nat. Rev. MoI. Cell Biol. 1:169-178). 이들 I형과 II형 수용체 모두 시스테인-풍부 영역을 보유하는 리간드-결합 세포외 도메인, 막통과 도메인, 그리고 예측된 세린/트레오닌 특이성을 갖는 세포질 도메인으로 구성되는 막통과 단백질이다. I형 수용체는 신호전달에 필수적이다; II형 수용체는 리간드에 결합하고 I형 수용체의 발현을 위하여 필요하다. I형과 II형 액티빈 수용체는 리간드 결합 이후에 안정한 복합체를 형성하고, II형 수용체에 의한 I형 수용체의 인산화를 유발한다.
2개의 관련된 II형 수용체(ActRII), ActRIIA와 ActRIIB는 액티빈에 대한 II형 수용체로서 확인되었다(Mathews and Vale, 1991, Cell 65:973-982; Attisano et al., 1992, 세포 68: 97-108). 액티빈 이외에, ActRIIA와 ActRIIB는 BMP7, 노달, GDF8과 GDF11을 비롯한 여러 다른 TGF-β 집단 단백질과 생화학적으로 상호작용할 수 있다(Yamashita et al., 1995, J. Cell Biol. 130:217-226; Lee and McPherron, 2001, Proc. Natl. Acad. Sci. 98:9306-9311; Yeo and Whitman, 2001, MoI. Cell 7: 949-957; Oh et al., 2002, Genes Dev. 16:2749-54). ALK4는 액티빈, 특히, 액티빈 A에 대한 일차적인 I형 수용체이고, ALK-7은 다른 액티빈, 특히, 액티빈 B에 대한 수용체로서 기능할 수도 있다. 특정 구체예에서, 본 발명은 ActRIIB 수용체의 리간드(일명, ActRIIB 리간드)를 본 발명의 GDF 트랩 폴리펩티드로 길항하는 것에 관계한다. ActRIIB 수용체의 예시적인 리간드에는 일부 TGF-β 집단 구성원, 예를 들면, 액티빈, 노달, GDF8, GDF11, 그리고 BMP7이 포함된다.
액티빈(activin)은 TGF-베타 대과에 속하는 이합체(dimeric) 폴리펩티드 성장 인자이다. 2개의 밀접하게 관련된 β 아단위(subunit)의 동종이합체(homodimer)/이종이합체(heterodimer)(각각, βAβA, βBβB, 그리고 βAβB)인 3가지 주요 액티빈 형태(A, B와 AB)가 존재한다. 인간 게놈은 또한, 액티빈 C와 액티빈 E를 인코딩하는데, 이들은 간에서 주로 발현되고, βc 또는 βE를 보유하는 이종이합체(heterodimeric) 형태 역시 공지되어 있다. TGF-베타 대과에서, 액티빈은 난소와 태반 세포에서 호르몬 생산을 촉진하고, 신경 세포 생존을 뒷받침하고, 세포 유형(cell type)에 따라 세포-주기 진행에 긍정적인 또는 부정적인 영향을 주고, 최소한 양서류 배(amphibian embryo)에서 중배엽 분화(mesodermal differentiation)를 유도할 수 있는 독특한 다중기능성 인자이다(DePaolo et al., 1991, Proc Soc Ep Biol Med. 198:500-512; Dyson et al., 1997, Curr Biol. 7:81-84; Woodruff, 1998, Biochem Pharmacol. 55:953-963). 게다가, 자극된 인간 단핵구 백혈병(monocytic leukemic) 세포로부터 분리된 적혈구 분화 인자(erythroid differentiation factor, EDF)가 액티빈 A와 동일한 것으로 밝혀졌다(Murata et al., 1988, PNAS, 85:2434). 액티빈 A는 골수에서 적혈구생성을 촉진하는 것으로 제안되었다. 여러 조직에서, 액티빈 신호전달은 관련된 이종이합체, 인히빈(inhibin)에 의해 길항된다. 가령, 뇌하수체(pituitary)로부터 여포-자극 호르몬(follicle-stimulating hormone, FSH)의 방출 동안, 액티빈은 FSH 분비와 합성을 촉진하는 반면, 인히빈은 FSH 분비와 합성을 예방한다. 액티빈 생물활성(bioactivity)을 조절하고 및/또는 액티빈에 결합하는 다른 단백질에는 폴리스타틴(follistatin, FS), 폴리스타틴-관련된 단백질(follistatin-related protein, FSRP)과 α2-마크로글로불린(macroglobulin)이 포함된다.
노달(nodal) 단백질은 중배엽과 내배엽 유도 및 형성, 그리고 초기 배아발생에서 축 구조(axial structure), 예를 들면, 심장과 위의 차후 조직화에서 기능을 갖는다. 발달 중인 척추동물 배아에서 등 조직은 척삭(notochord) 및 척삭앞판(pre-chordal plate)의 축 구조에 지배적으로 기여하고, 여기서 상기 조직은 주변 세포를 보충하여 비-축 배아 구조를 형성하는 것으로 밝혀졌다. Nodal은 I형과 II형 수용체 둘 모두, 그리고 Smad 단백질로 알려져 있는 세포내 작동체를 통해 신호하는 것으로 보인다. 최근의 연구는 ActRIIA 및 ActRIIB가 Nodal에 대한 II형 수용체로서 기능한다는 생각을 뒷받침한다(Sakuma et al., Genes Cells. 2002, 7:401-12). Nodal 리간드는 그들의 보조-인자(가령, cripto)와 상호작용하여 액티빈 I형과 II형 수용체를 활성화시키고, 이들 수용체는 Smad2를 인산화시키는 것으로 제안된다. Nodal 단백질은 중배엽 형성, 머리 패턴형성(anterior patterning), 그리고 왼쪽-오른쪽 축 지정(left-right axis specification)을 비롯하여, 초기 척추동물 배아에게 중요한 많은 사건에 관여한다. 실험적 증거는 Nodal 신호전달이 액티빈 및 TGF-베타에 특이적으로 반응하는 것으로 이전에 밝혀진 pAR3-Lux, 루시페라아제 리포터를 활성화시킨다는 것을 증명하였다. 하지만, Nodal은 골 형성 단백질에 특이적으로 반응하는 리포터인 pTlx2-Lux를 유도할 수 없다. 최근의 결과는 Nodal 신호전달이 양쪽 액티빈-TGF-베타 경로 Smad, Smad2와 Smad3에 의해 매개된다는 직접적인 생화학적 증거를 제공한다. 추가의 증거는 세포외 cripto 단백질이 Nodal 신호전달에 요구되고, 이것을 액티빈 또는 TGF-베타 신호전달과 달라지도록 만든다는 것을 증명하였다.
성장 및 분화 인자-8(GDF8)은 또한, 미오스타틴으로 알려져 있다. GDF8은 골격 근육량의 음성 조절자이다. GDF8은 발달 중인 및 성인 골격 근육에서 고도로 발현된다. 유전자도입 생쥐에서 GDF8 눌 돌연변이(null mutation)는 골격 근육의 현저한 비대와 과형성으로 특징된다(McPherron et al., Nature, 1997, 387:83-90). 골격 근육량에서 유사한 증가는 소(Ashmore et al., 1974, Growth, 38:501-507; Swatland and Kieffer, J. Anim. Sci., 1994, 38:752-757; McPherron and Lee, Proc. Natl. Acad. Sci. USA, 1997, 94:12457-12461; 그리고 Kambadur et al., Genome Res., 1997, 7:910-915)에서, 그리고 특히 인간(Schuelke et al., N Engl J Med 2004;350:2682-8)에서 GDF8의 자연 발생 돌연변이에서 증거된다. 또한, 여러 연구에서 인간에서 HIV-감염과 연관된 근육 소모증은 GDF8 단백질 발현에서 증가를 동반하는 것으로 밝혀졌다(Gonzalez-Cadavid et al., PNAS, 1998, 95:14938-43). 이에 더하여, GDF8은 근육-특이적 효소(가령, 크레아틴 키나아제)의 생산을 조정하고 근아세포 세포 증식(WO 00/43781)을 조정할 수 있다. GDF8 프로펩티드는 성숙 GDF8 도메인 이합체에 비-공유 결합하여 이의 생물학적 활성을 비활성화시킬 수 있다(Miyazono et al. (1988) J. Biol. Chem., 263: 6407-6415; Wakefield et al. (1988) J. Biol. Chem., 263; 7646-7654; 그리고 Brown et al. (1990) Growth Factors, 3: 35-43). GDF8 또는 구조적으로 관련된 단백질에 결합하고 그들의 생물학적 활성을 저해하는 다른 단백질에는 폴리스타틴, 그리고 잠재적으로, 폴리스타틴-관련된 단백질이 포함된다(Gamer et al. (1999) Dev. Biol., 208: 222-232).
BMP11로 알려져 있는 성장 및 분화 인자-11(GDF11)은 분비된 단백질이다(McPherron et al., 1999, Nat. Genet. 22: 260-264). GDF11은 생쥐 발달 동안 꼬리 싹, 사지 싹, 상악과 하악 궁, 그리고 뒤뿌리 신경절에서 발현된다(Nakashima et al., 1999, Mech. Dev. 80: 185-189). GDF11은 중배엽과 신경 조직 둘 모두를 패턴형성하는데 독특한 역할을 수행한다(Gamer et al., 1999, Dev Biol., 208:222-32). GDF11은 발달 중인 병아리 사지에서 연골형성 및 근발생의 음성 조절자인 것으로 밝혀졌다(Gamer et al., 2001, Dev Biol. 229:407-20). 근육에서 GDF11의 발현은 또한, GDF8에 유사한 방식으로 근육 성장의 조절에서 이의 역할을 암시한다. 이에 더하여, 뇌 내에서 GDF11의 발현은 GDF11이 신경계의 기능에 관련되는 활성 역시 갖는다는 것을 암시한다. 흥미롭게도, GDF11은 후각 상피에서 신경형성을 저해하는 것으로 밝혀졌다(Wu et al., 2003, Neuron. 37:197-207). 따라서 GDF11은 근육 질환 및 신경퇴행성 질환(가령, 근위축성 측삭 경화증)과 같은 질환의 치료에서 시험관내 및 생체내 적용을 가질 수 있다.
골원성 단백질-1(OP-1)로 불리는 골 형성 단백질 7(BMP7)은 연골과 뼈 형성을 유도하는 것으로 널리 알려져 있다. 이에 더하여, BMP7은 다양한 생리학적 과정을 조절한다. 가령, BMP7은 상피 골형성(epithelial osteogenesis)의 현상을 주도하는 골유도성 인자일 수 있다. 또한, BMP7은 칼슘 조절 및 골 항상성에서 일정한 역할을 하는 것으로 밝혀졌다. 액티빈과 유사하게, BMP7은 II형 수용체, ActRIIA 및 ActRIIB에 결합한다. 하지만, BMP7과 액티빈은 이가동의 수용체 복합체 내로 상이한 I형 수용체를 동원한다. 관찰된 주요 BMP7 I형 수용체는 ALK2인 반면, 액티빈은 ALK4(ActRIIB)에 배타적으로 결합하였다. BMP7과 액티빈은 상이한 생물학적 반응을 유도하고 상이한 Smad 경로를 활성화시켰다(Macias-Silva et al., 1998, J Biol Chem. 273:25628-36).
본 발명에서 증명된 바와 같이, 변이체 ActRIIB 폴리펩티드(ActRIIB)인 GDF 트랩 폴리펩티드는 야생형 가용성 ActRIIB 폴리펩티드와 비교하여 생체내에서 적혈구 수준을 증가시키는데 더욱 효과적이고, 그리고 다양한 빈혈 모형에서 유익한 효과를 나타낸다. 부가적으로, EPO 수용체 활성인자와 공동으로 GDF 트랩 폴리펩티드의 이용은 적혈구 형성에서 실질적인 증가를 유발하는 것으로 밝혀졌다. 혈액생성(hematopoiesis)은 에리트로포이에틴(erythropoietin), G-CSF와 철 항상성(iron homeostasis)을 비롯한 다양한 인자에 의해 조절되는 복잡한 과정이다. "적혈구 수준 증가"와 "적혈구 형성 촉진"은 임상적으로 관찰가능 측정기준(metric), 예를 들면, 헤마토크릿(hematocrit), 적혈구 수(red blood cell count)와 헤모글로빈(hemoglobin) 척도를 지칭하고, 이런 변화가 발생하는 기전에 중립적인 것으로 의도된다.
적혈구 수준을 자극하는 것에 더하여, GDF 트랩 폴리펩티드는 예로써, 근육 성장 촉진을 비롯한 다양한 치료 적용에 유용하다(참조: PCT Publication No. WO 2006/012627 및 WO 2008/097541). 특정 경우에, 근육을 증가시키는 목적으로 GDF 트랩 폴리펩티드를 투여할 때, 적혈구에 대한 효과를 감소 또는 최소화시키는 것이 바람직하다. GDF 트랩 폴리펩티드로 치료를 받고 있거나, 또는 GDF 트랩 폴리펩티드로 치료의 후보인 환자에서 다양한 혈액학적 파라미터를 모니터링함으로써, 적절한 투약(투여의 양과 빈도 포함)이 개별 환자의 요구, 기준선 혈액학적 파라미터, 그리고 치료 목적에 기초하여 결정될 수 있다. 더 나아가, 시간의 흐름에서 하나 이상의 혈액학적 파라미터에 대한 치료적 진행과 효과는 환자 관리를 용이하게 함으로써 GDF 트랩 폴리펩티드가 투약되는 환자를 관리하고, 적절한 유지 투약(양과 빈도 둘 모두)을 결정하는 것 등에 유용할 수 있다.
본 명세서에 이용되는 용어는 일반적으로, 본 발명의 배경 내에서 각 용어가 이용되는 특정 상황에서, 당분야의 통상적인 의미를 갖는다. 특정 용어는 본 발명의 조성물과 방법, 그리고 이들을 만들고 이용하는 방법을 기술함에 있어 실시자(practitioner)에게 부가적인 보도(guidance)를 제공하기 위하여 하기에, 또는 본 명세서의 다른 곳에서 논의된다. 이용되는 용어의 범위 또는 의미는 이러한 용어가 이용되는 특정 상황으로부터 명백할 것이다.
일반적으로, "대략"은 측정의 특성 또는 정확도를 고려할 때, 측정된 양에 대한 허용 오차(acceptable degree of error)를 의미한다. 전형적으로, 예시적인 허용 오차는 일정한 수치 또는 수치 범위의 20 퍼센트(%) 이내, 특히, 10% 이내, 더욱 바람직하게는, 5% 이내로 존재한다.
대안으로, 특히, 생물학적 시스템에서, "대략"은 일정한 수치의 1 크기 자릿수(order of magnitude) 이내, 바람직하게는, 5-배 이내, 더욱 바람직하게는, 2-배 이내의 수치를 의미한다. 본 명세서에 제공된 수치량(numerical quantity)은 달리 명시되지 않는 경우에 근사치(approximate)인데, 이는 "대략"이 명시되지 않는 경우에, 추론될 수 있음을 의미한다.
본 발명의 방법은 서열을 서로 비교하는 단계, 예를 들면, 야생형 서열을 하나 이상의 돌연변이체(서열 변이체)와 비교하는 단계를 포함한다. 전형적으로, 이런 비교는 예로써, 당분야에 널리 공지된 서열 정렬 프로그램 및/또는 알고리즘(가령, BLAST, FASTA와 MEGALIGN)을 이용한 고분자 서열의 정렬을 포함한다. 당업자는 이런 정렬에서, 돌연변이가 잔기 삽입 또는 결실을 내포하는 경우에, 서열 정렬이 삽입되거나 결실된 잔기를 보유하지 않는 고분자 서열 내에 "갭(gap)"(전형적으로, 대시(dash), 또는 "A"로 표시됨)을 도입할 것임을 용이하게 인식할 수 있을 것이다.
"상동한(homologous)"은 모든 문법적 형태와 변화된 스펠링에서, 동일한 종의 생물체에서 대과로부터 단백질과 상이한 종의 생물체로부터 상동한 단백질을 비롯한, "공통의 진화적 기원(common evolutionary origin)"을 공유하는 두 단백질 사이의 상관관계를 지칭한다. 이들 단백질(또는 이들의 인코딩 핵산)은 동일성 비율(percent identity)의 관점에서 또는 특정 잔기 또는 모티프와 보존된 위치의 존재에 의해, 그들의 서열 유사성(서열 similarity)에 의해 반영되는 서열 상동성(서열 homology)을 갖는다.
"서열 유사성"은 모든 문법적 형태에서, 공통의 진화적 기원을 공유하거나 공유하지 않는 핵산 또는 아미노산 서열 사이에 동일성 또는 일치성의 정도를 지칭한다.
하지만, 통상적인 관례와 본 출원에서, "고도로"와 같은 부사로 수식될 때 "상동한"은 서열 유사성을 지칭하고, 공통의 진화적 기원에 관련되거나 관련되지 않는다.
2. GDF 트랩 폴리펩티드
특정 측면에서, 본 발명은 GDF 트랩 폴리펩티드, 예를 들면, ActRIIB 폴리펩티드의 단편, 기능적 변이체, 그리고 변형된 형태를 비롯하여 가용성 변이체 ActRIIB 폴리펩티드에 관계한다. 특정 구체예에서, GDF 트랩 폴리펩티드는 상응하는 야생형 ActRIIB 폴리펩티드와 최소한 하나의 유사한 또는 동일한 생물학적 활성을 갖는다. 가령, 본 발명의 GDF 트랩 폴리펩티드는 ActRIIB 리간드(가령, 액티빈 A, 액티빈 AB, 액티빈 B, 노달, GDF8, GDF11 또는 BMP7)에 결합하고 이의 기능을 저해할 수 있다. 임의적으로, GDF 트랩 폴리펩티드는 적혈구 수준을 증가시킨다. GDF 트랩 폴리펩티드의 실례에는 하나 이상의 서열 변이를 갖는 인간 ActRIIB 전구체 폴리펩티드(서열 번호: 1 또는 39), 그리고 하나 이상의 서열 변이를 갖는 가용성 인간 ActRIIB 폴리펩티드(가령, 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40과 41)가 포함된다. GDF 트랩은 예로써, GDF11 및/또는 미오스타틴을 비롯한 다른 ActRIIB 리간드에 비하여 액티빈에 대한 감소된 친화성을 갖는 ActRIIB 폴리펩티드를 지칭한다.
본 명세서에서, "ActRIIB"는 임의의 종으로부터 액티빈 수용체 타입 IIb(ActRIIB) 단백질, 그리고 돌연변이유발(mutagenesis) 또는 다른 변형에 의해 이들 ActRIIB 단백질로부터 유래된 변이체의 집단을 지칭한다. 본 명세서에서 ActRIIB에 대한 언급은 현재 확인된 형태 중에서 한 가지 형태에 대한 언급인 것으로 간주된다. 일반적으로, ActRIIB 집단의 구성원은 시스테인-풍부한 영역을 보유하는 리간드-결합 세포외 도메인, 막통과 도메인, 그리고 예측된 세린/트레오닌 키나아제 활성을 갖는 세포질 도메인으로 구성되는 막통과 단백질이다. 인간 ActRIIA 가용성 세포외 도메인(비교를 위해 제공됨) 및 ActRIIB 가용성 세포외 도메인의 아미노산 서열은 도 1에 도시된다.
"ActRIIB 폴리펩티드"에는 ActRIIB 집단 구성원의 자연 발생 폴리펩티드와 유용한 활성을 유지하는 이들의 변이체(돌연변이체, 단편, 융합체, 그리고 펩티드모방 형태(peptidomimetic form) 포함)를 포함하는 폴리펩티드가 포함된다(참조: WO/2006/012627). 가령, ActRIIB 폴리펩티드에는 ActRIIB 폴리펩티드의 서열에 최소한 대략 80% 동일한 서열을 보유하고 임의적으로, 최소한 85%, 90%, 95%, 97%, 99% 또는 그 이상의 동일성을 갖는, 임의의 공지된 ActRIIB의 서열로부터 유래된 폴리펩티드가 포함된다. 가령, ActRIIB 폴리펩티드는 ActRIIB 단백질 및/또는 액티빈에 결합하고 이의 기능을 저해할 수 있다. GDF 트랩인 ActRIIB 폴리펩티드는 생체내에서 적혈구 형성을 촉진하는 활성에 대하여 선택될 수 있다. ActRIIB 폴리펩티드의 실례에는 인간 ActRIIB 전구체 폴리펩티드(서열 번호: 1과 39)와 가용성 인간 ActRIIB 폴리펩티드(가령, 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40과 41)가 포함된다. 본 명세서에서 기술된 모든 ActRIIB-관련된 폴리펩티드에 대한 아미노산의 넘버링은 달리 특정되지 않으면, 서열 번호:1에 대한 넘버링에 기초한다.
인간 ActRIIB 전구체 단백질 서열은 아래와 같다:
신호 펩티드는 단일 밑줄로 표시된다; 세포외 도메인은 굵은 글씨체로 표시되고, 잠재적 N-연결된 글리코실화 부위(glycosylation site)는 박스로 표시된다.
위치 64에서 알라닌을 갖는 형태 역시 아래와 같이 기존 문헌에서 보고된다.
인간 ActRIIB 가용성(세포외), 가공된 폴리펩티드 서열은 아래와 같다:
GRGEAETRECIYYNANWELERTNQSGLERCEGEQDKRLHCYASWRNSSGTIELVKKGCWLDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEAGGPEVTYEPPPTAPT (서열 번호: 2)
A64를 갖는 대안적 형태는 아래와 같다:
GRGEAETRECIYYNANWELERTNQSGLERCEGEQDKRLHCYASWANSSGTIELVKKGCWLDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEAGGPEVTYEPPPTAPT (서열 번호: 40)
일부 조건에서, N-말단에서 "SGR..." 서열을 갖는 단백질이 생산될 수 있다. 세포외 도메인의 C-말단 "꼬리"는 밑줄로 표시된다. 이러한 "꼬리"가 결실된 서열(Δ15 서열)은 아래와 같다:
GRGEAETRECIYYNANWELERTNQSGLERCEGEQDKRLHCYASWRNSSGTIELVKKGCWLDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEA (서열 번호: 3)
A64를 갖는 대안적 형태는 아래와 같다:
GRGEAETRECIYYNANWELERTNQSGLERCEGEQDKRLHCYASWANSSGTIELVKKGCWLDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEA (서열 번호: 41)
*
일부 조건에서, N-말단에서 "SGR..." 서열을 갖는 단백질이 생산될 수 있다. 인간 ActRIIB 전구체 단백질을 인코딩하는 핵산 서열은 아래와 같다(Genbank entry NM_001106의 뉴클레오티드 5-1543)(도시된 서열은 위치 64에서 알라닌을 제공하고, 그리고 아르기닌을 그 대신에 제공하도록 변형될 수 있다):
GGCTGTTCGATTTGAGCCAGGGAAACCTCCAGGGGACACCCACGGACAGGTAGGCACGAGACGGTACATGGCTCCTGAGGTGCTCGAGGGAGCCATCAACTTCCAGAGAGATGCCTTCCTGCGCATTGACATGTATGCCATGGGGTTGGTGCTGTGGGAGCTTGTGTCTCGCTGCAAGGCTGCAGACGGACCCGTGGATGAGTACATGCTGCCCTTTGAGGAAGAGATTGGCCAGCACCCTTCGTTGGAGGAGCTGCAGGAGGTGGTGGTGCACAAGAAGATGAGGCCCACCATTAAAGATCACTGGTTGAAACACCCGGGCCTGGCCCAGCTTTGTGTGACCATCGAGGAGTGCTGGGACCATGATGCAGAGGCTCGCTTGTCCGCGGGCTGTGTGGAGGAGCGGGTGTCCCTGATTCGGAGGTCGGTCAACGGCACTACCTCGGACTGTCTCGTTTCCCTGGTGACCTCTGTCACCAATGTGGACCTGCCCCCTAAAGAGTCAAGCATCTAA (서열 번호: 4)
*인간 ActRIIB 가용성(세포외) 폴리펩티드를 인코딩하는 핵산 서열은 아래와 같다(도시된 서열은 위치 64에서 알라닌을 제공하고, 그리고 아르기닌을 그 대신에 제공하도록 변형될 수 있다):
GGGCGTGGGGAGGCTGAGACACGGGAGTGCATCTACTACAACGCCAACTGGGAGCTGGAGCGCACCAACCAGAGCGGCCTGGAGCGCTGCGAAGGCGAGCAGGACAAGCGGCTGCACTGCTACGCCTCCTGGGCCAACAGCTCTGGCACCATCGAGCTCGTGAAGAAGGGCTGCTGGCTAGATGACTTCAACTGCTACGATAGGCAGGAGTGTGTGGCCACTGAGGAGAACCCCCAGGTGTACTTCTGCTGCTGTGAAGGCAACTTCTGCAACGAGCGCTTCACTCATTTGCCAGAGGCTGGGGGCCCGGAAGTCACGTACGAGCCACCCCCGACAGCCCCCACC (서열 번호: 5)
특정 구체예에서, 본 발명은 가용성 ActRIIB 폴리펩티드의 변이체 형태인 GDF 트랩 폴리펩티드에 관계한다. 본 명세서에 기술된 바와 같이, "가용성 ActRIIB 폴리펩티드"는 일반적으로, ActRIIB 단백질의 세포외 도메인을 포함하는 폴리펩티드를 지칭한다. 본 명세서에서, "가용성 ActRIIB 폴리펩티드"에는 ActRIIB 단백질의 자연 발생 세포외 도메인, 그리고 유용한 활성을 유지하는 이의 임의의 변이체(돌연변이체, 단편과 펩티드모방 형태 포함)가 포함된다. 가령, ActRIIB 단백질의 세포외 도메인은 리간드에 결합하고 일반적으로, 가용성이다. 가용성 ActRIIB 폴리펩티드의 실례에는 ActRIIB 가용성 폴리펩티드(서열 번호: 22, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40과 41)가 포함된다. 가용성 ActRIIB 폴리펩티드의 다른 실례는 ActRIIB 단백질의 세포외 도메인 이외에 신호 서열을 포함한다(실시예 1 참조). 이러한 신호 서열은 ActRIIB의 고유 신호 서열, 또는 다른 단백질로부터 신호 서열, 예를 들면, 조직 플라스미노겐 활성인자(tissue plasminogen activator, TPA) 신호 서열 또는 꿀벌 멜리틴(honey bee mellitin, HBM) 신호 서열일 수 있다.
본 발명에서는 ActRIIB의 기능적 활성 부분과 변이체를 확인한다. 본 발명자들은 서열 번호: 1의 아미노산 64에 상응하는 위치에서 알라닌(A64)을 보유하는, Hilden et al., Blood. 1994 Apr 15;83(8):2163-70에서 개시된 서열을 갖는 Fc 융합 단백질이 액티빈과 GDF-11에 대하여 상대적으로 낮은 친화성을 갖는다는 것을 확인하였다. 대조적으로, 위치 64에서 아르기닌(R64)을 보유하는 동일한 Fc 융합 단백질은 낮은 나노몰 내지 높은 피코몰 범위에서 액티빈과 GDF-11에 대한 친화성을 갖는다. 이런 이유로, R64를 보유하는 서열은 본 발명에서 인간 ActRIIB에 대한 야생형 참고 서열로서 이용된다.
Attisano et al., Cell. 1992 Jan 10;68(1):97-108에서는 ActRIIB의 세포외 도메인의 C-말단에서 프롤린 마디(proline knot)의 결실이 액티빈에 대한 수용체의 친화성을 감소시킨다는 것을 증명하였다. 서열 번호: 1의 아미노산 20-119를 내포하는 ActRIIB-Fc 융합 단백질, “ActRIIB(20-119)-Fc”는 프롤린 마디 영역 및 완전 막근접(juxtamembrane) 도메인을 포함하는 ActRIIB(20-134)-Fc와 비교하여 GDF-11과 액티빈에 대한 감소된 결합을 갖는다. 하지만, ActRIIB(20-129)-Fc 단백질은 비록 프롤린 마디 영역이 파괴되긴 하지만, 야생형과 비교하여 유사하지만 얼마간 감소된 활성을 유지한다. 따라서 아미노산 134, 133, 132, 131, 130과 129에서 종결되는 ActRIIB 세포외 도메인 모두 활성적일 것으로 예상되지만, 134 또는 133에서 종결되는 구조체가 최대 활성일 수 있다. 유사하게, 잔기 129-134 중에서 임의의 한 가지에서 돌연변이는 리간드 결합 친화성을 큰 차이로 변화시킬 것으로 예상되지 않는다. 이를 뒷받침하듯이, P129와 P130의 돌연변이는 리간드 결합을 실질적으로 감소시키지 않는다. 이런 이유로, ActRIIB-Fc 융합 단백질인 GDF 트랩 폴리펩티드는 빠르면, 아미노산 109(최종 시스테인)에서 종결될 수 있지만, 109와 119에서 또는 이들 사이에서 종결되는 형태는 감소된 리간드 결합을 가질 것으로 예상된다. 아미노산 119는 불량하게 보존되고, 따라서 쉽게 변경되거나 절두된다. 128 또는 그 이후에 종결되는 형태는 리간드 결합 활성을 유지한다. 119와 127에서 또는 이들 사이에서 종결되는 형태는 중간 결합 능력을 가질 것이다. 이들 형태 중에서 임의의 한 가지는 임상적 또는 실험적 설정에 따라, 이용에 바람직할 수 있다.
ActRIIB의 N-말단에서, 아미노산 29 또는 그 앞에서 시작되는 단백질은 리간드 결합 활성을 유지할 것으로 예상된다. 아미노산 29는 최초 시스테인을 나타낸다. 위치 24에서 알라닌에서 아스파라긴으로 돌연변이는 리간드 결합에 실질적으로 영향을 주지 않으면서 N-연결된 글리코실화 서열을 도입한다. 이것은 신호 절단 펩티드 및 시스테인 교차-연결된 영역 사이에 아미노산 20-29에 상응하는 영역에서 돌연변이가 충분히 관용된다는 것을 확증한다. 특히, 위치 20, 21, 22, 23과 24에서 시작되는 구조체는 활성을 유지할 것이고, 그리고 위치 25, 26, 27, 28과 29에서 시작되는 구조체 역시 활성을 유지할 것으로 예상된다. 실시예에서 제시된 데이터는 놀랍게도, 22, 23, 24 또는 25에서 시작되는 구조체가 최대 활성을 가질 것이라는 것을 증명한다.
종합하면, ActRIIB의 활성 부분은 서열 번호: 1의 아미노산 29-109를 포함하고, 그리고 GDF 트랩 구조체는 예로써, 서열 번호: 1 또는 39의 아미노산 20-29에 상응하는 잔기에서 시작되고 서열 번호: 1 또는 39의 아미노산 109-134에 상응하는 위치에서 종결되는 ActRIIB의 부분을 포함한다. 다른 실례에는 서열 번호: 1 또는 39의 20-29 또는 21-29로부터 위치에서 시작되고 119-134, 119-133, 129-134, 또는 129-133로부터 위치에서 종결되는 구조체가 포함된다. 다른 실례에는 서열 번호: 1 또는 39의 20-24(또는 21-24, 또는 22-25)로부터 위치에서 시작되고 109-134(또는 109-133), 119-134(또는 119133) 또는 129-134(또는 129-133)로부터 위치에서 종결되는 구조체가 포함된다. 이들 범위 내에서 변이체, 특히 서열 번호: 1 또는 39의 상응하는 부분에 최소한 80%, 85%, 90%, 95% 또는 99% 동일성을 갖는 것들 역시 계획된다. 특정 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 1 또는 39의 아미노산 잔기 25-131에 최소한 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% 또는 100% 동일한 아미노산 서열을 갖는 폴리펩티드를 포함하거나, 이러한 폴리펩티드로 본질적으로 구성되거나, 또는 이러한 폴리펩티드로 구성된다. 특정 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 7, 26, 28, 29, 32, 37 또는 38에 최소한 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% 또는 100% 동일한 아미노산 서열을 갖는 폴리펩티드를 포함하거나, 이러한 폴리펩티드로 본질적으로 구성되거나, 또는 이러한 폴리펩티드로 구성된다. 바람직한 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 7, 26, 28, 29, 32, 37 또는 38의 아미노산 서열로 구성되거나, 또는 본질적으로 구성된다.
본 발명은 도 1에 도시된 복합 ActRIIB 구조의 분석 결과를 포함하는데, 이들 결과는 리간드 결합 포켓이 잔기 Y31, N33, N35, L38 내지 T41, E47, E50, Q53 내지 K55, L57, H58, Y60, S62, K74, W78 내지 N83, Y85, R87, A92, 그리고 E94 내지 F101에 의해 정의된다는 것을 증명한다. 이들 위치에서, 비록 R40A, K55A, F82A 및 위치 L79에서 돌연변이에서처럼 K74A 돌연변이가 충분히-관용되긴 하지만, 보존성 돌연변이는 관용될 것으로 예상된다. R40은 손톱개구리속(Xenopus)에서 K인데, 이는 상기 위치에서 염기성 아미노산이 관용될 것이라는 것을 지시한다. Q53은 소 ActRIIB에서 R 및 손톱개구리속(Xenopus) ActRIIB에서 K이고, 이런 이유로 R, K, Q, N 및 H를 포함하는 아미노산은 상기 위치에서 관용될 것이다. 따라서 GDF 트랩 단백질에 대한 일반식은 서열 번호: 1 또는 39의 아미노산 29-109를 포함하지만, 임의적으로 20-24 또는 22-25 범위의 위치에서 시작되고 129-134 범위의 위치에서 종결되며, 리간드 결합 포켓 내에 단지 1개, 2개, 5개, 10개 또는 15개 보존성 아미노산 변화 및 리간드 결합 포켓 내에 위치 40, 53, 55, 74, 79 및/또는 82에서 0개, 1개 또는 그 이상의 비-보존성 변경을 포함하는 것이다. 이런 단백질은 서열 번호: 1 또는 39의 아미노산 29-109의 서열에 80%, 90%, 95% 또는 99% 이상의 서열 동일성을 유지할 수 있다. 변이성(variability)이 특히 관용될 수 있는 결합 포켓 외부의 위치는 세포외 도메인의 아미노와 카르복시 말단(앞서 언급됨), 그리고 위치 42-46과 65-73을 포함한다. 위치 65에서 아스파라긴에서 알라닌으로 변경(N65A)은 실제로, A64 배경에서 리간드 결합을 향상시키고, 따라서 R64 배경에서 리간드 결합에 대한 유해한 효과를 나타내지 않을 것으로 예상된다. 이러한 변화는 아마도, A64 배경에서 N65에서 글리코실화를 제거하고, 따라서 이러한 영역 내에서 유의미한 변화가 관용될 가능성이 높다는 것을 증명한다. R64A 변화는 불량하게 관용되는 반면, R64K는 충분히 관용되고, 따라서 다른 염기성 잔기, 예를 들면, H가 위치 64에서 관용될 것이다.
ActRIIB는 거의 모든 척추동물에서 충분히 보존되는데, 세포외 도메인의 광범위한 스트레치(stretch)가 완전하게 보존된다. 또한, ActRIIB에 결합하는 리간드 중에서 다수가 고도로 보존된다. 따라서 다양한 척추동물 생물체로부터 ActRIIB 서열의 비교는 변경될 수 있는 잔기에 대한 통찰력을 제공한다. 이런 이유로, GDF 트랩으로서 유용한 활성 인간 ActRIIB 변이체 폴리펩티드는 다른 척추동물 ActRIIB의 서열로부터 상응하는 위치에서 하나 이상의 아미노산을 포함하거나, 또는 인간 또는 다른 척추동물 서열에서 잔기와 유사한 잔기를 포함할 수 있다. 하기 실례는 활성 ActRIIB 변이체를 정의하는데 있어서 이러한 접근법을 예시한다. L46은 손톱개구리속(Xenopus) ActRIIB에서 발린이고, 따라서 상기 위치는 변경될 수 있고, 그리고 임의적으로, 다른 소수성 잔기, 예를 들면, V, I 또는 F, 또는 비-극성 잔기, 예를 들면, A로 변경될 수 있다. E52는 손톱개구리속(Xenopus)에서 K인데, 이는 상기 부위가 극성 잔기, 예를 들면, E, D, K, R, H, S, T, P, G, Y 및 아마도 A를 비롯한 매우 다양한 변화를 관용할 수 있다는 지시한다. T93은 손톱개구리속(Xenopus)에서 K인데, 이는 광범위한 구조적 변이가 상기 위치에서 관용되고, 극성 잔기, 예를 들면, S, K, R, E, D, H, G, P, G 및 Y가 선호된다는 것을 지시한다. F108은 손톱개구리속(Xenopus)에서 Y이고, 따라서 Y 또는 다른 소수성 기, 예를 들면, I, V 또는 L이 관용될 것이다. E111은 손톱개구리속(Xenopus)에서 K인데, 이는 Q와 N뿐만 아니라 D, R, K 및 H를 비롯한 하전된 잔기가 상기 위치에서 관용될 것이라는 것을 지시한다. R112는 손톱개구리속(Xenopus)에서 K인데, 이는 R과 H를 비롯한 염기성 잔기가 상기 위치에서 관용된다는 것을 지시한다. 위치 119에서 A는 상대적으로 불량하게 보존되고, 그리고 설치류에서 P 및 손톱개구리속(Xenopus)에서 V로서 나타나고, 따라서 본질적으로 임의의 아미노산이 상기 위치에서 관용될 것이다.
본 발명은 추가 N-연결된 글리코실화 부위(NXS/T)의 부가가 ActRIIB(R64)-Fc 형태에 비하여 ActRIIB-Fc 융합 단백질의 혈청 반감기를 증가시킨다는 것을 증명한다. 위치 24에서 아스파라긴(A24N 구조체)을 도입함으로써, 더욱 긴 반감기를 공여하는 NXT 서열이 산출된다. 다른 NX(T/S) 서열은 42-44(NQS) 및 65-67(NSS)에서 관찰되는데, 후자는 하지만, 위치 64에서 R로 효과적으로 글리코실화되지 못할 수도 있다. N-X-S/T 서열은 일반적으로, 도 1에서 한정된 리간드 결합 포켓 외부의 위치에 도입될 수 있다. 비-내인성 N-X-S/T 서열의 도입을 위한 특히 적합한 부위에는 아미노산 20-29, 20-24, 22-25, 109-134, 120-134 또는 129-134가 포함된다. N-X-S/T 서열은 또한, ActRIIB 서열 및 Fc 또는 기타 융합 성분 사이의 링커 내로 도입될 수 있다. 이런 부위는 이미 존재하는 S 또는 T에 대하여 정확한 위치에 N을 도입함으로써, 또는 이미 존재하는 N에 상응하는 위치에서 S 또는 T를 도입함으로써 최소 노력으로 도입될 수 있다. 따라서 N-연결된 글리코실화 부위를 산출하는 바람직한 변경은 A24N, R64N, S67N(아마도, N65A 변경과 함께), E106N, R112N, G120N, E123N, P129N, A132N, R112S 및 R112T이다. 글리코실화될 것으로 예측되는 임의의 S는 글리코실화에 의해 제공된 보호로 인하여, 면역원성 부위를 발생시키지 않으면서 T로 변경될 수 있다. 유사하게, 글리코실화될 것으로 예측되는 임의의 T는 S로 변경될 수 있다. 따라서 변경 S67T 및 S44T가 계획된다. 유사하게, A24N 변이체에서, S26T 변경이 이용될 수 있다. 따라서 GDF 트랩은 하나 이상의 추가, 비-내인성 N-연결된 글리코실화 공통 서열을 갖는 ActRIIB 변이체일 수 있다.
ActRIIB의 위치 L79는 변경된 액티빈 - 미오스타틴 (GDF-11) 결합 특성을 제공하기 위하여 변경될 수 있다. L79A 또는 L79P는 액티빈 결합보다 더욱 큰 정도로 GDF-11 결합을 감소시킨다. L79E 또는 L79D는 GDF-11 결합을 유지한다. 놀랍게도, L79E와 L79D 변이체는 액티빈 결합을 상당히 감소시켰다. 생체내 실험은 이들 비-액티빈 수용체가 적혈구를 증가시키는 유의미한 능력을 유지하지만 다른 조직에 대한 감소된 효과를 나타낸다는 것을 지시한다. 이들 데이터는 액티빈에 대한 감소된 효과를 갖는 폴리펩티드를 획득하는 바람직성(desirability)과 실현가능성(feasibility)을 증명한다. 예시적인 구체예에서, 본 명세서에서 기술된 방법은 임의적으로, 하나 이상의 추가 아미노산 치환, 부가, 또는 결실과 공동으로 서열 번호: 1 또는 39의 위치 79에 상응하는 위치에서 산성 아미노산(가령, D 또는 E)을 포함하는 변이체 ActRIIB 폴리펩티드인 GDF 트랩 폴리펩티드를 이용한다.
기술된 이들 변이는 다양한 방법으로 결합될 수 있다. 부가적으로, 본 명세서에서 기술된 돌연변이유발 프로그램의 결과는 종종, 보존하기에 유익한 ActRIIB 내에 아미노산 위치가 존재한다는 것을 지시한다. 이들에는 위치 64(염기성 아미노산), 위치 80(산성 또는 소수성 아미노산), 위치 78(소수성 아미노산, 특히 트립토판), 위치 37(산성 아미노산, 특히 아스파르트산 또는 글루타민산), 위치 56(염기성 아미노산), 위치 60(소수성 아미노산, 특히 페닐알라닌 또는 티로신)이 포함된다. 따라서 본 명세서에서 개시된 각 변이체에서, 본 발명에서는 보존될 수 있는 아미노산의 프레임워크를 제공한다. 보존하기에 바람직한 기타 위치는 하기와 같다: 위치 52(산성 아미노산), 위치 55(염기성 아미노산), 위치 81(산성 아미노산), 98(극성 또는 하전된 아미노산, 특히 E, D, R 또는 K).
특정 구체예에서, ActRIIB 폴리펩티드의 분리된 단편은 ActRIIB 폴리펩티드를 인코딩하는 핵산(가령, 서열 번호: 4와 5)의 상응하는 단편으로부터 재조합 방식으로 생산된 폴리펩티드를 선별함으로써 수득될 수 있다. 이에 더하여, 단편은 전통적인 Merrifield 고형상(solid phase) f-Moc 또는 t-Boc 화학과 같은 당분야에 공지된 기술을 이용하여 화학적으로 합성될 수 있다. 이들 단편은 생산되고(재조합 방식으로 또는 화학적 합성에 의해), 그리고 예로써, ActRIIB 단백질 또는 ActRIIB 리간드의 길항약(저해물질) 또는 작동약(활성인자)로서 기능할 수 있는 펩티딜 단편을 확인하기 위하여 검사될 수 있다.
특정 구체예에서, GDF 트랩 폴리펩티드는 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40 또는 41에서 선택되는 아미노산 서열에 최소한 75% 동일한 아미노산 서열을 갖는 변이체 ActRIIB 폴리펩티드이다. 특정 사례에서, GDF 트랩은 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40 또는 41에서 선택되는 아미노산 서열에 최소한 80%, 85%, 90%, 95%, 97%, 98%, 99% 또는 100% 동일한 아미노산 서열을 갖는다. 특정 구체예에서, GDF 트랩은 서열 번호: 2, 3, 7, 11, 26, 28, 29, 32, 37, 38, 40 또는 41에서 선택되는 아미노산 서열에 최소한 80%, 85%, 90%, 95%, 97%, 98%, 99% 또는 100% 동일한 아미노산 서열을 포함하거나, 이러한 아미노산 서열로 본질적으로 구성되거나, 또는 이러한 아미노산 서열로 구성되고, 여기서 서열 번호: 1의 L79에 상응하는 위치는 산성 아미노산(가령, D 또는 E 아미노산 잔기)이다.
특정 구체예에서, 본 발명에서는 치료 효능(therapeutic efficacy), 또는 안정성(가령, 체외 반감기(ex vivo shelf life)와 생체내에서 단백분해(proteolytic degradation)에 대한 내성)을 강화시키는 것과 같은 목적을 위하여 GDF 트랩 폴리펩티드의 구조를 변형함으로써 기능적 변이체를 만드는 것을 계획한다. GDF 트랩 폴리펩티드는 아미노산 치환, 결실, 또는 부가에 의해 생산될 수 있다. 가령, 이소류신 또는 발린으로 류신의 분리된 치환, 글루타민산염으로 아스파라진산염의 분리된 치환, 세린으로 트레오닌의 분리된 치환, 또는 구조적으로 관련된 아미노산으로 아미노산의 유사한 치환(가령, 보존성 돌연변이)은 결과의 분자의 생물학적 활성에 주요한 효과를 나타내지 않을 것으로 예상하는 것은 합당하다. 보존성 치환은 측쇄에 관련된 아미노산 집단 내에서 발생하는 치환이다. GDF 트랩 폴리펩티드의 아미노산 서열에서 변화가 기능적 변이체를 결과하는 지의 여부는 변형되지 않은 GDF 트랩 폴리펩티드 또는 야생형 ActRIIB 폴리펩티드에서와 유사한 방식으로 세포 내에서 반응을 유도하거나, 또는 변형되지 않은 GDF 트랩 폴리펩티드 또는 야생형 ActRIIB 폴리펩티드와 비교하여 하나 이상의 리간드, 예를 들면, 액티빈, GDF-11 또는 미오스타틴에 결합하는 GDF 트랩 폴리펩티드의 능력을 평가함으로써 용이하게 결정될 수 있다.
특정 구체예에서, 본 발명에서는 ActRIIB 폴리펩티드가 변경된 리간드-결합 활성(가령, 결합 친화성 또는 결합 특이성)을 갖도록 ActRIIB 폴리펩티드의 세포외 도메인(일명, 리간드-결합 도메인) 내에 돌연변이를 만드는 것을 계획한다. 특정 경우에, 이런 GDF 트랩 폴리펩티드는 특정한 리간드에 대한 변경된(상승된 또는 감소된) 결합 친화성을 갖는다. 다른 경우에, GDF 트랩 폴리펩티드는 ActRIIB 리간드에 대한 변경된 결합 특이성을 갖는다.
가령, 본 발명에서는 액티빈에 비하여 GDF8/GDF11에 우선적으로 결합하는 GDF 트랩 폴리펩티드를 제시한다. 본 발명은 비록 이런 선택적 변이체가 치료 효과를 위하여 적혈구 수준에서 극히 높은 증가가 요구되고 얼마간 수준의 표적외 효과가 용인되는 심각한 질환의 치료에 덜 바람직할 수도 있지만, 표적외 효과를 감소시키기 위한 이들 폴리펩티드의 바람직성을 더욱 확립한다. 가령, ActRIIB 단백질의 아미노산 잔기, 예를 들면, E39, K55, Y60, K74, W78, D80 및 F101은 리간드-결합 포켓 내에 존재하고 이의 리간드, 예를 들면, 액티빈과 GDF8에 결합을 매개한다. 따라서 본 발명에서는 이들 아미노산 잔기에서 하나 이상의 돌연변이를 포함하는, ActRIIB 수용체의 변경된 리간드-결합 도메인(가령, GDF8-결합 도메인)을 포함하는 GDF 트랩을 제시한다. 임의적으로, 변경된 리간드-결합 도메인은 ActRIIB 수용체의 야생형 리간드-결합 도메인에 비하여 리간드, 예를 들면, GDF8에 대한 증가된 선택성을 가질 수 있다. 예로써, 이들 돌연변이는 액티빈에 비하여 GDF8에 대한, 변경된 리간드-결합 도메인의 선택성을 증가시킨다. 임의적으로, 변경된 리간드-결합 도메인은 야생형 리간드-결합 도메인에 대한 비율과 비교하여 최소한 2, 5, 10, 또는 심지어 100내 높은, 액티빈 결합에 대한 Kd 대(對) GDF8 결합에 대한 Kd의 비율을 갖는다. 임의적으로, 변경된 리간드-결합 도메인은 야생형 리간드-결합 도메인과 비교하여 최소한 2, 5, 10, 또는 심지어 100배 높은, 액티빈 저해에 대한 IC50 대(對) GDF8 저해에 대한 IC50의 비율을 갖는다. 임의적으로, 변경된 리간드-결합 도메인은 액티빈 저해에 대한 IC50보다 최소한 2, 5, 10, 또는 심지어 100배 낮은 IC50으로 GDF8을 저해한다.
특정 실례로써, ActRIIB의 리간드-결합 도메인의 양으로 하전된 아미노산 잔기 Asp(D80)는 GDF8에 우선적으로 결합하지만, 액티빈에는 그렇지 않은 GDF 트랩 폴리펩티드를 생산하기 위하여 상이한 아미노산 잔기로 돌연변이될 수 있다. 바람직하게는, D80 잔기는 하전되지 않은 아미노산 잔기, 음성 아미노산 잔기, 그리고 소수성 아미노산 잔기로 구성된 군에서 선택되는 아미노산 잔기로 변경된다. 추가의 특정 실례로써, 소수성 잔기, L79는 GDF11 결합을 유지하면서 액티빈 결합을 크기 감소시키기 위하여 산성 아미노산 아스파르트산 또는 글루타민산으로 변경될 수 있다. 당업자가 인지하는 바와 같이, 앞서 기술된 돌연변이, 변이체 또는 변형 중에서 대부분은 핵산 수준에서 또는, 일부 경우에, 번역후 변형 또는 화학적 합성에 의해 만들어질 수 있다. 이런 기술은 당분야에서 널리 공지되어 있다.
특정 구체예에서, 본 발명에서는 ActRIIB 폴리펩티드의 글리코실화를 변화시키기 위하여 ActRIIB에서 특정한 돌연변이를 갖는 GDF 트랩 폴리펩티드를 계획한다. GDF 트랩 폴리펩티드 내에서 예시적인 글리코실화 부위는 도 1에서 도시된다(가령, 밑줄로 표시된 NX(S/T) 부위). 이들 돌연변이는 하나 이상의 글리코실화 부위, 예를 들면, O-연결된 또는 N-연결된 글리코실화 부위를 도입하거나 제거하도록 선택된다. 아스파라긴-연결된 글리코실화 인식 부위는 일반적으로, 트리펩티드(tripeptide) 서열, 아스파라긴-X-트레오닌 또는 아스파라긴-X-세린(여기서, "X"는 임의의 아미노산)을 포함하는데, 상기 서열은 적절한 세포 글리코실화 효소에 의해 특이적으로 인식된다. 이러한 변형은 야생형 ActRIIB 폴리펩티드의 서열에서 하나 이상의 세린 또는 트레오닌 잔기의 부가에 의해 또는 이러한 잔기에 의한 치환에 의해 달성될 수 있다(O-연결된 글리코실화 부위의 경우에). 글리코실화 인식 부위(및/또는 두 번째 위치에서 아미노산 결실)의 첫 번째 또는 세 번째 아미노산 위치 중에서 한쪽 또는 양쪽에서 다양한 아미노산 치환 또는 결실은 변형된 트리펩티드 서열에서 비-글리코실화를 유도한다. GDF 트랩 폴리펩티드 상에서 탄수화물 모이어티의 숫자를 증가시키는 다른 수단은 GDF 트랩 폴리펩티드에 글리코시드의 화학적 또는 효소적 결합이다. 이용되는 결합 양식(coupling mode)에 따라, 당은 (a) 아르기닌과 히스티딘; (b) 유리 카르복실 기; (c) 유리 설피드릴 기, 예를 들면, 시스테인의 유리 설피드릴 기; (d) 유리 하이드록실 기, 예를 들면, 세린, 트레오닌, 또는 하이드록시프롤린의 유리 하이드록실 기; (e) 방향족 잔기, 예를 들면, 페닐알라닌, 티로신, 또는 트립토판의 방향족 잔기; 또는 (f) 글루타민의 아마이드 기에 부착될 수 있다. 이들 방법은 WO 87/05330 및 Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306에서 기술된다. GDF 트랩 폴리펩티드 상에 존재하는 하나 이상의 탄수화물 모이어티의 제거는 화학적으로 및/또는 효소적으로 달성될 수 있다. 화학적 디글리코실화는 예로써, 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 화합물, 또는 등가의 화합물에 GDF 트랩 폴리펩티드의 노출을 수반한다. 이러한 처리는 아미노산 서열을 본래 상태로 유지하면서, 연결 당(linking sugar)(N-아세틸 글루코사민 또는 N-아세틸갈락토사민)을 제외한 거의 또는 전체 당의 절단을 결과한다. 화학적 탈당화는 Hakimuddin et al. (1987) Arch. Biochem. Biophys. 259:52 및 Edge et al. (1981) Anal. Biochem. 118:131에서 더욱 기술된다. GDF 트랩 폴리펩티드 상에서 탄수화물 모이어티의 효소적 절단은 Thotakura et al. (1987) Meth. Enzymol. 138:350에 기술된 바와 같이, 다양한 엔도(endo)-와 엑소(exo)-글리코시다아제의 이용으로 달성될 수 있다. GDF 트랩 폴리펩티드의 서열은 이용되는 발현 시스템의 유형에 따라 적절하게 조정될 수 있는데, 그 이유는 포유동물, 효모, 곤충과 식물 세포가 상기 펩티드의 아미노산 서열에 의해 영향을 받을 수 있는 상이한 글리코실화 패턴을 도입하기 때문이다. 일반적으로, 인간에 이용되는 GDF 트랩 단백질은 다른 포유동물 발현 세포주 역시 유용할 것으로 예상되긴 하지만, 적절한 글리코실화를 제공하는 포유동물 세포주, 예를 들면, HEK293 또는 CHO 세포주에서 발현될 것이다.
본 발명에서는 변이체, 특히 절두 변이체를 임의적으로 비롯하여, GDF 트랩 폴리펩티드의 조합 돌연변이체(combinatorial mutant)의 세트를 산출하는 방법을 계획한다; 조합 돌연변이체의 집합은 GDF 트랩 서열을 확인하는데 특히 유용하다. 이런 조합 라이브러리(combinatorial library)를 선별하는 목적은 예로써, 변경된 특성, 예를 들면, 변경된 약물동력학, 또는 변경된 리간드 결합을 갖는 GDF 트랩 폴리펩티드 변이체를 산출하는 것이다. 다양한 선별 분석(screening assay)이 하기에 제시되는데, 이들 분석은 변이체를 평가하는데 이용될 수 있다. 가령, GDF 트랩 폴리펩티드 변이체는 ActRIIB 리간드에 결합하거나, ActRIIB 폴리펩티드에 ActRIIB 리간드의 결합을 예방하거나, 또는 ActRIIB 리간드에 의해 유도된 신호전달을 간섭하는 능력에 대하여 선별된다.
GDF 트랩 폴리펩티드 또는 이의 변이체의 활성은 또한, 세포-기초된 또는 생체내 분석에 의해 검사될 수 있다. 가령, 혈액생성에 관여하는 유전자의 발현에 대한 GDF 트랩 폴리펩티드 변이체의 효과가 평가된다. 이는 필요에 따라, 하나 이상의 재조합 ActRIIB 리간드 단백질(가령, 액티빈)의 존재에서 수행되고, 세포는 GDF 트랩 폴리펩티드 및/또는 이의 변이체, 그리고 임의적으로, ActRIIB 리간드를 생산하기 위하여 형질감염(transfection)될 수 있다. 유사하게, GDF 트랩 폴리펩티드는 생쥐 또는 다른 동물에 투여되고, 하나 이상의 혈액 척도(blood measurement), 예를 들면, RBC 수, 헤모글로빈 수준, 헤마토크릿 수준, 저장 철, 또는 망상적혈구 수가 당분야에 공지된 방법을 이용하여 평가될 수 있다.
참고 GDF 트랩 폴리펩티드에 비하여 선택적인 효능을 갖는 조합-유래된 변이체가 산출될 수 있다. 이런 변이체 단백질은 재조합 DNA 구조체로부터 발현될 때, 유전자 요법 프로토콜에 이용될 수 있다. 유사하게, 돌연변이유발(mutagenesis)은 상응하는 변경되지 않은 GDF 트랩 폴리펩티드와 극히 상이한 세포내 반감기를 갖는 변이체를 산출할 수 있다. 가령, 변경된 단백질은 변경되지 않은 GDF 트랩 폴리펩티드의 파괴, 또는 불활성화를 유발하는 단백분해 변성 또는 다른 세포 과정에 더욱 안정화되거나 또는 덜 안정화될 수 있다. 이들 변이체와 이들을 인코딩하는 유전자는 GDF 트랩 폴리펩티드의 반감기를 조절함으로써 GDF 트랩 폴리펩티드 수준을 변화시키는데 이용될 수 있다. 가령, 짧은 반감기는 더욱 일시적인 생물학적 효과를 발생시키고, 유도성 발현 시스템의 일부일 때, 세포 내에서 재조합 GDF 트랩 폴리펩티드 수준의 더욱 엄격한 제어를 가능하게 할 수 있다. Fc 융합 단백질에서, 돌연변이는 상기 단백질의 반감기를 변화시키기 위하여 링커(존재하면) 및/또는 Fc 부분에서 발생될 수 있다.
특정 구체예에서, 본 발명의 GDF 트랩 폴리펩티드는 ActRIIB 폴리펩티드 내에 자연적으로 존재하는 임의의 변형 이외에, 추가의 번역후 변형(post-translational modification)을 포함할 수 있다. 이들 변형에는 예로써, 아세틸화(acetylation), 카르복실화(carboxylation), 글리코실화(glycosylation), 인산화(phosphorylation), 지질화(lipidation)와 아실화(acylation)가 포함되지만 이들에 국한되지 않는다. 결과로써, GDF 트랩 폴리펩티드는 비-아미노산 요소, 예를 들면, 폴리에틸렌 글리콜(polyethylene glycol), 지질(lipid), 폴리사카라이드(polysaccharide) 또는 모노사카라이드(monosaccharide), 그리고 인산염(phosphate)을 포함할 수 있다. GDF 트랩 폴리펩티드의 기능성(functionality)에 대한 이런 비-아미노산 요소의 효과는 다른 GDF 트랩 폴리펩티드 변이체에 대하여, 본 명세서에 기술된 바와 같이 검사될 수 있다. GDF 트랩 폴리펩티드가 GDF 트랩 폴리펩티드의 초기 형태(nascent form)를 절단함으로써 세포 내에서 생산될 때, 번역후 처리(post-translational processing) 역시 단백질의 정확한 접힘(folding) 및/또는 기능에 중요하다. GDF 트랩 폴리펩티드의 정확한 변형과 처리를 담보하기 위하여, 이런 번역후 활성을 위한 특이적인 세포 기구와 특징적인 기전을 보유하는 상이한 세포(가령, CHO, HeLa, MDCK, 293, WI38, NIH-3T3 또는 HEK293)가 선택될 수 있다.
특정 측면에서, GDF 트랩 폴리펩티드에는 ActRIIB 폴리펩티드의 최소한 일부분과 하나 이상의 융합 도메인을 보유하는 융합 단백질이 포함된다. 이런 융합 도메인의 널리 공지된 실례에는 폴리히스티딘(polyhistidine), Glu-Glu, 글루타티온 S 전이효소(glutathione S transferase, GST), 티오레독신(thioredoxin), 단백질 A, 단백질 G, 면역글로불린 중쇄 불변 영역(가령, Fc), 말토오스 결합 단백질(MBP), 또는 인간 혈청 알부민이 포함되지만 이들에 국한되지 않는다. 융합 도메인은 원하는 특성을 공여하도록 선택된다. 가령, 일부 융합 도메인은 친화성 크로마토그래피(affinity chromatography)에 의한 융합 단백질의 분리에 특히 유용하다. 친화성 정제를 위하여, 친화성 크로마토그래피에 적합한 기반(matrix), 예를 들면, 글루타티온-, 아밀라아제-, 그리고 니켈- 또는 코발트-접합된 수지가 이용된다. 이들 기반 중에서 대부분은 "키트" 형태, 예를 들면, Pharmacia GST 정제 시스템과 (HIS6) 융합 상대와 함께 이용되는 QIAexpress™ 시스템(Qiagen)으로 가용하다. 다른 실례로서, 융합 도메인은 GDF 트랩 폴리펩티드의 검출을 용이하게 하도록 선택된다. 이런 검출 도메인의 실례에는 다양한 형광 단백질(가령, GFP)과 "에피토프 태그(epitope tag)"가 포함되는데, 이들 태그는 통상적으로, 특이적인 항체가 가용한 짧은 펩티드 서열이다. 특이적인 단일클론 항체가 용이하게 가용한 널리 공지된 에피토프 태그에는 FLAG, 인플루엔자 바이러스 헤마글루티닌(influenza virus haemagglutinin, HA)과 c-myc 태그가 포함된다. 일부 사례에서, 융합 도메인은 프로테아제 절단 부위(protease cleavage site), 예를 들면, 인자 Xa 또는 트롬빈(thrombin)에 대한 프로테아제 절단 부위를 보유하는데, 상기 부위는 관련된 프로테아제가 융합 단백질을 부분적으로 절단하여, 이로부터 재조합 단백질이 유리될 수 있도록 한다. 유리된 단백질은 이후, 차후의 크로마토그래피 분리(chromatographic separation)에 의해 융합 도메인으로부터 분리될 수 있다. 특정의 바람직한 구체예에서, GDF 트랩 폴리펩티드는 생체내에서 GDF 트랩 폴리펩티드를 안정화시키는 도메인("안정화" 도메인)과 융합된다. "안정화"는 이러한 안정화가 감소된 파괴, 신장에 의한 감소된 소거, 또는 다른 약동학적 효과에 기인하는 지에 상관없이, 혈청 반감기를 증가시키는 무언가를 의미한다. 면역글로불린의 Fc 부분과의 융합은 광범위한 범위의 단백질에 바람직한 약동학적 특성을 공여하는 것으로 알려져 있다. 유사하게, 인간 혈청 알부민에 융합은 바람직한 특성을 공여할 수 있다. 선택되는 다른 유형의 융합 도메인에는 다중화(multimerizing)(가령, 이합화(dimerizing), 사합화(tetramerizing)) 도메인과 기능성 도메인(추가적인 생물학적 기능, 예를 들면, 적혈구 수준의 추가적인 증가)이 포함된다.
특정 실례로서, 본 발명에서는 Fc 도메인에 융합된 ActRIIB 폴리펩티드의 세포외(가령, 리간드-결합) 도메인을 포함하는 ActRIIB-Fc 융합 단백질인 GDF 트랩을 제시한다. 예시적인 Fc 도메인의 서열은 하기에 제시된다(가령, 서열 번호: 6).
THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD(A)VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK(A)VSNKALPVPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGPFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN(A)HYTQKSLSLSPGK*
임의적으로, Fc 도메인은 Asp-265, 리신 322와 Asn-434와 같은 잔기에서 하나 이상의 잔기를 보유한다. 특정 사례에서, 이들 돌연변이 중에서 하나 이상(가령, Asp-265 돌연변이)을 보유하는 돌연변이체 Fc 도메인은 야생형 Fc 도메인과 비교하여 Fcγ 수용체에 대한 감소된 결합 능력을 갖는다. 다른 사례에서, 이들 돌연변이 중에서 하나 이상(가령, Asn-434 돌연변이)을 보유하는 돌연변이체 Fc 도메인은 야생형 Fc 도메인과 비교하여 MHC 클래스 I-관련된 Fc-수용체(FcRN)에 대한 증가된 결합 능력을 갖는다.
융합 단백질의 상이한 요소는 원하는 기능성과 일치하는 임의의 방식으로 정렬될 수 있다. 가령, GDF 트랩 폴리펩티드가 이질성 도메인의 C-말단에 배치되거나, 또는 대안으로, 이질성 도메인이 GDF 트랩 폴리펩티드의 C-말단에 배치될 수 있다. GDF 트랩 폴리펩티드 도메인과 이질성 도메인은 융합 단백질 내에서 인접할 필요가 없고, 추가적인 도메인 또는 아미노산 서열이 한쪽 도메인의 C- 또는 N-말단에 또는 이들 도메인 사이에 포함될 수 있다.
특정 구체예에서, GDF 트랩 융합 단백질은 GDF 트랩 융합 단백질은 화학식 A-B-C에 열거된 바와 같은 아미노산 서열을 포함한다. B 부분은 서열 번호: 26의 아미노산 26-132에 상응하는 아미노산 서열로 구성되는 N-과 C-말단 절두된 ActRIIB 폴리펩티드이다. A와 C 부분은 독립적으로, 0개, 1개 또는 그 이상의 아미노산일 수 있고, 그리고 A와 C 부분은 존재하면 둘 모두 B에 이종기원성이다. A 및/또는 C 부분은 링커 서열을 거쳐 B 부분에 부착될 수 있다. 예시적인 링커에는 짧은 폴리펩티드 링커, 예를 들면, 2-10, 2-5, 2-4, 2-3개 글리신 잔기, 예를 들면, Gly-Gly-Gly 링커가 포함된다. 다른 적합한 링커는 본 명세서에서 앞서 기술된다. 특정 구체예에서, GDF 트랩 융합 단백질은 화학식 A-B-C에 열거된 바와 같은 아미노산 서열을 포함하고, 여기서 A는 리더 서열이고, B는 서열 번호: 26의 아미노산 26-132로 구성되고, 그리고 C는 생체내 안정성, 생체내 반감기, 흡수/투여, 조직 국소화 또는 분포, 단백질 복합체의 형성, 및/또는 정제 중에서 하나 이상을 증강시키는 폴리펩티드 부분이다. 특정 구체예에서, GDF 트랩 융합 단백질은 화학식 A-B-C에 열거된 바와 같은 아미노산 서열을 포함하고, 여기서 A는 TPA 리더 서열이고, B는 서열 번호: 26의 아미노산 26-132로 구성되고, 그리고 C는 면역글로불린 Fc 도메인이다. 바람직한 GDF 트랩 융합 단백질은 서열 번호: 26에서 열거된 바와 같은 아미노산 서열을 포함한다.
특정 구체예에서, 본 발명의 GDF 트랩 폴리펩티드는 GDF 트랩 폴리펩티드를 안정화시킬 수 있는 하나 이상의 변형을 보유한다. 가령, 이들 변형은 GDF 트랩 폴리펩티드의 시험관내 반감기를 강화시키거나, GDF 트랩 폴리펩티드의 순환 반감기(circulatory half life)를 강화시키거나, 또는 GDF 트랩 폴리펩티드의 단백분해 변성을 감소시킨다. 이와 같은 안정화 변형에는 융합 단백질(예로써, GDF 트랩 폴리펩티드와 안정화 도메인을 포함하는 융합 단백질 포함), 글리코실화 부위의 변형(예로써, GDF 트랩 폴리펩티드에 글리코실화 부위의 추가 포함), 그리고 탄수화물 모이어티의 변형(예로써, GDF 트랩 폴리펩티드로부터 탄수화물 모이어티의 제거 포함)이 포함되지만 이들에 국한되지 않는다. 융합 단백질의 경우에, GDF 트랩 폴리펩티드는 안정화 도메인, 예를 들면, IgG 분자(가령, Fc 도메인)에 융합된다. 본 명세서에서, "안정화 도메인"은 융합 단백질의 경우에서처럼 융합 도메인(가령, Fc)을 지칭할 뿐만 아니라 비-단백질성 변형(nonproteinaceous modification), 예를 들면, 탄수화물 모이어티, 또는 비-단백질성 중합체, 예를 들면, 폴리에틸렌 글리콜을 포괄한다.
특정 구체예에서, 본 발명에서는 다른 단백질로부터 분리되거나, 또는 다른 단백질이 실질적으로 존재하지 않는 GDF 트랩 폴리펩티드의 분리된 및/또는 정제된 형태를 이용가능하게 만든다.
특정 구체예에서, 본 발명의 GDF 트랩 폴리펩티드(변형되지 않은 또는 변형된)는 다양한 공지된 기술에 의해 생산될 수 있다. 가령, 이런 GDF 트랩 폴리펩티드는 Bodansky, M. Principles of Peptide Synthesis, Springer Verlag, Berlin (1993) 및 Grant G. A. (ed.), Synthetic Peptides: A User's Guide, W. H. Freeman and Company, New York (1992)에서 기술된 것들과 같은 표준 단백질 화학 기술을 이용하여 합성될 수 있다. 이에 더하여, 자동화된 펩티드 합성기는 상업적으로 구입가능하다(가령, Advanced ChemTech Model 396; Milligen/Biosearch 9600). 대안으로, GDF 트랩 폴리펩티드, 또는 이들의 단편 또는 변이체는 당분야에 널리 공지된 바와 같이 다양한 발현 시스템(가령, 대장균(E. coli), 중국 햄스터 난소(CHO) 세포, COS 세포, 배큘로바이러스)을 이용하여 재조합 방식으로 생산될 수도 있다. 추가의 구체예에서, 변형된 또는 변형되지 않은 GDF 트랩 폴리펩티드는 예로써, 프로테아제, 예를 들면, 트립신(trypsin), 서몰리신(thermolysin), 키모트립신(chymotrypsin), 펩신(pepsin), 또는 쌍 염기성 아미노산 전환 효소(PACE)를 이용함으로써, 재조합 방식으로 생산된 전장 GDF 트랩 폴리펩티드의 절단에 의해 생산될 수 있다. 컴퓨터 분석(상업적으로 구입가능한 소프트웨어, 예를 들면, MacVector, Omega, PCGene, Molecular Simulation, Inc. 이용)은 단백분해 절단 부위를 확인하는데 이용될 수 있다. 대안으로, 이들 GDF 트랩 폴리펩티드는 예로써, 당분야에 공지된 표준 기술, 예를 들면, 화학적 절단(가령, 브롬화시안, 히드록실아민)에 의해, 재조합 방식으로 생산된 전장 GDF 트랩 폴리펩티드로부터 생산될 수 있다.
3. GDF 트랩 폴리펩티드를 인코딩하는 핵산
특정 측면에서, 본 발명에서는 본 명세서에서 개시된 GDF 트랩 폴리펩티드 중에서 한 가지를 인코딩하는 분리된 및/또는 재조합 핵산을 제시한다. 서열 번호: 4는 자연 발생 ActRIIB 전구체 폴리펩티드를 인코딩하는 반면, 서열 번호: 5는 가용성 ActRIIB 폴리펩티드를 인코딩하고, 그리고 서열 번호: 25, 27, 30 및 31은 가용성 GDF 트랩을 인코딩한다. 본 발명의 핵산은 단일 가닥 또는 이중 가닥일 수 있다. 이런 핵산은 DNA 또는 RNA 분자일 수 있다. 이들 핵산은 예로써, GDF 트랩 폴리펩티드를 만드는 방법에 또는 직접적인 치료제(가령, 유전자 요법 접근법에서)로서 이용될 수 있다.
특정 측면에서, GDF 트랩 폴리펩티드를 인코딩하는 본 발명의 핵산은 서열 번호: 5, 25, 27, 30 및 31의 변이체인 핵산을 포함하는 것으로 더욱 이해된다. 변이체 뉴클레오티드 서열에는 하나 이상의 뉴클레오티드 치환, 부가 또는 결실에 의해 구별되는 서열, 예를 들면, 대립형질 변이체(allelic variant)가 포함되고, 따라서 서열 번호: 5, 25, 27, 30 및 31로 지정된 코딩 서열의 뉴클레오티드 서열과 상이한 코딩 서열을 포함할 것이다.
특정 구체예에서, 본 발명에서는 서열 번호: 5, 25, 27, 30 또는 31에 최소한 80%, 85%, 90%, 95%, 97%, 98%, 99% 또는 100% 동일한 분리된 또는 재조합 핵산 서열을 제시한다. 당업자가 인지하는 바와 같이, 서열 번호: 5, 25, 27, 30 또는 31에 상보적인 핵산 서열, 그리고 서열 번호: 5, 25, 27, 30 또는 31의 변이체 역시 본 발명의 범위 내에 있다. 다른 구체예에서, 본 발명의 핵산 서열은 분리되고, 재조합되고 및/또는 이질성 뉴클레오티드 서열과 융합되거나 DNA 라이브러리 내에 융합될 수 있다.
다른 구체예에서, 본 발명의 핵산에는 서열 번호: 5, 25, 27, 30 또는 31에 열거된 뉴클레오티드 서열에 고도로 엄밀한 조건 하에 혼성화되는 뉴클레오티드 서열, 서열 번호: 5, 25, 27, 30 또는 31의 보체 서열, 또는 이들의 단편 역시 포함된다. 앞서 언급된 바와 같이, 당업자는 DNA 혼성화(hybridization)를 촉진하는 적절한 엄밀도(stringency) 조건이 변화될 수 있음을 용이하게 인지할 것이다. 당업자는 DNA 혼성화(hybridization)를 촉진하는 적절한 엄밀도(stringency) 조건이 변화될 수 있음을 용이하게 인지할 것이다. 가령, 대략 45℃에서 6.0 x 염화나트륨(sodium chloride)/시트르산나트륨(sodium citrate)(SSC)에서 혼성화, 이후 50℃에서 2.0 x SSC의 세척을 수행할 수 있다. 가령, 세척 단계에서 염 농도는 50℃에서 대략 2.0 x SSC의 낮은 엄밀도 내지 50℃에서 대략 0.2 x SSC의 높은 엄밀도에서 선택될 수 있다. 이에 더하여, 세척 단계에서 온도는 실온(대략 22℃)에서 낮은 엄밀도 조건에서 대략 65℃에서 높은 엄밀도 조건으로 증가될 수 있다. 온도와 염 모두 변화되거나, 또는 다른 변수가 변하는 반면에 온도 또는 염 농도는 일정하게 유지될 수 있다. 한 구체예에서, 본 발명은 실온에서 6 x SSC의 낮은 엄밀도 조건하에 혼성화되고, 이후 실온에서 2 x SSC에서 세척되는 핵산을 제시한다.
유전자 코드(genetic code)에서 축중(degeneracy)으로 인하여 서열 번호: 5, 25, 27, 30 또는 31에 열거된 핵산과 차별되는 분리된 핵산 역시 본 발명의 범위 내에 있다. 가령, 다수의 아미노산이 하나 이상의 삼중항(triplet)에 의해 지정된다. 동일한 아미노산을 명기하는 코돈, 또는 동종이명(synonym)(가령, CAU와 CAC는 히스티딘에 대한 동종이명(synonym)이다)은 단백질의 아미노산 서열에 영향을 주지 않는 "침묵" 돌연변이를 유도한다. 특정 구체예에서, GDF 트랩 폴리펩티드는 대안적 뉴클레오티드 서열에 의해 인코딩될 것이다. 대안적 뉴클레오티드 서열은 고유 GDF 트랩 핵산 서열에 대하여 축중이지만 동일한 융합 단백질을 여전히 인코딩한다. 특정 구체예에서, 서열 번호: 26을 갖는 GDF 트랩은 서열 번호: 30을 포함하는 대안적 핵산 서열에 의해 인코딩된다. 하지만, 본 발명의 단백질의 아미노산 서열에서 변화를 유발하는 DNA 서열 다형성(polymorphism)이 포유동물 세포 사이에 존재할 것으로 예상된다. 당업자가 인지하는 바와 같이, 특정 단백질을 인코딩하는 핵산의 하나 이상의 뉴클레오티드에서 이들 변이(뉴클레오티드의 최대 3-5%)가 자연적인 대립형질 변이(allelic variation)로 인하여 특정한 종의 개체 사이에 존재할 수 있다. 이와 같은 모든 뉴클레오티드 변이 및 결과의 아미노산 다형성은 본 발명의 범위 내에 있다.
특정 구체예에서, 본 발명의 재조합 핵산은 발현 구조체(expression construct) 내에서 하나 이상의 조절 뉴클레오티드 서열에 작동가능하게 연결된다. 조절 뉴클레오티드 서열은 일반적으로, 발현에 이용되는 숙주 세포에 적합할 것이다. 다양한 숙주 세포에 대한 다양한 유형의 적합한 발현 벡터와 조절 서열이 공지되어 있다. 전형적으로, 상기 하나 이상의 조절 뉴클레오티드 서열에는 프로모터 서열, 리더 또는 신호 서열, 리보솜 결합 부위, 전사 시작과 종결 서열, 번역 시작과 종결 서열, 인핸서 또는 활성인자 서열 등이 포함된다. 당분야에 공지된 구조성 또는 유도성 프로모터가 본 발명에 의해 고려된다. 이들 프로모터는 자연 발생 프로모터, 또는 하나 이상의 프로모터의 요소를 통합하는 하이브리드 프로모터이다. 발현 구조체는 세포 내에서 에피솜(episome), 예를 들면, 플라스미드(plasmid) 상에 존재하거나, 또는 발현 구조체는 염색체 내로 삽입된다. 바람직한 구체예에서, 발현 벡터는 형질전화된 숙주 세포의 선택을 가능하게 하는 선택가능 마커 유전자를 포함한다. 선택가능 마커 유전자는 당분야에 널리 공지되어 있고, 이용된 숙주 세포에 따라 변한다.
본 발명의 특정 측면에서, 본 발명의 핵산은 GDF 트랩 폴리펩티드를 인코딩하는 뉴클레오티드 서열을 포함하고 최소한 하나의 조절 서열에 작동가능하게 연결된 발현 벡터(expression vector)에 담겨 제공된다. 조절 서열은 당분야에서 인지되고, GDF 트랩 폴리펩티드의 발현을 관리하도록 선택된다. 따라서 조절 서열에는 프로모터, 인핸서와 다른 발현 제어 요소가 포함된다. 전형적인 조절 서열은 Goeddel; Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, CA (1990)에서 기술된다. 가령, 작동가능하게 연결되면 DNA 서열의 발현을 제어하는 다양한 발현 제어 서열은 GDF 트랩 폴리펩티드를 인코딩하는 DNA 서열을 발현하기 위하여 이들 벡터에 이용된다. 이런 유용한 발현 제어 서열에는 예로써, SV40의 초기와 후기 프로모터, tet 프로모터, 아데노바이러스 또는 사이토메갈로바이러스 극초기 프로모터, RSV 프로모터, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T7 프로모터(이의 발현은 T7 RNA 중합효소에 의해 관리된다), 파지 람다(phage lambda)의 주요 오퍼레이터와 프로모터 영역, fd 외피 단백질에 대한 제어 영역, 3-글리세르산인산 키나아제(phosphoglycerate kinase) 또는 다른 당분해(glycolytic) 효소에 대한 프로모터, 산성 인산가수분해효소(acid phosphatase)의 프로모터(가령, Pho5), 효모 α-교미 인자(mating factor)의 프로모터, 배큘로바이러스(baculovirus) 시스템의 다면체(polyhedron) 프로모터, 원핵이나 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 제어하는 것으로 알려져 있는 다른 서열, 이들의 다양한 조합 등이 포함된다. 발현 벡터의 설계는 형질전환되는 숙주 세포의 선택 및/또는 발현되는 원하는 단백질의 타입과 같은 인자에 좌우된다. 게다가, 벡터의 사본수(copy number), 사본수를 제어하는 능력과 상기 벡터에 의해 인코딩되는 임의의 다른 단백질, 예를 들면, 항생제 마커(antibiotic marker)의 발현 역시 숙고되어야 한다.
본 발명의 재조합 핵산은 원핵 세포, 진핵 세포(효모, 조류, 곤충 또는 포유류), 또는 둘 모두에서 발현에 적합한 벡터 내로, 클로닝된 유전자 또는 이의 일부분을 결찰함으로써 산출될 수 있다. 재조합 GDF 트랩 폴리펩티드의 생산을 위한 발현 벡터에는 플라스미드 및 다른 벡터가 포함된다. 가령, 원핵 세포, 예를 들면, 대장균(E. coli)에서 발현에 적합한 벡터에는 아래 유형의 플라스미드가 포함된다: pBR322-유래된 플라스미드, pEMBL-유래된 플라스미드, pEX-유래된 플라스미드, pBTac-유래된 플라스미드와 pUC-유래된 플라스미드.
일부 포유동물 발현 벡터는 세균 내에서 벡터의 증식을 용이하게 하는 원핵 서열, 그리고 진핵 세포에서 발현되는 하나 이상의 진핵 전사 단위(transcription unit)를 모두 포함한다. pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo와 pHyg 유래된 벡터는 진핵 세포의 형질감염(transfection)에 적합한 포유동물 발현 벡터의 실례이다. 이들 벡터 중에서 일부는 원핵과 진핵 세포 모두에서 복제와 내약성(drug resistance) 선택을 용이하게 하는 세균 플라스미드, 예를 들면, pBR322로부터 서열로 변형된다. 대안으로, 소 파필로마 바이러스(bovine papilloma virus)(BPV-I), 또는 엡스타인-바르 바이러스(Epstein-Barr virus)(pHEBo, pREP-유래된, p205)와 같은 바이러스의 유도체가 진핵 세포에서 단백질의 일시적인 발현에 이용될 수 있다. 다른 바이러스(레트로바이러스 포함) 발현 시스템의 실례는 하기, 유전자 치료 전달 시스템의 설명에서 확인할 수 있다. 플라스미드의 제조 및 숙주 생물체의 형질전환에 이용되는 다양한 방법이 당분야에 널리 공지되어 있다. 원핵과 진핵 세포 둘 모두에 적합한 다른 발현 시스템 및 전반적인 재조합 절차는 Molecular Cloning A Laboratory Manual, 2nd Ed., ed., Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) 16장과 17장을 참조한다. 일부 사례에서, 배큘로바이러스 발현 시스템의 이용으로 재조합 폴리펩티드를 발현하는 것이 바람직하다. 이런 배큘로바이러스 발현 시스템의 실례에는 pVL-유래된 벡터(가령, pVL1392, pVL1393과 pVL941), pAcUW-유래된 벡터(가령, pAcUW1), 그리고 pBlueBac-유래된 벡터(가령, β-gal 보유 pBlueBac III)가 포함된다.
바람직한 구체예에서, CHO 세포에서 본 발명의 GDF 트랩 폴리펩티드의 생산을 위한 벡터, 예를 들면, Pcmv-Script 벡터(Stratagene, La Jolla, Calif.), pcDNA4 벡터(Invitrogen, Carlsbad, Calif.)와 pCI-neo 벡터(Promega, Madison, Wise)가 설계된다. 확인되는 바와 같이, 본 발명의 유전자 구조체는 예로써, 정제를 위한, 융합 단백질 또는 변이체 단백질을 비롯한 단백질을 생산하기 위하여 배양으로 증식된 세포에서 본 발명의 GDF 트랩 폴리펩티드의 발현을 유도하는데 이용될 수 있다.
본 발명은 또한, 하나 이상의 본 발명의 GDF 트랩 폴리펩티드에 대한 코딩 서열(가령, 서열 번호: 4, 5, 25, 27, 30 또는 31)을 비롯한 재조합 유전자로 형질감염된 숙주 세포에 관계한다. 숙주 세포는 임의의 원핵 또는 진핵 세포이다. 가령, 본 발명의 GDF 트랩 폴리펩티드는 세균 세포(가령, 대장균(E. coli)), 곤충 세포(가령, 배큘로바이러스 발현 시스템 이용), 효모, 또는 포유동물 세포에서 발현된다. 다른 적합한 숙주 세포는 당업자에게 공지되어 있다.
따라서 본 발명은 본 발명의 GDF 트랩 폴리펩티드를 생산하는 방법에 관계한다. 가령, GDF 트랩 폴리펩티드를 인코딩하는 발현 벡터로 형질감염된 숙주 세포는 GDF 트랩 폴리펩티드의 발현이 진행되도록 하는 적절한 조건 하에 배양될 수 있다. GDF 트랩 폴리펩티드는 GDF 트랩 폴리펩티드를 포함하는 세포와 배지의 혼합물로부터 분비되고 분리될 수 있다. 대안으로, GDF 트랩 폴리펩티드는 세포질에 또는 막 분획(membrane fraction) 내에 유지되고, 세포는 수거되고 용해되며, 상기 단백질은 분리된다. 세포 배양액은 숙주 세포, 배지와 다른 부산물을 함유한다. 세포 배양에 적합한 배지는 당분야에 널리 공지되어 있다. 본 발명의 GDF 트랩 폴리펩티드는 이온 교환 크로마토그래피, 겔 여과 크로마토그래피, 한외여과(ultrafiltration), 전기영동(electrophoresis), 그리고 GDF 트랩 폴리펩티드의 특정 에피토프에 특이적인 항체를 이용한 면역친화성(immunoaffinity) 정제를 이용한 친화성 정제를 비롯하여, 단백질을 정제하기 위한 당분야에 공지된 기술을 이용하여, 세포 배양 배지, 숙주 세포, 또는 둘 모두로부터 분리될 수 있다. 바람직한 구체예에서, GDF 트랩 폴리펩티드는 정제를 용이하게 하는 도메인을 포함하는 융합 단백질이다.
다른 구체예에서, 재조합 GDF 트랩 폴리펩티드의 원하는 부분의 N-말단에서 정제 리더 서열, 예를 들면, 폴리-(His)/엔테로키나아제(enterokinase) 절단 부위 서열을 코딩하는 융합 유전자는 Ni2+ 금속 수지(metal resin)를 이용한 친화성 크로마토그래피에 의한, 발현된 융합 단백질의 정제를 가능하게 할 수 있다. 정제 리더 서열은 이후, 정제된 GDF 트랩 폴리펩티드를 제공하기 위하여 엔테로키나아제 처리에 의해 차후에 제거될 수 있다(참조: Hochuli et al., (1987) J Chromatography 411:177; Janknecht et al., PNAS USA 88:8972).
융합 유전자를 만드는 기술은 널리 공지되어 있다. 본질적으로, 상이한 폴리펩티드 서열을 코딩하는 다양한 DNA 단편의 결합은 통상적인 기술에 따라, 결찰을 위한 평활-말단(blunt-ended termini) 또는 갈지자-말단(stagger-ended termini), 적절한 말단을 제공하는 제한 효소 절단(restriction enzyme digestion), 점착 말단(cohesive end)의 채움(filling-in), 원치 않는 결합을 차단하는 알칼리성 포스파타아제(alkaline phosphatase) 처리, 그리고 효소 결찰(enzymatic ligation)을 이용하여 수행된다. 다른 구체예에서, 융합 유전자는 자동화 DNA 합성장치를 비롯한 통상적인 기술에 의해 합성될 수 있다. 대안으로, 유전자 단편의 PCR 증폭은 2개의 연속하는 유전자 단편 사이에 상보성 오버행(overhang)을 산출하는 앵커 프라이머(anchor primer)를 이용하여 수행될 수 있는데, 이들 유전자 단편은 차후에 어닐링되어 키메라 유전자 서열을 산출할 수 있다(참조: Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992).
4. 선별 검사
특정 측면에서, 본 발명은 ActRIIB 폴리펩티드의 작동약 또는 길항약인 화합물(작용제)을 확인하기 위한 GDF 트랩 폴리펩티드(가령, 가용성 변이체 ActRIIB 폴리펩티드)의 용도에 관계한다. 이러한 선별을 통하여 확인된 화합물은 생체내에서 또는 시험관내에서 적혈구, 헤모글로빈 및/또는 망상적혈구를 조절하는 능력을 평가하기 위하여 조사될 수 있다. 이들 화합물은 예로써, 동물 모형에서 조사될 수 있다.
ActRIIB 신호전달을 표적으로 함으로써 적혈구 또는 헤모글로빈 수준을 증가시키는 치료제의 선별을 위한 다수의 접근법이 존재한다. 특정 구체예에서, 화합물의 고속 선별(high-throughput screening)은 선택된 세포주에 대한 ActRIIB-매개된 효과를 교란시키는 작용제를 확인하기 위하여 수행될 수 있다. 특정 구체예에서, 이러한 검사는 결합 상대, 예를 들면, ActRIIB 리간드(가령, 액티빈, 노달, GDF8, GDF11 또는 BMP7)에 대한 ActRIIB 폴리펩티드의 결합을 특이적으로 저해하거나 감소시키는 화합물을 선별하고 확인하기 위하여 수행된다. 대안으로, 상기 검사는 결합 상대, 예를 들면, ActRIIB 리간드에 대한 ActRIIB 폴리펩티드의 결합을 강화시키는 화합물을 확인하는데 이용될 수 있다. 다른 구체예에서, 화합물은 ActRIIB 폴리펩티드와 상호작용하는 능력에 의해 확인될 수 있다.
다양한 검사 양식(assay format)이 만족스럽지만, 그럼에도 불구하고, 본 발명의 개시에 비추어, 본 명세서에서 명시되지 않은 것들 역시 당업자에 의해 이해될 것이다. 본 명세서에 기술된 바와 같이, 본 발명의 검사 화합물(작용제)은 임의의 조합 화학 방법(combinatorial chemical method)으로 산출될 수 있다. 대안으로, 본 발명의 화합물은 생체내에서 또는 시험관내에서 합성된 자연 발생 생물분자이다. 조직 성장의 조절인자(modulator)로서 기능하는 능력에 대하여 검사되는 화합물(작용제)은 예로써, 세균, 효모, 식물 또는 다른 생물체에 의해 생산되거나(가령, 자연 산물), 화학적으로 생산되거나(가령, 펩티드모방체(peptidomimetic)를 비롯한 소형 분자), 또는 재조합 방식으로 생산될 수 있다. 본 발명에서 고려되는 검사 화합물에는 비-펩티딜 유기 분자, 펩티드, 폴리펩티드, 펩티드모방체, 당, 호르몬, 핵산 분자 등이 포함된다. 특정 구체예에서, 검사 작용제는 대략 2,000 달톤(dalton) 이하의 분자량(molecular weight)을 보유하는 소형 유기 분자다.
본 발명의 검사 화합물은 단일의 구별된 존재로서 제공되거나, 또는 예로써, 조합 화학(combinatorial chemistry)으로 만들어진 더욱 복잡한 라이브러리에 담겨 제공될 수 있다. 이들 라이브러리는 예로써, 알코올, 알킬 할라이드, 아민, 아마이드, 에스테르, 알데히드, 에테르 및 다른 종류의 유기 화합물을 포함할 수 있다. 검사 시스템에 검사 화합물의 제공은 특히, 최초 선별 단계에서 분리된 형태로 또는 화합물의 혼합물로서 달성될 수 있다. 임의적으로, 화합물은 다른 화합물로 임의적으로 유도체화되고, 화합물의 분리를 용이하게 하는 유도체화 기(derivatizing group)를 보유한다. 유도체화 기의 무제한적 실례에는 비오틴(biotin), 플루오레세인(fluorescein), 디곡시제닌(digoxygenin), 녹색 형광 단백질(green fluorescent protein), 동위원소(isotope), 폴리히스티딘(polyhistidine), 자성 비드(magnetic beads), 글루타티온 S 전달효소(glutathione S transferase, GST), 광활성화가능 가교제(photoactivatable crosslinker) 또는 이들의 조합이 포함된다.
화합물과 천연 추출물의 라이브러리를 검사하는 많은 약물 선별 프로그램에서, 정해진 기간 내에 조사되는 화합물의 수를 극대화시키기 위하여 고속 분석법이 바람직하다. 정제된 또는 반-정제된 단백질로 유도된 것과 같은 세포-없는 시스템에서 수행되는 분석법은 종종, "일차" 스크린으로서 선호되는데, 그 이유는 이들이 검사 화합물에 의해 매개되는 분자 표적(molecular target) 내에서 변형의 신속한 발생과 상대적으로 용이한 검출을 가능하도록 산출될 수 있기 때문이다. 게다가, 검사 화합물의 세포 독성 또는 생체이용효율(bioavailability)의 효과는 시험관내 시스템에서 일반적으로 무시될 수 있는데, 이러한 분석법은 그 대신에, ActRIIB 폴리펩티드와 이의 결합 상대(가령, ActRIIB 리간드) 사이에 결합 친화성의 변형으로 확인되는, 분자 표적에 대한 약제의 효과에 일차적으로 집중한다.
예로써, 본 발명의 전형적인 선별 검사에서, 목적 화합물은 분석의 의도에 적합하면, ActRIIB 리간드에 통상적으로 결합할 수 있는 분리되고 정제된 ActRIIB 폴리펩티드와 접촉한다. 이후, 상기 화합물과 ActRIIB 폴리펩티드의 혼합물에 ActRIIB 리간드를 함유하는 조성물이 추가된다. ActRIIB/ActRIIB 리간드 복합체의 검출과 정량은 ActRIIB 폴리펩티드와 이의 결합 단백질 사이에 복합체 형성을 저해하는(또는 강화하는) 화합물의 효능을 결정하는 수단을 제공한다. 화합물의 효능은 다양한 농도의 검사 화합물을 이용하여 획득된 데이터로부터 용량 반응 곡선(dose response curve)을 산출함으로써 평가할 수 있다. 게다가, 비교를 위한 기준선(baseline)을 제공하기 위하여 대조 분석(control assay) 역시 수행될 수 있다. 가령, 대조 분석에서, 분리되고 정제된 ActRIIB 리간드가 ActRIIB 폴리펩티드를 함유하는 조성물에 추가되고, ActRIIB/ActRIIB 리간드 복합체의 형성이 검사 화합물의 부재 하에 정량된다. 일반적으로, 반응물이 혼합되는 순서는 변경될 수 있고, 동시에 혼합될 수 있다. 게다가, 적절한 세포-없는 분석 시스템을 제공하기 위하여 정제된 단백질 대신에, 세포 추출물과 용해물(lysate)이 이용될 수도 있다.
ActRIIB 폴리펩티드와 이의 결합 단백질 사이에 복합체 형성은 다양한 기술로 검출될 수 있다. 가령, 복합체 형성의 조절은 예로써, 검출가능하게 표지된 단백질, 예를 들면, 방사성표지된(가령, 32P, 35S, 14C 또는 3H), 형광 표지된(가령, FITC), 또는 효소 표지된 ActRIIB 폴리펩티드 또는 이의 결합 단백질을 이용하여, 면역분석(immunoassay)에 의해, 또는 크로마토그래피 검출(chromatographic detection)에 의해 정량될 수 있다.
특정 구체예에서, 본 발명에서는 ActRIIB 폴리펩티드와 이의 결합 단백질 사이에 상호작용 정도를 직접적으로 또는 간접적으로 측정하는데 있어 형광 편광(fluorescence polarization) 분석 및 형광 공명 에너지 전달(fluorescence resonance energy transfer, FRET) 분석의 이용을 고려한다. 더 나아가, 광도파(optical waveguide)(PCT Publication WO 96/26432; U.S. Pat. No. 5,677,196), 표면 플라즈몬 공명(surface plasmon resonance, SPR), 표면 전하 센서(surface charge sensor), 그리고 표면 포스 센서(surface force sensor)에 기초한 것들과 같은 다른 검출 양식이 본 발명의 다수 구체예에 적합하다.
게다가, 본 발명에서는 ActRIIB 폴리펩티드와 이의 결합 상대 사이의 상호작용을 파괴하거나 강화시키는 작용제를 확인하기 위한, "이중 하이브리드 분석(two hybrid assay)"으로 알려져 있는 상호작용 트랩 분석(interaction trap assay)의 이용을 고려한다(참조: U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J Biol Chem 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696). 특정 구체예에서, 본 발명에서는 ActRIIB 폴리펩티드와 이의 결합 단백질 사이에 상호작용을 분리시키는 화합물(가령, 소형 분자 또는 펩티드)을 확인하는 역 이중 하이브리드 시스템(reverse two hybrid system)의 이용을 고려한다(참조: Vidal and Legrain, (1999) Nucleic Acids Res 27:919-29; Vidal and Legrain, (1999) Trends Biotechnol 17:374-81; U.S. Pat. No. 5,525,490; 5,955,280; 5,965,368).
특정 구체예에서, 본 발명의 화합물은 본 발명의 ActRIIB 폴리펩티드와 상호작용하는 능력으로 확인된다. 상기 화합물과 ActRIIB 폴리펩티드 사이에 상호작용은 공유 또는 비-공유이다. 가령, 이런 상호작용은 광-가교연결(photo-crosslinking), 방사성표지된 리간드 결합, 그리고 친화성 크로마토그래피를 비롯한 시험관내 생화학적 방법을 이용하여 단백질 수준에서 확인될 수 있다(Jakoby WB et al., 1974, Methods in Enzymology 46: 1). 특정 사례에서, 이들 화합물은 기전 기초된 분석(mechanism based assay), 예를 들면, ActRIIB 폴리펩티드에 결합하는 화합물을 검출하는 분석에서 선별된다. 이는 고체상(solid phase) 또는 액체상(fluid phase) 결합 현상을 포함할 수 있다. 대안으로, ActRIIB 폴리펩티드를 인코딩하는 유전자는 리포터 시스템(가령, β-갈락토시다아제, 루시페라제, 또는 녹색 형광 단백질)으로 세포 내로 형질감염되고, 바람직하게는 고속 선별에 의해 라이브러리에 대하여 또는 상기 라이브러리의 개별 구성원으로 선별된다. 다른 기전 기초된 결합 분석, 예를 들면, 자유 에너지(free energy)에서 변화를 검출하는 결합 분석이 이용될 수도 있다. 결합 분석은 웰, 비드 또는 칩에 고정되거나, 고정된 항체에 의해 포획되거나, 또는 모세관 전기영동(capillary electrophoresis)에 의해 분할된 표적으로 수행될 수 있다. 결합된 화합물은 통상적으로, 비색(colorimetric) 또는 형광 또는 표면 플라즈몬 공명을 이용하여 검출된다.
5. 전형적인 치료 용도
특정 구체예에서, 본 발명의 GDF 트랩 폴리펩티드는 포유동물, 예를 들면, 설치류와 영장류, 특히, 인간 환자에서 적혈구 수준을 증가시키는데 이용될 수 있다. 부가적으로, 본 명세서에서 확인되는 바와 같이, GDF 트랩 폴리펩티드는 더욱 적은 용량 범위에서 적혈구 세포의 증가를 달성하기 위하여 EPO 수용체 활성인자와 병용될 수 있다. 이것은 고용량의 EPO 수용체 활성인자와 관련된 공지된 표적외 효과(off-target effect)와 위험을 감소시키는데 유익할 수 있다. 특정 구체예에서, 본 발명에서는 GDF 트랩 폴리펩티드, 또는 GDF 트랩 폴리펩티드와 EPO 수용체 활성인자의 복합(또는 공동 요법의 치료 효과량을 필요 개체에 투여함으로써 상기 개체에서 빈혈을 치료하거나 예방하는 방법을 제시한다. 이들 방법은 포유동물, 특히, 인간의 치료적 처치와 예방적 처치에 이용될 수 있다.
GDF 트랩 폴리펩티드는 EPO의 부작용에 취약한 환자에서 이들 활성인자의 요구되는 용량을 감소시키기 위하여 EPO 수용체 활성인자와 병용될 수 있다. EPO의 일차적인 부작용은 헤마토크릿 또는 헤모글로빈 수준에서 과도한 증가 및 적혈구증가증(polycythemia)이다. 상승된 헤마토크릿 수준은 고혈압(더욱 구체적으로, 고혈압의 악화) 및 혈관 혈전증(vascular thrombosis)을 유발할 수 있다. EPO의 다른 부작용이 보고되었는데, 이들 중에서 고혈압과 관련된 부작용은 두통, 인플루엔자-유사 증후군, 문합(shunt)의 폐색, 혈전증에 기인한 심근경색과 뇌경련, 고혈압성 뇌병증(hypertensive encephalopathy), 그리고 적혈구혈구무형성(red cell blood cell applasia)이다(Singibarti, (1994) J. Clin Investig 72(suppl 6), S36-S43; Horl et al. (2000) Nephrol Dial Transplant 15(suppl 4), 51-56; Delanty et al. (1997) Neurology 49, 686-689; Bunn (2002) N Engl J Med 346(7), 522-523).
본 명세서에서 개시된 GDF 트랩 폴리펩티드의 적혈구 수준에 대한 신속한 효과는 이들 작용제가 EPO와 상이한 기전으로 작용한다는 것을 지시한다. 따라서 이들 길항약은 EPO에 충분히 반응하지 않는 환자에서 적혈구와 헤모글로빈 수준을 증가시키는데 유용할 수 있다. 가령, GDF 트랩 폴리펩티드는 정상 내지 증가된(>300 IU/kg/week) 용량의 EPO 투여가 헤모글로빈 수준을 목표 수준까지 증가시키지 못하는 환자에 유익할 수 있다. 부적절한 EPO 반응을 나타내는 환자는 모든 유형의 빈혈에서 관찰되긴 하지만, 더욱 많은 숫자의 비-반응자는 암 환자 및 말기 신질환(end-stage renal disease) 환자에서 특히 빈번하게 관찰되었다. EPO에 대한 부적절한 반응은 구조성(즉, EPO로 첫 치료 시에 관찰됨) 또는 후천성(가령, EPO로 반복된 치료 시에 관찰됨)일 수 있다.
본 명세서에서, 질환이나 이상을 "예방"하는 치료제는 통계학적 표본(statistical sample)에서, 처리되지 않은 대조 표본과 비교하여 처리된 표본에서 질환이나 이상의 발생률(occurrence)을 감소시키거나, 또는 처리되지 않은 대조 표본과 비교하여 이러한 질환이나 이상의 발병을 지연시키거나 상기 질환이나 이상의 한 가지 이상의 증상의 심각도(severity)를 감소시키는 화합물을 지칭한다. 본 명세서에서, "치료"는 지명된 이상의 예방, 또는 확립된 이상의 완화 또는 제거를 포괄한다. 어느 경우든, 예방 또는 치료는 의사 또는 다른 건강관리 제공자에 의해 제공된 진단 및 치료제 투여의 의도된 결과에서 구별될 수 있다.
본 명세서에서 확인되는 바와 같이, EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 건강한 개체에서 적혈구, 헤모글로빈 또는 망상적혈구 수준을 증가시키는데 이용되고, 이들 GDF 트랩 폴리펩티드는 선택된 환자 개체군에서 이용될 수 있다. 적절한 환자 개체군의 실례는 바람직하지 않게 낮은 적혈구 또는 헤모글로빈 수준을 갖는 환자, 예를 들면, 빈혈 환자, 그리고 바람직하지 않게 낮은 적혈구 또는 헤모글로빈 수준이 발생할 위험이 있는 환자, 예를 들면, 큰 수술 또는 상당한 혈액 손실(blood loss)을 유발하는 다른 절차를 받을 예정인 환자이다. 한 구체예에서, 적절한 적혈구 수준을 갖는 환자는 적혈구 수준을 증가시키기 위하여 GDF 트랩 폴리펩티드로 치료되고, 이후 혈액이 채취되고 수혈(transfusion)에 추후 이용을 위하여 보관된다.
본 명세서에 개시된 EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 빈혈 환자에서 적혈구 수준을 증가시키는데 이용될 수 있다. 인간에서 헤모글로빈 수준을 관찰할 때, 적절한 연령과 성별 항목에서 정상적인 것보다 낮은 수준은 개별 편차(individual variation)를 고려한다 하더라도, 빈혈을 지시할 수 있다. 가령, 12 g/㎗의 헤모글로빈 수준은 일반적으로, 보편적인 성인 개체군에서 정상 범위보다 낮은 것으로 간주된다. 잠재적 원인에는 혈액 손실(blood-loss), 영양 결핍(nutritional deficit), 약물 반응(medication reaction), 골수와 관련된 여러 문제점, 그리고 여러 질환이 포함된다. 더욱 구체적으로, 빈혈은 예로써, 만성 신부전(chronic renal failure), 골수이형성증(myelodysplastic syndrome), 류머티스 관절염(rheumatoid arthritis), 골수 이식(bone marrow transplantation)을 비롯한 다양한 질환과 연관된다. 빈혈은 또한, 아래의 질환과 연관될 수 있다: 고형 종양(solid tumor)(가령, 유방암(breast cancer), 폐암(lung cancer), 결장암(colon cancer)); 림프계(lymphatic system)의 종양(가령, 만성 림프구성 백혈병(chronic lymphocyte leukemia), 비-호지킨 림프종(non-Hodgkin lymphoma)과 호지킨 림프종(Hodgkin lymphoma); 조혈기관(hematopoietic system)의 종양(가령, 백혈병(leukemia), 골수이형성증(myelodysplastic syndrome), 다발성 골수종(multiple myeloma)); 방사선요법(radiation therapy); 화학요법(chemotherapy)(가령, 백금 포함 섭생(platinum containing regimen)); 류머티스 관절염(rheumatoid arthritis), 다른 염증성 관절염, 전신성 홍반성 낭창(systemic lupus erythematosis, SLE), 급성이나 만성 피부 질환(가령, 건선(psoriasis)), 염증성 장 질환(inflammatory bowel disease)(가령, 크론병(Crohn's disease)과 궤양성 대장염(ulcerative colitis))이 포함되지만 이들에 국한되지 않는 염증 질환(inflammatory disease)과 자가면역 질환(autoimmune disease); 특발성 또는 선천성 장애를 비롯한 급성이나 만성 신장 질환 또는 신부전; 급성이나 만성 간 질환; 급성이나 만성 출혈; 환자의 동종-이나 자기-항체로 인하여 및/또는 종교적 이유(가령, 일부 여호와의 증인(Jehovah's Witnesses))로 적혈구의 수혈이 불가능한 상황; 감염(가령, 말라리아(malaria), 골수염(osteomyelitis)); 겸상적혈구 질환(sickle cell disease), 지중해 빈혈(thalassemia)을 비롯한 헤모글로빈병증(hemoglobinopathy); 약물이나 남용, 예를 들면, 알코올 중독(alcohol misuse); 수혈이 피해야만 하는 임의의 원인으로 인한 빈혈을 앓는 소아 환자; 그리고 순환 과부하(circulatory overload)에 대한 우려로 수혈을 받을 수 없는 노인 환자 또는 빈혈과 함께 근본적 심폐 질환(cardiopulmonary disease)을 앓는 환자.
EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 저증식성 골수의 빈혈을 치료하는데 적합한데, 이들 빈혈은 적혈구(RBC) 형태에서 거의 변화 없음과 전형적으로 연관된다. 저증식성 빈혈에는 1) 만성 질환의 빈혈, 2) 신장 질환의 빈혈, 그리고 3) 저대사 상태(hypometabolic state)와 연관된 빈혈이 포함된다. 이들 각 유형에서, 내인성 에리트로포이에틴 수준은 관찰된 빈혈의 정도에 대하여 부적절하게 낮다. 다른 저증식성 빈혈에는 4) 초기-단계 철-결핍성 빈혈, 그리고 5) 골수에 대한 손상에 의해 유발된 빈혈이 포함된다. 이들 유형에서, 내인성 에리트로포이에틴 수준은 관찰된 빈혈의 정도에 대하여 적절하게 상승된다.
가장 일반적인 유형은 만성 질환의 빈혈인데, 이는 염증, 감염, 조직 손상, 그리고 암과 같은 질환을 포함하고, 그리고 골수 내에서 낮은 에리트로포이에틴 수준 및 에리트로포이에틴에 대한 불충분한 반응 둘 모두에 의해 구별된다(Adamson, 2008, Harrison’s Principles of Internal Medicine, 17th ed.; McGraw Hill, New York, pp 628-634). 많은 인자가 암-관련된 빈혈에 기여할 수 있다. 일부는 질환 과정(disease process) 자체, 그리고 염증성 사이토킨, 예를 들면, 인터류킨-1, 인터페론-감마 및 종양 괴사 인자(tumor necrosis factor)의 생성과 연관된다(Bron et al., 2001, Semin Oncol 28(Suppl 8):1-6). 이의 효과 중에서, 염증은 핵심 철-조절 펩티드 헵시딘(hepcidin)을 유도하고, 따라서 대식세포로부터 철 이출(iron export)을 저해하고 일반적으로, 적혈구생성을 위한 철 이용도(iron availability)를 제한한다(Ganz, 2007, J Am Soc Nephrol 18:394-400). 다양한 경로를 통한 출혈(blood loss) 역시 암-관련된 빈혈에 기여할 수 있다. 암 진행에 기인한 빈혈의 이환율(prevalence)은 전립선암에서 5%에서부터 다발성 골수종에서 90%까지 범위에서 암 유형에 따라 변한다. 암-관련된 빈혈은 피로 및 감소된 삶의 질, 감소된 치료 효능, 그리고 증가된 사망을 비롯하여, 환자에게 엄청난 결과를 유발한다.
만성 신장 질환은 신장 장애(renal impairment)의 정도에 따라 심각도가 달라지는 저증식성 빈혈과 연관된다. 이런 빈혈은 일차적으로, 에리트로포이에틴의 불충분한 생산 및 적혈구의 감소된 생존에 기인한다. 만성 신장 질환은 통상적으로, 환자 생존을 위하여 투석 또는 신장 이식이 요구되는 말기 단계(5 단계) 질환까지 수년 또는 수십 년의 기간에 걸쳐 점진적으로 진행된다. 빈혈은 종종, 이러한 과정에서 초기에 발생하고 병이 진행됨에 따라 악화된다. 신장 질환의 빈혈의 임상적 결과는 상세하게 보고되었는데, 여기에는 좌심실 비대(left ventricular hypertrophy)의 발생, 손상된 인식 기능, 감소된 삶의 질, 그리고 변경된 면역 기능이 포함된다(Levin et al., 1999, Am J Kidney Dis 27:347-354; Nissenson, 1992, Am J Kidney Dis 20(Suppl 1):21-24; Revicki et al., 1995, Am J Kidney Dis 25:548-554; Gafter et al., 1994, Kidney Int 45:224-231). 만성 신장 질환의 생쥐 모형(하기 실시예 참조)에서 본 발명자들에 의해 증명된 바와 같이, EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 신장 질환의 빈혈을 치료하는데 이용될 수 있다.
저대사율을 유발하는 많은 질환은 경등도 내지 중등도 저증식성 빈혈을 유발할 수 있다. 이런 질환에는 내분비 결핍 상태(endocrine deficiency state)가 포함된다. 가령, 빈혈은 애디슨병(Addison’s disease), 갑상선 기능 저하증(hypothyroidism), 부갑상샘항진증(hyperparathyroidism), 또는 거세되거나 에스트로겐으로 치료된 남성에서 발생할 수 있다. 또한, 경등도 내지 중등도 빈혈은 노인에서 특히 우세한 장애인, 단백질의 감소된 식이 섭취로 발생할 수 있다. 최종적으로, 빈혈은 거의 모든 원인에 기인한 만성 간 질환을 앓는 환자에서 발생할 수 있다(Adamson, 2008, Harrison’s Principles of Internal Medicine, 17th ed.; McGraw Hill, New York, pp 628-634).
충분한 부피의 급성 출혈, 예를 들면, 외상 또는 산후 출혈로부터 발생하는 빈혈은 급성 출혈성 빈혈(acute post-hemorrhagic anemia)로 알려져 있다. 급성 출혈은 초기에, 빈혈 없이 혈량저하증(hypovolemia)을 유발하는데, 그 이유는 다른 혈액 성분과 함께 RBC의 비례적 고갈이 나타나기 때문이다. 하지만, 혈량저하증은 혈관외 구획(extravascular compartment)으로부터 혈관 구획(vascular compartment)으로 유체를 이동시키는 생리 기전(physiologic mechanism)을 신속하게 촉발할 것이고, 이는 혈액희석(hemodilution) 및 빈혈을 결과한다. 만성적이면, 출혈은 체내 저장 철(body iron store)을 점진적으로 고갈시키고 궁극적으로 철 결핍을 유발한다. 생쥐 모형(하기 실시예 참조)에서 본 발명자들에 의해 증명된 바와 같이, EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 급성 출혈의 빈혈로부터 회복을 진척시키는데 이용될 수 있다.
철-결핍 빈혈은 중간 단계로서 음성 철 균형(negative iron balance) 및 철-결핍성 적혈구생성을 포함하는 증가하는 철 결핍의 계단적 진행에서 최종 단계이다. 철 결핍은 임신, 불충분한 식이, 장 흡수불량, 급성 또는 만성 염증, 그리고 급성 또는 만성 출혈과 같은 장애에서 예증되는 바와 같이, 증가된 철 요구, 감소된 철 흡수, 또는 증가된 철 손실로 인하여 발생할 수 있다. 이러한 유형의 경등도 내지 중등도 빈혈에서, 골수는 여전히 저증식성이고, 그리고 RBC 형태는 거의 정상이다; 하지만, 경등도 빈혈도 얼마간 소적혈구 저색소성(microcytic hypochromic) RBC를 유발할 수 있고, 그리고 중증도 철-결핍성 빈혈로의 변화는 골수의 과증식 및 더욱 우세한 소적혈구 저색소성 RBC를 동반한다(Adamson, 2008, Harrison’s Principles of Internal Medicine, 17th ed.; McGraw Hill, New York, pp 628-634). 철-결핍 빈혈에 대한 적절한 요법은 이의 원인과 심각도에 좌우되는데, 경구 철 제조물, 비경구 철 제제, 그리고 RBC 수혈이 전통적인 주요 옵션이다. EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 단독으로, 또는 특히, 다인자성 기원(multifactorial origin)의 빈혈을 치료하는 전통적인 치료 접근법과 공동으로 만성 철-결핍 빈혈을 치료하는데 이용될 수 있다.
저증식성 빈혈은 염증, 감염, 또는 암 진행에 부차적인 기능장애 대신에, 골수의 일차적인 기능장애 또는 부전으로부터 발생할 수 있다. 현저한 실례는 암 화학요법 약물 또는 암 방사선 요법에 의해 유발된 골수억제(myelosuppression)일 것이다. 임상 시험의 광범위한 검토에서, 화학요법후 100%의 환자에서 경등도 빈혈이 발생할 수 있고, 반면 더욱 심각한 빈혈은 이들 환자 중에서 최대 80%까지 발생할 수 있는 것으로 밝혀졌다(Groopman et al., 1999, J Natl Cancer Inst 91:1616-1634). 골수억제성 약물에는 1) 알킬화제(alkylating agent), 예를 들면, 질소 겨자(nitrogen mustard)(가령, 멜팔란(melphalan)) 및 니트로소우레아(nitrosourea)(가령, 스트렙토조신(streptozocin)); 2) 대사길항물질(antimetabolite), 예를 들면, 엽산 길항약(가령, 메토트렉사트(methotrexate)), 퓨린 유사체(가령, 티오구아닌(thioguanine)), 그리고 피리미딘 유사체(가령, 젬시타빈(gemcitabine)); 3) 세포독성 항생제(cytotoxic antibotic), 예를 들면, 안트라사이클린(anthracycline)(가령, 독소루비신(doxorubicin)); 4) 키나아제 저해물질(가령, 게피티닙(gefitinib)); 5) 유사분열 저해물질, 예를 들면, 탁산(taxane)(가령, 파클리탁셀(paclitaxel)) 및 빈카 알칼로이드(vinca alkaloid)(가령, 비노렐빈(vinorelbine)); 6) 단일클론 항체(가령, 리툭시맙(rituximab)); 그리고 7) 국소이성화효소(topoisomerase) 저해물질(가령, 토포테칸(topotecan)과 에토포시드(etoposide))이 포함된다. 화학요법-유도된 빈혈의 생쥐 모형(하기 실시예 참조)에서 증명된 바와 같이, EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 화학요법제 및/또는 방사선 요법에 의해 유발된 빈혈을 치료하는데 이용될 수 있다.
EPO 수용체 활성인자와 임의적으로 결합된 GDF 트랩 폴리펩티드는 또한, 부분적으로 보통보다 작은(소적혈구), 보통보다 큰(대적혈구), 기형, 또는 비정상적인 색(저색소성) RBC로 특징되는 무질서한 RBC 성숙의 빈혈을 치료하는데 적절할 것이다.
더욱 낮은 표적 수준이 더욱 적은 심혈관 부작용(cardiovascular side effect)을 유발하긴 하지만, 환자는 헤모글로빈 수준을 표적 수준, 통상적으로, 대략 10 g/㎗ 내지 대략 12.5 g/㎗, 전형적으로, 대략 11.0 g/㎗로 복원하도록 의도된 투약 섭생(dosing regimen)으로 치료될 수 있다(참조: Jacobs et al. (2000) Nephrol Dial Transplant 15, 15-19). 대안으로, 헤마토크릿 수준(세포에 의해 점유된 혈액 시료의 체적 비율)이 적혈구의 상태에 대한 척도로서 이용될 수 있다. 건강한 개체에 대한 헤마토크릿 수준은 성체 수컷의 경우에 41 내지 51% 범위이고, 성체 암컷의 경우에 35 내지 45% 범위이다. 표적 헤마토크릿 수준은 통상적으로, 대략 30-33%이다. 게다가, 헤모글로빈/헤마토크릿 수준은 개체마다 상이하다. 따라서 최적으로, 표적 헤모글로빈/헤마토크릿 수준은 각 환자에 대하여 개별화될 수 있다.
특정 구체예에서, 본 발명에서는 환자에서 하나 이상의 혈액학적 파라미터를 측정함으로써, GDF 트랩 폴리펩티드로 치료를 받고 있는 환자, 또는 GDF 트랩 폴리펩티드로 치료의 후보인 환자를 관리하는 방법을 제시한다. 이들 혈액학적 파라미터는 GDF 트랩 폴리펩티드로 치료의 후보인 환자에 대한 적절한 투약을 평가하고, GDF 트랩 폴리펩티드로 치료 동안 혈액학적 파라미터를 모니터링하고, GDF 트랩 폴리펩티드로 치료 동안 용량을 조정할 지를 평가하고, 및/또는 GDF 트랩 폴리펩티드의 적절한 관리 복용량을 평가하는데 이용될 수 있다. 이들 혈액학적 파라미터 중에서 하나 이상이 정상 수준을 벗어나면, GDF 트랩 폴리펩티드로 투약은 감소되거나, 지연되거나, 또는 종결될 수 있다.
본 명세서에서 제시된 방법에 따라서 측정될 수 있는 혈액학적 파라미터에는 예로써, 당분야에 공지된 방법을 이용하여, 증가된 적혈구 수준과 상관하는 체액에서 관찰되는 적혈구 수준, 혈압, 저장 철, 그리고 기타 작용제가 포함된다. 이들 파라미터는 환자로부터 혈액 샘플을 이용하여 결정될 수 있다. 적혈구 수준, 헤모글로빈 수준, 및/또는 헤마토크릿 수준에서 증가는 혈압에서 증가를 유발할 수 있다.
한 구체예에서, 하나 이상의 혈액학적 파라미터가 정상 범위를 벗어나거나, 또는 정상의 위쪽에 있으면, GDF 트랩 폴리펩티드로 치료의 후보인 환자에서 GDF 트랩 폴리펩티드의 투여의 시작은 혈액학적 파라미터가 자연적으로 또는 치료적 개입(therapeutic intervention)에 의해 정상 또는 허용 수준으로 회복될 때까지 지연될 수 있다. 가령, 후보 환자가 고혈압 또는 전고혈압이면, 환자는 환자의 혈압을 낮추기 위하여 혈압 강하제로 치료될 수 있다. 예로써, 이뇨제, 아드레날린성 저해물질(알파 차단제와 베타 차단제 포함), 혈관확장제, 칼슘 채널 차단제, 앤지오텐신-전환 효소(ACE) 저해물질, 또는 앤지오텐신 II 수용체 차단제를 비롯하여, 개별 환자의 상태에 적합한 임의의 혈압 강하제가 이용될 수 있다. 혈압은 대안으로, 식이 요법과 운동 섭생을 이용하여 치료될 수 있다. 유사하게, 후보 환자가 정상보다 낮거나, 또는 정상의 아래쪽에 있는 저장 철을 가지면, 환자는 환자의 저장 철이 정상 또는 허용 수준으로 회복될 때까지 식이 요법 및/또는 철 보충의 적절한 섭생으로 치료될 수 있다. 정상보다 높은 적혈구 수준 및/또는 헤모글로빈 수준을 갖는 환자의 경우에, GDF 트랩 폴리펩티드의 투여는 이들 수준이 정상 또는 허용 수준으로 회복될 때까지 지연될 수 있다.
특정 구체예에서, 하나 이상의 혈액학적 파라미터가 정상 범위를 벗어나거나, 또는 정상의 위쪽에 있으면, GDF 트랩 폴리펩티드로 치료의 후보인 환자에서, 투여의 시작은 지연되지 않을 수도 있다. 하지만, GDF 트랩 폴리펩티드의 투약의 용량 또는 빈도는 GDF 트랩 폴리펩티드의 투여 시에 발생하는 혈액학적 파라미터에서 허용하기 어려운 증가의 위험을 감소시키는 양으로 설정될 수 있다. 대안으로, 혈액학적 파라미터의 바람직하지 않은 수준을 해결하는 치료제와 GDF 트랩 폴리펩티드를 결합하는 환자용 치료 섭생이 개발될 수 있다. 가령, 환자가 상승된 혈압을 가지면, GDF 트랩 폴리펩티드 및 혈압 강하제의 투여를 수반하는 치료 섭생이 설계될 수 있다. 요망되는 것보다 낮은 저장 철을 갖는 환자의 경우에, GDF 트랩 폴리펩티드 및 철 보충의 치료 섭생이 개발될 수 있다.
한 구체예에서, GDF 트랩 폴리펩티드로 치료의 후보인 환자에 대한 하나 이상의 혈액학적 파라미터에 대한 기준선 파라미터(들)가 확립될 수 있고, 그리고 이러한 기준선 값(들)에 기초하여 상기 환자에 대한 적절한 투약 섭생이 확립될 수 있다. 대안으로, 환자의 병력에 기초된 확립된 기준선 파라미터는 환자에 대한 적절한 GDF 트랩 폴리펩티드 투약 섭생을 통지하는데 이용될 수 있다. 가령, 건강한 환자가 규정된 정상 범위를 초과하는 확립된 기준선 혈압 시도(reading)를 가지면, 환자의 혈압을 GDF 트랩 폴리펩티드로 치료에 앞서 전체 개체군에서 정상으로 간주되는 범위 내로 맞추는 것이 필요하지 않을 수도 있다. GDF 트랩 폴리펩티드로 치료에 앞서 하나 이상의 혈액학적 파라미터에 대한 환자의 기준선 값은 또한, GDF 트랩 폴리펩티드로 치료 동안 혈액학적 파라미터에 대한 임의의 변화를 모니터링하기 위한 관련 비교 값으로서 이용될 수 있다.
특정 구체예에서, 하나 이상의 혈액학적 파라미터는 GDF 트랩 폴리펩티드로 치료를 받고 있는 환자에서 측정된다. 이들 혈액학적 파라미터는 치료 동안 환자를 모니터링하고, 그리고 GDF 트랩 폴리펩티드로 투약 또는 다른 치료제로 추가 투약의 조정 또는 종결을 가능하게 하는데 이용될 수 있다. 가령, GDF 트랩 폴리펩티드의 투여가 혈압, 적혈구 수준 또는 헤모글로빈 수준에서 증가, 또는 저장 철에서 감소를 유발하면, GDF 트랩 폴리펩티드의 투약은 하나 이상의 혈액학적 파라미터에 대한 GDF 트랩 폴리펩티드의 효과를 감소시키기 위하여, 양 또는 빈도에서 감소될 수 있다. GDF 트랩 폴리펩티드의 투여가 환자에 불리한, 하나 이상의 혈액학적 파라미터에서 변화를 유발하면, GDF 트랩 폴리펩티드의 투약은 일시적으로, 혈액학적 파라미터(들)가 허용 수준으로 회복될 때까지, 또는 영구적으로 종결될 수 있다. 유사하게, 하나 이상의 혈액학적 파라미터가 GDF 트랩 폴리펩티드의 투여의 양 또는 빈도를 감소시킨 이후에 허용 범위 내로 맞춰지지 않으면, 투약은 종결될 수 있다. GDF 트랩 폴리펩티드로 투약을 감소시키거나 종결시키는 것에 대안으로, 또는 부가적으로, 환자는 혈액학적 파라미터(들)에서 바람직하지 않은 수준을 해결하는 추가 치료제, 예를 들면, 혈압 강하제 또는 철 보충제로 투약될 수 있다. 가령, GDF 트랩 폴리펩티드로 치료되는 환자가 상승된 혈압을 가지면, GDF 트랩 폴리펩티드로 투약이 동일한 수준에서 지속될 수 있고 혈압 강하제가 이러한 치료 섭생에 추가되거나, GDF 트랩 폴리펩티드로 투약이 감소될 수 있고(가령, 양 및/또는 빈도에서) 혈압 강하제가 이러한 치료 섭생에 추가되거나, 또는 GDF 트랩 폴리펩티드로 투약이 종결될 수 있고 환자가 혈압 강하제로 치료될 수 있다.
특정 구체예에서, GDF 트랩 폴리펩티드로 치료를 받고 있는 환자, 또는 GDF 트랩 폴리펩티드로 치료의 후보 환자는 근육 성장이 요구되는 환자, 예를 들면, 신경근 질환(neuromuscular disorder) 또는 근변성 질환(musculodegenerative disorder)을 앓고 있거나, 또는 이러한 질환이 발병할 위험이 있는 환자이다. 가령, 환자 또는 후보 환자는 루게릭병(ALS), 암 식욕부진-악액질 증후군, 근이영양증(muscular dystrophy), 근위축증(muscle atrophy), 울혈성 폐쇄성 폐 질환(congestive obstructive pulmonary disease, COPD)(및 COPD와 연관된 근육 소모증), 근육 소모 증후군(muscle wasting syndrome), 근육감소증(sarcopenia), 또는 악액질을 앓고 있거나, 또는 이러한 질환이 발병할 위험이 있다. 근이영양증은 골격 근육 및 때때로, 심장과 호흡 근육의 점진적인 약화와 저하로 특징되는 일군의 변성 근육 질환을 지칭한다. 본 발명의 GDF 트랩 폴리펩티드를 포함하는 섭생으로 치료될 수 있는 예시적인 근이영양증에는 뒤시엔느 근이영양증(Duchenne Muscular Dystrophy, DMD), 베커 근이영양증(Becker Muscular Dystrophy, BMD), 에머리-드라이푸스 근이영양증(Emery-Dreifuss Muscular Dystrophy, EDMD), 지대형 근이영양증(Limb-Girdle Muscular Dystrophy, LGMD), 안면견갑상완 근이영양증(Facioscapulohumeral Muscular Dystrophy, FSH 또는 FSHD)(일명, Landouzy-Dejerine), 근긴장성 근이영양증(Myotonic Dystrophy, MMD)(일명, Steinert's Disease), 안인두성(眼咽頭性) 근이영양증(Oculopharyngeal Muscular Dystrophy, OPMD), 원위성 근이영양증(Distal Muscular Dystrophy, DD), 선천성 근이영양증(Congenital Muscular Dystrophy, CMD)이 포함된다.
6. 제약학적 조성물
특정 구체예에서, 본 발명의 화합물(가령, GDF 트랩 폴리펩티드)은 제약학적으로 허용되는 담체로 제제화된다. 가령, GDF 트랩 폴리펩티드는 단독으로, 또는 제약학적 제형(치료 조성물)의 한 성분으로서 투여될 수 있다. 본 발명의 화합물은 의학 또는 수의학에 이용하기 편의한 방식으로 투여를 위하여 제제화된다.
특정 구체예에서, 본 발명의 치료 방법은 이식물(implant) 또는 장치로서 전신적으로 또는 국소적으로 상기 조성물을 투여하는 단계를 포함한다. 투여될 때, 본 발명에 이용되는 치료 조성물은 당연히, 발열원-없는, 생리학적으로 허용되는 형태를 취한다. 앞서 기술된 바와 같은 조성물에 임의적으로 포함되는, GDF 트랩 폴리펩티드 이외의 치료제는 본 발명의 방법에서, 본 발명의 화합물(가령, GDF 트랩 폴리펩티드)과 동시에 또는 순차적으로 투여된다.
전형적으로, 화합물은 비경구(parental) 투여된다. 비경구 투여에 적합한 제약학적 조성물은 하나 이상의 제약으로 허용되는 무균 등장성 수용액이나 비-수용액, 분산액(dispersion), 현탁액(suspension)이나 에멀젼(emulsion), 또는 사용 직전에 무균 주사가능 용액이나 분산액으로 재구성되는 무균 분말(sterile powder)과의 조합으로 하나 이상의 GDF 트랩 폴리펩티드를 포함하고, 항산화제(antioxidant), 완충제(buffer), 정균제(bacteriostat), 의도된 수용자의 혈액과 제형이 등장성이 되도록 하는 용매, 현탁제, 또는 농후제(thickening agent)를 포함할 수 있다. 본 발명의 제약학적 조성물에 이용될 수 있는 적절한 수성과 비-수성 담체의 실례에는 물, 에탄올, 폴리올(가령, 글리세롤, 프로필렌 글리콜, 폴리에틸렌 글리콜 등)과 이들의 적절한 혼합물, 식물성 오일(vegetable oil)(가령, 올리브 오일(olive oil)), 그리고 주사가능 유기 에스테르(injectable organic ester)(가령, 올레인산에틸(ethyl oleate))가 포함된다. 적절한 유동성(fluidity)은 예로써, 레시틴(lecithin)과 같은 코팅 물질의 이용에 의하여, 분산액의 경우에 요구되는 입자 크기의 유지에 의하여, 그리고 계면활성제의 이용에 의하여 유지될 수 있다.
더 나아가, 본 발명의 조성물은 표적 조직 부위(가령, 골수)로의 전달을 위한 형태로 내포되거나 주입될 수 있다. 특정 구체예에서, 본 발명의 조성물은 하나 이상의 치료 화합물(가령, GDF 트랩 폴리펩티드)을 표적 조직 부위(가령, 골수)로 전달할 수 있는 기반(matrix)을 포함하는데, 이는 발달중인 조직에 대한 구조물을 제공하고 최적으로, 체내 재흡수될 수 있다. 가령, 기반은 GDF 트랩 폴리펩티드의 느린 방출(slow release)을 제공한다. 이런 기반은 다른 이식된 의학 적용에 현재 이용되고 있는 물질로 형성될 수 있다.
기반 물질의 선택은 생체적합성(bibcompatibility), 생물분해성(biodegradability), 기계적 특성, 미용적 외관(cosmetic appearance) 및 접촉면 특성(interface property)에 기초한다. 본 발명의 조성물의 특정 적용은 적절한 제형을 정의할 것이다. 이들 조성물에 적합한 잠재적인 기반은 생물분해가능하고 화학적으로 정의된 황산칼슘(calcium sulfate), 트리칼슘포스페이트(tricalciumphosphate), 수산화인회석(hydroxyapatite), 폴리락트산(polylactic acid)과 폴리안하이드라이드(polyanhydride)이다. 다른 잠재적인 물질은 생물분해가능하고 생물학적으로 충분히 정의된 물질, 예를 들면, 골 또는 피부 콜라겐이다. 추가의 기반은 순수한 단백질 또는 세포외 기반 성분으로 구성된다. 다른 잠재적인 기반은 생물분해불가능하고 화학적으로 정의된 물질, 예를 들면, 소결된 수산화인회석(sintered hydroxyapatite), 생체유리(bioglass), 알루민산염(aluminate), 또는 다른 세라믹이다. 기반은 앞서 언급된 유형의 물질의 조합, 예를 들면, 폴리락트산과 수산화인회석, 또는 콜라겐과 트리칼슘포스페이트로 구성될 수도 있다. 생체세라믹(bioceramic)은 칼슘-알루민산염-인산염(calcium-aluminate-phosphate)에서처럼 조성(composition), 그리고 구멍 크기, 입자 크기, 입자 형태와 생물분해성(biodegradability)을 변경하는 가공(processing)에서 변경될 수 있다.
특정 구체예에서, 본 발명의 방법은 예로써, 캡슐, 교갑(cachet), 알약(pill), 정제(tablet), 마름모꼴 정제(lozenge)(방향성 기부(flavored basis), 통상적으로, 수크로오스(sucrose)와 아카시아(acacia) 또는 트랜거캔스(tragacanth) 이용), 분말, 과립, 또는 수용성이나 비-수용성 액체에 녹인 용액이나 현탁액, 또는 수중유(oil-in-water) 또는 유중수(water-in-oil) 액체 에멀젼, 또는 엘릭시르 또는 시럽, 또는 향정(pastille)(불활성 기부(inert base), 예를 들면, 젤라틴(gelatin)과 글리세린(glycerin), 또는 수크로오스와 아카시아 이용) 및/또는 구강세정제(mouth wash) 등의 형태로 경구 투여될 수 있는데, 이들 각각은 미리 결정된 양의 작용제를 활성 성분으로 함유한다. 작용제는 거환약(bolus), 연질약(electuary) 또는 페이스트(paste)로 투여될 수도 있다.
경구 투여용 고형 약형(캡슐, 정제, 알약, 당의정, 분말, 과립 등)에서, 본 발명의 하나 이상의 치료 화합물은 한 가지 이상의 제약학적으로 허용되는 담체, 예를 들면, 구연산나트륨 또는 이인산칼슘 및/또는 (1) 충전제 또는 증량제, 예를 들면, 전분, 락토오스, 수크로오스, 글루코오스, 만니톨, 또는 규산; (2) 접착제, 예를 들면, 카르복시메틸셀룰로오스, 알긴산염, 젤라틴, 폴리비닐 피롤리돈, 수크로오스, 또는 아카시아; (3) 습윤제, 예를 들면, 글리세롤; (4) 붕해제, 예를 들면, 아가-아가, 탄산칼슘, 감자나 타피오카 전분, 알긴산, 특정 규산염, 또는 탄산나트륨; (5) 용해 지연제, 예를 들면, 파라핀; (6) 흡수 가속화제, 예를 들면, 4급 암모늄 화합물; (7) 보습제, 예를 들면, 세틸 알코올과 글리세롤 모노스테아레이트; (8) 흡수제, 예를 들면, 고령토와 벤토나이트 점토; (9) 윤활제, 예를 들면, 활석, 스테아르산칼슘, 스테아르산마그네슘, 고형 폴리에틸렌 글리콜, 소디움 라우릴 설페이트, 또는 이들의 혼합물; (10) 착색제와 혼합된다. 캡슐, 정제와 알약의 경우에, 제약학적 조성물은 완충제를 함유할 수도 있다. 유사한 유형의 고형 조성물은 또한, 락토오스 또는 유당과 같은 부형제 및 고분자량 폴리에틸렌 글리콜 등을 이용한 연성과 경성-충전된 젤라틴 캡슐에서 충전제로 사용될 수 있다.
경구 투여용 액체 제형에는 제약학적으로 허용되는 에멀젼, 마이크로에멀젼, 용액, 현탁액, 시럽과 엘릭시르가 포함된다. 활성 성분 이외에, 액체 제형은 당분야에 통상적으로 이용되는 불활성 희석제, 예를 들면, 물 또는 다른 용매, 용해제(solubilizing agent)와 유화제(emulsifier), 예를 들면, 에틸 알코올(ethyl alcohol), 이소프로필 알코올(isopropyl alcohol), 에틸 카보네이트(ethyl carbonate), 에틸 아세테이트(ethyl acetate), 벤질 알코올(benzyl alcohol), 벤질 벤조에이트(benzyl benzoate), 프로필렌 글리콜(propylene glycol), 1,3-부틸렌 글리콜, 오일(특히, 목화씨, 땅콩, 옥수수, 점(germ), 올리브, 피마자와 참깨 기름), 글리세롤(glycerol), 테트라하이드로푸릴 알코올(tetrahydrofuryl alcohol), 소르비탄의 폴리에틸렌 글리콜(polyethylene glycol)과 지방산 에스테르(fatty acid ester), 또는 이들의 혼합물을 함유할 수 있다. 불활성 희석제 이외에, 경구 조성물은 습윤제, 유화제와 현탁제, 감미료, 조미료, 착색제, 방향제, 보존제 등과 같은 어쥬번트를 함유할 수 있다.
현탁액은 활성 화합물 이외에, 에톡실화된 이소스테아릴 알코올(ethoxylated isostearyl alcohol), 폴리옥시에틸렌 소르비톨(polyoxyethylene sorbitol)과 소르비탄 에스테르(sorbitan ester), 미세결정성 셀룰로오스(microcrystalline cellulose), 알루미늄 메타하이드록시드(aluminum metahydroxide), 벤토나이트(bentonite), 아가-아가(agar-agar)와 트랜거캔스(tragacanth), 이들의 혼합물 등과 같은 현탁제를 함유할 수 있다.
본 발명의 조성물은 또한, 보존제, 습윤제, 유화제와 분산제(dispersing agent)와 같은 어쥬번트를 함유할 수 있다. 미생물의 작용 예방은 다양한 항균제와 항진균제, 예를 들면, 파라벤(paraben), 클로로부탄올(chlorobutanol), 페놀 소르빈산(phenol sorbic acid) 등의 내포에 의해 담보될 수 있다. 또한, 등장성제(isotonic agent), 예를 들면, 당, 염화나트륨 등을 조성물 내로 포함시키는 것이 바람직하다. 이에 더하여, 주사가능 제약학적 형태의 연장된 흡수는 흡수를 지연시키는 작용제, 예를 들면, 스테아린산알루미늄(aluminum monostearate)과 젤라틴의 내포로 달성될 수 있다.
투약 섭생은 본 발명의 화합물(가령, GDF 트랩 폴리펩티드)의 작용을 변화시키는 다양한 인자를 고려하여 담당 의사에 의해 결정될 것이다. 다양한 인자에는 환자의 적혈구 수, 헤모글로빈 수준 또는 다른 진단 척도, 원하는 표적 적혈구 수, 환자의 연령, 성별과 식이, 감소된 적혈구 수준의 원인이 되는 질환의 심각도, 투여 기간, 그리고 다른 임상 인자가 포함되지만 이들에 국한되지 않는다. 최종 조성물에 다른 공지된 성장 인자의 첨가 역시 용량에 영향을 줄 수 있다. 진행은 적혈구와 헤모글로빈 수준의 주기적 평가, 그리고 망상적혈구 수준과 혈액생성 과정의 다른 지표의 평가에 의해 모니터링될 수 있다.
특정 구체예에서, 본 발명에서는 GDF 트랩 폴리펩티드의 생체내 생산을 위한 유전자 요법을 제시한다. 이런 요법은 앞서 열거된 바와 같은 질환을 나타내는 세포 또는 조직 내로 GDF 트랩 폴리뉴클레오티드 서열의 도입에 의해 치료 효과를 달성하게 된다. GDF 트랩 폴리뉴클레오티드 서열의 전달은 키메라 바이러스 또는 콜로이드성 분산 시스템과 같은 재조합 발현 벡터를 이용하여 달성될 수 있다. GDF 트랩 폴리뉴클레오티드 서열의 치료적 전달(therapeutic delivery)에는 표적된 리포좀(liposome)의 이용이 바람직하다.
본 명세서에 교시된 바와 같이 유전자 요법에 이용될 수 있는 다양한 바이러스 벡터에는 아데노바이러스(adenovirus), 포진 바이러스(herpes virus), 우두(vaccinia), 또는 레트로바이러스(retrovirus)와 같은 RNA 바이러스가 포함된다. 레트로바이러스 벡터는 뮤린 또는 조류 레트로바이러스의 유도체다. 단일 외래 유전자가 삽입될 수 있는 레트로바이러스 벡터의 실례에는 Moloney 뮤린 백혈병 바이러스(MoMuLV), Harvey 뮤린 육종 바이러스(HaMuSV), 뮤린 유방 종양 바이러스(MuMTV), 그리고 Rous 육종 바이러스(RSV)가 포함되지만 이들에 국한되지 않는다. 다수의 부가적인 레트로바이러스 벡터는 복수 유전자를 통합할 수 있다. 이들 모든 벡터는 형질도입된 세포가 확인되고 산출될 수 있도록 선택가능 마커에 대한 유전자를 전달하거나 통합할 수 있다. 레트로바이러스 벡터는 예로써, 당, 당지질(glycolipid), 또는 단백질을 부착함으로써 표적-특이적으로 만들어질 수 있다. 바람직한 표적화는 항체를 이용함으로써 달성된다. 당업자가 인지하는 바와 같이, 특이적인 폴리뉴클레오티드 서열은 레트로바이러스 게놈 내로 삽입되거나, 또는 GDF 트랩 폴리뉴클레오티드를 포함하는 레트로바이러스 벡터의 표적 특이적인 전달을 가능하게 하는 바이러스 외피(viral envelope)에 부착될 수 있다.
대안으로, 조직 배양 세포는 통상적인 인산칼슘(calcium phosphate) 형질감염(transfection)에 의해, 레트로바이러스 구조 유전자 gag, pol과 env를 인코딩하는 플라스미드로 직접적으로 형질감염될 수 있다. 이들 세포는 이후, 목적 유전자를 포함하는 벡터 플라스미드로 형질감염된다. 생성된 세포는 배양 배지 내로 레트로바이러스 벡터를 방출한다.
GDF 트랩 폴리뉴클레오티드에 대한 다른 표적된 전달 시스템은 콜로이드성 분산 시스템이다. 콜로이드성 분산 시스템에는 거대분자 복합체, 나노캡슐(nanocapsule), 마이크로캡슐(microsphere), 비드(bead), 그리고 지질-기초된 시스템(가령, 수중유 에멀젼, 미셀(micell), 혼합된 미셀, 리포좀 등)이 포함된다. 본 발명에서 바람직한 콜로이드성 시스템은 리포좀이다. 리포좀은 시험관내와 생체내에서 전달 운반체(delivery vehicle)로서 유용한 인공 막 소포(membrane vesicle)이다. RNA, DNA와 원형 비리온(virion)은 수성 내부에 내포될 수 있고, 생물학적 활성 형태로 세포에 전달될 수 있다(참조: Fraley, et al., Trends Biochem. Sci., 6:77, 1981). 리포좀 소포를 이용한 효율적인 유전자 전달 방법은 당분야에 공지되어 있다(참조: Mannino, et al., Biotechniques, 6:682, 1988). 리포좀의 조성은 통상적으로, 스테로이드(steroid), 특히, 콜레스테롤(cholesterol)과 조합된 인지질(phospholipid)의 조합이다. 다른 인지질 또는 다른 지질 역시 이용될 수 있다. 리포좀의 물리적 특징은 pH, 이온 강도(ionic strength)와 이가 양이온(divalent cation)의 존재에 좌우된다.
리포좀 생산에 유용한 지질의 실례에는 포스파티딜(phosphatidyl) 화합물, 예를 들면, 포스파티딜글리세롤(phosphatidylglycerol), 포스파티딜콜린(phosphatidylcholine), 포스파티딜세린(phosphatidylserine), 포스파티딜에탄올아민(phosphatidylethanolamine), 스핑고지질(sphingolipid), 세레브로시드(cerebroside) 및 강글리오시드(ganglioside)가 포함된다. 예시적인 인지질에는 난 포스파티딜콜린(egg phosphatidylcholine), 디팔미토일포스파티딜콜린(dipalmitoylphosphatidylcholine), 그리고 디스테아로일포스파디틸콜린(distearoylphosphatidylcholine)이 포함된다. 또한, 리포좀의 표적화는 예로써, 장기-특이성(organ-specificity), 세포-특이성(cell-specificity), 그리고 세포소기관-특이성(organelle-specificity)에 기초하고, 당분야에 공지되어 있다.
본 특허 또는 출원 파일은 유색으로 작성된 최소한 하나의 도면을 포함한다. 유색 도면(들)을 포함하는 본 특허 또는 특허 출원 공보의 사본은 요구되고 필요 수수료가 지불되면 당사에 의해 제공될 것이다.
도 1에서는 상자로 표시된, 리간드에 직접 접촉하는 복식의 ActRIIB와 ActRIIA 결정 구조(리간드 결합 포켓)의 복합 분석에 기초하여, 본 발명에서 추론되는 잔기를 포함하는 인간 ActRIIA(서열 번호: 15)와 인간 ActRIIB(서열 번호: 2)의 세포외 도메인의 정렬을 도시한다.
도 2에서는 다양한 척추동물 ActRIIB 단백질 및 인간 ActRIIA(서열 번호: 16-23)의 복식 서열 정렬을 도시한다.
도 3에서는 TPA 리더 서열(이중 밑줄로 표시됨), ActRIIB 세포외 도메인(서열 번호: 1에서 잔기 20-134; 밑줄로 표시됨), 그리고 hFc 도메인을 포함하는 GDF 트랩 ActRIIB(L79D 20-134)-hFc에 대한 완전 아미노산 서열(서열 번호: 11)을 도시한다. 고유 서열 내에 위치 79에서 치환된 아스파르트산염은 이중 밑줄로 표시되고 강조되며, 염기서열분석에 의해 성숙 융합 단백질 내에 N-말단 잔기인 것으로 확인된 글리신 역시 그러하다.
도 4에서는 ActRIIB(L79D 20-134)-hFc를 인코딩하는 뉴클레오티드 서열을 도시한다. 서열 번호: 25는 센스 가닥에 상응하고, 그리고 서열 번호: 33은 안티센스 가닥에 상응한다. TPA 리더(뉴클레오티드 1-66)는 이중 밑줄로 표시된다, 그리고 ActRIIB 세포외 도메인(뉴클레오티드 76-420)은 밑줄로 표시된다.
도 5에서는 TPA 리더(이중 밑줄로 표시됨), 절두된 ActRIIB 세포외 도메인(서열 번호: 1에서 잔기 25-131; 밑줄로 표시됨), 그리고 hFc 도메인을 포함하는 절두된 GDF 트랩 ActRIIB에 대한 완전 아미노산 서열(L79D 25-131)-hFc(서열 번호: 26)을 도시한다. 고유 서열 내에 위치 79에서 치환된 아스파르트산염은 이중 밑줄로 표시되고 강조되며, 염기서열분석에 의해 성숙 융합 단백질 내에 N-말단 잔기인 것으로 확인된 글리타민산염 역시 그러하다.
도 6에서는 ActRIIB(L79D 25-131)-hFc를 인코딩하는 뉴클레오티드 서열을 도시한다. 서열 번호: 27은 센스 가닥에 상응하고, 그리고 서열 번호: 34는 안티센스 가닥에 상응한다. TPA 리더(뉴클레오티드 1-66)는 이중 밑줄로 표시되고, 그리고 절두된 ActRIIB 세포외 도메인(뉴클레오티드 76-396)은 밑줄로 표시된다. ActRIIB 세포외 도메인에 대한 아미노산 서열(서열 번호: 1에서 잔기 25-131) 역시 도시된다.
도 7에서는 리더가 없는 절두된 GDF 트랩 ActRIIB(L79D 25131)hFc에 대한 아미노산 서열(서열 번호: 28)을 도시한다. 절두된 ActRIIB 세포외 도메인(서열 번호: 1에서 잔기 25-131)은 밑줄로 표시된다. 고유 서열 내에 위치 79에서 치환된 아스파르트산염은 이중 밑줄로 표시되고 강조되며, 염기서열분석에 의해 성숙 융합 단백질 내에 N-말단 잔기인 것으로 확인된 글리타민산염 역시 그러하다.
도 8에서는 리더, hFc 도메인, 그리고 링커가 없는 절두된 GDF 트랩 ActRIIB(L79D 25131)에 대한 아미노산 서열(서열 번호: 29)을 도시한다. 고유 서열 내에 위치 79에서 치환된 아스파르트산염은 밑줄로 표시되고 강조되며, 염기서열분석에 의해 성숙 융합 단백질 내에 N-말단 잔기인 것으로 확인된 글리타민산염 역시 그러하다.
도 9에서는 ActRIIB(L79D 25-131)-hFc를 인코딩하는 대안적 뉴클레오티드 서열을 도시한다. 서열 번호: 30은 센스 가닥에 상응하고, 그리고 서열 번호: 35는 안티센스 가닥에 상응한다. TPA 리더(뉴클레오티드 1-66)는 이중 밑줄로 표시되고, 절두된 ActRIIB 세포외 도메인(뉴클레오티드 76-396)은 밑줄로 표시되고, 그리고 세포외 도메인의 야생형 뉴클레오티드 서열에서 치환은 이중 밑줄로 표시되고 강조된다(서열 번호: 27과 비교, 도 6). ActRIIB 세포외 도메인에 대한 아미노산 서열(서열 번호: 1에서 잔기 25-131) 역시 도시된다.
도 10에서는 도 9에서 도시된 대안적 뉴클레오티드 서열(서열 번호: 30)의 뉴클레오티드 76-396(서열 번호: 31)을 도시한다. 도 9에서 지시된 동일한 뉴클레오티드 치환 역시 밑줄로 표시되고 강조된다. 서열 번호: 31은 L79D 치환을 보유하는 절두된 ActRIIB 세포외 도메인(서열 번호: 1에서 잔기 25-131에 상응), 예를 들면, ActRIIB(L79D 25-131) 만을 인코딩한다.
도 11에서는 화학요법-유도된 빈혈의 생쥐 모형에서 헤모글로빈 농도에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 도시한다. 데이터는 평균 ± SEM이다. **, 동일한 시점에서 P < 0.01 vs. 파클리탁셀. 이러한 GDF 트랩은 파클리탁셀 치료에 유발된 빈혈을 상쇄시킨다.
도 12에서는 만성 신장 질환의 일방적으로 신장절제된(NEPHX) 생쥐 모형에서 적혈구(RBC) 수준에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 도시한다. 데이터는 평균 ± SEM이다. ***, P < 0.001 vs. 기준선. 이러한 GDF 트랩은 대조 생쥐에서 관찰되는 신장절제-유도된 빈혈을 반전시켰다.
도 13에서는 만성 신장 질환의 일방적으로 신장절제된(NEPHX) 생쥐 모형에서 적혈구(RBC), 헤모글로빈(HGB), 그리고 헤마토크릿(HCT) 수준에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 도시한다. 데이터는 4주 동안 기준선으로부터 평균 변화(± SEM)이다. *, P < 0.05; **, P < 0.01; ***, P < 0.001 vs. NEPHX 대조. 이러한 GDF 트랩은 이들 적혈구 파라미터에서 신장절제-연관된 저하를 예방하고, 신장-원형(sham) 생쥐에서와 유사한 크기로 각각을 증가시켰다.
도 14에서는 급성 출혈에 의해 유발된 빈혈의 쥐 모형에서 적혈구(RBC) 수준에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 도시한다. 혈액 제거는 Day -1에서 일어나고, 투약은 Day 0과 3에서 일어났다. 데이터는 평균 ± SEM이다. 동일한 시점에서 **, P < 0.01; ***, P < 0.001 vs. 운반제. 이러한 GDF 트랩은 출혈-유발된 빈혈로부터 회복의 속도와 정도를 향상시켰다.
도 15에서는 필리핀 원숭이(cynomolgus monkey)에서 기준선으로부터 적혈구 농도의 절대 변화에 대한 ActRIIB(L79D 20-134)-hFc(회색) 또는 ActRIIB(L79D 25-131)-hFc(검은색)로 치료의 효과를 도시한다. VEH = 운반제. 데이터는 평균 + SEM이다. n = 군당 4-8마리.
도 16에서는 필리핀 원숭이(cynomolgus monkey)에서 기준선으로부터 헤마토크릿의 절대 변화에 대한 ActRIIB(L79D 20-134)-hFc(회색) 또는 ActRIIB(L79D 25-131)-hFc(검은색)로 치료의 효과를 도시한다. VEH = 운반제. 데이터는 평균 + SEM이다. n = 군당 4-8마리.
도 17에서는 필리핀 원숭이(cynomolgus monkey)에서 기준선으로부터 헤모글로빈 농도의 절대 변화에 대한 ActRIIB(L79D 20-134)-hFc(회색) 또는 ActRIIB(L79D 25-131)-hFc(검은색)로 치료의 효과를 도시한다. VEH = 운반제. 데이터는 평균 + SEM이다. n = 군당 4-8마리.
도 18에서는 필리핀 원숭이(cynomolgus monkey)에서 기준선으로부터 순환 망상적혈구 농도의 절대 변화에 대한 ActRIIB(L79D 20-134)-hFc(회색) 또는 ActRIIB(L79D 25-131)-hFc(검은색)로 치료의 효과를 도시한다. VEH = 운반제. 데이터는 평균 + SEM이다. n = 군당 4-8마리.
도 19에서는 생쥐에서 헤마토크릿에 대한, 72 시간 동안 에리트로포이에틴(EPO)과 ActRIIB(L79D 25-131)-hFc로 복합 치료의 효과를 도시한다. 데이터는 평균 ± SEM이고(n = 군당 4마리), 그리고 서로 유의하게 상이한 평균(p < 0.05, 독립표본 t-검정(unpaired t-test))은 서로 다른 문자로 명기된다. 복합 치료는 운반제와 비교하여 헤마토크릿을 23% 증가시켰는데, 이것은 EPO와 ActRIIB(L79D 25-131)-hFc의 개별 효과의 합보다 큰 상승적 증가이었다.
도 20에서는 생쥐에서 헤모글로빈 농도에 대한, 72 시간 동안 에리트로포이에틴(EPO)과 ActRIIB(L79D 25-131)-hFc로 복합 치료의 효과를 도시한다. 데이터는 평균 ± SEM(n = 군당 4마리)이고, 그리고 서로 유의하게 상이한 평균(p < 0.05)은 서로 다른 문자로 명기된다. 복합 치료는 운반제와 비교하여 헤모글로빈 농도를 23% 증가시켰는데, 이 역시 상승적 효과이었다.
도 21에서는 생쥐에서 적혈구 농도에 대한, 72 시간 동안 에리트로포이에틴(EPO)과 ActRIIB(L79D 25-131)-hFc로 복합 치료의 효과를 도시한다. 데이터는 평균 ± SEM(n = 군당 4마리)이고, 그리고 서로 유의하게 상이한 평균(p < 0.05)은 서로 다른 문자로 명기된다. 복합 치료는 운반제와 비교하여 적혈구 농도를 20% 증가시켰는데, 이 역시 상승적 효과이었다.
도 22에서는 생쥐 비장에서 조혈 전구체 세포의 숫자에 대한, 72 시간 동안 에리트로포이에틴(EPO)과 ActRIIB(L79D 25-131)-hFc로 복합 치료의 효과를 도시한다. 데이터는 평균 ± SEM(n = 군당 4마리)이고, 그리고 서로 유의하게 상이한 평균(p < 0.01)은 서로 다른 문자로 명기된다. EPO 단독은 후기 단계 전구체 성숙을 희생하면서 호염기성 적아세포(BasoE)의 숫자를 극적으로 증가시키는 반면, 복합 치료는 BasoE 숫자를 더욱 적지만 여전히 유의미한 정도로 증가시키면서 후기 단계 전구체의 저하되지 않은 성숙을 뒷받침하였다.
실시예
본 발명은 앞서 전반적으로 기술되었고, 아래의 실시예를 참조하면 더욱 용이하게 이해될 수 있는데, 이들 실시예는 본 발명의 특정 측면과 구체예를 예시하는 목적으로 포함되고 본 발명을 한정하지 않는다.
실시예 1. GDF 트랩의 산출.
본 발명자들은 아래와 같이 GDF 트랩을 작제하였다. GDF11 및/또는 미오스타틴에 비하여 현저하게 감소된 액티빈 A 결합(서열 번호: 1에서 위치 79에서 류신에서 아스파르트산염 치환의 결과로서)을 갖는 ActRIIB의 변형된 세포외 도메인을 보유하는 폴리펩티드는 최소 링커(3개의 글리신 아미노산)를 사이에 두고 인간 또는 생쥐 Fc 도메인에 융합되었다. 이들 구조체는 각각, ActRIIB(L79D 20-134)-hFc 및 ActRIIB(L79D 20-134)-mFc로 지칭된다. 위치 79에서 아스파르트산염이 아닌 글루타민산염을 보유하는 대안적 형태가 유사하게 산출되었다(L79E). 서열 번호: 7에 기초하여 위치 226에서 발린이 아닌 알라닌을 보유하는 대안적 형태 역시 산출되고 조사된 모든 관점에서 동등하게 수행되었다. 위치 79(서열 번호: 1에 기초하여, 또는 서열 번호: 7에 기초하여 위치 60)에서 아스파르트산염은 회색으로 강조된다. 서열 번호: 7에 기초하여 위치 226에서 발린 역시 회색으로 강조된다.
GDF 트랩 ActRIIB(L79D 20-134)-hFc는 CHO 세포주로부터 정제된 대로 하기에 도시된다(서열 번호: 7).
GDF 트랩의 ActRIIB-유래된 부분은 하기에 열거된 아미노산 서열(서열 번호: 32)을 갖고, 그리고 상기 부분은 단위체로서, 또는 단위체, 이합체 또는 더욱 고등 복합체로서 비-Fc 융합 단백질로서 이용될 수 있다.
GDF 트랩 단백질은 CHO 세포주에서 발현되었다. 3가지 상이한 리더(leader) 서열이 고려되었다:
(i) 꿀벌 멜리틴(mellitin)(HBML): MKFLVNVALVFMVVYISYIYA(서열 번호: 8)
(ii) 조직 플라스미노겐 활성인자(TPA): MDAMKRGLCCVLLLCGAVFVSP(서열 번호: 9)
(iii) 고유: MTAPWVALALLWGSLCAGS(서열 번호: 10).
선택된 형태는 TPA 리더를 이용하고, 아래의 가공되지 않은 아미노산 서열을 갖는다:
MDAMKRGLCCVLLLCGAVFVSPGASGRGEAETRECIYYNANWELERTNQSGLERCEGEQDKRLHCYASWRNSSGTIELVKKGCWDDDFNCYDRQECVATEENPQVYFCCCEGNFCNERFTHLPEAGGPEVTYEPPPTAPTGGGTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPVPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(서열 번호: 11)
상기 폴리펩티드는 아래의 핵산 서열(서열 번호: 12)에 의해 인코딩된다:
A TGGATGCAAT GAAGAGAGGG CTCTGCTGTG TGCTGCTGCT GTGTGGAGCA GTCTTCGTTT CGCCCGGCGC CTCTGGGCGT GGGGAGGCTG AGACACGGGA GTGCATCTAC TACAACGCCA ACTGGGAGCT GGAGCGCACC AACCAGAGCG GCCTGGAGCG CTGCGAAGGC GAGCAGGACA AGCGGCTGCA CTGCTACGCC TCCTGGCGCA ACAGCTCTGG CACCATCGAG CTCGTGAAGA AGGGCTGCTG GGACGATGAC TTCAACTGCT ACGATAGGCA GGAGTGTGTG GCCACTGAGG AGAACCCCCA GGTGTACTTC TGCTGCTGTG AAGGCAACTT CTGCAACGAG CGCTTCACTC ATTTGCCAGA GGCTGGGGGC CCGGAAGTCA CGTACGAGCC ACCCCCGACA GCCCCCACCG GTGGTGGAAC TCACACATGC CCACCGTGCC CAGCACCTGA ACTCCTGGGG GGACCGTCAG TCTTCCTCTT CCCCCCAAAA CCCAAGGACA CCCTCATGAT CTCCCGGACC CCTGAGGTCA CATGCGTGGT GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTTCAAC TGGTACGTGG ACGGCGTGGA GGTGCATAAT GCCAAGACAA AGCCGCGGGA GGAGCAGTAC AACAGCACGT ACCGTGTGGT CAGCGTCCTC ACCGTCCTGC ACCAGGACTG GCTGAATGGC AAGGAGTACA AGTGCAAGGT CTCCAACAAA GCCCTCCCAG TCCCCATCGA GAAAACCATC TCCAAAGCCA AAGGGCAGCC CCGAGAACCA CAGGTGTACA CCCTGCCCCC ATCCCGGGAG GAGATGACCA AGAACCAGGT CAGCCTGACC TGCCTGGTCA AAGGCTTCTA TCCCAGCGAC ATCGCCGTGG AGTGGGAGAG CAATGGGCAG CCGGAGAACA ACTACAAGAC CACGCCTCCC GTGCTGGACT CCGACGGCTC CTTCTTCCTC TATAGCAAGC TCACCGTGGA CAAGAGCAGG TGGCAGCAGG GGAACGTCTT CTCATGCTCC GTGATGCATG AGGCTCTGCA CAACCACTAC ACGCAGAAGA GCCTCTCCCT GTCTCCGGGT AAATGA
정제는 예로써, 단백질 A 크로마토그래피(chromatography), Q 세파로오스(sepharose) 크로마토그래피, 페닐세파로오스(phenylsepharose) 크로마토그래피, 크기 배제 크로마토그래피(size exclusion chromatography), 그리고 양이온 교환 크로마토그래피(cation exchange chromatography) 중에서 임의의 순서로, 3가지 또는 그 이상을 비롯한 일련의 칼럼 크로마토그래피 단계에 의해 달성될 수 있다. 정제는 바이러스 여과 및 완충액 교환으로 완결될 수 있다. 정제 계획의 실례에서, 세포 배양 배지는 단백질 A 칼럼에 통과되고, 150 mM Tris/NaCl (pH 8.0)에서 세척되고, 이후 50 mM Tris/NaCl(pH 8.0)에서 세척되고 0.1 M 글리신, pH 3.0으로 용리되었다. 낮은 pH 용출액은 바이러스 제거 단계로서 실온에서 30분 동안 유지된다. 용출액은 이후, 중화되고 Q 세파로오스 이온 교환 칼럼에 통과되고, 50 mM Tris pH 8.0, 50 mM NaCl에서 세척되고, 그리고 150 mM 내지 300 mM 농도의 NaCl과 함께 50 mM Tris pH 8.0에서 용리된다. 용출액은 이후, 50 mM Tris pH 8.0, 1.1 M 황산암모늄 내로 교환되고 페닐 세파로오스 칼럼에 통과되고, 세척되고, 그리고 150 내지 300 mM의 황산암모늄과 함께 50 mM Tris pH 8.0에서 용리된다. 용출액은 사용을 위하여 투석되고 여과된다.
추가 GDF 트랩(미오스타틴 또는 GDF11에 비하여 액티빈 A 결합의 비율을 감소시키기 위하여 변형된 ActRIIB-Fc 융합 단백질)은 본 발명에 참조로서 편입되는 PCT/US2008/001506 및 WO 2006/012627에서 기술된다.
실시예 2. GDF-11과 액티빈-매개된 신호전달에 대한 생물분석.
GDF-11과 액티빈 A에 의한 신호전달에 대한 ActRIIB-Fc 단백질과 GDF 트랩의 효과를 평가하기 위하여 A-204 리포터 유전자 분석이 이용되었다. 세포주: 인간 횡문근육종(근육으로부터 유래됨). 리포터 벡터: pGL3(CAGA)12(Dennler et al, 1998, EMBO 17: 3091-3100에서 기술됨). CAGA12 모티프는 TGF-베타 반응성 유전자(PAI-1 유전자) 내에 존재하고, 따라서 이러한 벡터는 Smad2와 3을 통해 신호전달하는 인자에 일반적으로 유용하다.
Day 1: A-204 세포를 48-웰 평판 내로 분할한다.
Day 2: A-204 세포를 10 ㎍ pGL3(CAGA)12 또는 pGL3(CAGA)12(10 ug) + pRLCMV(1 ㎍) 및 Fugene으로 형질감염시킨다.
Day 3: 인자(배지 + 0.1 % BSA 내로 희석됨)를 첨가한다. 저해물질은 세포에 첨가하기에 앞서 인자와 함께 1시간 동안 미리 배양되어야 한다. 6시간후, 세포는 PBS로 씻어내고, 그리고 세포를 용해시킨다.
그 이후에 루시페라제 분석이 수행된다. 임의의 저해물질의 부재에서, 액티빈 A는 리포터 유전자 발현의 10배 자극 및 ED50 ~ 2 ng/ml을 보였다. GDF-11: 16배 자극, ED50: ~ 1.5 ng/ml.
ActRIIB(20-134)는 이러한 분석에서 액티빈, GDF-8 및 GDF-11 활성의 강력한 저해물질이다. 변이체 역시 이러한 분석에서 조사되었다.
실시예 3. N-말단과 C-말단 절두에 의한 GDF-11 저해
N-말단 및/또는 C-말단에서 절두를 보유하는 ActRIIB(20-134)-hFc의 변이체가 산출되고 GDF-11과 액티빈의 저해물질로서 활성에 대하여 조사되었다. 이들 활성은 하기에 제시된다(조건화 배지에서 측정됨):
C-말단 ActRIIB-hFc 절두:
확인할 수 있는 바와 같이, C-말단에서 3개(…PPT로 종결됨), 6개(…YEP로 종결됨) 또는 그 이상의 아미노산의 절두는 상기 분자의 활성에서 3배 또는 그 이상의 감소를 유발한다. ActRIIB 부분의 마지막 15개 아미노산의 절두는 활성의 더욱 큰 상실을 유발한다(참조: WO2006/012627).
아미노 말단 절두는 ActRIIB(20-131)-hFc 단백질의 배경에서 만들어졌다. 이들 활성은 하기에 제시된다(조건화 배지에서 측정됨):
N-말단 ActRIIB-hFc 절두:
따라서 N-말단으로부터 2개, 3개 또는 4개 아미노산의 절두는 전장 세포외 도메인을 보유하는 이형보다 더욱 활성적 단백질의 생산을 유발한다. 추가 실험에서는 5개 아미노산의 절두, ActRIIB(25-131)-hFc가 절두되지 않은 형태와 동등한 활성을 갖고, 그리고 N-말단에서 추가 결실이 단백질의 활성을 지속적으로 저하시킨다는 것을 증명한다. 이런 이유로, 최적 구조체는 서열 번호: 1의 아미노산 133-134 사이에서 종결되는 C-말단 및 서열 번호: 1의 아미노산 22-24에서 종결되는 N-말단을 가질 것이다. 아미노산 21 또는 25에 상응하는 N-말단은 ActRIIB(20-134)-hFc 구조체에서와 유사한 활성을 제공할 것이다. 이들 절두는 또한, GDF 트랩, 예를 들면, L79D 또는 L79E 변이체의 상황에서 이용될 수 있다.
실시예 4. ActRIIB-Fc 변이체, 세포-기초된 활성.
ActRIIB-Fc 단백질과 GDF 트랩의 활성은 앞서 기술된 바와 같은 세포-기초된 분석에서 조사되었다. 결과는 하기 표에 요약된다. 일부 변이체는 상이한 C-말단 절두 구조체에서 조사되었다. 앞서 논의된 바와 같이, 5개 또는 15개 아미노산의 절두는 활성에서 감소를 유발하였다. GDF 트랩(L79D와 L79E 변이체)은 GDF-11의 야생형 저해를 거의 유지하면서 액티빈 결합의 실질적인 상실을 나타냈다.
GDF11과 액티빈 A에 가용성 ActRIIB-Fc 결합:
+ 불량한 활성 (대충 1x10-6 KI)
++ 중간 활성 (대충 1x10-7 KI)
+++ 우수한(야생형) 활성 (대충 1x10-8 KI)
++++ 야생형보다 큰 활성
여러 변이체가 쥐에서 혈청 반감기에 대해 평가되었다. ActRIIB(20-134)-Fc는 대략 70시간의 혈청 반감기를 갖는다. ActRIIB(A24N 20-134)-Fc는 대략 100-150 시간의 혈청 반감기를 갖는다. A24N 변이체는 세포-기초된 분석(상기) 및 생체내 분석(하기)에서, 야생형 분자에 동등한 활성을 갖는다. 더욱 긴 반감기와 함께, 이것은 시간의 흐름에서 A24N 변이체가 야생형 분자보다 더욱 큰 단백질 단위당 효과를 제공할 것이라는 것을 의미한다. 이러한 A24N 변이체, 그리고 앞서 조사된 임의의 다른 변이체는 GDF 트랩 분자, 예를 들면, L79D 또는 L79E 변이체와 결합될 수 있다.
실시예 5. GDF-11과 액티빈 A 결합.
리간드에 특정 ActRIIB-Fc 단백질과 GDF 트랩의 결합은 BiaCoreTM 분석에서 조사되었다.
이들 ActRIIB-Fc 변이체 또는 야생형 단백질은 항-hFc 항체를 이용한 시스템 상에 포획되었다. 리간드가 주입되고, 그리고 포획된 수용체 단백질 위에서 유동하였다. 결과는 하기 표에서 요약된다.
*리간드 결합 특이성 IIB 변이체.
이들 데이터는 세포 기초된 분석 데이터를 확증하고, A24N 변이체가 ActRIIB(20-134)-hFc 분자에서와 유사한 리간드-결합 활성을 유지하고, 그리고 L79D 또는 L79E 분자가 미오스타틴과 GDF11 결합을 유지하지만 액티빈 A에 현저하게 감소된(비-정량가능) 결합을 나타낸다는 것을 증명한다.
다른 변이체가 산출되고, 그리고 예로써, WO2006/012627 pp. 59-60에서 보고된 바와 같이, 장치에 결합된 리간드를 이용하고 이들 결합된 리간드 위에서 수용체를 유동시킴으로써 조사되었다. 특히, K74Y, K74F, K74I(및 아마도, K74에서 다른 소수성 치환, 예를 들면, K74L), 그리고 D80I는 야생형 K74 분자에 비하여 액티빈 A 결합 대(對) GDF11 결합의 비율에서 감소를 유발한다. 이들 변이체에 대한 데이터의 표는 하기에 제시된다:
GDF11과 액티빈 A에 가용성 ActRIIB-Fc 변이체 결합(BiaCore 분석)
* 관찰된 결합 없음
-- < 1/5 WT 결합
- ~ 1/2 WT 결합
+ WT
++ < 2x 증가된 결합
+++ ~5x 증가된 결합
++++ ~10x 증가된 결합
+++++ ~ 40x 증가된 결합
실시예 6: ActRIIB-hFc는 비-인간 영장류에서 적혈구생성을 촉진한다
ActRIIB(20-134)-hFc(IgG1)은 1개월 동안 주1회, 피하 주입(subcutaneous injection)으로 수컷과 암컷 필리핀 원숭이에 투여되었다. 48마리 필리핀 원숭이(성별로 24마리)는 4개 치료군(각 군에서 성별로 6마리) 중에서 하나에 지정되고, 4주 동안 주1회, 운반제 또는 3, 10, 또는 30 ㎎/㎏에서 ActRIIB-hFc가 피하 주사되었다(총 5회 투약). 평가된 파라미터(parameter)에는 전반적인 임상 병리(general clinical pathology)(혈액학(hematology), 임상 화학(clinical chemistry), 응고(coagulation), 그리고 검뇨(urinalysis))가 포함되었다. ActRIIB-hFc는 15일 시점에, 치료된 동물에서 통계학적으로 유의한 상승된 평균 절대 망상적혈구 값을 유도하였다. 36일 시점에, ActRIIB-hFc는 상승된 평균 절대 망상적혈구와 적혈구 분포 계수(distribution width) 값, 그리고 더욱 낮은 평균 혈구 헤모글로빈 농도(mean corpuscular hemoglobin concentration)를 비롯한 여러 혈액학적 변화를 유도하였다. 모든 치료된 군과 양쪽 성 모두 영향을 받았다. 이들 효과는 골수로부터 미성숙 망상적혈구의 방출에 대한 ActRIIB-hFc의 양성 효과(positive effect)와 일치한다. 상기 효과는 치료된 동물에서 약물이 씻겨져 나간 이후에(연구 56일 시점) 역전되었다. 따라서 ActRIIB-hFc는 적혈구생성을 촉진하는 것으로 결론된다.
실시예 7. ActRIIB-mFc는 비장 조혈 활성의 자극에 의해 생쥐에서 적혈구생성의 양상을 촉진한다.
본 연구에서, 골수와 비장 내에서 조혈 전구체의 빈도에 대한 ActRIIB(20-134)-mFc의 생체내 투여의 효과가 분석되었다. 한 군의 C57BL/6 생쥐는 대조로서 PBS가 주사되고, 두 번째 생쥐 군은 10 mg/kg에서 ActRIIB-mFc의 2회 투약이 제공되고, 그리고 양쪽 군은 8일후 희생되었다. 말초혈은 완전 혈구 계산(complete blood count)을 수행하는데 이용되었고, 그리고 대퇴골과 비장은 각 장기에서 림프계, 적혈구와 골수 전구체 세포 함량을 평가하는 시험관내 클론원성 분석을 수행하는데 이용되었다. 본 연구의 짧은 시간 프레임 내에, 치료된 생쥐에서 적혈구, 헤모글로빈 또는 백혈구 수준의 유의한 변화는 관찰되지 않았다. 대퇴골에서, 대조 군 및 치료된 군 사이에 유핵 세포 숫자 또는 전구체 함량에서 차이는 관찰되지 않았다. 비장에서, 이들 화합물 치료된 군은 접시당 성숙 적혈구 전구체 (CFU-E) 집락 숫자, 빈도 및 비장당 총 전구체 숫자에서 통계학적으로 유의한 증가를 경험하였다. 이에 더하여, 비장당 골수(CFU-GM), 미성숙 적혈구(BFU-E) 및 총 전구체 숫자에서 증가가 관찰되었다.
동물:
6-8주령의 16마리 C57BL/6 암컷 생쥐가 본 연구에 이용되었다. 8마리 생쥐는 1일과 3일에 10 mg/kg의 복용량으로 검사 화합물 ActRIIB-mFc가 피하 주사되고, 그리고 8마리 생쥐는 생쥐당 100 ㎕의 부피로 운반제 대조, 인산염 완충된 염수(PBS)가 피하 주사되었다. 모든 생쥐는 관련된 Animal Care Guidelines에 따라서 첫 주사후 8일 시점에 희생되었다. 개별 동물로부터 말초혈(PB) 샘플은 심장 천자(cardiac puncture)에 의해 수집되고 완전 혈구 계산 및 감별(CBC/Diff)에 이용되었다. 대퇴골과 비장이 각 생쥐로부터 수확되었다.
수행된 검사:
CBC/Diff 계산
각 생쥐로부터 PB는 심장 천자를 통해 수집되고 적절한 microtainer 튜브 내로 배치되었다. 샘플은 CellDyn 3500 계수기 상에서 분석을 위하여 CLV로 발송되었다.
클론원성 분석
골수, 적혈구 및 림프구 계통의 클론원성 전구체는 하기에 기술된 시험관내 메틸셀룰로오스-기초된 배지 시스템을 이용하여 평가되었다.
성숙 적혈구 전구체:
성숙 적혈구(CFU-E) 계통의 클론원성 전구체는 재조합 인간 (rh) 에리트로포이에틴(3 U/mL)을 내포하는 메틸셀룰로오스-기초된 배지, MethoCultTM 3334에서 배양되었다.
림프계 전구체:
림프구(CFU-pre-B) 계통의 클론원성 전구체는 rh 인터류킨 7(10 ng/㎖)을 내포하는 메틸셀룰로오스-기초된 배지, MethoCult3630에서 배양되었다.
골수와 미성숙 적혈구 전구체:
과립구-단핵구(CFU-GM), 적혈구(BFU-E) 및 다능성(CFU-GEMM) 계통의 클론원성 전구체는 재조합 뮤린(rm) 줄기 세포 인자(50 ng/㎖), rh 인터류킨 6(10 ng/㎖), rm 인터류킨 3(10 ng/㎖) 및 rh 에리트로포이에틴(3 U/㎖)을 내포하는 메틸셀룰로오스-기초된 배지인 MethoCultTM 3434에서 배양되었다.
방법:
생쥐 대퇴골과 비장은 표준 프로토콜에 의해 처리되었다. 간단히 말하면, 골수는 21 게이지 바늘 및 1 cc 주사기를 이용하여, 대퇴강(femoral cavity)을 2% 소 태아 혈청을 내포하는 Iscove의 변형된 Dulbecco 배지(IMDM 2% FBS)로 씻어내림으로써 획득되었다. 비장 세포는 70 ㎛ 필터를 통해 비장을 분쇄하고 필터를 IMDM 2% FBS로 헹굼으로써 획득되었다. 이후, 3% 빙초산에서 유핵 세포 계산은 장기당 총 세포가 계산될 수 있도록 Neubauer 계산 챔버를 이용하여 단일 세포 현탁액에서 수행되었다. 오염 적혈구를 제거하기 위하여, 총 비장 세포는 이후, 3배 부피의 염화암모늄 용해 완충액(ammonium chloride lysis buffer)으로 희석되고 얼음 위에서 10분 동안 배양되었다. 이들 세포는 이후, 세척되고 IMDM 2% FBS에서 재현탁되고, 그리고 용해후 세포의 세포 농도를 결정하기 위하여 이차 세포 계산이 수행되었다.
세포 스톡(cell stock)이 만들어지고, 그리고 각 배지 배합에서 각 조직에 대한 최적 도말 농도를 획득하기 위하여 각 메틸셀룰로오스-기초된 배지 배합에 첨가되었다. 골수 세포는 성숙 적혈구 전구체를 평가하기 위하여 MethoCultTM 3334에서 접시당 1x105개 세포, 림프계 전구체를 평가하기 위하여 MethoCultTM 3630에서 접시당 2x105개 세포, 그리고 미성숙 적혈구와 골수 전구체를 평가하기 위하여 MethoCultTM 3434에서 접시당 3x104개 세포로 도말되었다. 비장 세포는 성숙 적혈구 전구체를 평가하기 위하여 MethoCultTM 3334에서 접시당 4x105개 세포, 림프계 전구체를 평가하기 위하여 MethoCultTM 3630에서 접시당 4x105개 세포, 그리고 미성숙 적혈구와 골수 전구체를 평가하기 위하여 MethoCultTM 3434에서 접시당 2x105개 세포로 도말되었다. 삼중 접시에 도말된 배양액은 집락 계산과 평가가 숙력된 인원에 의해 수행될 때까지 37℃, 5% CO2에서 배양되었다. 성숙 적혈구 전구체는 2일 동안 배양되고, 림프계 전구체는 7일 동안 배양되고, 그리고 성숙 적혈구와 골수 전구체는 12일 동안 배양되었다.
분석:
평균 +/- 1 표준 오차는 모든 데이터 세트의 경우에, 클론원성 분석물의 삼중 배양액, 그리고 대조 군과 치료 군에 대하여 계산되었다.
각 조직에서 집락 형성 세포(colony forming cell, CFC)의 빈도는 아래와 같이 계산되었다:
접시당 도말된 세포
접시당 기록된 평균 CFC
대퇴골 또는 비장당 총 CFC는 아래와 같이 계산되었다:
기록된 총 CFC x 대퇴골 또는 비장당 유핵 세포 수(RBC 용해후)
배양된 유핵 세포의 숫자
PBS 대조 생쥐 및 화합물 치료된 생쥐 사이에 세포 또는 조혈 전구체의 평균 숫자에서 차이가 있는 지를 평가하기 위하여 표준 t-검정이 수행되었다. 집락 계산의 잠재적 주관성(subjectivity)으로 인하여, 0.01 이하의 p 값은 유의한 것으로 간주된다. 각 군에 대한 평균 값(+/- SD)은 하기 표에 제시된다.
혈액학적 파라미터
대퇴골과 비장으로부터 CFC
* 예비 분석은 p<0.05를 지시한다
본 연구의 짧은 시간 프레임에서 ActRIIB(20-134)-mFc로 생쥐의 치료는 적혈구 또는 헤모글로빈 함량에서 유의한 증가를 유발하지 못하였다. 하지만, 전구체 세포 함량에 대한 효과는 현저하였다. 대퇴골에서, 대조 군과 치료 군 사이에 유핵 세포 숫자 또는 전구체 함량에서 차이는 관찰되지 않았다. 비장에서, 화합물 치료된 군은 적혈구 용해에 앞서 유핵 세포 숫자에서, 그리고 접시당 성숙 적혈구 전구체(CFU-E) 집락 숫자, 빈도 및 비장당 총 전구체 숫자에서 통계학적으로 유의한 증가를 경험하였다. 이에 더하여, 비장당 골수(CFU-GM), 미성숙 적혈구(BFU-E) 및 총 전구체 숫자에서 증가가 관찰되었다. 따라서 더욱 긴 시간 경과 동안, ActRIIB(20-134)-mFc 치료는 상승된 적혈구와 헤모글로빈 함량을 결과할 수 있을 것으로 예상된다.
실시예 8: GDF 트랩은 생체내에서 적혈구 수준을 증가시킨다
12주령 수컷 C57BL/6NTac 생쥐는 2가지 치료 군(N=10) 중에서 하나에 지정되었다. 생쥐는 4주 동안 주2회 10 mg/kg에서 피하 주사(SC)에 의해 운반제 또는 변이체 ActRIIB 폴리펩티드(“GDF 트랩”)[ActRIIB(L79D 20-134)-hFc]가 투약되었다. 연구 종결 시점에서, 전혈이 심장 천자에 의해 EDTA 내포 튜브 내로 수집되고, 그리고 HM2 혈액학 분석기(Abaxis, Inc)를 이용하여 세포 분포(cell distribution)에 대해 분석되었다.
군 지정
GDF 트랩으로 치료는 운반제 대조와 비교하여 백혈구(WBC)의 숫자에 대한 통계학적으로 유의한 효과를 나타내지 않았다. 적혈구(RBC) 숫자는 대조에 비하여 치료된 군에서 증가하였다(하기 표 참조). 헤모글로빈 함량(HGB)과 헤마토크릿(HCT) 역시 추가 적혈구로 인하여 증가하였다. 적혈구의 평균 너비(RDWc)는 치료된 동물에서 더욱 높았는데, 이는 미성숙 적혈구의 풀(pool)에서 증가를 지시하였다. 이런 이유로, GDF 트랩으로 치료는 적혈구에서 증가를 유발하지만 백혈구 집단에는 눈에 띄는 효과가 나타나지 않았다.
혈액학적 결과
*=p<0.05, **= p<0.01
실시예 9: GDF 트랩은 생체내에서 적혈구 수준을 증가시키는데 ActRIIB-Fc보다 우수하다.
*19주령 수컷 C57BL/6NTac 생쥐는 3가지 군 중에서 하나에 무작위로 지정되었다. 생쥐는 3주 동안 주2회 피하 주사에 의해 운반제 (10 mM Tris 완충된 염수, TBS), 야생형 ActRIIB(20-134)-mFc, 또는 GDF 트랩 ActRIIB(L79D 20-134)-hFc가 투약되었다. 혈액은 기준선에서 및 3주간 투약후 협혈(cheek bleed)이 수집되고, 그리고 혈액학 분석기(HM2, Abaxis, Inc.)를 이용하여 세포 분포에 대하여 분석되었다.
ActRIIB-Fc 또는 GDF 트랩으로 치료는 운반제 대조와 비교하여 백혈구 (WBC) 숫자에 대한 유의한 효과를 나타내지 않았다. 적혈구 수(RBC), 헤마토크릿(HCT), 그리고 헤모글로빈 수준 모두 대조 또는 야생형 구조체와 비교하여 GDF 트랩 치료된 생쥐에서 상승하였다(하기 표 참조). 이런 이유로, 직접 비교에서, GDF 트랩은 야생형 ActRIIB-Fc 단백질보다 훨씬 높은 정도로 적혈구에서 증가를 촉진한다. 실제로, 이러한 실험에서, 야생형 ActRIIB-Fc 단백질은 적혈구에서 통계학적으로 유의한 증가를 유발하지 못했는데, 이는 더욱 긴 또는 더욱 높은 투약이 이러한 효과를 드러내기 위하여 필요하다는 것을 암시하였다.
3주간 투약후 혈액학적 결과
**=p<0.01
실시예 10. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩의 산출
실시예 1에서 기술된 바와 같이, ActRIIB(L79D 20-134)-hFc로 지칭되는 GDF 트랩은 류신에서 아스파르트산염 치환(서열 번호: 1 내에 잔기 79에서)을 내포하는 ActRIIB 세포외 도메인(서열 번호: 1에서 잔기 20-134)에 TPA 리더의 N-말단 융합 및 인간 Fc 도메인과 최소 링커(3개의 글리신 잔기)의 C-말단 융합에 의해 산출되었다(도 3). 이러한 융합 단백질에 상응하는 뉴클레오티드 서열은 도 4에 도시된다.
ActRIIB(L79D 25-131)-hFc로 지칭되는, 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 류신에서 아스파르트산염 치환(서열 번호: 1 내에 잔기 79에서)을 내포하는 절두된 세포외 도메인(서열 번호: 1에서 잔기 25-131)에 TPA 리더의 N-말단 융합 및 인간 Fc 도메인과 최소 링커(3개의 글리신 잔기)의 C-말단 융합에 의해 산출되었다(도 5). 이러한 융합 단백질에 상응하는 뉴클레오티드 서열은 도 6에 도시된다.
실시예 11. 이중-말단 ActRIIB 세포외 도메인을 보유하는 GDF 트랩에 의한 선택적 리간드 결합
여러 리간드에 대한 GDF 트랩 및 기타 ActRIIB-hFc 단백질의 친화성이 시험관내에서 Biacore™ 기구로 평가되었다. 결과는 하기 표에 요약된다. Kd 값은 상기 복합체의 매우 빠른 결합과 해리에 기인한 정상 상태 친화성 적합(steady-state affinity fit)에 의해 획득되었는데, 이는 kon과 koff의 정확한 결정을 방해하였다.
ActRIIB-hFc 변이체의 리간드 선택성:
절두된 세포외 도메인을 보유하는 GDF 트랩, ActRIIB(L79D 25-131)-hFc는 L79D 치환이 없는 ActRIIB-hFc 대응물과 비교하여 액티빈 A와 액티빈 B 결합의 현저한 상실 및 GDF11 결합의 거의 완전한 유지로, 더욱 긴 변이체, ActRIIB(L79D 20-134)-hFc에 의해 전시되는 리간드 선택성에 동등하거나 이를 초과하였다. 특히, 절두 단독(L79D 치환 없음)은 여기에서 전시된 리간드 사이에 선택성을 변화시키지 않았다[ActRIIB(L79 25-131)-hFc를 ActRIIB(L79 20-134)-hFc와 비교한다].
실시예 12. 대안적 뉴클레오티드 서열을 갖는 ActRIIB(L79D 25-131)-hFc의 산출
ActRIIB(L79D 25-131)-hFc를 산출하기 위하여, 고유 위치 79에서 아스파르트산염 치환(서열 번호: 1) 및 N-말단과 C-말단 절두(서열 번호: 1에서 잔기 25-131)를 보유하는 인간 ActRIIB 세포외 도메인은 N-말단에서 고유 ActRIIB 리더 대신에 TPA 리더 서열 및 C-말단에서 최소 링커(3개의 글리신 잔기)를 통해 인간 Fc 도메인과 융합되었다(도 5). 이러한 융합 단백질을 인코딩하는 한 뉴클레오티드 서열은 도 6(서열 번호: 27)에 도시되고, 그리고 정확하게 동일한 융합 단백질을 인코딩하는 대안적 뉴클레오티드 서열은 도 9에 도시된다(서열 번호: 30). 상기 단백질은 실시예 1에서 기술된 방법을 이용하여 발현되고 정제되었다.
실시예 13. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 생쥐에서 적혈구 전구체의 증식을 증가시킨다
ActRIIB(L79D 25-131)-hFc는 적혈구 전구체의 증식에 대한 효과를 결정하기 위하여 평가되었다. 수컷 C57BL/6 생쥐(8주령)는 1일과 4일에 ActRIIB(L79D 25-131)-hFc(10 mg/kg, s.c.; n = 6) 또는 운반제(TBS; n = 6)로 치료되고, 이후 비장, 경골, 대퇴골, 그리고 혈액의 수집을 위하여 8일 시점에 안락사되었다. 비장과 골수의 세포는 분리되고, 5% 소 태아 혈청을 내포하는 Iscove의 변형된 Dulbecco 배지에서 희석되고, 특수한 메틸셀룰로오스-기초된 배지에서 현탁되고, 그리고 각각, 집락-형성 단위-적혈구(CFU-E) 단계 및 대집락 형성 단위-적혈구(BFU-E) 단계에서 클론원성 전구체의 수준을 평가하기 위하여 2일 또는 12일 동안 배양되었다. BFU-E 결정을 위한 메틸셀룰로오스-기초된 배지(MethoCult M3434, Stem Cell Technologies)는 CFU-E 결정을 위한 메틸셀룰로오스 배지(MethoCult M3334, Stem Cell Technologies) 내에 존재하지 않은 재조합 뮤린 줄기 세포 인자, 인터류킨-3, 그리고 인터류킨-6을 포함하지만, 양쪽 배지는 다른 성분 사이에 에리트로포이에틴을 내포하였다. BFU-E와 CFU-E 둘 모두에서, 집락의 숫자는 각 조직 샘플로부터 유래된 이중 배양 평판에서 결정되고, 그리고 결과의 통계학적 분석은 치료 군당 생쥐의 숫자에 기초되었다.
ActRIIB(L79D 25-131)-hFc로 치료된 생쥐로부터 비장-유래된 배양액은 대조 생쥐로부터 상응하는 배양액보다 2배 숫자의 CFU-E 집락을 보유하고(P < 0.05), 반면 BFU-E 집락의 숫자는 생체내 치료에서와 별다른 차이가 없었다. 골수 배양액으로부터 CFU-E 또는 BFU-E 집락의 숫자 역시 치료에서와 별다른 차이가 없었다. 예상된 바와 같이, 비장-유래된 배양액에서 증가된 숫자의 CFU-E 집락은 대조와 비교하여 ActRIIB(L79D 25-131)-hFc로 치료된 생쥐의 안락사에서 적혈구 수준(11.6% 증가), 헤모글로빈 농도(12% 증가), 그리고 헤마토크릿 수준(11.6% 증가)에서 고도로 유의한(P < 0.001) 변화를 동반하였다. 이들 결과는 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩의 생체내 투여가 적혈구 수준을 증가시키는 전체 효과의 일부로서 적혈구 전구체의 증식을 자극할 수 있다는 것을 지시한다.
실시예 14. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 생쥐에서 화학요법-유도된 빈혈을 상쇄시킨다.
본 발명자들은 미세소관 중합화(microtubule polymerization)를 차단함으로써 세포 분열(cell division)을 저해하는 파클리탁셀에 기초된 화학요법-유도된 빈혈의 생쥐 모형에서 조혈 파라미터에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 조사하였다. 수컷 C57BL/6 생쥐(8주령)는 4가지 치료 중에서 하나에 지정되었다:
1) 파클리탁셀(25 mg/kg, i.p.)
2) ActRIIB(L79D 25-131)-hFc(10 mg/kg, i.p.)
3) 파클리탁셀 + ActRIIB(L79D 25-131)-hFc
4) 운반제(TBS).
파클리탁셀은 0일에 투여되고, 반면 ActRIIB(L79D 25-131)-hFc 또는 운반제는 0일과 3일에 투여되었다. 혈액 샘플은 1일, 3일 및 5일에 별개의 코호트로부터 CBC 분석을 위하여 수집되고, 그리고 치료 군 1-3(상기)에 대한 결과는 소정의 시점에서 운반제로부터 차이 퍼센트로서 표시되었다. 파클리탁셀 독성에 기인한 소모는 3일에 파클리탁셀-단독 코호트(여기서 n = 1)에서 문제점이었다; 달리, 각 시점 마다 n = 치료당 3-5. 운반제와 비교하여, 파클리탁셀 단독은 5일 시점에 헤모글로빈 농도를 거의 13% 감소시키는 반면, ActRIIB(L79D 25-131)-hFc의 첨가는 이러한 파클리탁셀-유도된 저하를 예방하였다(도 11). 유사한 효과가 헤마토크릿과 RBC 수준에서 관찰되었다. 파클리탁셀의 부재에서, ActRIIB(L79D 25-131)-hFc는 3일과 5일에 운반제와 비교하여 헤모글로빈 농도를 10% 증가시켰다(도 11). 따라서 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 화학요법-유도된 빈혈을 상쇄시킬 만큼 충분히 적혈구의 수준을 증가시킬 수 있다.
실시예 15. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 생쥐에서 신장절제-유도된 빈혈을 반전시킨다
본 발명자들은 만성 신장 질환의 신장절제된 생쥐 모형에서 빈혈에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 조사하였다. 수컷 C57BL/6 생쥐(11주령)는 에리트로포이에틴 생산 능력을 감소시키기 위하여 가짜 수술(sham operation) 또는 일방적 신장절제술을 받았다. 생쥐는 수술후 1주일 동안 회복되었고, 이후 총 4주 동안 ActRIIB(L79D 25-131)-hFc(10 mg/kg, i.p.; 조건당 n = 15) 또는 운반제 (TBS; 조건당 n = 15)로 주2회 치료되었다. 혈액 샘플은 투약의 시작전 및 4주간 치료후 수집되었다. 운반제-치료된 신장절제된 생쥐는 4주 치료 기간 동안 적혈구 숫자에서 유의미한 저하를 나타내는 반면, ActRIIB(L79D 25-131)-hFc로 치료는 이러한 저하를 예방할 뿐만 아니라 에리트로포이에틴 생산에 대한 감소된 신장 능력에도 불구하고 적혈구 수준을 기준선보다 17% 증가시켰다(P < 0.001)(도 12). 신장절제된 생쥐에서, ActRIIB(L79D 25-131)-hFc는 또한, 헤모글로빈 농도 및 헤마토크릿 수준에서 기준선으로부터 유의미한 증가를 산출하고, 특히 신장절제된 조건 하에 가짜-수술된 조건 하에서와 거의 동일한 정도로 이들 조혈 파라미터 각각을 자극하였다(도 13). 따라서 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 만성 신장 질환의 모형에서 빈혈을 반전시킬 만큼 충분히 적혈구 수준을 증가시킬 수 있다.
실시예 16. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 쥐에서 출혈에 의해 유발된 빈혈로부터 회복을 향상시킨다
본 발명자들은 급성 출혈에 의해 유발된 빈혈(급성 출혈후성 빈혈, acute post-hemorrhagic anemia)의 쥐 모형에서 조혈 파라미터에 대한 ActRIIB(L79D 25-131)-hFc의 효과를 조사하였다. 수컷 Sprague-Dawley 쥐(대략 300 g)는 판매회사(Harlan)에서 장기 경정맥 카테터(chronic jugular catheter)가 삽입되었다. -1일에, 총 혈액 부피 중에서 20%가 이소플루란 마취 하에 카테터를 통해 5분 동안 각 쥐로부터 채혈되었다. 제거된 혈액 부피는 120 g 이상의 체중을 갖는 쥐에 대하여 Lee 등(J Nucl Med 25:72-76, 1985)에 의해 도출된 하기 상관관계에 따라 계산된 총 혈액 부피에 대한 값에 기초되었다:
총 혈액 부피(total blood volume)(ml) = 0.062 x 체중(g) + 0.0012
동등 부피의 인산염-완충된 염수가 혈액 제거 시점에서 카테터를 통해 대체되었다. 쥐는 0일과 3일에 ActRIIB(L79D 25-131)-hFc(10 mg/kg, s.c.; n = 5) 또는 운반제(TBS; n = 5)로 치료되었다. CBC 분석을 위한 혈액 샘플은 -1일(기준선), 0일, 2일, 4일, 그리고 6일에 카테터를 통해 제거되었다.
대조 쥐는 0일에 적혈구 수준에서 거의 15%의 감소로 20% 출혈에 반응하였다. 이들 수준은 2일과 4일에 기준선보다 훨씬 낮게 머물러 있었고, 그리고 6일 시점까지 완전하게 회복되지 못하였다(도 14). 비록 ActRIIB(L79D 25-131)-hFc로 치료된 쥐가 20% 출혈후 적혈구 수준에서 거의 동일한 하락을 보이긴 했지만, 이들 쥐는 이후, 2일 시점에 이들 수준에서 완전한 회복을 나타냈고, 그 이후에 4일과 6일에 더욱 상승하였는데, 이는 상응하는 시점에서 대조 수준에 비하여 고도로 유의미한 향상을 의미한다(도 14). 유사한 결과가 헤모글로빈 농도에 대하여 획득되었다. 이들 조사 결과는 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩이 급성 출혈에 의해 유발된 빈혈로부터 적혈구 수준의 더욱 신속한 회복을 산출할 수 있다는 것을 증명한다.
실시예 17. 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩은 비-인간 영장류에서 적혈구의 수준을 증가시킨다.
*2가지 GDF 트랩, ActRIIB(L79D 20-134)-hFc 및 ActRIIB(L79D 25-131)-hFc는 필리핀 원숭이에서 적혈구 생산을 자극하는 능력에 대하여 평가되었다. 원숭이는 1일과 8일에 GDF 트랩(10 mg/kg; n = 4마리 수컷/4마리 암컷), 또는 운반제(n = 2마리 수컷/2마리 암컷)로 피하 치료되었다. 혈액 샘플은 1일(치료전 기준선), 3일, 8일, 15일, 29일, 그리고 44일에 수집되고, 그리고 적혈구 수준(도 15), 헤마토크릿(도 16), 헤모글로빈 수준(도 17), 그리고 망상적혈구 수준(도 18)에 대하여 분석되었다. 운반제-치료된 원숭이는 반복된 혈액 샘플링(blood sampling)의 예상된 효과인, 모든 치료후 시점에서 적혈구, 헤마토크릿, 그리고 헤모글로빈의 감소된 수준을 보였다. 대조적으로, ActRIIB(L79D 20-134)-hFc 또는 ActRIIB(L79D 25-131)-hFc로 치료는 첫 치료후 시점(3일)까지 이들 파라미터를 증가시키고, 그리고 본 연구의 지속 동안 이들을 실질적으로 상승된 수준으로 유지하였다(도 15-17). 중요하게는, ActRIIB(L79D 20-134)-hFc 또는 ActRIIB(L79D 25-131)-hFc로 치료된 원숭이에서 망상적혈구 수준은 운반제와 비교하여 8일, 15일, 그리고 29일에 실질적으로 증가되었다(도 18). 이러한 결과는 GDF 트랩 치료가 적혈구 전구체의 생산을 증가시켜 상승된 적혈구 수준을 결과한다는 것을 증명한다.
종합하면, 이들 데이터는 전장 변이체뿐만 아니라 절두된 GDF 트랩이 생체내에서 적혈구 형성을 증가시키기 위하여 GDF11 및 잠재적으로 관련된 리간드의 선택성 길항약으로서 이용될 수 있다는 것을 증명한다.
실시예 18. ActRIIB5로부터 유래된 GDF 트랩
ActRIIB의 대안적 가용성 형태(ActRIIB5로 명명됨)가 보고되었는데, 여기서 ActRIIB 막통과 도메인을 포함하는 엑손 4가 상이한 C-말단 서열에 의해 대체된다(WO2007/053775).
리더가 없는 고유 인간 ActRIIB5의 서열은 아래와 같다:
하기 서열을 갖는 변이체 ActRIIB5(L79D)를 작제하기 위하여 류신에서 아스파르트산염 치환, 또는 기타 산성 치환이 고유 위치 79(밑줄로 표시되고 회색으로 강조됨)에서, 앞서 기술된 바와 같이 수행될 수 있다:
이러한 변이체는 하기 서열을 갖는 인간 ActRIIB5(L79D)-hFc 융합 단백질을 산출하기 위하여 TGGG 링커에 의해 인간 Fc에 연결될 수 있다:
이러한 구조체는 CHO 세포에서 발현될 수 있다.
실시예 19. 생쥐에서 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩 및 EPO로 복합 치료의 효과
EPO는 적혈구 전구체의 증식을 증가시킴으로써 적혈구의 형성을 유도하는 반면, GDF 트랩은 EPO의 효과를 보충하거나 증강시키는 방식으로 적혈구의 형성에 잠재적으로 영향을 줄 수 있다. 이런 이유로, 본 발명자들은 조혈 파라미터에 대한 EPO 및 ActRIIB(L79D 25-131)-hFc로 복합 치료의 효과를 조사하였다. 수컷 C57BL/6 생쥐(9주령)는 재조합 인간 EPO 단독(에포에틴 알파, 1800 단위/kg), ActRIIB(L79D 25-131)-hFc 단독(10 mg/kg), EPO와 ActRIIB(L79D 25-131)-hFc 둘 모두, 또는 운반제(Tris-완충된 염수)의 단일 i.p. 주사가 제공되었다. 생쥐는 혈액, 비장, 그리고 대퇴골의 수집을 위하여, 투약후 72 시간 시점에 안락사되었다.
비장과 대퇴골은 유세포분석(flow cytometric analysis)을 위한 적혈구 전구체 세포를 획득하기 위하여 가공되었다. 제거후, 비장은 5% 소 태아 혈청을 내포하는 Iscove의 변형된 Dulbecco 배지에서 잘게 썰어지고, 그리고 무균 1-ml 주사기로부터 플런저(plunger)로 70-㎛ 세포 여과기(cell strainer)에 강제 통과시킴으로써 기계적으로 분리되었다. 대퇴골은 3-ml 주사기에 연결된 21-게이지 바늘을 통해 5% 소 태아 혈청을 내포하는 Iscove의 변형된 Dulbecco 배지로 남아있는 샤프트(shaft)를 씻어 내림으로써, 골수의 수집이 가능하도록 임의의 잔여 근육 또는 연결 조직이 청소되고 단부가 손질되었다. 세포 현탁액은 원심분리(10분 동안 2000 rpm)되고, 그리고 세포 펠릿은 5% 소 태아 혈청을 내포하는 PBS에서 재현탁되었다. 각 조직으로부터 세포(106)는 비특이적 결합을 차단하기 위하여 항-생쥐 IgG와 함께 배양되고, 이후 생쥐 세포-표면 마커 CD71(트랜스페린 수용체)과 Ter119(세포-표면 글리코포린 A와 연관된 항원)에 대한 형광 표지된 항체와 함께 배양되고, 세척되고, 그리고 유세포분석법에 의해 분석되었다. 샘플 내에서 사멸 세포는 요오드화프로피디엄(propidium iodide)으로 대조염색(counterstaining)에 의해 분석으로부터 배제되었다. 비장 또는 골수에서 적혈구 분화는 분화의 경과에서 감소하는 CD71 표지화(labeling)의 정도, 그리고 전적아세포(proerythroblast) 단계로 시작되는 말단 적혈구 분화 동안 증가하는 Ter119 표지화에 의해 평가되었다(Socolovsky et al., 2001, Blood 98:3261-3273; Ying et al., 2006, Blood 108:123-133). 따라서 앞서 기술된 바와 같이, 전적아세포(CD71highTer119low), 호염기성 적아세포(CD71highTer119high), 다염색성 + 산호성 적아세포(CD71medTer119high), 그리고 후기 산호성 적아세포 + 망상적혈구(CD71lowTer119high)의 숫자를 결정하기 위하여 유세포분석법이 이용되었다.
EPO 및 ActRIIB(L79D 25-131)-hFc로 복합 치료는 적혈구에서 놀랄 정도로 활발한 증가를 유발하였다. 본 실험의 72-시간 프레임에서, EPO 및 ActRIIB(L79D 25-131)-hFc 단독 둘 모두 운반제와 비교하여 헤마토크릿을 유의미하게 증가시키지 못하는 반면, 이들 두 작용제로 복합 치료는 예상치 않게 상승적인, 다시 말하면, 이들의 개별 효과의 합보다 큰 헤마토크릿의 거의 25% 증가를 유발하였다(도 19). 이러한 유형의 상승 작용은 일반적으로, 개별 작용제가 상이한 세포 기전을 통해 작용한다는 증거로서 간주된다. 유사한 결과가 헤모글로빈 농도(도 20) 및 적혈구 농도(도 21)에서도 관찰되었는데, 이들 각각 역시 복합 치료에 의해 상승적으로 증가하였다.
적혈구 전구체 수준의 분석은 더욱 복잡한 패턴을 노출시켰다. 생쥐에서, 비장은 유도성(“스트레스”) 적혈구생성을 주관하는 일차적인 장기로서 간주된다. 72 시간 시점에 비장 조직의 유세포분석은 EPO가 운반제와 비교하여 조혈 전구체 프로필을 눈에 띄게 변화시켜, 1/3 이상 감소하는 후기 전구체(후기 산호성 적아세포 + 망상적혈구)를 희생하면서 호염기성 적아세포의 숫자를 170% 이상 증가시킨다는 것을 드러냈다(도 22). 중요하게는, 복합 치료는 운반제와 비교하여 비록 EPO 단독보다 정도가 덜하지만 호염기성 적아세포를 유의미하게 증가시키면서 후기 단계 전구체의 저하되지 않은 성숙을 뒷받침하였다(도 22). 따라서 EPO 및 ActRIIB(L79D 25-131)-hFc로 복합 치료는 전구체 증식과 성숙의 균형잡힌 증강을 통해 적혈구생성을 증가시켰다. 비장에 대조적으로, 복합 치료후 골수에서 전구체 세포 프로필은 EPO 단독후에서와 별다른 차이가 없었다. 본 발명자들은 이러한 비장 전구체 프로필로부터, 복합 치료가 증가된 망상적혈구 수준을 유발하고, 그리고 실험이 72 시간을 넘어 연장되면 성숙 적혈구 수준의 지속된 상승을 동반할 것으로 예측한다.
종합하면, 이들 조사 결과는 절두된 ActRIIB 세포외 도메인을 보유하는 GDF 트랩이 생체내에서 적혈구 형성을 상승적으로 증가시키기 위하여 EPO와 공동으로 투여될 수 있다는 것을 증명한다. 보충적이지만 확정되지 않은 기전을 통해 작용하는 GDF 트랩은 EPO 수용체 활성인자 단독의 강한 증식성 효과(proliferative effect)를 조절하면서 적혈구의 목표 수준이 더욱 적은 복용량의 EPO 수용체 활성인자로 여전히 달성될 수 있도록 하고, 따라서 더욱 높은 수준의 EPO 수용체 활성화와 연관된 잠재적 부작용 또는 기타 문제점을 회피할 수 있다.
참조로서 편입
본 명세서에 언급된 모든 간행물과 특허는 본 발명에 순전히 참조로서 편입된다.
요부(subject matter)의 특정 구체예가 논의되긴 했지만, 상기 명세서는 설명을 목적으로 하고, 본 발명을 한정하지 않는다. 본 명세서 및 하기 특허청구범위를 검토한 이후, 다수의 개변은 당업자에게 명백할 것이다. 본 발명의 전체 범위는 특허청구범위 및 이의 균등한 범위, 그리고 명세서 및 이의 개변에 기준하여 결정될 것이다.
SEQUENCE LISTING <110> ACCELERON PHARMA INC. <120> COMBINED USE OF GDF TRAPS AND ERYTHROPOIETIN RECEPTOR ACTIVATORS TO INCREASE RED BLOOD CELL LEVELS <130> PHPH-040-102 <140> 12/856,420 <141> 2010-08-13 <150> PCT/US09/004659 <151> 2009-08-13 <150> 12/583,177 <151> 2009-08-13 <150> 61/305,901 <151> 2010-02-18 <160> 44 <170> PatentIn version 3.5 <210> 1 <211> 512 <212> PRT <213> Homo sapiens <400> 1 Met Thr Ala Pro Trp Val Ala Leu Ala Leu Leu Trp Gly Ser Leu Trp 1 5 10 15 Pro Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser Leu Ile Val Leu Leu Ala Phe Trp Met Tyr 145 150 155 160 Arg His Arg Lys Pro Pro Tyr Gly His Val Asp Ile His Glu Asp Pro 165 170 175 Gly Pro Pro Pro Pro Ser Pro Leu Val Gly Leu Lys Pro Leu Gln Leu 180 185 190 Leu Glu Ile Lys Ala Arg Gly Arg Phe Gly Cys Val Trp Lys Ala Gln 195 200 205 Leu Met Asn Asp Phe Val Ala Val Lys Ile Phe Pro Leu Gln Asp Lys 210 215 220 Gln Ser Trp Gln Ser Glu Arg Glu Ile Phe Ser Thr Pro Gly Met Lys 225 230 235 240 His Glu Asn Leu Leu Gln Phe Ile Ala Ala Glu Lys Arg Gly Ser Asn 245 250 255 Leu Glu Val Glu Leu Trp Leu Ile Thr Ala Phe His Asp Lys Gly Ser 260 265 270 Leu Thr Asp Tyr Leu Lys Gly Asn Ile Ile Thr Trp Asn Glu Leu Cys 275 280 285 His Val Ala Glu Thr Met Ser Arg Gly Leu Ser Tyr Leu His Glu Asp 290 295 300 Val Pro Trp Cys Arg Gly Glu Gly His Lys Pro Ser Ile Ala His Arg 305 310 315 320 Asp Phe Lys Ser Lys Asn Val Leu Leu Lys Ser Asp Leu Thr Ala Val 325 330 335 Leu Ala Asp Phe Gly Leu Ala Val Arg Phe Glu Pro Gly Lys Pro Pro 340 345 350 Gly Asp Thr His Gly Gln Val Gly Thr Arg Arg Tyr Met Ala Pro Glu 355 360 365 Val Leu Glu Gly Ala Ile Asn Phe Gln Arg Asp Ala Phe Leu Arg Ile 370 375 380 Asp Met Tyr Ala Met Gly Leu Val Leu Trp Glu Leu Val Ser Arg Cys 385 390 395 400 Lys Ala Ala Asp Gly Pro Val Asp Glu Tyr Met Leu Pro Phe Glu Glu 405 410 415 Glu Ile Gly Gln His Pro Ser Leu Glu Glu Leu Gln Glu Val Val Val 420 425 430 His Lys Lys Met Arg Pro Thr Ile Lys Asp His Trp Leu Lys His Pro 435 440 445 Gly Leu Ala Gln Leu Cys Val Thr Ile Glu Glu Cys Trp Asp His Asp 450 455 460 Ala Glu Ala Arg Leu Ser Ala Gly Cys Val Glu Glu Arg Val Ser Leu 465 470 475 480 Ile Arg Arg Ser Val Asn Gly Thr Thr Ser Asp Cys Leu Val Ser Leu 485 490 495 Val Thr Ser Val Thr Asn Val Asp Leu Pro Pro Lys Glu Ser Ser Ile 500 505 510 <210> 2 <211> 115 <212> PRT <213> Homo sapiens <400> 2 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105 110 Ala Pro Thr 115 <210> 3 <211> 100 <212> PRT <213> Homo sapiens <400> 3 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala 100 <210> 4 <211> 1539 <212> DNA <213> Homo sapiens <400> 4 atgacggcgc cctgggtggc cctcgccctc ctctggggat cgctgtggcc cggctctggg 60 cgtggggagg ctgagacacg ggagtgcatc tactacaacg ccaactggga gctggagcgc 120 accaaccaga gcggcctgga gcgctgcgaa ggcgagcagg acaagcggct gcactgctac 180 gcctcctggg ccaacagctc tggcaccatc gagctcgtga agaagggctg ctggctagat 240 gacttcaact gctacgatag gcaggagtgt gtggccactg aggagaaccc ccaggtgtac 300 ttctgctgct gtgaaggcaa cttctgcaac gagcgcttca ctcatttgcc agaggctggg 360 ggcccggaag tcacgtacga gccacccccg acagccccca ccctgctcac ggtgctggcc 420 tactcactgc tgcccatcgg gggcctttcc ctcatcgtcc tgctggcctt ttggatgtac 480 cggcatcgca agccccccta cggtcatgtg gacatccatg aggaccctgg gcctccacca 540 ccatcccctc tggtgggcct gaagccactg cagctgctgg agatcaaggc tcgggggcgc 600 tttggctgtg tctggaaggc ccagctcatg aatgactttg tagctgtcaa gatcttccca 660 ctccaggaca agcagtcgtg gcagagtgaa cgggagatct tcagcacacc tggcatgaag 720 cacgagaacc tgctacagtt cattgctgcc gagaagcgag gctccaacct cgaagtagag 780 ctgtggctca tcacggcctt ccatgacaag ggctccctca cggattacct caaggggaac 840 atcatcacat ggaacgaact gtgtcatgta gcagagacga tgtcacgagg cctctcatac 900 ctgcatgagg atgtgccctg gtgccgtggc gagggccaca agccgtctat tgcccacagg 960 gactttaaaa gtaagaatgt attgctgaag agcgacctca cagccgtgct ggctgacttt 1020 ggcttggctg ttcgatttga gccagggaaa cctccagggg acacccacgg acaggtaggc 1080 acgagacggt acatggctcc tgaggtgctc gagggagcca tcaacttcca gagagatgcc 1140 ttcctgcgca ttgacatgta tgccatgggg ttggtgctgt gggagcttgt gtctcgctgc 1200 aaggctgcag acggacccgt ggatgagtac atgctgccct ttgaggaaga gattggccag 1260 cacccttcgt tggaggagct gcaggaggtg gtggtgcaca agaagatgag gcccaccatt 1320 aaagatcact ggttgaaaca cccgggcctg gcccagcttt gtgtgaccat cgaggagtgc 1380 tgggaccatg atgcagaggc tcgcttgtcc gcgggctgtg tggaggagcg ggtgtccctg 1440 attcggaggt cggtcaacgg cactacctcg gactgtctcg tttccctggt gacctctgtc 1500 accaatgtgg acctgccccc taaagagtca agcatctaa 1539 <210> 5 <211> 345 <212> DNA <213> Homo sapiens <400> 5 gggcgtgggg aggctgagac acgggagtgc atctactaca acgccaactg ggagctggag 60 cgcaccaacc agagcggcct ggagcgctgc gaaggcgagc aggacaagcg gctgcactgc 120 tacgcctcct gggccaacag ctctggcacc atcgagctcg tgaagaaggg ctgctggcta 180 gatgacttca actgctacga taggcaggag tgtgtggcca ctgaggagaa cccccaggtg 240 tacttctgct gctgtgaagg caacttctgc aacgagcgct tcactcattt gccagaggct 300 gggggcccgg aagtcacgta cgagccaccc ccgacagccc ccacc 345 <210> 6 <211> 225 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <220> <221> MOD_RES <222> (43)..(43) <223> Asp or Ala <220> <221> MOD_RES <222> (100)..(100) <223> Lys or Ala <220> <221> MOD_RES <222> (212)..(212) <223> Asn or Ala <400> 6 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 1 5 10 15 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 20 25 30 Arg Thr Pro Glu Val Thr Cys Val Val Val Xaa Val Ser His Glu Asp 35 40 45 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 50 55 60 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 65 70 75 80 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 85 90 95 Tyr Lys Cys Xaa Val Ser Asn Lys Ala Leu Pro Val Pro Ile Glu Lys 100 105 110 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 115 120 125 Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr 130 135 140 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 145 150 155 160 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 165 170 175 Asp Ser Asp Gly Pro Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 180 185 190 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 195 200 205 Ala Leu His Xaa His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 210 215 220 Lys 225 <210> 7 <211> 343 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 7 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105 110 Ala Pro Thr Gly Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro 115 120 125 Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 130 135 140 Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 145 150 155 160 Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp 165 170 175 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 180 185 190 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 195 200 205 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu 210 215 220 Pro Val Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 225 230 235 240 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys 245 250 255 Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 260 265 270 Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 275 280 285 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 290 295 300 Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser 305 310 315 320 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 325 330 335 Leu Ser Leu Ser Pro Gly Lys 340 <210> 8 <211> 21 <212> PRT <213> Apis mellifera <400> 8 Met Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile 1 5 10 15 Ser Tyr Ile Tyr Ala 20 <210> 9 <211> 22 <212> PRT <213> Unknown <220> <223> Description of Unknown: Tissue Plasminogen Activator <400> 9 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly 1 5 10 15 Ala Val Phe Val Ser Pro 20 <210> 10 <211> 19 <212> PRT <213> Unknown <220> <223> Description of Unknown: Native peptide <400> 10 Met Thr Ala Pro Trp Val Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Ala Gly Ser <210> 11 <211> 368 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 11 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly 1 5 10 15 Ala Val Phe Val Ser Pro Gly Ala Ser Gly Arg Gly Glu Ala Glu Thr 20 25 30 Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn 35 40 45 Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu Gln Asp Lys Arg Leu His 50 55 60 Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly Thr Ile Glu Leu Val Lys 65 70 75 80 Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys 85 90 95 Val Ala Thr Glu Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly 100 105 110 Asn Phe Cys Asn Glu Arg Phe Thr His Leu Pro Glu Ala Gly Gly Pro 115 120 125 Glu Val Thr Tyr Glu Pro Pro Pro Thr Ala Pro Thr Gly Gly Gly Thr 130 135 140 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 145 150 155 160 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 165 170 175 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 180 185 190 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 195 200 205 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 210 215 220 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 225 230 235 240 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Val Pro Ile Glu Lys Thr 245 250 255 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 260 265 270 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 275 280 285 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 290 295 300 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 305 310 315 320 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 325 330 335 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 340 345 350 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 355 360 365 <210> 12 <211> 1107 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 12 atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tcgcccggcg cctctgggcg tggggaggct gagacacggg agtgcatcta ctacaacgcc 120 aactgggagc tggagcgcac caaccagagc ggcctggagc gctgcgaagg cgagcaggac 180 aagcggctgc actgctacgc ctcctggcgc aacagctctg gcaccatcga gctcgtgaag 240 aagggctgct gggacgatga cttcaactgc tacgataggc aggagtgtgt ggccactgag 300 gagaaccccc aggtgtactt ctgctgctgt gaaggcaact tctgcaacga gcgcttcact 360 catttgccag aggctggggg cccggaagtc acgtacgagc cacccccgac agcccccacc 420 ggtggtggaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca 480 gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc 540 acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg 600 gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg 660 taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac 720 aagtgcaagg tctccaacaa agccctccca gtccccatcg agaaaaccat ctccaaagcc 780 aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga ggagatgacc 840 aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg 900 gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 960 tccgacggct ccttcttcct ctatagcaag ctcaccgtgg acaagagcag gtggcagcag 1020 gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1080 agcctctccc tgtctccggg taaatga 1107 <210> 13 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 13 Thr Gly Gly Gly Gly 1 5 <210> 14 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 14 Ser Gly Gly Gly Gly 1 5 <210> 15 <211> 116 <212> PRT <213> Homo sapiens <400> 15 Ile Leu Gly Arg Ser Glu Thr Gln Glu Cys Leu Phe Phe Asn Ala Asn 1 5 10 15 Trp Glu Lys Asp Arg Thr Asn Gln Thr Gly Val Glu Pro Cys Tyr Gly 20 25 30 Asp Lys Asp Lys Arg Arg His Cys Phe Ala Thr Trp Lys Asn Ile Ser 35 40 45 Gly Ser Ile Glu Ile Val Lys Gln Gly Cys Trp Leu Asp Asp Ile Asn 50 55 60 Cys Tyr Asp Arg Thr Asp Cys Val Glu Lys Lys Asp Ser Pro Glu Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Met Cys Asn Glu Lys Phe Ser Tyr 85 90 95 Phe Pro Glu Met Glu Val Thr Gln Pro Thr Ser Asn Pro Val Thr Pro 100 105 110 Lys Pro Pro Thr 115 <210> 16 <211> 150 <212> PRT <213> Rattus sp. <400> 16 Met Thr Ala Pro Trp Ala Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Ala Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Pro 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Pro Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser 145 150 <210> 17 <211> 150 <212> PRT <213> Sus sp. <400> 17 Met Thr Ala Pro Trp Ala Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Val Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser 145 150 <210> 18 <211> 150 <212> PRT <213> Mus sp. <400> 18 Met Thr Ala Pro Trp Ala Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Ala Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Pro Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser 145 150 <210> 19 <211> 150 <212> PRT <213> Homo sapiens <400> 19 Met Thr Ala Pro Trp Val Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Ala Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser 145 150 <210> 20 <211> 150 <212> PRT <213> Bos sp. <400> 20 Met Thr Ala Pro Trp Ala Ala Leu Ala Leu Leu Trp Gly Ser Leu Cys 1 5 10 15 Ala Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Arg Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Val Gly Gly Leu Ser 145 150 <210> 21 <211> 150 <212> PRT <213> Xenopus sp. <400> 21 Met Gly Ala Ser Val Ala Leu Thr Phe Leu Leu Leu Leu Ala Thr Phe 1 5 10 15 Arg Ala Gly Ser Gly His Asp Glu Val Glu Thr Arg Glu Cys Ile Tyr 20 25 30 Tyr Asn Ala Asn Trp Glu Leu Glu Lys Thr Asn Gln Ser Gly Val Glu 35 40 45 Arg Leu Val Glu Gly Lys Lys Asp Lys Arg Leu His Cys Tyr Ala Ser 50 55 60 Trp Arg Asn Asn Ser Gly Phe Ile Glu Leu Val Lys Lys Gly Cys Trp 65 70 75 80 Leu Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Ile Ala Lys Glu 85 90 95 Glu Asn Pro Gln Val Phe Phe Cys Cys Cys Glu Gly Asn Tyr Cys Asn 100 105 110 Lys Lys Phe Thr His Leu Pro Glu Val Glu Thr Phe Asp Pro Lys Pro 115 120 125 Gln Pro Ser Ala Ser Val Leu Asn Ile Leu Ile Tyr Ser Leu Leu Pro 130 135 140 Ile Val Gly Leu Ser Met 145 150 <210> 22 <211> 150 <212> PRT <213> Homo sapiens <400> 22 Met Gly Ala Ala Ala Lys Leu Ala Phe Ala Val Phe Leu Ile Ser Cys 1 5 10 15 Ser Ser Gly Ala Ile Leu Gly Arg Ser Glu Thr Gln Glu Cys Leu Phe 20 25 30 Phe Asn Ala Asn Trp Glu Lys Asp Arg Thr Asn Gln Thr Gly Val Glu 35 40 45 Pro Cys Tyr Gly Asp Lys Asp Lys Arg Arg His Cys Phe Ala Thr Trp 50 55 60 Lys Asn Ile Ser Gly Ser Ile Glu Ile Val Lys Gln Gly Cys Trp Leu 65 70 75 80 Asp Asp Ile Asn Cys Tyr Asp Arg Thr Asp Cys Val Glu Lys Lys Asp 85 90 95 Ser Pro Glu Val Tyr Phe Cys Cys Cys Glu Gly Asn Met Cys Asn Glu 100 105 110 Lys Phe Ser Tyr Phe Pro Glu Met Glu Val Thr Gln Pro Thr Ser Asn 115 120 125 Pro Val Thr Pro Lys Pro Pro Tyr Tyr Asn Ile Leu Leu Tyr Ser Leu 130 135 140 Val Pro Leu Met Leu Ile 145 150 <210> 23 <211> 154 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic consensus polypeptide <220> <221> MOD_RES <222> (8)..(8) <223> Thr or Ala <220> <221> MOD_RES <222> (121)..(121) <223> Pro, Ala, Val or Met <400> 23 Met Thr Ala Pro Trp Ala Ala Xaa Leu Ala Leu Leu Trp Gly Ser Leu 1 5 10 15 Cys Ala Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr 20 25 30 Tyr Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu 35 40 45 Arg Leu Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser 50 55 60 Trp Arg Asn Ser Ser Gly Thr Leu Glu Leu Val Lys Lys Gly Cys Trp 65 70 75 80 Leu Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu 85 90 95 Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn 100 105 110 Glu Arg Phe Thr His Leu Pro Glu Xaa Gly Gly Pro Glu Val Thr Tyr 115 120 125 Glu Pro Lys Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr 130 135 140 Ser Leu Leu Pro Ile Gly Gly Leu Ser Met 145 150 <210> 24 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 6xHis tag <400> 24 His His His His His His 1 5 <210> 25 <211> 1107 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 25 atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tcgcccggcg cctctgggcg tggggaggct gagacacggg agtgcatcta ctacaacgcc 120 aactgggagc tggagcgcac caaccagagc ggcctggagc gctgcgaagg cgagcaggac 180 aagcggctgc actgctacgc ctcctggcgc aacagctctg gcaccatcga gctcgtgaag 240 aagggctgct gggatgatga cttcaactgc tacgataggc aggagtgtgt ggccactgag 300 gagaaccccc aggtgtactt ctgctgctgt gaaggcaact tctgcaacga gcgcttcact 360 catttgccag aggctggggg cccggaagtc acgtacgagc cacccccgac agcccccacc 420 ggtggtggaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca 480 gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc 540 acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg 600 gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg 660 taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac 720 aagtgcaagg tctccaacaa agccctccca gcccccatcg agaaaaccat ctccaaagcc 780 aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga ggagatgacc 840 aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg 900 gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 960 tccgacggct ccttcttcct ctatagcaag ctcaccgtgg acaagagcag gtggcagcag 1020 gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1080 agcctctccc tgtccccggg taaatga 1107 <210> 26 <211> 360 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 26 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly 1 5 10 15 Ala Val Phe Val Ser Pro Gly Ala Ala Glu Thr Arg Glu Cys Ile Tyr 20 25 30 Tyr Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu 35 40 45 Arg Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp 50 55 60 Arg Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp 65 70 75 80 Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu 85 90 95 Asn Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu 100 105 110 Arg Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu 115 120 125 Pro Pro Pro Thr Gly Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala 130 135 140 Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 145 150 155 160 Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 165 170 175 Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 180 185 190 Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 195 200 205 Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln 210 215 220 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 225 230 235 240 Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro 245 250 255 Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr 260 265 270 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 275 280 285 Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 290 295 300 Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 305 310 315 320 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 325 330 335 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 340 345 350 Ser Leu Ser Leu Ser Pro Gly Lys 355 360 <210> 27 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <220> <221> CDS <222> (76)..(396) <400> 27 atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tcgcccggcg ccgct gag aca cgg gag tgc atc tac tac aac gcc aac tgg 111 Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp 1 5 10 gag ctg gag cgc acc aac cag agc ggc ctg gag cgc tgc gaa ggc gag 159 Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu 15 20 25 cag gac aag cgg ctg cac tgc tac gcc tcc tgg cgc aac agc tct ggc 207 Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly 30 35 40 acc atc gag ctc gtg aag aag ggc tgc tgg gac gat gac ttc aac tgc 255 Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys 45 50 55 60 tac gat agg cag gag tgt gtg gcc act gag gag aac ccc cag gtg tac 303 Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val Tyr 65 70 75 ttc tgc tgc tgt gaa ggc aac ttc tgc aac gag cgc ttc act cat ttg 351 Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His Leu 80 85 90 cca gag gct ggg ggc ccg gaa gtc acg tac gag cca ccc ccg aca 396 Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 95 100 105 ggtggtggaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca 456 gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc 516 acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg 576 gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg 636 taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac 696 aagtgcaagg tctccaacaa agccctccca gcccccatcg agaaaaccat ctccaaagcc 756 aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga ggagatgacc 816 aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg 876 gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 936 tccgacggct ccttcttcct ctatagcaag ctcaccgtgg acaagagcag gtggcagcag 996 gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1056 agcctctccc tgtccccggg taaatga 1083 <210> 28 <211> 335 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 28 Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp Glu Leu Glu Arg 1 5 10 15 Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu Gln Asp Lys Arg 20 25 30 Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly Thr Ile Glu Leu 35 40 45 Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys Tyr Asp Arg Gln 50 55 60 Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys 65 70 75 80 Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His Leu Pro Glu Ala Gly 85 90 95 Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr Gly Gly Gly Thr His 100 105 110 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val 115 120 125 Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr 130 135 140 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 145 150 155 160 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 165 170 175 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser 180 185 190 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 195 200 205 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 210 215 220 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 225 230 235 240 Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 245 250 255 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 260 265 270 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 275 280 285 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 290 295 300 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 305 310 315 320 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330 335 <210> 29 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 29 Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp Glu Leu Glu Arg 1 5 10 15 Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu Gln Asp Lys Arg 20 25 30 Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly Thr Ile Glu Leu 35 40 45 Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys Tyr Asp Arg Gln 50 55 60 Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys 65 70 75 80 Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His Leu Pro Glu Ala Gly 85 90 95 Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105 <210> 30 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <220> <221> CDS <222> (76)..(396) <400> 30 atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagc agtcttcgtt 60 tcgcccggcg ccgcc gaa acc cgc gaa tgt att tat tac aat gct aat tgg 111 Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp 1 5 10 gaa ctc gaa cgg acg aac caa tcc ggg ctc gaa cgg tgt gag ggg gaa 159 Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu 15 20 25 cag gat aaa cgc ctc cat tgc tat gcg tcg tgg agg aac tcc tcc ggg 207 Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly 30 35 40 acg att gaa ctg gtc aag aaa ggg tgc tgg gac gac gat ttc aat tgt 255 Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys 45 50 55 60 tat gac cgc cag gaa tgt gtc gcg acc gaa gag aat ccg cag gtc tat 303 Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val Tyr 65 70 75 ttc tgt tgt tgc gag ggg aat ttc tgt aat gaa cgg ttt acc cac ctc 351 Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His Leu 80 85 90 ccc gaa gcc ggc ggg ccc gag gtg acc tat gaa ccc ccg ccc acc 396 Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 95 100 105 ggtggtggaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca 456 gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc 516 acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg 576 gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg 636 taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac 696 aagtgcaagg tctccaacaa agccctccca gcccccatcg agaaaaccat ctccaaagcc 756 aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga ggagatgacc 816 aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg 876 gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 936 tccgacggct ccttcttcct ctatagcaag ctcaccgtgg acaagagcag gtggcagcag 996 gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1056 agcctctccc tgtccccggg taaatga 1083 <210> 31 <211> 321 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 31 gaaacccgcg aatgtattta ttacaatgct aattgggaac tcgaacggac gaaccaatcc 60 gggctcgaac ggtgtgaggg ggaacaggat aaacgcctcc attgctatgc gtcgtggagg 120 aactcctccg ggacgattga actggtcaag aaagggtgct gggacgacga tttcaattgt 180 tatgaccgcc aggaatgtgt cgcgaccgaa gagaatccgc aggtctattt ctgttgttgc 240 gaggggaatt tctgtaatga acggtttacc cacctccccg aagccggcgg gcccgaggtg 300 acctatgaac ccccgcccac c 321 <210> 32 <211> 115 <212> PRT <213> Homo sapiens <400> 32 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105 110 Ala Pro Thr 115 <210> 33 <211> 1107 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 33 tacctacgtt acttctctcc cgagacgaca cacgacgacg acacacctcg tcagaagcaa 60 agcgggccgc ggagacccgc acccctccga ctctgtgccc tcacgtagat gatgttgcgg 120 ttgaccctcg acctcgcgtg gttggtctcg ccggacctcg cgacgcttcc gctcgtcctg 180 ttcgccgacg tgacgatgcg gaggaccgcg ttgtcgagac cgtggtagct cgagcacttc 240 ttcccgacga ccctactact gaagttgacg atgctatccg tcctcacaca ccggtgactc 300 ctcttggggg tccacatgaa gacgacgaca cttccgttga agacgttgct cgcgaagtga 360 gtaaacggtc tccgaccccc gggccttcag tgcatgctcg gtgggggctg tcgggggtgg 420 ccaccacctt gagtgtgtac gggtggcacg ggtcgtggac ttgaggaccc ccctggcagt 480 cagaaggaga aggggggttt tgggttcctg tgggagtact agagggcctg gggactccag 540 tgtacgcacc accacctgca ctcggtgctt ctgggactcc agttcaagtt gaccatgcac 600 ctgccgcacc tccacgtatt acggttctgt ttcggcgccc tcctcgtcat gttgtcgtgc 660 atggcacacc agtcgcagga gtggcaggac gtggtcctga ccgacttacc gttcctcatg 720 ttcacgttcc agaggttgtt tcgggagggt cgggggtagc tcttttggta gaggtttcgg 780 tttcccgtcg gggctcttgg tgtccacatg tgggacgggg gtagggccct cctctactgg 840 ttcttggtcc agtcggactg gacggaccag tttccgaaga tagggtcgct gtagcggcac 900 ctcaccctct cgttacccgt cggcctcttg ttgatgttct ggtgcggagg gcacgacctg 960 aggctgccga ggaagaagga gatatcgttc gagtggcacc tgttctcgtc caccgtcgtc 1020 cccttgcaga agagtacgag gcactacgta ctccgagacg tgttggtgat gtgcgtcttc 1080 tcggagaggg acaggggccc atttact 1107 <210> 34 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 34 tacctacgtt acttctctcc cgagacgaca cacgacgacg acacacctcg tcagaagcaa 60 agcgggccgc ggcgactctg tgccctcacg tagatgatgt tgcggttgac cctcgacctc 120 gcgtggttgg tctcgccgga cctcgcgacg cttccgctcg tcctgttcgc cgacgtgacg 180 atgcggagga ccgcgttgtc gagaccgtgg tagctcgagc acttcttccc gacgaccctg 240 ctactgaagt tgacgatgct atccgtcctc acacaccggt gactcctctt gggggtccac 300 atgaagacga cgacacttcc gttgaagacg ttgctcgcga agtgagtaaa cggtctccga 360 cccccgggcc ttcagtgcat gctcggtggg ggctgtccac caccttgagt gtgtacgggt 420 ggcacgggtc gtggacttga ggacccccct ggcagtcaga aggagaaggg gggttttggg 480 ttcctgtggg agtactagag ggcctgggga ctccagtgta cgcaccacca cctgcactcg 540 gtgcttctgg gactccagtt caagttgacc atgcacctgc cgcacctcca cgtattacgg 600 ttctgtttcg gcgccctcct cgtcatgttg tcgtgcatgg cacaccagtc gcaggagtgg 660 caggacgtgg tcctgaccga cttaccgttc ctcatgttca cgttccagag gttgtttcgg 720 gagggtcggg ggtagctctt ttggtagagg tttcggtttc ccgtcggggc tcttggtgtc 780 cacatgtggg acgggggtag ggccctcctc tactggttct tggtccagtc ggactggacg 840 gaccagtttc cgaagatagg gtcgctgtag cggcacctca ccctctcgtt acccgtcggc 900 ctcttgttga tgttctggtg cggagggcac gacctgaggc tgccgaggaa gaaggagata 960 tcgttcgagt ggcacctgtt ctcgtccacc gtcgtcccct tgcagaagag tacgaggcac 1020 tacgtactcc gagacgtgtt ggtgatgtgc gtcttctcgg agagggacag gggcccattt 1080 act 1083 <210> 35 <211> 1083 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 35 tacctacgtt acttctctcc cgagacgaca cacgacgacg acacacctcg tcagaagcaa 60 agcgggccgc ggcggctttg ggcgcttaca taaataatgt tacgattaac ccttgagctt 120 gcctgcttgg ttaggcccga gcttgccaca ctcccccttg tcctatttgc ggaggtaacg 180 atacgcagca cctccttgag gaggccctgc taacttgacc agttctttcc cacgaccctg 240 ctgctaaagt taacaatact ggcggtcctt acacagcgct ggcttctctt aggcgtccag 300 ataaagacaa caacgctccc cttaaagaca ttacttgcca aatgggtgga ggggcttcgg 360 ccgcccgggc tccactggat acttgggggc gggtggccac caccttgagt gtgtacgggt 420 ggcacgggtc gtggacttga ggacccccct ggcagtcaga aggagaaggg gggttttggg 480 ttcctgtggg agtactagag ggcctgggga ctccagtgta cgcaccacca cctgcactcg 540 gtgcttctgg gactccagtt caagttgacc atgcacctgc cgcacctcca cgtattacgg 600 ttctgtttcg gcgccctcct cgtcatgttg tcgtgcatgg cacaccagtc gcaggagtgg 660 caggacgtgg tcctgaccga cttaccgttc ctcatgttca cgttccagag gttgtttcgg 720 gagggtcggg ggtagctctt ttggtagagg tttcggtttc ccgtcggggc tcttggtgtc 780 cacatgtggg acgggggtag ggccctcctc tactggttct tggtccagtc ggactggacg 840 gaccagtttc cgaagatagg gtcgctgtag cggcacctca ccctctcgtt acccgtcggc 900 ctcttgttga tgttctggtg cggagggcac gacctgaggc tgccgaggaa gaaggagata 960 tcgttcgagt ggcacctgtt ctcgtccacc gtcgtcccct tgcagaagag tacgaggcac 1020 tacgtactcc gagacgtgtt ggtgatgtgc gtcttctcgg agagggacag gggcccattt 1080 act 1083 <210> 36 <211> 141 <212> PRT <213> Homo sapiens <400> 36 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Gly Pro Trp Ala Ser Thr Thr Ile 100 105 110 Pro Ser Gly Gly Pro Glu Ala Thr Ala Ala Ala Gly Asp Gln Gly Ser 115 120 125 Gly Ala Leu Trp Leu Cys Leu Glu Gly Pro Ala His Glu 130 135 140 <210> 37 <211> 141 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 37 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Gly Pro Trp Ala Ser Thr Thr Ile 100 105 110 Pro Ser Gly Gly Pro Glu Ala Thr Ala Ala Ala Gly Asp Gln Gly Ser 115 120 125 Gly Ala Leu Trp Leu Cys Leu Glu Gly Pro Ala His Glu 130 135 140 <210> 38 <211> 370 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 38 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Gly Pro Trp Ala Ser Thr Thr Ile 100 105 110 Pro Ser Gly Gly Pro Glu Ala Thr Ala Ala Ala Gly Asp Gln Gly Ser 115 120 125 Gly Ala Leu Trp Leu Cys Leu Glu Gly Pro Ala His Glu Thr Gly Gly 130 135 140 Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly 145 150 155 160 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 165 170 175 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 180 185 190 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 195 200 205 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 210 215 220 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 225 230 235 240 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 245 250 255 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 260 265 270 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 275 280 285 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 290 295 300 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 305 310 315 320 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 325 330 335 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 340 345 350 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 355 360 365 Gly Lys 370 <210> 39 <211> 512 <212> PRT <213> Homo sapiens <400> 39 Met Thr Ala Pro Trp Val Ala Leu Ala Leu Leu Trp Gly Ser Leu Trp 1 5 10 15 Pro Gly Ser Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr 20 25 30 Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg 35 40 45 Cys Glu Gly Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Ala 50 55 60 Asn Ser Ser Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp 65 70 75 80 Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn 85 90 95 Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg 100 105 110 Phe Thr His Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro 115 120 125 Pro Pro Thr Ala Pro Thr Leu Leu Thr Val Leu Ala Tyr Ser Leu Leu 130 135 140 Pro Ile Gly Gly Leu Ser Leu Ile Val Leu Leu Ala Phe Trp Met Tyr 145 150 155 160 Arg His Arg Lys Pro Pro Tyr Gly His Val Asp Ile His Glu Asp Pro 165 170 175 Gly Pro Pro Pro Pro Ser Pro Leu Val Gly Leu Lys Pro Leu Gln Leu 180 185 190 Leu Glu Ile Lys Ala Arg Gly Arg Phe Gly Cys Val Trp Lys Ala Gln 195 200 205 Leu Met Asn Asp Phe Val Ala Val Lys Ile Phe Pro Leu Gln Asp Lys 210 215 220 Gln Ser Trp Gln Ser Glu Arg Glu Ile Phe Ser Thr Pro Gly Met Lys 225 230 235 240 His Glu Asn Leu Leu Gln Phe Ile Ala Ala Glu Lys Arg Gly Ser Asn 245 250 255 Leu Glu Val Glu Leu Trp Leu Ile Thr Ala Phe His Asp Lys Gly Ser 260 265 270 Leu Thr Asp Tyr Leu Lys Gly Asn Ile Ile Thr Trp Asn Glu Leu Cys 275 280 285 His Val Ala Glu Thr Met Ser Arg Gly Leu Ser Tyr Leu His Glu Asp 290 295 300 Val Pro Trp Cys Arg Gly Glu Gly His Lys Pro Ser Ile Ala His Arg 305 310 315 320 Asp Phe Lys Ser Lys Asn Val Leu Leu Lys Ser Asp Leu Thr Ala Val 325 330 335 Leu Ala Asp Phe Gly Leu Ala Val Arg Phe Glu Pro Gly Lys Pro Pro 340 345 350 Gly Asp Thr His Gly Gln Val Gly Thr Arg Arg Tyr Met Ala Pro Glu 355 360 365 Val Leu Glu Gly Ala Ile Asn Phe Gln Arg Asp Ala Phe Leu Arg Ile 370 375 380 Asp Met Tyr Ala Met Gly Leu Val Leu Trp Glu Leu Val Ser Arg Cys 385 390 395 400 Lys Ala Ala Asp Gly Pro Val Asp Glu Tyr Met Leu Pro Phe Glu Glu 405 410 415 Glu Ile Gly Gln His Pro Ser Leu Glu Glu Leu Gln Glu Val Val Val 420 425 430 His Lys Lys Met Arg Pro Thr Ile Lys Asp His Trp Leu Lys His Pro 435 440 445 Gly Leu Ala Gln Leu Cys Val Thr Ile Glu Glu Cys Trp Asp His Asp 450 455 460 Ala Glu Ala Arg Leu Ser Ala Gly Cys Val Glu Glu Arg Val Ser Leu 465 470 475 480 Ile Arg Arg Ser Val Asn Gly Thr Thr Ser Asp Cys Leu Val Ser Leu 485 490 495 Val Thr Ser Val Thr Asn Val Asp Leu Pro Pro Lys Glu Ser Ser Ile 500 505 510 <210> 40 <211> 115 <212> PRT <213> Homo sapiens <400> 40 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Ala Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala Gly Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105 110 Ala Pro Thr 115 <210> 41 <211> 100 <212> PRT <213> Homo sapiens <400> 41 Gly Arg Gly Glu Ala Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn 1 5 10 15 Trp Glu Leu Glu Arg Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly 20 25 30 Glu Gln Asp Lys Arg Leu His Cys Tyr Ala Ser Trp Ala Asn Ser Ser 35 40 45 Gly Thr Ile Glu Leu Val Lys Lys Gly Cys Trp Leu Asp Asp Phe Asn 50 55 60 Cys Tyr Asp Arg Gln Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val 65 70 75 80 Tyr Phe Cys Cys Cys Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His 85 90 95 Leu Pro Glu Ala 100 <210> 42 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic peptide <400> 42 Thr Gly Gly Gly 1 <210> 43 <211> 368 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 43 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly 1 5 10 15 Ala Val Phe Val Ser Pro Gly Ala Ser Gly Arg Gly Glu Ala Glu Thr 20 25 30 Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp Glu Leu Glu Arg Thr Asn 35 40 45 Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu Gln Asp Lys Arg Leu His 50 55 60 Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly Thr Ile Glu Leu Val Lys 65 70 75 80 Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys 85 90 95 Val Ala Thr Glu Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys Glu Gly 100 105 110 Asn Phe Cys Asn Glu Arg Phe Thr His Leu Pro Glu Ala Gly Gly Pro 115 120 125 Glu Val Thr Tyr Glu Pro Pro Pro Thr Ala Pro Thr Gly Gly Gly Thr 130 135 140 His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser 145 150 155 160 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 165 170 175 Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 180 185 190 Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 195 200 205 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val 210 215 220 Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 225 230 235 240 Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 245 250 255 Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 260 265 270 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 275 280 285 Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 290 295 300 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 305 310 315 320 Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 325 330 335 Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 340 345 350 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 355 360 365 <210> 44 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic polypeptide <400> 44 Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala Asn Trp Glu Leu Glu Arg 1 5 10 15 Thr Asn Gln Ser Gly Leu Glu Arg Cys Glu Gly Glu Gln Asp Lys Arg 20 25 30 Leu His Cys Tyr Ala Ser Trp Arg Asn Ser Ser Gly Thr Ile Glu Leu 35 40 45 Val Lys Lys Gly Cys Trp Asp Asp Asp Phe Asn Cys Tyr Asp Arg Gln 50 55 60 Glu Cys Val Ala Thr Glu Glu Asn Pro Gln Val Tyr Phe Cys Cys Cys 65 70 75 80 Glu Gly Asn Phe Cys Asn Glu Arg Phe Thr His Leu Pro Glu Ala Gly 85 90 95 Gly Pro Glu Val Thr Tyr Glu Pro Pro Pro Thr 100 105

Claims (19)

  1. 빈혈을 치료하기 위한 약물의 제조에 사용을 위한 및/또는 적혈구 세포 수준을 증가시키기 위한 약물의 제조에 사용을 위한 용도로 ActRII 융합 단백질을 포함하는 약학 조성물에 있어서, 이때 ActRII 융합 단백질은
    (i) 서열 식별 번호: 29의 아미노산 서열을 포함하는 ActRII 단백질;
    (ii) 면역글로불린 Fc 도메인; 그리고
    (iii) ActRII 단백질과 상기 면역글로불린 Fc 도메인 사이에 위치한 링커 도메인; 이때 ActRII 융합 단백질은 L79D 돌연변이가 결여된 ActRII 융합 단백질과 비교하였을 때, 액티빈 A 및 액티빈 B에 결합은 하지 못하지만, 그러나 GDF11에 결합은 유지하고,
    이때 상기 조성물은 상기 ActRII 융합 단백질의 효과량을 이를 필요로 하는 환자에게 투여하는 것을 포함하는 빈혈을 치료하고 및/또는 적혈구 세포 수준을 증가시키는 것을 특징으로 하는, 약학 조성물.
  2. 청구항 1에 있어서, 이때 면역글로불린 Fc 도메인은 IgG 중쇄로부터 유래된, 약학 조성물.
  3. 청구항 2에 있어서, 이때 융합 단백질은 동종이량체인, 약학 조성물.
  4. 청구항 3에 있어서, 이때 융합 단백질은 당화된 아미노산, 페길화된(PEGylated) 아미노산, 파르네실화된 아미노산, 아세틸화된 아미노산, 바이오티닐화된 아미노산, 지질 모이어티에 접합된 아미노산, 그리고 유기 유도화된 물질에 접합된 아미노산에서 선택된 하나 또는 그 이상의 변형된 아미노산 잔기를 포함하는, 약학 조성물.
  5. 청구항 1-4중 임의의 한 항에 있어서, 이때 상기 조성물은 피하 주사를 통하여 투여되도록 조성된, 약학 조성물.
  6. 청구항 5에 있어서, 이때 상기 조성물은 해당 환자에게 최대 30 mg/kg의 투여량으로 조성된, 약학 조성물.
  7. 청구항 6에 있어서, 이때 상기 조성물은 해당 환자에게 최대 10 mg/kg의 투여량으로 조성된, 약학 조성물.
  8. 청구항 7에 있어서, 이때 상기 조성물은 해당 환자에게 최대 3 mg/kg의 투여량으로 조성된, 조성물.
  9. 청구항 1-4중 임의의 한 항에 있어서, 이때 융합 단백질은 서열 번호: 28에 대해 적어도 95% 동일한 아미노산 서열을 포함하는, 약학 조성물.
  10. 청구항 9에 있어서, 이때 융합 단백질은 서열 번호: 28에 대해 적어도 98% 동일한 아미노산 서열을 포함하는, 약학 조성물.
  11. 청구항 10에 있어서, 이때 융합 단백질은 서열 번호: 28에 대해 적어도 99% 동일한 아미노산 서열을 포함하는, 약학 조성물.
  12. 청구항 9-11중 임의의 한 항에 있어서, 이때 상기 조성물은 피하 주사를 통하여 투여되도록 조성된, 약학 조성물.
  13. 청구항 12에 있어서, 이때 상기 조성물은 해당 환자에게 최대 30 mg/kg의 투여량으로 조성된, 약학 조성물.
  14. 청구항 13에 있어서, 이때 상기 조성물은 해당 환자에게 최대 10 mg/kg의 투여량으로 조성된, 약학 조성물.
  15. 청구항 14에 있어서, 이때 상기 조성물은 해당 환자에게 최대 3 mg/kg의 투여량으로 조성된, 약학 조성물.
  16. 청구항 8 또는 15중 임의의 한 항에 있어서, 이때 상기 빈혈은 골수이형성 증후군과 관련된, 약학 조성물.
  17. 청구항 8 또는 15중 임의의 한 항에 있어서, 이때 상기 빈혈은 지중해빈혈과 연관된, 약학 조성물.
  18. 청구항 8 또는 15중 임의의 한 항에 있어서, 이때 상기 빈혈은 낫적혈구 세포 질환과 연관된, 약학 조성물.
  19. 청구항 1에 있어서, 이때 ActRII 단백질은 서열 식별 번호: 29의 아미노산 서열로 구성된, 약학 조성물.
KR1020227045338A 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용 KR102606494B1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12/583,177 US8058229B2 (en) 2008-08-14 2009-08-13 Method of increasing red blood cell levels or treating anemia in a patient
US12/583,177 2009-08-13
WOPCT/US2009/004659 2009-08-13
PCT/US2009/004659 WO2010019261A1 (en) 2008-08-14 2009-08-13 Use of gdf traps to increase red blood cell levels
US30590110P 2010-02-18 2010-02-18
US61/305,901 2010-02-18
PCT/US2010/045509 WO2011020045A1 (en) 2009-08-13 2010-08-13 Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
KR1020207030283A KR20200124322A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207030283A Division KR20200124322A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용

Publications (2)

Publication Number Publication Date
KR20230003452A KR20230003452A (ko) 2023-01-05
KR102606494B1 true KR102606494B1 (ko) 2023-11-24

Family

ID=43586530

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1020207030283A KR20200124322A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020197027722A KR102170682B1 (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020127004678A KR101882521B1 (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020227045338A KR102606494B1 (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020187020803A KR20180085825A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020207030283A KR20200124322A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020197027722A KR102170682B1 (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
KR1020127004678A KR101882521B1 (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020187020803A KR20180085825A (ko) 2009-08-13 2010-08-13 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용

Country Status (14)

Country Link
EP (3) EP2464369B1 (ko)
JP (4) JP5909446B2 (ko)
KR (5) KR20200124322A (ko)
CN (7) CN113577291A (ko)
AU (1) AU2010282361B2 (ko)
BR (2) BR122020019169B1 (ko)
CA (1) CA2770822C (ko)
ES (2) ES2796121T3 (ko)
HK (2) HK1223818A1 (ko)
IL (6) IL287990B (ko)
MX (2) MX2012001916A (ko)
NZ (3) NZ598348A (ko)
RU (2) RU2642302C1 (ko)
WO (1) WO2011020045A1 (ko)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2332977T3 (en) 2004-07-23 2016-02-29 Acceleron Pharma Inc ActRII receptor polypeptides
CA3045808C (en) 2005-11-23 2022-08-16 Acceleron Pharma, Inc. Activin-actriia antagonists and uses for promoting bone growth
US8128933B2 (en) 2005-11-23 2012-03-06 Acceleron Pharma, Inc. Method of promoting bone growth by an anti-activin B antibody
US8895016B2 (en) 2006-12-18 2014-11-25 Acceleron Pharma, Inc. Antagonists of activin-actriia and uses for increasing red blood cell levels
ES2415666T3 (es) 2007-02-01 2013-07-26 Acceleron Pharma, Inc. Composiciones farmacéuticas que comprenden antagonistas de Activina-ActRIIa para uso en la prevención o el tratamiento de metástasis de cáncer de mama o pérdida ósea relacionada con el cáncer de mama
TW201907946A (zh) 2007-02-02 2019-03-01 美商艾瑟勒朗法瑪公司 衍生自ActRIIB的變體與其用途
EP2484372A1 (en) 2007-02-09 2012-08-08 Acceleron Pharma, Inc. Activin-ActRIIa Antagonists and Uses for Promoting Bone Growth in Cancer Patients
CA2699936A1 (en) 2007-09-18 2009-03-26 Acceleron Pharma Inc. Activin-actriia antagonists and uses for decreasing or inhibiting fsh secretion
US8216997B2 (en) 2008-08-14 2012-07-10 Acceleron Pharma, Inc. Methods for increasing red blood cell levels and treating anemia using a combination of GDF traps and erythropoietin receptor activators
HRP20230761T1 (hr) 2008-08-14 2023-10-13 Acceleron Pharma Inc. Gdf zamke
US8138142B2 (en) 2009-01-13 2012-03-20 Acceleron Pharma Inc. Methods for increasing adiponectin in a patient in need thereof
AU2010258931B2 (en) 2009-06-08 2015-04-23 Acceleron Pharma Inc. Methods for increasing thermogenic adipocytes
US8293881B2 (en) * 2009-06-12 2012-10-23 Acceleron Pharma Inc. Isolated nucleic acid encoding a truncated ActRIIB fusion protein
ES2658292T3 (es) 2009-11-17 2018-03-09 Acceleron Pharma, Inc. Proteínas ActRIIB y variantes y usos de las mismas con respecto a la inducción de la utrofina para el tratamiento de la distrofia muscular
EP2638065A4 (en) 2010-11-08 2014-04-09 Acceleron Pharma Inc ACTRIIA BINDING AGENTS AND USES THEREOF
CA2852683A1 (en) * 2011-10-17 2013-04-25 Acceleron Pharma, Inc. Methods and compositions for treating ineffective erythropoiesis
US9809636B2 (en) 2012-04-06 2017-11-07 Acceleron Pharma Inc. Methods for increasing red blood cell levels comprising administering BMP9
ES2753811T3 (es) * 2012-10-24 2020-04-14 Celgene Corp Biomarcador para uso en el tratamiento de anemia
CN112957462A (zh) * 2012-10-24 2021-06-15 细胞基因公司 用于治疗贫血的方法
WO2014071158A1 (en) 2012-11-02 2014-05-08 Celgene Corporation Activin-actrii antagonists and uses for treating bone and other disorders
JP2017509647A (ja) 2014-03-21 2017-04-06 アクセルロン ファーマ, インコーポレイテッド アクチビンbおよび/またはgdf11の阻害によって赤血球レベルを増大させ、無効赤血球生成を処置する方法
CA2951926C (en) * 2014-06-13 2023-01-10 Acceleron Pharma, Inc. Methods and compositions for treating ulcers
MA41052A (fr) * 2014-10-09 2017-08-15 Celgene Corp Traitement d'une maladie cardiovasculaire à l'aide de pièges de ligands d'actrii
EP3922259A1 (en) * 2014-10-30 2021-12-15 Acceleron Pharma Inc. Methods and compositions using gdf15 polypeptides for increasing red blood cells
MA41119A (fr) * 2014-12-03 2017-10-10 Acceleron Pharma Inc Méthodes de traitement de syndromes myélodysplasiques et d'anémie sidéroblastique
ES2946160T3 (es) 2014-12-03 2023-07-13 Celgene Corp Antagonistas de activina-ActRII y usos para tratar síndrome mielodisplásico
EP3256148A1 (en) * 2015-02-12 2017-12-20 INSERM - Institut National de la Santé et de la Recherche Médicale Methods for predicting the responsiveness of a patient affected with malignant hematological disease to chemotherapy treatment and methods of treatment of such disease
SG11201708351XA (en) 2015-04-22 2017-11-29 Alivegen Usa Inc Novel hybrid actriib ligand trap proteins for treating muscle wasting diseases
CA2986432A1 (en) * 2015-05-20 2016-11-24 Celgene Corporation In vitro cell culture methods for beta-thalassemia using activin type ii receptor ligand traps
US11123430B2 (en) 2015-11-04 2021-09-21 Acceleron Pharma Inc. Methods for increasing red blood cell levels and treating ineffective erythropoiesis
EP3380121B1 (en) 2015-11-23 2023-12-20 Acceleron Pharma Inc. Actrii antagonist for use in treating eye disorders
AU2017222526A1 (en) * 2016-02-22 2018-08-23 Acceleron Pharma Inc. ActRII antagonists for use in increasing immune activity
RS62011B1 (sr) 2016-07-15 2021-07-30 Acceleron Pharma Inc Kompozicije koje sadrže polipeptide actriia za upotrebu u lečenju plućne hipertenzije
KR20190040972A (ko) * 2016-07-27 2019-04-19 악셀레론 파마 인코포레이티드 골섬유증 치료 방법 및 조성물
JP7280182B2 (ja) * 2016-10-05 2023-05-23 アクセルロン ファーマ インコーポレイテッド バリアントActRIIBタンパク質およびその使用
AU2017340504A1 (en) 2016-10-05 2019-04-11 Acceleron Pharma, Inc. Compositions and method for treating kidney disease
US11013785B2 (en) 2016-11-10 2021-05-25 Keros Therapeutics, Inc. Activin receptor type IIA variants and methods of use thereof
US20200101134A1 (en) 2017-06-14 2020-04-02 Celgene Corporation Methods for treating myeloproliferative neoplasm-associated myelofibrosis and anemia
WO2019094751A1 (en) 2017-11-09 2019-05-16 Keros Therapeutics, Inc. Activin receptor type iia variants and methods of use thereof
JP2021518745A (ja) 2018-01-12 2021-08-05 ケロス セラピューティクス インコーポレイテッドKeros Therapeutics,Inc. アクチビンiib型受容体変異体およびそれらの使用方法
AU2019266314A1 (en) * 2018-05-09 2020-11-19 Keros Therapeutics, Inc. Activin receptor type iia variants and methods of use thereof
EP3873441A4 (en) * 2018-12-10 2022-06-29 Arshintseva, Elena Valentinovna A new use of the poloxamer as a pharmacologically active substance
CN111466337B (zh) * 2020-05-19 2022-04-19 山东大学齐鲁医院 一种腹主动脉瘤动物模型及其构建方法
CN115317589A (zh) * 2022-09-05 2022-11-11 中国海洋大学 脯氨酰羟化酶抑制剂及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097541A2 (en) * 2007-02-02 2008-08-14 Acceleron Pharma Inc. Variants derived from actriib and uses therefor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1265208A (en) 1915-09-07 1918-05-07 Edward C Kahn Liquid-fuel burner.
EP0272253A4 (en) 1986-03-07 1990-02-05 Massachusetts Inst Technology METHOD FOR IMPROVING GLYCOPROTE INSTABILITY.
US5080891A (en) 1987-08-03 1992-01-14 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
WO1990008822A1 (en) 1989-02-03 1990-08-09 Genetics Institute, Inc. Erythropoietin receptor
US5677196A (en) 1993-05-18 1997-10-14 University Of Utah Research Foundation Apparatus and methods for multi-analyte homogeneous fluoro-immunoassays
US5525490A (en) 1994-03-29 1996-06-11 Onyx Pharmaceuticals, Inc. Reverse two-hybrid method
US5885574A (en) 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
US5814565A (en) 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
DE69636866D1 (en) 1995-04-11 2007-03-15 Gen Hospital Corp Reverse "two-hybrid"-systeme
NZ513642A (en) 1999-01-21 2004-02-27 Metamorphix Inc Growth differentiation factor inhibitors and uses therefor
WO2001087329A1 (en) * 2000-05-15 2001-11-22 F. Hoffmann-La Roche Ag Liquid pharmaceutical composition containing an erythropoietin derivate
US7087224B2 (en) * 2000-10-31 2006-08-08 Amgen Inc. Method of treating anemia by administering IL-1ra
EP2324834B1 (en) * 2001-12-06 2019-05-08 Fibrogen, Inc. Methods of Increasing Endogenous Erythropoietin (EPO)
DE10234192B4 (de) * 2002-07-26 2009-11-26 Epoplus Gmbh Co.Kg Verwendung von Erythropoetin
ZA200506246B (en) * 2003-02-07 2006-12-27 Prometic Biosciences Inc Medium-chain length fatty acids, glycerides and analogues as stimulators of erythropoiesis
GB0304424D0 (en) * 2003-02-26 2003-04-02 Glaxosmithkline Biolog Sa Novel compounds
DK2332977T3 (en) 2004-07-23 2016-02-29 Acceleron Pharma Inc ActRII receptor polypeptides
EP1819357A4 (en) * 2004-12-09 2009-02-25 Univ Pittsburgh VACCINES FOR FAST RESPONSE TO A BIRD GRIP PANDEMY
JPWO2006115274A1 (ja) * 2005-04-26 2008-12-18 味の素株式会社 骨髄赤血球前駆細胞分化促進剤
ES2370040T3 (es) * 2005-10-07 2011-12-12 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.R.L. Vacuna de metaloproteinasa 11 de la matriz.
US8067562B2 (en) * 2005-11-01 2011-11-29 Amgen Inc. Isolated nucleic acid molecule comprising the amino acid sequence of SEQ ID NO:1
WO2008073292A2 (en) * 2006-12-08 2008-06-19 Caritas St. Elizabeth's Medical Center Of Boston, Inc. Method for protecting renal tubular epithelial cells from radiocontrast nephro parhy (rcn)
CN104524548A (zh) * 2006-12-18 2015-04-22 阿塞勒隆制药公司 活化素-actrii拮抗剂及在提高红细胞水平中的用途
KR20110031951A (ko) * 2008-06-26 2011-03-29 악셀레론 파마 인코포레이티드 액티빈-actriia의 길항물질 및 적혈구 수준을 증가시키기 위한 이들의 용도
HRP20230761T1 (hr) * 2008-08-14 2023-10-13 Acceleron Pharma Inc. Gdf zamke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008097541A2 (en) * 2007-02-02 2008-08-14 Acceleron Pharma Inc. Variants derived from actriib and uses therefor

Also Published As

Publication number Publication date
CN105412908A (zh) 2016-03-23
IL252046A0 (en) 2017-06-29
EP3117829A1 (en) 2017-01-18
KR102170682B1 (ko) 2020-10-28
JP2020203953A (ja) 2020-12-24
IL252044B (en) 2019-11-28
HK1224199A1 (zh) 2017-08-18
JP2018177816A (ja) 2018-11-15
BR112012003232B1 (pt) 2022-02-22
CN105561295A (zh) 2016-05-11
KR20230003452A (ko) 2023-01-05
IL252045B (en) 2020-05-31
RU2017145301A3 (ko) 2019-06-24
IL275851B (en) 2021-12-01
EP3117829B1 (en) 2020-10-07
RU2642302C1 (ru) 2018-01-24
EP2464369A4 (en) 2013-07-17
CN113577291A (zh) 2021-11-02
IL252044A0 (en) 2017-06-29
RU2592670C2 (ru) 2016-07-27
BR112012003232A2 (pt) 2016-11-22
IL218052A0 (en) 2012-04-30
RU2017145301A (ru) 2019-06-24
NZ712943A (en) 2017-08-25
CN113082194A (zh) 2021-07-09
ES2796121T3 (es) 2020-11-25
RU2732229C2 (ru) 2020-09-14
CA2770822C (en) 2020-03-24
JP5909446B2 (ja) 2016-04-26
CN113171442A (zh) 2021-07-27
MX2012001916A (es) 2012-05-22
KR20200124322A (ko) 2020-11-02
WO2011020045A9 (en) 2011-06-03
EP3838919A1 (en) 2021-06-23
RU2012109393A (ru) 2013-09-20
JP2016034981A (ja) 2016-03-17
KR20190111158A (ko) 2019-10-01
RU2020127574A (ru) 2022-02-21
EP2464369B1 (en) 2020-03-11
JP6860533B2 (ja) 2021-04-14
CN105535938B (zh) 2022-04-26
KR20120054024A (ko) 2012-05-29
IL218052A (en) 2017-05-29
AU2010282361B2 (en) 2015-03-19
JP2013501816A (ja) 2013-01-17
AU2010282361A1 (en) 2012-03-15
ES2844123T3 (es) 2021-07-21
KR20180085825A (ko) 2018-07-27
IL252046B (en) 2020-07-30
IL287990A (en) 2022-01-01
IL252045A0 (en) 2017-06-29
HK1223818A1 (zh) 2017-08-11
CN102655872A (zh) 2012-09-05
CN102655872B (zh) 2016-01-20
BR122020019169B1 (pt) 2022-09-27
IL275851A (en) 2020-08-31
EP2464369A1 (en) 2012-06-20
NZ598348A (en) 2014-05-30
CN105561295B (zh) 2020-03-20
CN105412908B (zh) 2021-08-24
KR101882521B1 (ko) 2018-07-27
CA2770822A1 (en) 2011-02-17
MX2019010341A (es) 2019-10-21
NZ623113A (en) 2015-10-30
CN105535938A (zh) 2016-05-04
WO2011020045A1 (en) 2011-02-17
IL287990B (en) 2022-07-01

Similar Documents

Publication Publication Date Title
KR102606494B1 (ko) 적혈구 수준을 증가시키기 위한 gdf 트랩과 에리트로포이에틴 수용체 활성인자의 병용
US11168311B2 (en) Methods for treating anemia in a subject in need thereof
US20200181217A1 (en) Combined use of gdf traps and erythropoietin receptor activators to increase red blood cell levels
AU2021290230A1 (en) Methods for treating fatty liver disease
AU2018247262A1 (en) Methods and compositions for treating ineffective erythropoiesis
RU2814047C2 (ru) Комбинированное применение ловушек gdf и активаторов рецепторов эритропоэтина для повышения содержания эритроцитов
AU2019204127B2 (en) Combined use of GDF traps and erythropoietin receptor activators to increase red blood cell levels
AU2019222789B2 (en) Use of GDF traps to increase red blood cell levels

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant