KR100958332B1 - A new ruthenium compound and vapor deposition method using the same - Google Patents

A new ruthenium compound and vapor deposition method using the same Download PDF

Info

Publication number
KR100958332B1
KR100958332B1 KR1020080008349A KR20080008349A KR100958332B1 KR 100958332 B1 KR100958332 B1 KR 100958332B1 KR 1020080008349 A KR1020080008349 A KR 1020080008349A KR 20080008349 A KR20080008349 A KR 20080008349A KR 100958332 B1 KR100958332 B1 KR 100958332B1
Authority
KR
South Korea
Prior art keywords
ruthenium
thin film
compound
deposition
atomic layer
Prior art date
Application number
KR1020080008349A
Other languages
Korean (ko)
Other versions
KR20090082543A (en
Inventor
김진동
임진묵
한미정
신형수
박미현
인성재
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020080008349A priority Critical patent/KR100958332B1/en
Publication of KR20090082543A publication Critical patent/KR20090082543A/en
Application granted granted Critical
Publication of KR100958332B1 publication Critical patent/KR100958332B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Abstract

본 발명은 하기 화학식 1의 루테늄 화합물 및 이를 이용한 루테늄 박막 증착 방법에 관한 것이다.The present invention relates to a ruthenium compound of Formula 1 and a ruthenium thin film deposition method using the same.

<화학식 1><Formula 1>

Figure 112008006666927-pat00001
Figure 112008006666927-pat00001

본 발명에 따른 루테늄 화합물은 박막 증착용으로 적합한 휘발성과 증착온도, 열적안정성 및 증착성능을 가지고 있으며 이를 이용하여 증착된 루테늄 박막은 종래의 루테늄 전구체 화합물이 가지고 있는 RuOx 형성 및 불순물, 스텝 커버리지 문제점을 해결함으로써 고집적화된 반도체 디바이스 제조 및 관련 산업 분야에 그 활용도가 큰 장점이 있다.The ruthenium compound according to the present invention has a suitable volatility, deposition temperature, thermal stability and deposition performance for thin film deposition, and the ruthenium thin film deposited by using the RuO x formation, impurities, and step coverage problems of the conventional ruthenium precursor compound By solving the problem, there is a great advantage in the application of highly integrated semiconductor device manufacturing and related industries.

루테늄, 증착, 화합물, 리간드, 전구체, 박막, 원자층, 기상 Ruthenium, deposition, compound, ligand, precursor, thin film, atomic layer, vapor

Description

신규 루테늄 화합물 및 이를 이용한 박막 증착 방법{A new ruthenium compound and vapor deposition method using the same}A ruthenium compound and vapor deposition method using the same

본 발명은 알킬 유도체를 가지는 벤젠과 알킬 유도체를 가지는 1,3-시클로헥사디엔(cyclohexa-1,3-diene)이 배위결합된 루테늄 박막 증착용 전구체 화합물의 제조 방법에 관한 것으로서, 보다 상세하게는 신규한 리간드를 갖는 루테늄 전구체 및 이를 이용한 루테늄 박막의 제조방법에 관한 것이다.The present invention relates to a method for preparing a precursor compound for ruthenium thin film deposition in which a benzene having an alkyl derivative and a 1,3-cyclohexadiene (cyclohexa-1,3-diene) having an alkyl derivative are coordinated. It relates to a ruthenium precursor having a novel ligand and a method for producing a ruthenium thin film using the same.

고집적 메모리 소자를 효과적으로 구현하기 위해서는 안정한 전극 특성을 갖는 금속물질이 필요하다. 특히, 소자의 집적도 향상에 따라 종횡비(aspect ratio)가 증가할수록 단차 피복성(step coverage)이 우수한 전극 물질이 개발되어야 하고 양호한 산화 저항 특성을 가지면서 플러그 산화를 방지 할 수 있는 전극이 필요하다. 이런 특성을 가진 것으로서 현재 널리 쓰이고 있는 것으로는 루세늄 (Ru), 이리듐(Ir) 등이 있다.In order to effectively implement a highly integrated memory device, a metal material having stable electrode characteristics is required. In particular, as the aspect ratio increases as the integration of devices increases, an electrode material having excellent step coverage needs to be developed, and an electrode capable of preventing plug oxidation while having good oxidation resistance characteristics is required. As such, the most widely used ones are ruthenium (Ru) and iridium (Ir).

특히 루테늄 박막은 고집적 메모리소자인 DRAM 커패시터(capacitor)의 전극 재료, 또는 반도체 소자에서 구리 배선재료의 확산방지막으로 사용된다. 루테늄 박막은 일반적으로 실리콘 및 금속 산화물에 반응하지 않으며, 산소 및 실리콘의 확산에 대해 방지성이 있는 양호한 도체이다.In particular, the ruthenium thin film is used as an electrode material of a DRAM capacitor, which is a highly integrated memory device, or as a diffusion barrier of a copper wiring material in a semiconductor device. Ruthenium thin films are generally good conductors that do not react to silicon and metal oxides and are resistant to oxygen and silicon diffusion.

따라서, 상기 막의 제조용 전구체로서 이용될 수 있는 많은 루테늄 화합물을 가지고 화학기상증착기술 또는 원자층 증착법을 사용하여 루테늄 막을 제공하는 방법이 끊임없이 요구되고 있다.Therefore, there is a continuous need for a method of providing a ruthenium film by using a chemical vapor deposition technique or an atomic layer deposition method with many ruthenium compounds that can be used as precursors for producing the film.

화학기상증착 또는 원자층 증착에 적용할 수 있는 많은 루테늄 전구체 화합물들에서 특히 루테늄 (0)화합물은 중심금속이 0가의 산화수를 가지는 전구체 화합물로서 화학기상증착 또는 원자층 증착을 이용한 다양한 온도 조건하에서(150 ~ 450℃) 높은 내산화성과 전기전도성을 가지는 Ru 박막 제조가 용이하다. 또한, 열 분해 후 잔류 물질 및 리간드가 중성물질로 남아있어 막내에 포함되지 않고 진공배기로 쉽게 제거 할 수 있는 장점을 가지고 있다.In many ruthenium precursor compounds that can be applied to chemical vapor deposition or atomic layer deposition, especially ruthenium (0) compounds are precursor compounds having zero oxidation number of the central metal, under various temperature conditions using chemical vapor deposition or atomic layer deposition ( 150 ~ 450 ℃) Easy to manufacture Ru thin film having high oxidation resistance and electrical conductivity. In addition, residual materials and ligands remain as neutral materials after thermal decomposition, so they are not included in the film and can be easily removed by vacuum exhaust.

종래에 루테늄 박막을 제조하기 위해서는 스퍼터링(sputtering) 또는 화학기상증착법(Chemical Vapor deposition; CVD)을 사용하였다. 스퍼터링은 가속된 입자를 고체 표면에 충돌시켜서 운동량의 교환에 의해 공간에 튀어나온 원자를 기판에 붙이는 방식이다. 따라서, 상기 방식은 그 특성상 박막의 물성을 조사하는 것이기 때문에 복잡한 3차원 구조를 갖는 고집적 반도체 소자의 커패시터에는 적용이 곤란하다. 또한, 상기 화학기상증착법은 박막하려는 화합물을 기체화하여 반응챔버에 보내고 화학반응을 이용하여 소망하는 물질의 박막을 얻는 방식이다. 상기 방식은 스텝 커버리지(step coverage) 및 종횡비(aspect ratio) 특성이 우수하여 최근까지 사용되어 왔지만, 이 역시 반도체 메모리 소자가 256MB 이상으로 초고집적화되면서 원하는 특성을 얻기 어려워졌다.Conventionally, sputtering or chemical vapor deposition (CVD) has been used to prepare a ruthenium thin film. Sputtering is a method of colliding accelerated particles with a solid surface to attach atoms protruding into space by exchanging momentum to a substrate. Therefore, the above method is difficult to apply to a capacitor of a highly integrated semiconductor device having a complicated three-dimensional structure because it is to investigate the properties of the thin film. In addition, the chemical vapor deposition method is a method of vaporizing the compound to be thin film to the reaction chamber to obtain a thin film of the desired material using a chemical reaction. This method has been used until recently because of its excellent step coverage and aspect ratio characteristics, but it has also become difficult to obtain desired characteristics as the semiconductor memory device is highly integrated to 256 MB or more.

이에 따라 원자층 증착법(Atomic layer deposition; ALD)을 이용한 루테늄 박막이 새로이 각광을 받게 되었다. 원자층 증착법이란 반응물질을 챔버 내부로 주입하고 잔류하는 반응물질 및 부산물을 제거하는 과정을 순차적으로 반복하는 방식으로 반도체 기판 상에 원자층을 증착하는 방법이다. 이러한 원자층 증착법은 CVD법처럼 화학반응을 사용하는 증착법이지만, CVD법은 각각의 가스를 동시에 주입하여 챔버 내에서 혼합되는 반면, ALD 법은 한 종류의 가스씩 펄스 형태로 주입된다는 점에서 CVD법과 구별된다.As a result, a ruthenium thin film using atomic layer deposition (ALD) has received new attention. The atomic layer deposition method is a method of depositing an atomic layer on a semiconductor substrate by sequentially repeating a process of injecting a reactant into a chamber and removing residual reactants and by-products. The atomic layer deposition method is a deposition method using a chemical reaction like the CVD method, but the CVD method is injected in the chamber by injecting each gas at the same time, while the ALD method is injected in the form of pulses by one type of gas, Are distinguished.

구체적으로 원자층 증착법을 이용하여 루테늄 박막을 제조하는 방법을 살펴보면, 종래에는 루테늄 원료물질로서 Ru(OD)3[tris(2,4-octanedionato)Ruthenium(Ⅲ)], Ru(EtCP)2[bis(ethylcyclopentadienyl) Ruthenium(Ⅱ)] 등이 적용되었다. 그러나, 이 중 Ru(OD)3는 산소를 내포하고 있어서 반응 기판에 순수한 루테늄의 증착을 어렵게 하며, 나아가 기판 일부에 RuOx가 형성되는 문제점이 있었다. 또한, Ru(EtCP)2의 경우에는 시클로펜타디엔(Cyclo-Pentadiene) 계열의 특성상 루테늄 원자가 화학적 결합을 끊고 독립적으로 존재하기가 어려워 루테늄 박막에 불순물이 많이 남는 문제점이 있으며 뿐만 아니라 분해가 용이하지 않아서 O2 플라즈마를 사용하여 증착함으로써 RuO2 막이 생성되므로 Ru 막을 얻기 위해서는 다시 H2를 이용하여 환원하는 공정이 필요하게 되는 문제점이 있었다.Specifically, a method of manufacturing a ruthenium thin film using an atomic layer deposition method is conventionally known as ruthenium raw material Ru (OD) 3 [tris (2,4-octanedionato) Ruthenium (III)], Ru (EtCP) 2 [bis (ethylcyclopentadienyl) Ruthenium (Ⅱ)]. However, among them, Ru (OD) 3 contains oxygen, making it difficult to deposit pure ruthenium on the reaction substrate, and further, RuO x is formed on a portion of the substrate. In addition, in the case of Ru (EtCP) 2 , due to the characteristics of the cyclo-pentadiene series, it is difficult for ruthenium atoms to break chemical bonds and exist independently, resulting in a large amount of impurities remaining in the ruthenium thin film. RuO 2 by deposition using an O 2 plasma Since a film is formed, there is a problem in that a process of reducing using H 2 again is required in order to obtain a Ru film.

본 발명은 루테늄 박막 형성시 전구체로 사용되는 경우 RuOx 형성이나 불순물 발생이 최소화되고, 0가(zero valence)를 가지며 액체 형태로 균일한 증기압을 주며, 단차피복성이 우수하며, 박막 내 불순물이 없는 새로운 루테늄 화합물을 제공하는 데 목적이 있다.When the ruthenium thin film is formed as a precursor, RuO x formation or impurities are minimized, zero valence is given, and a uniform vapor pressure in the form of liquid is provided. The aim is to provide new ruthenium compounds that are absent.

또한, 본 발명은 신규한 루테늄 화합물을 사용하는 우수한 물성의 루테늄 박막 형성 방법을 제공하는 데 또 다른 목적이 있다.Another object of the present invention is to provide a method for forming a ruthenium thin film having excellent physical properties using a novel ruthenium compound.

본 발명은 상기 루테늄 박막 증착을 위한 기존 전구체들의 단점을 해결할 수 있는 새로운 루테늄 화합물 및 이를 이용한 루테늄 박막 제조방법에 관한 것이다.The present invention relates to a new ruthenium compound and a method for producing a ruthenium thin film using the same, which can solve the disadvantages of existing precursors for the deposition of the ruthenium thin film.

본 발명은 하기 화학식 1의 루테늄 화합물을 제공한다.The present invention provides a ruthenium compound of the formula (1).

<화학식 1><Formula 1>

Figure 112008006666927-pat00002
Figure 112008006666927-pat00002

또한, 본 발명은 하기의 단계를 포함하는 루테늄 박막 제조방법을 제공한다.In addition, the present invention provides a ruthenium thin film manufacturing method comprising the following steps.

a) 기판이 장착된 반응기 내로 상기 화학식 1의 루테늄 화합물을 기상으로 주입하여 기판 상에 원자층 증착하는 단계; 및a) depositing an atomic layer on the substrate by injecting the ruthenium compound of Formula 1 into a gas phase into a reactor equipped with a substrate; And

b) 잔류 루테늄 화합물 및 반응부산물을 퍼지하는 단계.b) purging the residual ruthenium compound and reaction byproducts.

본 발명에 따른 루테늄 박막의 제조방법은 원자층 증착법으로 상기의 제조단계를 1주기(cycle)로 하여 이를 반복함으로써 원하는 두께로 박막이 형성되도록 하는 방법이다. The method for manufacturing a ruthenium thin film according to the present invention is a method for forming a thin film with a desired thickness by repeating the above manufacturing step in one cycle by atomic layer deposition.

또한, 본 발명에 따른 루테늄 박막의 제조방법은 상기 b)단계 후 수소 또는 암모니아로부터 선택되는 반응가스를 주입하는 단계, 및 잔류 반응가스 및 반응부산물을 퍼지하는 단계를 더 포함할 수 있으며, 상기 반응가스는 암모니아나 수소 또는 리모트 플라즈마 발생기를 통하여 여기된 암모니아 플라즈마 또는 수소 플라즈마일 수 있다. 리모트(remote) 플라즈마 발생기를 통하여 형성된 암모니아 플라즈마를 주입하는 경우 암모니아 가스에 비해 루테늄전구체와의 반응성이 향상되며, 오염이 적은 루테늄 박막을 제조할 수 있어 보다 바람직하다.In addition, the method of manufacturing a ruthenium thin film according to the present invention may further include the step of injecting a reaction gas selected from hydrogen or ammonia after the step b), and purging the residual reaction gas and the reaction by-products, the reaction The gas may be ammonia or hydrogen or an ammonia plasma or hydrogen plasma excited through a remote plasma generator. Injecting the ammonia plasma formed through a remote plasma generator improves the reactivity with the ruthenium precursor compared to the ammonia gas, and can be produced a ruthenium thin film with less contamination is more preferable.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. Like numbers refer to like elements in the figures.

도 1에 본 발명에 따른 원자층 증착 장치 개요도를 개시하였다. 도 1을 참조 하면, 원자층 증착 장치는 원자층 증착 반응기(10), 기판(30)이 장착되고 기판을 가열하기 위한 히터(20), 루테늄 화합물을 담는 용기인 버블러(40), 상기 버블러로부터 기화된 루테늄 화합물 및 운송 가스를 반응기로 주입하기 위한 가스 주입관(45), 및 진공펌프(50)을 포함한다. 본 발명에 따른 원자층 증착 장치는 수소, 암모니아 등의 반응가스를 주입하는 가스 주입관을 더 포함할 수 있고, 리모트(remote) 플라즈마 발생기를 더 구비할 수 있다.A schematic diagram of an atomic layer deposition apparatus according to the present invention is disclosed in FIG. 1. Referring to FIG. 1, an atomic layer deposition apparatus includes an atomic layer deposition reactor 10, a substrate 20 mounted thereon, a heater 20 for heating a substrate, a bubbler 40 that is a container containing a ruthenium compound, and the bubble. And a gas injection tube 45 and a vacuum pump 50 for injecting the ruthenium compound and the transport gas vaporized from the furnace into the reactor. The atomic layer deposition apparatus according to the present invention may further include a gas injection tube for injecting a reaction gas such as hydrogen or ammonia, and may further include a remote plasma generator.

도 1 및 도 2를 참조하여 본 발명에 따른 원자층 증착 방법을 설명하면, 원자층 증착 반응기(10)에 기판(30)을 장착하는 단계(S10), 버블러(40)을 가열하고 운송가스를 흘려주어 버블러 내에 보관된 루테늄 전구체와 운송가스를 가스 주입관(45)을 통하여 반응기로 주입하는 단계(S20), 반응기에 주입된 루테늄 전구체가 기판에 흡착하여 원자층 증착하는 단계(S30), 및 잔류하는 루테늄 전구체 및 반응 부산물을 퍼지하는 단계(S40)를 포함하며, 상기 제조 단계를 1주기로 하여 이를 반복하여 목표두께로 조절하는 단계(S50)을 포함한다.Referring to FIGS. 1 and 2, a method of depositing an atomic layer according to the present invention includes mounting a substrate 30 in an atomic layer deposition reactor 10 (S10), heating the bubbler 40, and transporting gas. Injecting the ruthenium precursor and the transport gas stored in the bubbler into the reactor through the gas injection pipe 45 (S20), the ruthenium precursor injected into the reactor is adsorbed on the substrate to deposit an atomic layer (S30) And purging the remaining ruthenium precursor and the reaction by-product (S40), and repeating the preparation step with one cycle to adjust the target thickness to the target thickness (S50).

또한, 본 발명에 따른 루테늄 박막의 제조방법은 상기 1주기에 해당하는 제조 단계에 수소 또는 암모니아로부터 선택되는 반응가스와 반응시키는 단계, 및 잔류 반응가스 및 반응부산물을 퍼지하는 단계를 더 포함할 수 있으며, 이에 대하여는 도 3에 도시하였다. 도 3을 참조하면, 루테늄 전구체를 주입하여 기판에 흡착시키는 단계(S100), 잔류 루테늄 화합물을 퍼지하는 단계(S200), 수소 또는 암모니아로부터 선택되는 반응가스를 주입하여 반응시키는 단계(S300), 및 잔류 반응가스를 퍼지하는 단계(S400)로 이루어지는 제조단계를 1주기로 하여 이를 반복적으로 수행 하여 원하는 두께의 박막을 형성한다.In addition, the method of manufacturing a ruthenium thin film according to the present invention may further include the step of reacting with a reaction gas selected from hydrogen or ammonia in the manufacturing step corresponding to the one cycle, and purging the residual reaction gas and the reaction by-products This is illustrated in FIG. 3. Referring to FIG. 3, a step of injecting a ruthenium precursor and adsorbing onto a substrate (S100), a step of purging a residual ruthenium compound (S200), a step of injecting a reaction gas selected from hydrogen or ammonia and reacting (S300), and The manufacturing step consisting of purging the residual reaction gas (S400) is repeated one cycle to form a thin film of the desired thickness.

상기 암모니아나 수소 가스는 환원력이 있는 가스로 반응 기판 위에서 루테늄 전구체의 분해를 도와 루테늄 박막의 증착 속도를 높이는 역할 및 불순물을 수소화물 형태로 배출 시켜 고순도의 박막 제조에 유용하며, 리모트 플라즈마 발생기를 통하여 형성된 암모니아 플라즈마나 수소 플라즈마를 주입하는 경우 박막 증착 속도 및 고순도 박막 제조에 더욱 유리하다.The ammonia or hydrogen gas is a gas having a reducing power, which helps to decompose the ruthenium precursor on the reaction substrate to increase the deposition rate of the ruthenium thin film and to discharge impurities in the form of hydride, which is useful for manufacturing a high purity thin film, and through a remote plasma generator. Injecting the formed ammonia plasma or hydrogen plasma is more advantageous for the thin film deposition rate and high purity thin film production.

상술한 바와 같이 본 발명은 루테늄 박막을 제조하기 위한 전구체 화합물로서 적합한 휘발성과 증착온도, 열적안정성 및 증착성능을 가지고 있으며 금속 전구체 화합물을 이용하여 증착된 루테늄 박막은 종래의 루테늄 전구체 화합물이 가지고 있는 RuOx 형성 및 불순물, 스텝 커버리지 문제점을 해결함으로써 고집적화된 반도체 디바이스 제조 및 관련 산업 분야에 그 활용도가 크다고 할 수 있다.As described above, the present invention has suitable volatility, deposition temperature, thermal stability, and deposition performance as a precursor compound for preparing a ruthenium thin film, and a ruthenium thin film deposited by using a metal precursor compound is RuO possessed by a conventional ruthenium precursor compound. By solving the x formation, impurities, and step coverage problems, it can be said that it is widely used in the manufacture of highly integrated semiconductor devices and related industries.

이하, 본 발명의 전구체 화합물 및 박막 제조방법에 대하여 하기의 실시예를 통하여 좀더 상세하게 설명하기로 한다. 그러나, 하기 실시예에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the precursor compound and the thin film manufacturing method of the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited by the following examples.

<실시예 1> Ru(η6-p-Cymene)(η4-1,3-cyclohexadiene)의 합성Example 1 Synthesis of Ru (η 6 -p -Cymene) (η 4 -1,3-cyclohexadiene)

Figure 112008006666927-pat00003
Figure 112008006666927-pat00003

질소 분위기에서 가지 달린 둥근 플라스크(1000 ml)에 정제된 에탄올(600 ml)에 다이-μ-클로로-비스[클로로(η6-p-시멘)루테늄(II)] ([RuCl2(p-cymene)]2 (ref. Inorganic synthesis, vol 21, 75p)28 g (0.047 몰)과 탄산 나트륨(Na2CO3) 30g (0.28몰)을 넣고, 여기에 1,3-사이클로헥사다이엔(1,3-cyclohexadiene) (9.4 g, 0.1175 몰)를 주사기를 이용하여 첨가한 후 상온에서 5시간 동안 환류하여 반응을 완료하고 상온으로 냉각하고 진공을 이용하여 에탄올과 휘발성의 부산물을 제거한다. 엷은 노란색의 용액을 얻어 110℃에서 진공(0.6 mmHg) 상태를 유지하면서 1차 정제를 하고, 다시 120℃에서 진공(1.0 mmHg) 상태를 유지하면서 2차 정제를 수행하여 노란색 액체의 표제 화합물 9 g (60%)을 얻었다.In a round flask (1000 ml) with a branched flask in nitrogen atmosphere, purified di-μ-chloro-bis [chloro (η 6 -p-cymene) ruthenium (II)] ([RuCl 2 ( p -cymene) )] 2 (ref. Inorganic synthesis, vol 21, 75p) 28 g (0.047 mole) and 30 g (0.28 mole) of sodium carbonate (Na2CO3) were added thereto, followed by 1,3-cyclohexadiene. ) (9.4 g, 0.1175 mol) was added using a syringe and refluxed at room temperature for 5 hours to complete the reaction, cooled to room temperature and vacuum removed to remove ethanol and volatile byproducts. Primary purification was carried out at 110 ° C. under vacuum (0.6 mmHg), and secondary purification was carried out at 120 ° C. under vacuum (1.0 mmHg) to give 9 g (60%) of the title compound as a yellow liquid. .

1H-NMR(C6D6, ppm) δ 1.04 (d, 6H), 1.75 (d-d, 4H), 1.90 (s, 3H), 1.84 (s, 3H), 2.25 (m, 1H), 2.98(m, 2H), 4.78 (m, 2H), 4.96(m, 4H); 13C-NMR(C6D6, ppm) 20.4, 24.1, 28.8, 32.7, 54.0, 75.7, 79.2, 80.7, 93.38, 104.7. 1 H-NMR (C 6 D 6 , ppm) δ 1.04 (d, 6H), 1.75 (dd, 4H), 1.90 (s, 3H), 1.84 (s, 3H), 2.25 (m, 1H), 2.98 ( m, 2H), 4.78 (m, 2H), 4.96 (m, 4H); 13 C-NMR (C 6 D 6 , ppm) 20.4, 24.1, 28.8, 32.7, 54.0, 75.7, 79.2, 80.7, 93.38, 104.7.

〈실시예 2〉루테늄 박막의 제조<Example 2> Preparation of ruthenium thin film

상기 실시예 1에서 제조된 루테늄 화합물 Ru(η6-p-Cymene)(η4-1,3-cyclohexadiene)을 이용하여 루테늄 박막을 제조하였다. A ruthenium thin film was prepared using the ruthenium compound Ru (η 6 -p -Cymene) (η 4 -1,3-cyclohexadiene) prepared in Example 1.

도 1과 도 3을 참조하여 제조과정을 설명하면, 챔버 내부(10)의 실리콘 웨이퍼(30) 기판 온도를 약 400℃로 하고, 스테인레스 스틸 버블러 용기(40)내에 있는 Ru(η6-p-Cymene)(η4-1,3-cyclohexadiene)전구체의 온도를 60℃로 한다. 이후, 첫째로, 아르곤 가스를 이송 기체로 하여 약 5초간 Ru(η6-p-Cymene)(η4-1,3-cyclohexadiene)전구체를 반응 챔버 내부로 주입한다(S100). 이로 인해 앞서 언급한 바와 같이 원자층이 형성된다. 둘째로, 약 5초간 진공펌프(50)를 이용한 퍼징을 실시하여(S110) 챔버 내부(10)에 존재하는 잔류가스나 Ru(η6-p-Cymene)(η4-1,3-cyclohexadiene)전구체를 제거한다. 세 번째로, 챔버 외부의 리모트 플라즈마 형성기에서 여기된 암모니아 플라즈마를 약 5초간 챔버 내로 주입하여(S120) 실리콘 웨이퍼(30) 상에 흡착된 전구체와 반응시켜 루테늄 박막을 형성한다. 네 번째로, 약 5초간 반응으로 분해된 잔류물을 진공 펌프(50)를 이용하여 다시 한번 퍼징을 실시하여(S130) 제거한다. 상술한 공정단계를 1주기로 하여 40주기를 반복하여 24nm의 루테늄 박막을 제조하였다.Referring to FIGS. 1 and 3, the manufacturing process of the silicon wafer 30 in the chamber 10 is about 400 ° C., and Ru (η 6p ) in the stainless steel bubbler container 40 is described. The temperature of the -Cymene) (η 4 -1,3-cyclohexadiene) precursor is 60 ° C. Subsequently, first, Ru (η 6 -p -Cymene) (η 4 -1,3-cyclohexadiene) precursor is injected into the reaction chamber using argon gas as a transport gas (S100). This results in the formation of an atomic layer as previously mentioned. Second, purging with the vacuum pump 50 for about 5 seconds (S110), residual gas or Ru (η 6 - p -Cymene) (η 4 -1,3-cyclohexadiene) present in the chamber (10) Remove the precursor. Third, the ammonia plasma excited by the remote plasma former outside the chamber is injected into the chamber for about 5 seconds (S120) to react with the precursor adsorbed on the silicon wafer 30 to form a ruthenium thin film. Fourth, the residue decomposed by the reaction for about 5 seconds to purge again by using the vacuum pump 50 (S130) to remove. 40 cycles of ruthenium thin films were prepared by repeating 40 cycles using the above-described process step as one cycle.

도 1은 본 발명에 따른 원자층 증착 반응 장치의 개요도이고,1 is a schematic view of an atomic layer deposition reaction apparatus according to the present invention,

도 2는 본 발명에 따른 원자층 증착 공정 순서도이며,2 is a flowchart of an atomic layer deposition process according to the present invention,

도 3은 본 발명에 따른 또 다른 원자층 증착 공정 순서도이다.3 is another atomic layer deposition process flow chart in accordance with the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 반응기 20: 히터 30: 기판 10 reactor 20 heater 30 substrate

40: 버블러 45: 가스 주입관 50: 펌프40: bubbler 45: gas injection pipe 50: pump

Claims (4)

삭제delete a) 기판이 장착된 반응기 내로 하기 화학식 1의 루테늄 화합물을 기상으로 주입하여 기판 상에 원자층 증착하는 단계; 및a) atomic layer deposition on a substrate by injecting a ruthenium compound of Formula 1 into a gas phase into a reactor equipped with a substrate; And b) 잔류 루테늄 화합물 및 반응부산물을 퍼지하는 단계; b) purging the residual ruthenium compound and reaction byproducts; 를 포함하는 제조단계를 반복하는 것을 특징으로 하는 루테늄 박막의 제조방법.Method for producing a ruthenium thin film, characterized in that for repeating the manufacturing step comprising a. <화학식 1><Formula 1>
Figure 112008006666927-pat00005
Figure 112008006666927-pat00005
제 2 항에 있어서, The method of claim 2, 상기 b)단계 후 수소 또는 암모니아로부터 선택되는 반응가스를 주입하는 단계, 및 잔류 반응가스 및 반응부산물을 퍼지하는 단계를 더 포함하는, 루테늄 박막의 제조방법.Injecting a reaction gas selected from hydrogen or ammonia after step b), and purging the residual reaction gas and the reaction by-product. 제 3 항에 있어서, The method of claim 3, wherein 상기 반응가스는 플라즈마 상태로 주입하는 것을 특징으로 하는 루테늄 박막의 제조방법.The reaction gas is a method of manufacturing a ruthenium thin film, characterized in that the injection in the plasma state.
KR1020080008349A 2008-01-28 2008-01-28 A new ruthenium compound and vapor deposition method using the same KR100958332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080008349A KR100958332B1 (en) 2008-01-28 2008-01-28 A new ruthenium compound and vapor deposition method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080008349A KR100958332B1 (en) 2008-01-28 2008-01-28 A new ruthenium compound and vapor deposition method using the same

Publications (2)

Publication Number Publication Date
KR20090082543A KR20090082543A (en) 2009-07-31
KR100958332B1 true KR100958332B1 (en) 2010-05-18

Family

ID=41293826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080008349A KR100958332B1 (en) 2008-01-28 2008-01-28 A new ruthenium compound and vapor deposition method using the same

Country Status (1)

Country Link
KR (1) KR100958332B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220127120A (en) * 2021-03-10 2022-09-19 한국화학연구원 composition for depositing a ruthenium-containing thin film and method for manufacturing of ruthenium-containing thin film using the same
KR20220165868A (en) 2021-06-08 2022-12-16 (주)원익머트리얼즈 Ruthenium organometallic compound, and method for producing same
KR20230038836A (en) 2021-09-13 2023-03-21 (주)원익머트리얼즈 New Ruthenium organometallic compound, and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060482A (en) * 2008-11-27 2010-06-07 주식회사 유피케미칼 Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
KR101404714B1 (en) * 2011-10-20 2014-06-20 주식회사 한솔케미칼 Ruthenium compounds with good step coverage, and deposited film using them
WO2013058451A1 (en) * 2011-10-20 2013-04-25 주식회사 한솔케미칼 Ruthenium compound having excellent step coverage, and thin film deposited using same
KR101309043B1 (en) * 2012-01-31 2013-09-17 영남대학교 산학협력단 Method for forming ruthenium thin film by atomic layer deposition and ruthenium thin film using the same
KR101703871B1 (en) 2014-05-30 2017-02-08 주식회사 유피케미칼 Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
WO2015182946A1 (en) * 2014-05-30 2015-12-03 주식회사 유피케미칼 Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same
KR101973549B1 (en) * 2017-04-19 2019-04-29 영남대학교 산학협력단 Method of forming ruthenium thin film
JP2022031988A (en) * 2018-11-08 2022-02-24 株式会社Adeka Manufacturing method of metal ruthenium thin film by atomic layer deposition method
US11371138B2 (en) * 2018-11-08 2022-06-28 Entegris, Inc. Chemical vapor deposition processes using ruthenium precursor and reducing gas
CN113039309A (en) * 2018-11-15 2021-06-25 恩特格里斯公司 Plasma Enhanced Atomic Layer Deposition (PEALD) process using ruthenium precursors
CN113195783A (en) * 2018-12-19 2021-07-30 恩特格里斯公司 Method for depositing tungsten or molybdenum layers in the presence of a reducing co-reactant
WO2023150066A1 (en) * 2022-02-03 2023-08-10 Entegris, Inc. Process for selectively depositing highly-conductive metal films
KR102489662B1 (en) * 2022-04-12 2023-01-18 주식회사 유피케미칼 Ruthenium precursor compositions, preparation method thereof, and method for forming ruthenium-containing films using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050100680A (en) * 2003-02-17 2005-10-19 세키스이가가쿠 고교가부시키가이샤 Zero-valence transition metal complex and method of synthesizing organometallic compound from the same as starting material
KR100589062B1 (en) 2004-06-10 2006-06-12 삼성전자주식회사 Method of forming a thin film using an atomic layer deposition process and method of forming a capacitor of a semiconductor device using the same
JP2006310865A (en) 2005-04-29 2006-11-09 Boc Group Inc:The Method and apparatus for using solution based precursors for atomic layer deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050100680A (en) * 2003-02-17 2005-10-19 세키스이가가쿠 고교가부시키가이샤 Zero-valence transition metal complex and method of synthesizing organometallic compound from the same as starting material
KR100589062B1 (en) 2004-06-10 2006-06-12 삼성전자주식회사 Method of forming a thin film using an atomic layer deposition process and method of forming a capacitor of a semiconductor device using the same
JP2006310865A (en) 2005-04-29 2006-11-09 Boc Group Inc:The Method and apparatus for using solution based precursors for atomic layer deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220127120A (en) * 2021-03-10 2022-09-19 한국화학연구원 composition for depositing a ruthenium-containing thin film and method for manufacturing of ruthenium-containing thin film using the same
KR102618533B1 (en) * 2021-03-10 2023-12-28 한국화학연구원 composition for depositing a ruthenium-containing thin film and method for manufacturing of ruthenium-containing thin film using the same
KR20220165868A (en) 2021-06-08 2022-12-16 (주)원익머트리얼즈 Ruthenium organometallic compound, and method for producing same
KR20230038836A (en) 2021-09-13 2023-03-21 (주)원익머트리얼즈 New Ruthenium organometallic compound, and method for producing same

Also Published As

Publication number Publication date
KR20090082543A (en) 2009-07-31

Similar Documents

Publication Publication Date Title
KR100958332B1 (en) A new ruthenium compound and vapor deposition method using the same
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
TWI401259B (en) Metal(iv) tetra-amidinate compounds and their use in vapor deposition
US20120145953A1 (en) LITHIUM PRECURSORS FOR LixMyOz MATERIALS FOR BATTERIES
TWI378936B (en) Organometallic compounds and methods of use thereof
KR20090092286A (en) Method for the deposition of a ruthenium containing film
JP2007153872A (en) Titanium complex, production method of the complex, titanium-containing thin film and forming method of the thin film
JP2009046440A (en) Ruthenium compound, method for producing the same, ruthenium-containing thin film and method for producing the same
KR102634502B1 (en) Ruthenium compounds, raw materials for forming thin films, and methods for producing thin films
KR101770438B1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
JP7204922B2 (en) Cobalt precursor, method for producing same, and method for producing thin film using same
KR100442963B1 (en) Method of manufacturing metal layer having high degree of purity
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
KR100624514B1 (en) Precursors for deposition of ruthenium thin film and deposition method using them
KR101126141B1 (en) Organoiridium compound, process for producing the same, and process for producing film
JP4553642B2 (en) Organic iridium compound, process for producing the same, and process for producing film
KR102621779B1 (en) Niobium precursor compound for thin film deposition and method of forming thin film containing niobium using the same
KR100514780B1 (en) Compound for semiconductor film and method of depositing film using the same
KR100622309B1 (en) Compound for depositing semiconductor film and method of depositing film using the same
WO2023102063A1 (en) Deposition of noble metal islets or thin films for its use for electrochemical catalysts with improved catalytic activity
KR20220024443A (en) Ruthenium compound, raw material for thin film formation and thin film manufacturing method
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition
JP2005023009A (en) Organovanadium compound, solution raw material controlling the compound and method for forming vanadium-containing thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 9