KR102578747B1 - Ruthenium organometallic compound, and method for producing same - Google Patents

Ruthenium organometallic compound, and method for producing same Download PDF

Info

Publication number
KR102578747B1
KR102578747B1 KR1020210074313A KR20210074313A KR102578747B1 KR 102578747 B1 KR102578747 B1 KR 102578747B1 KR 1020210074313 A KR1020210074313 A KR 1020210074313A KR 20210074313 A KR20210074313 A KR 20210074313A KR 102578747 B1 KR102578747 B1 KR 102578747B1
Authority
KR
South Korea
Prior art keywords
ruthenium
organometallic compound
compound
present
formula
Prior art date
Application number
KR1020210074313A
Other languages
Korean (ko)
Other versions
KR20220165868A (en
Inventor
조병옥
오성태
강민수
메리 조지 쉐비
배우리
Original Assignee
(주)원익머트리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)원익머트리얼즈 filed Critical (주)원익머트리얼즈
Priority to KR1020210074313A priority Critical patent/KR102578747B1/en
Publication of KR20220165868A publication Critical patent/KR20220165868A/en
Application granted granted Critical
Publication of KR102578747B1 publication Critical patent/KR102578747B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)

Abstract

본 발명은, 열적 안정성이 개선되고, 상온에서 액체이어서 낮은 온도에서도 쉽게 양질의 루테늄 박막의 제조가 가능한 신규한 루테늄 유기금속화합물 및 이의 제조방법에 관한 것이다. The present invention relates to a novel ruthenium organometallic compound that has improved thermal stability and is liquid at room temperature, enabling the production of high-quality ruthenium thin films even at low temperatures, and a method for producing the same.

Description

루테늄 유기금속화합물 및 이의 제조방법{Ruthenium organometallic compound, and method for producing same}Ruthenium organometallic compound and method for producing same}

본 발명은, 반도체 소자의 제조용 원료로서 유용한 루테늄 유기금속 화합물 및 그 제조방법에 관한 것이다.The present invention relates to a ruthenium organometallic compound useful as a raw material for manufacturing semiconductor devices and a method for producing the same.

루테늄은 루테늄 자체뿐만 아니라, 그 산화물도 전기 전도성을 가지고 있어 전극 재료로서 유용하며, 또한 미세화 가공성도 우수하다. 이러한 루테늄의 안정적인 전극 특징 및 우수한 가공성으로 반도체 메모리 소자의 고집적화에 따른 메모리셀(memory cell) 미세화의 전극 재료로 루테늄이 이용되고 있다. 특히 루테늄 박막은 고집적 메모리소자인 DRAM 커패시터(capacitor)의 전극 재료, 또는 반도체 소자에서 구리 배선재료의 확산 방지막으로 사용되고 있다.Ruthenium is useful as an electrode material because not only ruthenium itself but also its oxide has electrical conductivity, and it also has excellent micronization processability. Due to the stable electrode characteristics and excellent processability of ruthenium, ruthenium is being used as an electrode material for miniaturization of memory cells due to the high integration of semiconductor memory devices. In particular, ruthenium thin films are used as electrode materials for DRAM capacitors, which are highly integrated memory devices, or as diffusion barriers for copper wiring materials in semiconductor devices.

한편, 고집적화된 메모리 소자에 있어서의 루테늄 함유 박막의 제조방법으로서는 화학기상증착법(chemical vapor deposition, CVD법) 또는 원자층 증착법(Atomic Layer Deposition, ALD법)이 적용된다. Meanwhile, chemical vapor deposition (CVD) or atomic layer deposition (ALD) is used as a manufacturing method for ruthenium-containing thin films in highly integrated memory devices.

특히, CVD법에 의한 루테늄 박막 또는 루테늄 산화물 박막을 형성시키기 위한 유기금속화합물로서는, 상온에서 액체이며 취급성이 우수하고 또한 안정성 및 증기압의 관점에서 안정적인 공급이 가능한 화합물일수록 루테늄 박막 또는 루테늄 산화물 박막 형성용으로 유리하다.In particular, as an organometallic compound for forming a ruthenium thin film or ruthenium oxide thin film by the CVD method, a compound that is liquid at room temperature, has excellent handling properties, and can be supplied stably in terms of stability and vapor pressure is more likely to form a ruthenium thin film or ruthenium oxide thin film. It is advantageous for use.

또한, 루테늄 박막 공정은 루테늄 유기금속화합물의 고온 열분해로 이루어지므로 고온 안정성 및 열분해 후 잔류물질이 적은 화합물일수록 루테늄 박막 형성에 우수한 루테늄 유기금속화합물일 수 있다.In addition, since the ruthenium thin film process is achieved by high-temperature thermal decomposition of ruthenium organometallic compounds, compounds with high temperature stability and less residual substances after thermal decomposition are more likely to be excellent ruthenium organometallic compounds for forming ruthenium thin films.

따라서 상기와 같은 조건에 적합한 루테늄 유기금속화합물이 요구되고 있다. Therefore, ruthenium organometallic compounds suitable for the above conditions are required.

특허문헌 1 : 국내등록특허공보 제10-0958332호Patent Document 1: Domestic Patent Publication No. 10-0958332 특허문헌 2 : 일본공개특허공보 제2012-0120182호Patent Document 2: Japanese Patent Publication No. 2012-0120182

본 발명은, 상기와 같이 루테늄 박막 형성에 유리한 것으로서, 열적 안정성이 개선되고, 상온뿐만 아니라 저온에서도 액체이어서 루테늄 박막 형성 공정에 필요한 루테늄 화합물의 안정적인 공급이 가능하고, 또한 낮은 온도에서도 쉽게 양질의 루테늄 박막의 제조가 가능한 신규한 루테늄 유기금속화합물 및 이의 제조방법을 제공하는 것을 목적으로 한다.The present invention is advantageous for forming ruthenium thin films as described above, and has improved thermal stability, is liquid not only at room temperature but also at low temperatures, enabling a stable supply of ruthenium compounds necessary for the ruthenium thin film formation process, and also provides high-quality ruthenium easily even at low temperatures. The purpose is to provide a novel ruthenium organometallic compound capable of producing thin films and a method for producing the same.

본 발명은, 상기 목적을 달성하기 위하여 하기 화학식 1의 루테늄 유기금속화합물을 제공한다. In order to achieve the above object, the present invention provides a ruthenium organometallic compound of the following formula (1).

[화학식 1] [Formula 1]

Figure 112021066186554-pat00001
Figure 112021066186554-pat00001

상기 화학식 1 중 R1, 및 R2는 각각 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기이고, 바람직하게는 메틸기이다. In Formula 1, R1 and R2 are each a straight-chain or branched alkyl group having 1 to 4 carbon atoms, and are preferably a methyl group.

또한, 본 발명은 하기의 단계를 포함하는 루테늄 유기금속화합물의 제조방법을 제공한다. 하기의 제조방법은 상기 화학식 1의 루테늄 유기금속화합물 중 R1 및 R2가 각각 메틸기인 경우이다.Additionally, the present invention provides a method for producing a ruthenium organometallic compound comprising the following steps. The following production method is for the case where R1 and R2 in the ruthenium organometallic compound of Formula 1 are each a methyl group.

본 발명의 루테늄 유기금속화합물은 열적 안정성 및 상온 액체성으로 낮은 온도에서도 쉽게 양질의 루테늄 박막의 제조가 가능하고, 또한 상온뿐만 아니라 저온에서의 액체성으로 겨울에도 루테늄 박막 공정에 루테늄 화합물의 공급을 위하여 보온 등의 별도 장치가 필요 없이 안정적인 공급이 가능한 장점, 즉 공급 시 취급이 우수한 장점이 있다.The ruthenium organometallic compound of the present invention has thermal stability and liquid properties at room temperature, making it possible to easily produce high-quality ruthenium thin films even at low temperatures. In addition, the ruthenium compound can be supplied to the ruthenium thin film process even in winter due to its liquid properties not only at room temperature but also at low temperatures. There is an advantage in that stable supply is possible without the need for separate devices such as thermal insulation, that is, excellent handling during supply.

도 1은 본 발명 루테늄 유기금속화합물의 제조방법에 관한 실시예 1 중 step 1의 생산물 NMR이다.
도 2는 본 발명 루테늄 유기금속화합물의 제조방법에 관한 실시예 1 중 step 2의 생산물 NMR이다.
도 3은 본 발명 루테늄 유기금속화합물의 제조방법에 관한 실시예 1 중 step 3의 생산물인 본 발명의 화학식 1로 나타내어지는 루테늄 유기금속화합물의 NMR이다.
도 4는 본 발명 실시예 1의 루테늄 유기금속화합물 및 비교예의 TGA DATA이다.
도 5는 본 발명 실시예 1의 루테늄 유기금속화합물 및 비교예의 고온에서의 시차주사열량계 분석 비교표 (DSC)이다.
도 6은 본 발명 실시예 1의 루테늄 유기금속화합물 및 비교예의 저온에서의 시차주사열량계 분석 비교표 (DSC)이다.
도 7은 본 발명의 루테늄 유기금속화합물에 의하여 형성된 루테늄 박막을 나타낸 사진이다.
도 8은 비교예인 Rudense의 NMR이다.
Figure 1 shows the NMR of the product of step 1 in Example 1 of the method for producing the ruthenium organometallic compound of the present invention.
Figure 2 is the NMR of the product of step 2 in Example 1 of the method for producing the ruthenium organometallic compound of the present invention.
Figure 3 is an NMR of the ruthenium organometallic compound represented by Chemical Formula 1 of the present invention, which is the product of step 3 in Example 1 of the method for producing the ruthenium organometallic compound of the present invention.
Figure 4 is the TGA DATA of the ruthenium organometallic compound of Example 1 of the present invention and the comparative example.
Figure 5 is a differential scanning calorimetry analysis comparison table (DSC) at high temperature of the ruthenium organometallic compound of Example 1 of the present invention and the comparative example.
Figure 6 is a differential scanning calorimetry analysis comparison table (DSC) at low temperature of the ruthenium organometallic compound of Example 1 of the present invention and the comparative example.
Figure 7 is a photograph showing a ruthenium thin film formed by the ruthenium organometallic compound of the present invention.
Figure 8 is NMR of Rudense, a comparative example.

본 발명은, 하기의 화학식 1로 표시되는 루테늄 유기금속화합물에 관한 것이다. The present invention relates to a ruthenium organometallic compound represented by the following formula (1).

[화학식 1] [Formula 1]

상기 화학식 1 중 R1, 및 R2는 각각 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기이고, 바람직하게는 메틸기이다. In Formula 1, R1 and R2 are each a straight-chain or branched alkyl group having 1 to 4 carbon atoms, and are preferably a methyl group.

본 발명의 상기 화학식 1로 표시되는 루테늄 유기금속화합물의 제조방법은 하기의 단계를 포함한다. 하기의 제조방법은 상기 화학식 1의 루테늄 유기금속화합물 중 R1 및 R2가 각각 메틸기인 경우이다. The method for producing the ruthenium organometallic compound represented by Formula 1 of the present invention includes the following steps. The following production method is for the case where R1 and R2 in the ruthenium organometallic compound of Formula 1 are each a methyl group.

구체적으로 살펴보면 상기 step 1에서는, 우선 무수상태에서 소분한 염화 루테늄(III)에 무수 알코올을 주입한 혼합물을 -40℃ 내지 -30℃로 냉각하고, 이 냉각된 혼합물의 온도를 상기 냉각온도로 유지하면서 디에틸사이클로펜타디엔을 주입한다. 이 혼합물의 온도를 상기 냉각온도로 유지하면서 아연을 부가 후, 반응물의 온도를 서서히 상온으로 승온하여 교반하면서 반응을 진행시킨다. 반응이 끝난 후 필터를 통하여 염을 제거하고, 용매로 세척 후 감압하에서 증류하여 액체 상태의 비스(η5-디에틸사이클로펜타디엔닐)루테늄을 얻는다. Specifically, in step 1, a mixture of anhydrous alcohol injected into ruthenium (III) chloride divided in an anhydrous state is cooled to -40°C to -30°C, and the temperature of the cooled mixture is maintained at the cooling temperature. While injecting diethylcyclopentadiene. After adding zinc while maintaining the temperature of the mixture at the above cooling temperature, the temperature of the reactant is gradually raised to room temperature and the reaction proceeds while stirring. After the reaction is over, the salt is removed through a filter, washed with a solvent, and distilled under reduced pressure to obtain liquid bis(η 5 -diethylcyclopentadienyl)ruthenium.

상기 염화 루테늄(III):디에틸사이클로펜타디엔은 1:3(몰비)으로 사용하며, 상기 아연은 상기 염화 루테늄(III)의 사용량에 대하여 1.1 내지 1.3(몰비)배 사용한다. The ruthenium(III) chloride:diethylcyclopentadiene is used in a 1:3 (molar ratio), and the zinc is used in an amount of 1.1 to 1.3 (molar ratio) based on the amount of ruthenium(III) chloride used.

상기 무수 알코올은 탄소수 1 내지 4의 알코올이며, 바람직하게는 메탄올 또는 에탄올이고, 상기 세척 용매는 방향족 유기용매이며, 바람직하게는 톨루엔이다. The anhydrous alcohol is an alcohol having 1 to 4 carbon atoms, preferably methanol or ethanol, and the washing solvent is an aromatic organic solvent, preferably toluene.

상기 step 2는 상기 step 1로부터 얻어진 비스(η5-디에틸사이클로펜타디엔닐)루테늄로부터 [트리스(아세토니트릴)(η5-디에틸사이클로펜타디엔닐)루테늄(II)][테츠라플루오로보레이트]를 제조하는 단계이다. In step 2, [tris(acetonitrile)(η 5 -diethylcyclopentadienyl)ruthenium(II)][tetrafluorocarbon from bis(η 5 -diethylcyclopentadienyl)ruthenium obtained in step 1. This is the step of manufacturing [borate].

구체적으로 상기 step 1로부터 얻어진 비스(η5-디에틸사이클로펜타디엔닐)루테늄을 무수 유기용매에 혼합한 혼합물을 0℃로 냉각한 후, 테트라플루오로붕산디에틸에테르 착제를 가한다. 이후 반응온도를 상온으로 승온하고 교반하여 반응시킨다. 교반 반응 후 감압하에서 용매를 제거 후 얻어진 액체 물질을 에테르 용매로 세척 후 건조하여 액체 화합물의 형태로 [트리스(아세토니트릴)(η5-디에틸사이클로펜타디엔닐)루테늄(II)][테츠라플루오로보레이트]를 얻는다. Specifically, the mixture of bis(η 5 -diethylcyclopentadienyl)ruthenium obtained in step 1 in an anhydrous organic solvent is cooled to 0°C, and then tetrafluoroborate diethyl ether complex is added. Afterwards, the reaction temperature was raised to room temperature and stirred to cause the reaction. After the stirring reaction, the solvent was removed under reduced pressure, and the obtained liquid material was washed with ether solvent and dried to form a liquid compound [tris(acetonitrile)(η 5 -diethylcyclopentadienyl)ruthenium(II)][Tetsura fluoroborate].

상기 테트라플루오로붕산디에틸에테르 착제의 사용량은 비스(η5-디에틸사이클로펜타디엔닐)루테늄의 1.1 내지 1.3(몰비)배이다. 상기 무수 유기용매는 니트릴계 용매이고, 바람직하게는 MeCN이다. 상기 세척 용매는 탄소수 1 내지 3의 에테르이고, 바람직하게는 디에틸에테르이다. The amount of the tetrafluoroboric acid diethyl ether complex used is 1.1 to 1.3 (molar ratio) times that of bis(η 5 -diethylcyclopentadienyl)ruthenium. The anhydrous organic solvent is a nitrile-based solvent, preferably MeCN. The washing solvent is an ether having 1 to 3 carbon atoms, preferably diethyl ether.

상기 step 3은 본 발명의 루테늄 유기금속화합물을 얻는 단계로서, 상기 step 2에서 얻어진 트리스(니트릴)의 보레이트 염 화합물인 [트리스(아세토니트릴)(η5-디에틸사이클로펜타디엔닐)루테늄(II)][테트라플루오로보레이트]을 염기 존재하에서 에논 유도체인 메시틸 옥사이드와 혼합 후 가온하여 반응시키고, 감압하에서 농축하여 비극성 용매로 추출 후, 추출한 용매를 농축 후 증류하여 액체 상태의 (η5-2,4-디메틸-1-옥사-2,4-펜타디에닐)(η5-디에틸사이클로펜타디엔닐)루테늄을 얻는다.Step 3 is a step of obtaining the ruthenium organometallic compound of the present invention, [Tris(acetonitrile)(η 5 -diethylcyclopentadienyl)ruthenium(II), a borate salt compound of tris(nitrile) obtained in step 2. )] [Tetrafluoroborate] is mixed with mesityl oxide, an enone derivative, in the presence of a base, heated and reacted, concentrated under reduced pressure, extracted with a non-polar solvent, and the extracted solvent is concentrated and distilled to obtain liquid (η 5 - Obtain 2,4-dimethyl-1-oxa-2,4-pentadienyl)(η 5 -diethylcyclopentadienyl)ruthenium.

상기 에논 유도체인 메시틸 옥사이드 및 염기의 사용량은 각각 상기 step 2에서 얻어진 트리스(니트릴)의 보레이트 염 화합물에 대하여 30 내지 40배(몰비) 및 3 내지 6(몰비)배이다.The amounts of mesityl oxide and base, which are enone derivatives, are respectively 30 to 40 times (molar ratio) and 3 to 6 times (molar ratio) times the borate salt compound of tris (nitrile) obtained in step 2.

또한, 상기 가온 온도는 50℃ 내지 90℃이며, 상기 비극성 용매는 탄소수 5 이상의 탄화수소 유기용매이고, 바람직하게는 헥산이다. Additionally, the heating temperature is 50°C to 90°C, and the nonpolar solvent is a hydrocarbon organic solvent having 5 or more carbon atoms, and is preferably hexane.

상기 본 발명 루테늄 유기금속화합물인 화학식 1의 R1 및 R2가 각각 상기의 메틸기 이외의 탄소수 2 내지 4의 직쇄 또는 분지쇄인 경우는 상기 step 3에서 에논 유도체로서 상기 화학식 1의 R1 및 R2가 각각 탄소수 2 내지 4의 직쇄 또는 분지쇄로 제조될 수 있는 해당 화합물을 사용한다. 예를 들어 R1 및 R2가 각가 t-Bu인 경우, 에논 유도체로서 2, 2, 5, 6, 6-펜타메틸헵타-4-엔-3-온을 사용한다. In the case where R1 and R2 of Formula 1, which are the ruthenium organometallic compounds of the present invention, are each straight or branched chain having 2 to 4 carbon atoms other than the methyl group, in step 3, as an enone derivative, R1 and R2 of Formula 1 each have carbon atoms. Corresponding compounds that can be prepared with 2 to 4 straight or branched chains are used. For example, when R1 and R2 are each t-Bu, 2, 2, 5, 6, 6-pentamethylhepta-4-en-3-one is used as the enone derivative.

상기와 같이 본 발명의 화학식 1로 표시되는 루테늄 유기금속화합물은 상온에서 안정한 액체로서 열적으로 안정하고 좋은 휘발성을 가져 화학기상증착법 또는 원자층 증착법의 루테늄 박막 공정에 적합한 화합물이다(도 6, 도 7 참조).As described above, the ruthenium organometallic compound represented by Formula 1 of the present invention is a stable liquid at room temperature, is thermally stable, and has good volatility, making it a compound suitable for the ruthenium thin film process of chemical vapor deposition or atomic layer deposition (Figures 6 and 7 reference).

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해할 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호 범위를 제한하고자 하는 것은 아니다. The present invention can be better understood by the following examples, which are for illustrative purposes only and are not intended to limit the scope of protection defined by the appended claims.

또한, 본 발명은 하기의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어나지 않는 범위에서 다양한 변형 실시가 가능하다. In addition, the present invention is not limited to the following examples, and various modifications and implementations are possible without departing from the gist of the present invention as claimed in the claims.

실시예 1: 화학식 1의 (ηExample 1: (η of Formula 1) 55 -2,4-디메틸-1-옥사-2,4-펜타디에닐)(η-2,4-dimethyl-1-oxa-2,4-pentadienyl) (η 55 -디에틸사이클로펜타디엔닐)루테늄의 제조-Manufacture of diethylcyclopentadienyl)ruthenium

상기 본 발명의 화학식 1의 (η5-2,4-디메틸-1-옥사-2,4-펜타디에닐)(η5-디에틸사이클로펜타디엔닐)루테늄은 하기 step 1 내지 3의 단계로부터 얻어진다. 5 -2,4-dimethyl-1-oxa-2,4-pentadienyl)(η 5 -diethylcyclopentadienyl)ruthenium of Formula 1 of the present invention is obtained from steps 1 to 3 below. obtained.

<step 1: Ru(Et 2 Cp) 2 ; {비스(η 5 -디에틸사이클로펜타디엔닐)루테늄}의 제조> <step 1: Ru(Et 2 Cp) 2 ; {Production of bis(η 5 -diethylcyclopentadienyl)ruthenium}>

250mL 쉬링크 플라스크에 염화 루테늄(III) 30.0 g (145mmol)을 글로브 박스 안에서 소분한뒤 무수 에탄올 238g을 주입하고 -35~30℃로 냉각하였다. 냉각된 용액에 다이에틸사이클로펜타다이엔 53g (434mmol) 을 주입한 뒤 아연을 온도상승에 유의하며 플라스크에 넣어준다. 주입이 끝난 뒤 반응 혼합물을 상온으로 천천히 승온 후 12시간 동안 교반 하였다. 반응 혼합물을 셀라이트 필터를 통해 여과하고 톨루엔으로 세척 하였다. 여과액의 용매를 진공 회전농축기로 제거하고 다시 톨루엔에 용해시킨 뒤 실리카겔 필터로 여과하였다. 여과액의 용매를 다시 제거한 뒤 감압 증류하여 상기 표제 화합물인 노란색의 액체 화합물 39.8g (수율 80%)을 수득하였다.30.0 g (145 mmol) of ruthenium(III) chloride was distributed in a 250 mL Shrink flask in a glove box, then 238 g of absolute ethanol was injected and cooled to -35 to 30°C. Inject 53g (434mmol) of diethylcyclopentadiene into the cooled solution and add zinc to the flask, paying attention to the temperature rise. After injection, the reaction mixture was slowly warmed to room temperature and stirred for 12 hours. The reaction mixture was filtered through Celite filter and washed with toluene. The solvent in the filtrate was removed using a vacuum rotary concentrator, dissolved again in toluene, and then filtered through a silica gel filter. The solvent in the filtrate was again removed and distilled under reduced pressure to obtain 39.8 g (yield 80%) of the title compound, a yellow liquid compound.

상기 얻어진 표제 화합물의 NMR data는 도 1에서 나타내고 있다. The NMR data of the obtained title compound is shown in Figure 1.

<step 2: [Ru(Et<step 2: [Ru(Et 22 Cp)(MeCN)Cp)(MeCN) 33 ]BF]BF 44 ;; [트리스(아세토니트릴)(η[Tris(acetonitrile)(η 55 -디에틸사이클로펜타디엔닐)루테늄(II)][테트라플루오로보레이트]의 제조>-Manufacture of diethylcyclopentadienyl)ruthenium(II)][tetrafluoroborate]>

건조된 3-neck 쉬링크 플라스크에 Ru(Et2Cp)2 (100.26g, 292mmol)와 무수 MeCN (1653.55g)을 넣고 0℃로 냉각한다. 냉각된 반응 혼합물에 HBF4-Et2O (54.36g)를 적가하고 30분 교반 한다. 이후 반응온도를 상온으로 천천히 승온 후 24시간 교반 한다. 감압 하에서 용매를 완전히 제거한 후, 생성된 액체를 Et2O로 수차례 세척하고 완전히 건조하여 상기 표제 화합물인 갈색의 액체 화합물 94.90g (수율 75%)을 수득 하였다.Add Ru(Et 2 Cp) 2 (100.26 g, 292 mmol) and anhydrous MeCN (1653.55 g) to a dried 3-neck shrink flask and cool to 0°C. HBF 4 -Et 2 O (54.36 g) was added dropwise to the cooled reaction mixture and stirred for 30 minutes. Afterwards, the reaction temperature was slowly raised to room temperature and stirred for 24 hours. After completely removing the solvent under reduced pressure, the resulting liquid was washed with Et 2 O several times and completely dried to obtain 94.90 g (75% yield) of the title compound, a brown liquid compound.

상기 얻어진 표제 화합물의 NMR data는 도 2에서 나타내고 있다.The NMR data of the obtained title compound is shown in Figure 2.

<step 3: (η<step 3: (η 55 -2,4-디메틸-1-옥사-2,4-펜타디에닐)(η-2,4-dimethyl-1-oxa-2,4-pentadienyl) (η 55 -디에틸사이클로펜타디엔닐)의 제조> -Manufacture of diethylcyclopentadienyl)>

건조된 플라스크에 [Ru(Et2Cp)(MeCN)3]BF4 (94.90g)을 넣고 메시틸 옥사이드 (861.97g)에 녹인다. 상기 반응 혼합물 용액에 Li2CO3 (81.12g)을 넣은 뒤 상온에서 30분 교반 한다. 이후 반응온도를 80℃로 승온 후 12시간 교반한다. 감압 하에서 용매를 완전히 제거한 후, 얻어진 액체를 hexane 용매로 수차례 추출하여 셀라이트로 여과 후 건조한다. 건조 후 얻어진 액체를 감압 하에서 증류하여 붉은 갈색 액체의 상기 표제 화합물 35.69g (수율 51%)을 수득하였다.Add [Ru(Et 2 Cp)(MeCN) 3 ]BF 4 (94.90 g) to the dried flask and dissolve it in mesityl oxide (861.97 g). Li 2 CO 3 (81.12 g) was added to the reaction mixture solution and stirred at room temperature for 30 minutes. Afterwards, the reaction temperature was raised to 80°C and stirred for 12 hours. After completely removing the solvent under reduced pressure, the resulting liquid is extracted several times with hexane solvent, filtered through Celite, and dried. After drying, the obtained liquid was distilled under reduced pressure to obtain 35.69 g (51% yield) of the title compound as a reddish-brown liquid.

상기 얻어진 표제 화합물인 본 발명 화학식 1의 화합물에 대한 NMR data는 도 3에서 나타내고 있다.NMR data for the title compound of the present invention, the compound of Formula 1, is shown in Figure 3.

비교예:(ηComparative example: (η 55 -2,4-디메틸-1-옥사-2,4-펜타디에닐)(η-2,4-dimethyl-1-oxa-2,4-pentadienyl) (η 55 -에틸사이클로펜타디엔닐)루테늄(‘Rudense’) 제조-Manufacture of ethylcyclopentadienyl)ruthenium (‘Rudense’)

비교예로서의 상기 화합물은 본 발명 화학식 1의 화합물에서 사이클로펜타디엔닐의 치환기로서 1개의 에틸기만이 치환된 (η5-2,4-디메틸-1-옥사-2,4-펜타디에닐)(η5-에틸사이클로펜타디엔닐)루테늄이다.The above compound as a comparative example is (η 5 -2,4-dimethyl-1-oxa-2,4-pentadienyl) (η 5 -ethylcyclopentadienyl)ruthenium.

상기 비교예의 화합물인 Rudense는 상기 실시예 1의 step 1 중 다이에틸사이클로펜타다이엔을 모노에틸사이클로펜타다이엔으로 바꾸어 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다. Rudense, the compound of the comparative example, was prepared in the same manner as Example 1, except that diethylcyclopentadiene was replaced with monoethylcyclopentadiene in step 1 of Example 1.

상기 제조된 비교예의 화합물은 진공 증류하여 액체상으로 얻어진 후, 상온에서 일정 시간이 지나면 고체상으로 변하였다. The compound of the comparative example prepared above was obtained in liquid form by vacuum distillation, and then changed to solid form after a certain period of time at room temperature.

상기 비교예의 화합물인 Rudense는 ALD/CVD 공정에 일반적으로 널리 적용되는 루테늄 유기금속 물질이다. Rudense, the compound in the comparative example, is a ruthenium organometallic material that is generally widely applied in ALD/CVD processes.

상기 비교예에서 얻어진 화합물인 Rudense에 대한 NMR data는 도 8에서 나타내고 있다.NMR data for Rudense, a compound obtained in the comparative example, is shown in Figure 8.

실시예 2: 루테늄 화합물의 열중량 분석 시험Example 2: Thermogravimetric testing of ruthenium compounds

상기 실시예 1의 본 발명 화학식 1로 표시되는 루테늄 유기금속화합물인 (2,4-dimethyloxopentadieneyl)(diethylcyclopentadienyl)Ru, 및 비교예의 화합물인 Rudense를 각각 TGA (thermogravimetric analysis)법을 이용하여 분석하였다. 상기 TGA 시험에서는 시험물을 10℃/분의 속도로 500℃까지 승온시키면서 분석하였으며, TGA 그래프 및 결과는 도 4 및 하기 표 1에서 나타내고 있다. (2,4-dimethyloxopentadieneyl)(diethylcyclopentadienyl)Ru, a ruthenium organometallic compound represented by Formula 1 of the present invention in Example 1, and Rudense, a compound in Comparative Example, were each analyzed using TGA (thermogravimetric analysis). In the TGA test, the test object was analyzed while raising the temperature to 500°C at a rate of 10°C/min, and the TGA graph and results are shown in Figure 4 and Table 1 below.

화합물 명Compound name 비교예
(Rudense)
Comparative example
(Rudense)
실시예 1
(본 발명의 화학식 1의 화합물)
Example 1
(Compound of Formula 1 of the present invention)
T1/2T 1/2 219.8℃219.8℃ 228.7℃228.7℃ Residual Mass (%)Residual Mass (%) 12.2%12.2% 6.5%6.5%

표 1 및 도 4의 TGA 그래프로부터 본 발명 화학식 1의 신규 합성된 루테늄 유기금속화합물은 중량이 반으로 감소하는 온도(T1/2℃)가 기존에 비교예의 Rudense 보다 월등히 높은 온도를 나타내고 있다. 또한, 본 발명 화학식 1의 신규 합성된 루테늄 유기금속화합물은 Residual Mass값이 비교예 보다 월등히 적은 양을 나타내는 것으로 보아, 본 발명 화학식 1의 루테늄 유기금속화합물은 비교예의 루테늄 화합물인 Rudense에 비하여 열적 안정성이 향상된 루테늄 화합물임을 알 수 있다.From the TGA graph in Table 1 and Figure 4, the newly synthesized ruthenium organometallic compound of Chemical Formula 1 of the present invention shows a temperature at which its weight is reduced by half (T 1/2 °C), which is significantly higher than that of Rudense in the comparative example. In addition, the newly synthesized ruthenium organometallic compound of Chemical Formula 1 of the present invention appears to have a Residual Mass value significantly lower than that of the Comparative Example, so the ruthenium organometallic compound of Chemical Formula 1 of the present invention has thermal stability compared to Rudense, the ruthenium compound of the Comparative Example. It can be seen that this is an improved ruthenium compound.

이러한 높은 열적 안정성으로 인하여 본 발명 화학식 1의 루테늄 유기금속화합물은 저온뿐만 아니라, 고온의 증착 공정에서도 안정적으로 루테늄 성막이 가능하다는 장점을 가진다.Due to this high thermal stability, the ruthenium organometallic compound of Chemical Formula 1 of the present invention has the advantage of being able to stably form a ruthenium film not only at low temperatures but also in high temperature deposition processes.

실시예 3: 루테늄 화합물의 시차주사열량계 분석 실험Example 3: Differential scanning calorimetry analysis experiment of ruthenium compounds

실시예 1의 본 발명 화학식 1로 나타내어지는 루테늄 유기금속화합물인 (2,4-dimethyloxopentadieneyl)(diethylcyclopentadienyl)Ru, 및 비교예의 화합물인 Rudense를 각각 고온 및 저온에서의 시차주사열량계(DSC)를 분석하였다. (2,4-dimethyloxopentadieneyl)(diethylcyclopentadienyl)Ru, a ruthenium organometallic compound represented by Formula 1 of the present invention in Example 1, and Rudense, a compound of Comparative Example, were subjected to differential scanning calorimetry (DSC) at high and low temperatures, respectively. analyzed.

상기 DSC 시험에서는 상기 실시예 1의 본 발명 화학식 1의 루테늄 유기금속화합물 및 비교예의 화합물인 Rudense를 10℃/분의 속도로 400℃까지 승온시키면서 분석하였다.In the DSC test, the ruthenium organometallic compound of Formula 1 of the present invention in Example 1 and Rudense, a compound of Comparative Example, were analyzed while raising the temperature to 400°C at a rate of 10°C/min.

그 결과를 도 5 및 6, 그리고 표 2에서 나타내고 있다. The results are shown in Figures 5 and 6 and Table 2.

화합물 명Compound name 비교예 Comparative example 실시예 1Example 1 T(dec, start)T (dec, start) 170℃170℃ 200℃200℃ T(dec max)T (dec max) 292℃292℃ 303℃303℃

표 2와 도6의 DSC 그래프로부터 비교예의 화합물인 Rudense는 약 20℃ 내지 30℃에서의 강한 피크로 상기 온도 범위에서 녹는점을 가지는 것으로 나타내고 있어, 상기 비교예의 화합물은 상기 온도 범위에서 고체로 존재하는 것인 반면, 실시예 1의 화학식 1로 표시되는 본 발명의 루테늄 유기금속화합물은 상기 온도 범위에서 피크가 나타나지 않아 액체 상태로 존재하는 것을 알 수 있다(도 6도 참조). 상기와 같이 본 발명 화학식 1의 루테늄 유기금속화합물은 상온뿐만 아니라, 저온에서의 액체상으로 증착 공정에 공급되는 루테늄 화합물의 기화 시 생성될 수 있는 빙점(cold spot)이 발생되지 않는 장점이 있다. 이로 인하여 루테늄 박막 공정에 안정적인 루테늄 화합물의 공급이 가능하므로, 루테늄 화합물의 공급 배관라인에 별도의 가열장치 등이 필요하지 않은 장점이 있다. From the DSC graph in Table 2 and Figure 6, Rudense, the compound of the comparative example, is shown to have a melting point in the above temperature range with a strong peak at about 20°C to 30°C, and the compound of the comparative example exists as a solid in the above temperature range. On the other hand, it can be seen that the ruthenium organometallic compound of the present invention represented by Chemical Formula 1 of Example 1 exists in a liquid state as no peak appears in the above temperature range (see FIG. 6). As described above, the ruthenium organometallic compound of Formula 1 of the present invention has the advantage of not generating a freezing point (cold spot) that can be generated when the ruthenium compound supplied to the deposition process is vaporized in a liquid state not only at room temperature but also at low temperature. As a result, it is possible to supply a stable ruthenium compound to the ruthenium thin film process, which has the advantage of not requiring a separate heating device in the ruthenium compound supply piping line.

또한, 실시예 1의 화학식 1로 표시되는 본 발명의 루테늄 유기금속화합물의 열분해 거동이 비교예의 Rudense의 경우보다 더 높은 온도에서 시작하는 것으로 나타내고 있다(도 5 참조). 이러한 본 발명 실시예 1의 화학식 1로 표시되는 루테늄 유기금속화합물의 높은 열분해 온도는 본 발명의 화학식 1로 표시되는 루테늄 유기금속화합물이 비교예 화합물인 Rudense에 비하여 고온에서 열적 안정성이 향상된 루테늄 화합물임을 알 수 있다.In addition, the thermal decomposition behavior of the ruthenium organometallic compound of the present invention represented by Chemical Formula 1 in Example 1 appears to start at a higher temperature than that of Rudense in Comparative Example (see FIG. 5). The high thermal decomposition temperature of the ruthenium organometallic compound represented by Formula 1 in Example 1 of the present invention indicates that the ruthenium organometallic compound represented by Formula 1 of the present invention is a ruthenium compound with improved thermal stability at high temperatures compared to Rudense, a comparative example compound. Able to know.

상기와 같이 본 발명 화학식 1의 루테늄 유기금속화합물은 열적 안정성, 및 상온뿐만 아니라 저온에서의 액체 상태로 루테늄 박막 형성 공정에 안정적인 공급이 가능하여 루테늄 박막 형성에 유리한 장점을 가진다. As described above, the ruthenium organometallic compound of Formula 1 of the present invention has thermal stability and can be stably supplied to the ruthenium thin film formation process in a liquid state not only at room temperature but also at low temperature, which is advantageous for forming a ruthenium thin film.

실시예 4: 본 발명의 루테늄 유기금속화합물의 박막 형성 공정Example 4: Thin film formation process of ruthenium organometallic compound of the present invention

<성막 시험> <Tabernacle test>

본 발명의 루테늄 유기금속화합물을 원료로 하여, CVD 장치에 의해 루테늄 박막을 형성시켰다. 성막 조건, 공정 및 결과는 하기와 같다.Using the ruthenium organometallic compound of the present invention as a raw material, a ruthenium thin film was formed using a CVD device. Film formation conditions, processes, and results are as follows.

가. 성막 형성 조건go. Tabernacle formation conditions

- 기판: SiO2 기판- Substrate: SiO2 substrate

- 기판 온도: 370℃- Substrate temperature: 370℃

- 시료 온도(기화 온도): 74℃- Sample temperature (vaporization temperature): 74℃

- 챔버 압력: 5 Torr- Chamber pressure: 5 Torr

- 반응성 가스: 암모니아- Reactive gas: ammonia

- 시료 및 반응성 가스 주입시간: 60min- Sample and reactive gas injection time: 60min

- 반응성 가스 주입량: 암모니아 500 mL/min- Reactive gas injection amount: ammonia 500 mL/min

나. 성막 공정 및 결과me. Film formation process and results

상기와 같은 성막 조건으로 본 발명의 루테늄 유기금속화합물과 반응성 가스 암모니아를 일정 시간 동안 주입하여 루테늄 박막을 성막하였고, 성막의 박막 증착률은 0.4Å/min으로 일정하였다. 이는 본 발명의 신규한 루테늄 유기금속화합물이 균일하게 CVD 성장을 하는 것을 확인한 것이다. 또한, 루테늄 박막의 막 두께는 투과전자현미경 (transmission electron microscopy, TEM)으로 측정하였고, 루테늄 박막의 막 두께는 24Å이다(도 7 참조).A ruthenium thin film was formed by injecting the ruthenium organometallic compound of the present invention and the reactive gas ammonia for a certain period of time under the film formation conditions described above, and the thin film deposition rate of the film was constant at 0.4 Å/min. This confirms that the novel ruthenium organometallic compound of the present invention undergoes uniform CVD growth. In addition, the film thickness of the ruthenium thin film was measured using a transmission electron microscope (TEM), and the film thickness of the ruthenium thin film was 24 Å (see Figure 7).

이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.Above, the present invention has been described in detail with preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications can be made by those skilled in the art within the scope of the technical idea of the present invention. possible.

Claims (4)

하기 화학식 1로 표시되는 것을 특징으로 하는, 루테늄 유기금속화합물
[화학식 1]

상기 화학식 1 중 R1, 및 R2는 각각 메틸기이다.
A ruthenium organometallic compound, characterized in that represented by the following formula (1):
[Formula 1]

In Formula 1, R1 and R2 are each a methyl group.
삭제delete 청구항 1의 루테늄 유기금속화합물을 이용하는 것을 특징으로 하는, 루테늄 박막 형성방법 A method of forming a ruthenium thin film, characterized by using the ruthenium organometallic compound of claim 1. 청구항 3에 있어서,
상기 박막 형성방법의 공정이 화학기상증착법(CVD) 또는 원자층증착법(ALD)인 것을 특징으로 하는, 루테늄 박막 형성방법
In claim 3,
A method of forming a ruthenium thin film, characterized in that the process of the thin film forming method is chemical vapor deposition (CVD) or atomic layer deposition (ALD).
KR1020210074313A 2021-06-08 2021-06-08 Ruthenium organometallic compound, and method for producing same KR102578747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210074313A KR102578747B1 (en) 2021-06-08 2021-06-08 Ruthenium organometallic compound, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210074313A KR102578747B1 (en) 2021-06-08 2021-06-08 Ruthenium organometallic compound, and method for producing same

Publications (2)

Publication Number Publication Date
KR20220165868A KR20220165868A (en) 2022-12-16
KR102578747B1 true KR102578747B1 (en) 2023-09-15

Family

ID=84534967

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210074313A KR102578747B1 (en) 2021-06-08 2021-06-08 Ruthenium organometallic compound, and method for producing same

Country Status (1)

Country Link
KR (1) KR102578747B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227495A (en) 2014-06-02 2015-12-17 東ソー株式会社 Ruthenium-containing film and production method thereof
KR102040043B1 (en) * 2012-12-07 2019-11-04 토소가부시키가이샤 Ruthenium complex and method for producing same, and method for producing ruthenium-containing thin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619093B2 (en) * 2004-10-15 2009-11-17 Praxair Technology, Inc. Organometallic compounds and mixtures thereof
KR100958332B1 (en) 2008-01-28 2010-05-18 (주)디엔에프 A new ruthenium compound and vapor deposition method using the same
JP5732772B2 (en) 2009-12-28 2015-06-10 東ソー株式会社 Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040043B1 (en) * 2012-12-07 2019-11-04 토소가부시키가이샤 Ruthenium complex and method for producing same, and method for producing ruthenium-containing thin film
JP2015227495A (en) 2014-06-02 2015-12-17 東ソー株式会社 Ruthenium-containing film and production method thereof

Also Published As

Publication number Publication date
KR20220165868A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
EP1814892B1 (en) Organometallic compounds and processes for preparation thereof
KR101703871B1 (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
KR101581314B1 (en) Tungsten precursors and the method for depositing tungsten-containg films
KR101684660B1 (en) Precursor composition for forming zirconium-containing thin film and method for preparing zirconium-containing thin film using the same
US6121443A (en) Compound for the aluminum film from chemical vapor depositions and the method of synthesis
KR20130049020A (en) Tantalum precursor compound and method for preparing the same
KR102578747B1 (en) Ruthenium organometallic compound, and method for producing same
EP1629902A1 (en) Method of copper deposition from a supercritical fluid solution containing copper (1) complexes with a neutral ligand
US6689427B2 (en) Group IV metal precursors and a method of chemical vapor deposition using the same
KR100995223B1 (en) Methods for making metallocene compounds
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR20200067508A (en) Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same
KR102080218B1 (en) Double-substituted cyclopentadiene compounds, organometallic compounds and preparation method thereof
KR102288641B1 (en) A raw material for chemical vapor deposition containing an iridium complex and a chemical vapor deposition method using the raw material for chemical vapor deposition
KR100459609B1 (en) organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film
KR102618936B1 (en) New Ruthenium organometallic compound, and method for producing same
KR20220058190A (en) Group 3 metal precusor and thin film containing metal
KR102519909B1 (en) A new ruthenium precursors, preparation method thereof, raw material containing the ruthenium precursors, and process for the formation of high purity thin ruthenium films using thereof
KR102675758B1 (en) Raw materials for chemical vapor deposition containing organic manganese compounds and chemical vapor deposition methods using the raw materials for chemical vapor deposition
KR102639298B1 (en) Organic metal compound, composition for depositing thin film comprising the organic metal compound, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film
KR20210099949A (en) Compound and composition for forming thin film comprising the same
TWI777318B (en) Organometallic compound, composition for depositing thin film, method for manufacturing thin film, organometallic compound thin film, and semiconductor device
KR102678334B1 (en) Organic metal compound, composition for depositing thin film comprising the organic metal compound, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film
KR100756388B1 (en) Aluminium precursor for cvd and its preparation method thereof
KR101788558B1 (en) Group 4 metal element-containing alkoxy compound, preparing method thereof, precursor composition including the same for film deposition, and method of depositing film using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant