WO2015182946A1 - Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same - Google Patents

Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same Download PDF

Info

Publication number
WO2015182946A1
WO2015182946A1 PCT/KR2015/005232 KR2015005232W WO2015182946A1 WO 2015182946 A1 WO2015182946 A1 WO 2015182946A1 KR 2015005232 W KR2015005232 W KR 2015005232W WO 2015182946 A1 WO2015182946 A1 WO 2015182946A1
Authority
WO
WIPO (PCT)
Prior art keywords
cymene
ruthenium
group
pentyl
formula
Prior art date
Application number
PCT/KR2015/005232
Other languages
French (fr)
Korean (ko)
Inventor
한원석
김소영
고원용
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140163832A external-priority patent/KR101703871B1/en
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to CN201580028799.8A priority Critical patent/CN106459113B/en
Priority to JP2017515645A priority patent/JP6284682B2/en
Priority to US15/314,839 priority patent/US9957614B2/en
Publication of WO2015182946A1 publication Critical patent/WO2015182946A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • the present application relates to a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a film using the precursor composition.
  • ruthenium is used to minimize leakage current. It is necessary to use an electrode.
  • ruthenium metal Since ruthenium metal is excellent in adhesion to copper metal and difficult to form a solid solution with Cu, it is actively applied to seed layer in Cu wiring process using electroplating during semiconductor manufacturing process. Is being studied.
  • RuO 2 ruthenium oxide
  • ⁇ bulk 46 ⁇ ⁇ cm
  • thermal stability 800 ° C.
  • Application as a lower electrode is a potent material.
  • ruthenium metals and ruthenium oxides as capacitor electrodes of next-generation electronic devices, especially DRAM (Dynamic Random Access Memory) devices, which have an extremely small level, excellent step coverage can be realized on uneven surfaces. It is necessary to apply an organometallic chemical vapor deposition method or an atomic layer deposition method, and therefore a ruthenium precursor compound suitable for this is necessary.
  • Atomic layer deposition using (EtCp) 2 Ru precursor compounds has the disadvantage that film growth per feed feed cycle is also slow ( ⁇ 0.05 nm / cycle) [Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition ", Journal of Applied Physics, volume 103, 113509 (2008)].
  • the incubation cycle is reported to be 100 or 200 times on the titanium oxide (TiO 2 ) and titanium nitride (TiN) substrates even in the atomic layer deposition method using DER, and the film growth per raw material feed cycle is 0.034 nm. It is known to be only / cycle ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition", Chemistry of Materials, volume 22, 2850-2856 (2010)].
  • the present application is to provide a novel ruthenium compound, a method for preparing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a ruthenium-containing film using the precursor composition.
  • a first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
  • R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group
  • n is an integer from 0 to 3.
  • the second aspect of the present application is a [RuX 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2 in an organic solvent containing a primary alcohol or a secondary alcohol having 5 or less carbon atoms, It provides a method for producing a ruthenium compound, comprising reacting a mixture containing a carbonate salt of an alkali metal represented by M 2 CO 3 and a diene neutral ligand represented by the following formula (3) to obtain a ruthenium compound of the formula do:
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group
  • n is an integer from 0 to 3.
  • a third aspect of the present application provides a precursor composition for ruthenium-containing film deposition, comprising the ruthenium compound according to the first aspect of the present application.
  • a fourth aspect of the present application provides a method of depositing a ruthenium-containing film, comprising forming a ruthenium-containing film using the ruthenium-containing film deposition composition according to the third aspect of the present application.
  • a ruthenium compound having a faster initial film growth and much faster film formation per feed gas supply cycle of atomic layer deposition than a conventional ruthenium precursor compound used as a precursor of atomic layer deposition or chemical vapor deposition It is possible to provide a production method thereof.
  • the novel ruthenium compounds according to one embodiment of the present disclosure can be used to form ruthenium-containing films or thin films and can be easily mass produced from commercial raw materials.
  • a ruthenium-containing film having a high electrical conductivity and a flat surface can be formed.
  • Atomic layer deposition using a ruthenium compound according to one embodiment of the present application is faster initial film growth, the time taken to form a ruthenium-containing film of the required thickness can be shortened compared to the case using a conventionally known atomic layer deposition method have. Therefore, when applying the ruthenium compound according to an embodiment of the present application to the semiconductor production process for producing a ruthenium-containing film, it is expected that the productivity of the film forming equipment can be increased.
  • Example 1 is a thermal gravimetric graph of a ruthenium compound prepared according to Example 1 of the present application.
  • Example 2 is a differential scanning calorimetry analysis graph of ruthenium compounds prepared according to Example 1 of the present application.
  • thermogravimetric analysis graph of ruthenium compound prepared according to Example 2 of the present application is a thermogravimetric analysis graph of ruthenium compound prepared according to Example 2 of the present application.
  • Example 4 is a differential scanning calorimeter analysis graph of ruthenium compounds prepared according to Example 2 of the present application.
  • thermogravimetric analysis graph of the ruthenium compound prepared according to Example 3 of the present application.
  • Example 6 is a differential scanning calorimeter analysis graph of ruthenium compounds prepared according to Example 3 of the present application.
  • thermogravimetric analysis graph of ruthenium compound prepared according to Example 4 of the present application is a thermogravimetric analysis graph of ruthenium compound prepared according to Example 4 of the present application.
  • Example 8 is a differential scanning calorimeter analysis graph of a ruthenium compound prepared according to Example 4 of the present application.
  • FIG. 9 is a graph showing the relationship between the number of atomic layer deposition cycles of a ruthenium-containing film formed on a silicon oxide (SiO 2 ) substrate and the thickness of the formed film according to Example 5 of the present application.
  • FIG. 10 is an X-ray diffraction analysis of a ruthenium-containing film formed on a silicon oxide substrate according to Example 5 herein.
  • Example 11 is a graph showing the relationship between the number of atomic layer deposition cycles and the thickness formed of a ruthenium-containing film according to Example 6 of the present application.
  • Example 12 is a graph showing the electrical resistivity of a ruthenium-containing film according to Example 6 of the present application.
  • Example 13 is an X-ray diffraction analysis of the ruthenium-containing film according to Example 6 of the present application.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl group may include linear or branched, saturated C 1-10 or C 1-5 alkyl groups, respectively, for example methyl, ethyl, propyl, butyl, pentyl , Hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof, but may not be limited thereto.
  • alkali metal refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, K, Rb, or Cs, but may not be limited thereto.
  • neutral ligand is a hydrocarbon compound comprising one or two or more double bonds or triple bonds, for example, linear, branched, or open cyclic C 1-10 alkane ( alkyne); Linear, branched, or open cyclic C 1-10 alkenes; Linear, branched, or open cyclic C 1-10 dienes; And linear, branched, or open cyclic C 1-10 triene, but may not be limited thereto.
  • a first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
  • R 1 To R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
  • n is an integer from 0 to 3.
  • the linear or branched C 1-5 alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof However, this may not be limited.
  • n is 0, and R 1 to R 4 are each independently H; Or a methyl group, an ethyl group, an iso-propyl group, and a tert-butyl group may be selected from the group consisting of, but may not be limited thereto.
  • the second aspect of the present application is a [RuX 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2 in an organic solvent containing a primary alcohol or a secondary alcohol having 5 or less carbon atoms, It provides a method for producing a ruthenium compound, comprising reacting a mixture containing a carbonate salt of an alkali metal represented by M 2 CO 3 and a diene neutral ligand represented by the following formula (3) to obtain a ruthenium compound of the formula do:
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group
  • n is an integer from 0 to 3.
  • the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
  • the organic solvent may include a primary alcohol or a secondary alcohol having 5 or less carbon atoms, but may not be limited thereto.
  • the primary alcohol or secondary alcohol having 5 or less carbon atoms may serve as a solvent and also act as a reducing agent. Therefore, ruthenium compounds according to the present application can be produced in an economical and simple process that does not require a separate reducing agent.
  • the primary alcohol or secondary alcohol is methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso-pentanol, and It may include one selected from the group consisting of a combination thereof, but may not be limited thereto.
  • [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 is ruthenium trichloride hydrate (RuX 3 ⁇ nH 2 O) in an organic solvent.
  • ⁇ -terpinene or ⁇ -terpinene instead of the ⁇ -terpinene or ⁇ -terpinene, ⁇ -terpinene, ⁇ -phellandrene, ⁇ -phellandrene, or an isomer thereof may be used.
  • the reaction for forming the [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 may be a reflux reaction, but may not be limited thereto.
  • X comprises Cl, Br, or I
  • n is an integer of 0 or 10 or less.
  • the ruthenium trihalide hydrate (RuX 3 ⁇ nH 2 O) and ⁇ -terpinene of the formula (4) or ⁇ -terpinene of the formula (5) It is added to an organic solvent containing alcohol and then dissolved to react.
  • the [RuX 2 (p-cymene)] 2 compound may be formed by adding the ⁇ -terpinene of Formula 4 or the ⁇ -terpinene of Formula 5 and reacting the same.
  • a third aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application.
  • the ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
  • a fourth aspect of the present application comprising forming a ruthenium-containing film or thin film using the ruthenium-containing film or precursor composition for thin film deposition according to the third aspect of the present application, a method of depositing a ruthenium-containing film or thin film To provide.
  • the ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
  • the method of depositing a ruthenium-containing film or thin film includes depositing the ruthenium-containing film or precursor composition for thin film deposition on a substrate located in a deposition chamber to form a ruthenium-containing film or thin film It may be, but may not be limited thereto.
  • the deposition method of the film can be carried out using methods, apparatus, etc. known in the art and, if necessary, with additional reaction gases.
  • depositing the film may include, but is not limited to, performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) may be performed using deposition apparatuses, deposition conditions, additional reaction gases, and the like, known in the art.
  • the ruthenium compound according to the exemplary embodiment of the present invention is a complex in which a weak coordination bond is connected between the ruthenium center metal and the ligand, and thus, decomposition of the ligand may occur well at a relatively low temperature, thereby lowering the deposition temperature.
  • impurities such as carbon, nitrogen, and oxygen may not remain in the deposited film. have.
  • depositing the film may include, but is not limited to, performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • Boiling point (bp) 97 ° C. (0.3 torr);
  • Boiling point (bp) 105 ° C. (0.3 torr);
  • thermal gravimetric analysis TGA
  • DSC differential scanning calorimetry analysis
  • the ruthenium compounds of the formulas 6 to 9 of the present application in the TGA graph all of the sudden mass loss occurred at a temperature of 150 °C to 250 °C, the weight loss with temperature of the original sample When it reached 1/2 weight, the temperature corresponding to T 1/2 was 217 ° C to 228 ° C.
  • the ruthenium compounds of Chemical Formulas 6 to 9 herein exhibited endothermic peaks due to decomposition of the compounds at 320 ° C, 336 ° C, 357 ° C, and 281 ° C, respectively.
  • Example 5 Formation of Ruthenium-containing Film by Atomic Layer Deposition Method Using (p-cymene) (isoprene) Ru Compound Gas and Oxygen Gas Prepared in Example 2
  • Film formation evaluation by an atomic layer deposition process was performed using the (p-cymene) (isoprene) Ru compound represented by Formula 7 prepared as Example 2 as a precursor.
  • a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used.
  • the temperature of the substrate was adjusted to 180 °C to 275 °C and the precursor was placed in a stainless steel container and vaporized by heating the vessel at a temperature of 85 °C.
  • the ruthenium precursor gas prepared in Example 2 transferred together with the carrier gas in the Lucida D-100 atomic layer deposition equipment of Enshidi company, and oxygen (O 2 ) gas diluted to 20% by volume in nitrogen (N 2 ) gas.
  • Ru precursor supply prepared in Example 2 5 seconds-> N 2 gas supply 10 seconds-> O 2 gas supply 3 seconds-> N 2 gas supply Atomic layer deposition cycle of 10 seconds to 100 to 400 times to repeat the substrate temperature 275
  • XRD patterns of ruthenium-containing films formed at various substrate temperatures are shown in FIG. 10.
  • XRD X-ray Diffractometer
  • the atomic layer deposition method using the ruthenium compound prepared in Example 2 on a SiO 2 substrate has a large film growth per gas supply cycle. ( ⁇ 0.12 nm / cycle), it was found that the incubation cycle is very short ( ⁇ 7 cycles) even on the surface of silicon oxide, which is difficult to nucleate due to difficult nucleation. 10, it was found that a crystalline Ru metal film was formed at a substrate temperature of 225 ° C. or higher. Metal films with good crystallinity are generally known to have better electrical conductivity.
  • Example 6 Formation of Ruthenium-Containing Film by Atomic Layer Deposition Using (p-cymene) (1,3-butadiene) Ru Compound Gas and Oxygen Gas Prepared in Example 1
  • Film formation evaluation by an atomic layer deposition process was performed using a (p-cymene) (1,3-butadiene) Ru compound represented by Chemical Formula 6 prepared in Example 1 as a precursor.
  • a substrate used for the deposition a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used.
  • the temperature of the substrate was adjusted to 180 to 310 °C and the precursor was put in a container made of stainless steel material was vaporized by heating the vessel at a temperature of 84 °C.
  • the atomic layer deposition method using the ruthenium compound prepared in Example 1 on a SiO 2 substrate has a large film growth per gas supply cycle. ( ⁇ 0.106 nm / cycle), it was found that the incubation cycle is very short ( ⁇ 7 cycles) even on the surface of silicon oxide, which is difficult to nucleate due to difficult nucleation. As can be seen in FIG.
  • the film formed with a thickness of 20 nm or more by repeating the atomic layer deposition cycle 200 times or more has a high electrical conductivity, and the result of measuring the resistivity was found to be less than 40 ⁇ ⁇ cm, and the electrical conductivity of the formed film was very high. It was found to be excellent. 13, it was found that a crystalline Ru metal film was formed at a substrate temperature of 200 ° C. or higher. It is generally known that metal films with good crystallinity have better electrical conductivity.
  • Example 7 Formation of Ruthenium-containing Film by Atomic Layer Deposition Using (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru Compound Gas and Oxygen Gas Prepared in Example 3
  • Film formation evaluation by an atomic layer deposition process was performed using (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru compound represented by Chemical Formula 8 prepared in Example 3 as a precursor.
  • a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used.
  • the temperature of the substrate was adjusted to 180 °C to 310 °C and the precursor was vaporized while heating the vessel at a temperature of 90 °C in a container made of stainless steel.
  • Atomic Layer Deposition of Ruthenium Precursor Gas Transferred with Carrier Gas and Oxygen (O 2 ) Gas Dilute to 20% by Volume in Nitrogen (N 2 ) Gas from Encidi's Lucida D-100 Atomic Layer Deposition Equipment The substrate was placed in the chamber. Ru precursor supply 5 seconds-> N 2 gas supply 10 seconds-> O 2 gas supply 2 seconds-> N 2 gas supply prepared in Example 3 by repeating the atomic layer deposition cycle of 10 seconds ruthenium-containing at a substrate temperature of 225 °C A film was formed.
  • the film growth was 0.096 nm / cycle and the incubation cycle was ⁇ 12 cycles per gas supply cycle at the substrate temperature of 225 ° C.
  • the electrical resistivity of the ruthenium-containing film formed at the substrate temperature of 225 ° C. was 55 to 65 ⁇ ⁇ cm.
  • the surface of the ruthenium-containing film formed to a thickness of 20 nm was observed by atomic force microscopy, and the surface unevenness of the ruthenium-containing film was 1.35 nm. From this result, a very flat film was obtained. It could be seen that.
  • the terpinene compound used as the starting material in Preparation Example 1 can be easily obtained commercially a large capacity up to several tens of Kg or hundreds of Kg. Therefore, the ruthenium compound of the present invention comprising the ruthenium compounds of Examples 1 to 4 synthesized from the terpinene can be easily produced in large quantities from commercial raw materials, which is very advantageous for industrial use for the purpose of depositing a film containing Ru. Do.
  • a ruthenium-containing film having high electrical conductivity and a flat surface can be formed.
  • the atomic layer deposition method using the ruthenium compound according to the present application is fast because the initial film growth is faster, especially since the film growth per gas supply cycle is almost twice or faster than the conventionally known atomic layer deposition method, 0.096 to 0.12 nm / cycle, The time taken to form the ruthenium-containing film of the required thickness can be shortened in half compared with the case of using a conventionally known atomic layer deposition method.
  • the productivity of the film forming equipment is also expected to be doubled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to: a novel ruthenium compound; a method for preparing the ruthenium compound; a precursor composition for depositing a ruthenium-containing film, containing the ruthenium compound; and a method for depositing a ruthenium-containing film by using the precursor composition.

Description

신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법Novel ruthenium compound, method for preparing the same, precursor composition for film deposition comprising the same, and method for depositing a film using the same
본원은 신규 루테늄 화합물, 상기 루테늄 화합물의 제조 방법, 상기 루테늄 화합물을 포함하는 막 증착용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 막의 증착 방법에 관한 것이다.The present application relates to a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a film using the precursor composition.
루테늄 (Ruthenium) 금속은 열적, 화학적 안정성이 우수할 뿐만 아니라 낮은 비저항 (ρbulk = 7.6 μΩ·cm) 및 큰 일함수 (Φbulk = 4.71 eV)를 갖고 있어 트랜지스터의 게이트 전극; 또는, DRAM 또는 FeRAM의 커패시터 (Capacitor) 전극 물질로서 사용할 수 있다. 특히 차세대 DRAM 커패시터의 고유전 물질의 재료로서 타이타늄을 포함한 산화물인 TiO2, STO (SrTiO3), BST [(Ba, Sr)TiO3] 등을 사용할 때 누설전류 (Leakage current)를 최소화하기 위해서는 루테늄 전극을 사용할 필요가 있다.Ruthenium metals not only have excellent thermal and chemical stability, but also have a low specific resistance (ρ bulk = 7.6 μΩ · cm) and a large work function (Φ bulk = 4.71 eV), so that the gate electrode of the transistor; Alternatively, it can be used as a capacitor electrode material of DRAM or FeRAM. In particular, when using TiO 2 , STO (SrTiO 3 ), and BST [(Ba, Sr) TiO 3 ], which are oxides containing titanium, as the material of the high dielectric material of the next generation DRAM capacitor, ruthenium is used to minimize leakage current. It is necessary to use an electrode.
루테늄 금속은 구리 금속과의 접착성이 우수할 뿐만 아니라 Cu와의 고용체 형성이 어렵기 때문에, 반도체 제조 공정 중 전기도금 (Electroplating)을 이용한 Cu 배선 공정에 있어서 씨드층 (Seed layer)으로의 적용이 활발하게 연구되고 있다.Since ruthenium metal is excellent in adhesion to copper metal and difficult to form a solid solution with Cu, it is actively applied to seed layer in Cu wiring process using electroplating during semiconductor manufacturing process. Is being studied.
한편, 루테늄 산화물 (RuO2) 또한 전도성 물질로서 비저항이 낮고 (ρbulk = 46 μΩ·cm), 800℃에서도 열적 안정성이 뛰어나 향후 금속-절연물-금속 커패시터 (Metal-Insulator-Metal; MIM capacitor)의 하부전극으로서의 적용이 유력한 물질이다.Meanwhile, ruthenium oxide (RuO 2 ) is also a conductive material with low resistivity (ρ bulk = 46 μΩ · cm) and excellent thermal stability at 800 ° C. Application as a lower electrode is a potent material.
이들 루테늄 금속 및 루테늄 산화물을 극미세화 되는 차세대 전자소자, 특히 높은 단차비를 갖는 DRAM (Dynamic Random Access Memory) 소자의 커패시터 전극으로서 사용하기 위해서는 요철이 심한 표면에 우수한 단차 피복성 (Step Coverage)을 구현할 수 있는 유기 금속 화학기상 증착법이나 원자층 증착법을 적용할 필요가 있고, 따라서 이에 적합한 루테늄 전구체 화합물이 필요하다.In order to use these ruthenium metals and ruthenium oxides as capacitor electrodes of next-generation electronic devices, especially DRAM (Dynamic Random Access Memory) devices, which have an extremely small level, excellent step coverage can be realized on uneven surfaces. It is necessary to apply an organometallic chemical vapor deposition method or an atomic layer deposition method, and therefore a ruthenium precursor compound suitable for this is necessary.
원자층 증착법을 이용하여 루테늄 금속막 또는 산화막을 형성할 때 비스(에틸사이클로펜타디에닐)루테늄 [Bis(ethylcyclopentadienyl)ruthenium, (EtCp)2Ru] 전구체 화합물과 산소 함유 기체가 흔히 상용된다. 그러나, (EtCp)2Ru은 상온에서 액체이고 증기압이 높은 장점이 있지만, (EtCp)2Ru 전구체 화합물을 사용한 원자층 증착법은 특히 초기 막 성장이 매우 느리다는 문제점이 있다. 실리콘 산화막이나 실리콘 질화막 위에서는, 원자층 증착법의 기체 공급 주기당 일정한 막 성장을 얻을 때까지의 기체 공급 주기("incubation cycles", 인큐베이션 사이클)가 100 회 이상 필요하다. (EtCp)2Ru 전구체 화합물을 사용한 원자층 증착법은 원료 공급 주기당 막 성장 또한 느리다(0.05 nm/cycle 미만)는 단점을 갖는다 ["Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition", Journal of Applied Physics, volume 103, 113509 (2008)]. Bis (ethylcyclopentadienyl) ruthenium (EtCp) 2 Ru] precursor compounds and oxygen-containing gases are commonly used to form ruthenium metal films or oxide films using atomic layer deposition. However, although (EtCp) 2 Ru is liquid at room temperature and has a high vapor pressure, atomic layer deposition using the (EtCp) 2 Ru precursor compound has a problem in that initial film growth is particularly slow. On the silicon oxide film or the silicon nitride film, at least 100 gas supply cycles (“incubation cycles”, incubation cycles) until a constant film growth is obtained per gas supply cycle of the atomic layer deposition method. Atomic layer deposition using (EtCp) 2 Ru precursor compounds has the disadvantage that film growth per feed feed cycle is also slow (<0.05 nm / cycle) [Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition ", Journal of Applied Physics, volume 103, 113509 (2008)].
상온에서 액체이고 증기압이 비교적 높은 2,4-(다이메틸펜타디에닐)(에틸사이클로펜타디에닐)루테늄[2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru, DER]과 산소 함유 기체를 사용한 원자층 증착법도 알려져 있으나, DER을 사용한 원자층 증착법의 경우에도 산화티타늄(TiO2), 질화티타늄(TiN) 기재에서 인큐베이션 사이클이 100 회 또는 200 회라고 보고되어 있고, 원료 공급 주기당 막 성장도 0.034 nm/cycle에 불과한 것으로 알려져 있다 ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition", Chemistry of Materials, volume 22, 2850-2856 (2010)].Atomic layer using 2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium [2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) Ru, DER] with liquid at room temperature and relatively high vapor pressure Although the deposition method is known, the incubation cycle is reported to be 100 or 200 times on the titanium oxide (TiO 2 ) and titanium nitride (TiN) substrates even in the atomic layer deposition method using DER, and the film growth per raw material feed cycle is 0.034 nm. It is known to be only / cycle ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition", Chemistry of Materials, volume 22, 2850-2856 (2010)].
따라서, 원자층 증착 또는 화학기상 증착에서 초기 막 성장이 빠르고, 특히, 원자층 증착법의 기체 공급 주기당 막 성장이 큰 루테늄 전구체 화합물이 필요하다.Therefore, there is a need for a ruthenium precursor compound that has a fast initial film growth in atomic layer deposition or chemical vapor deposition, and particularly, a large film growth per gas supply cycle of the atomic layer deposition method.
이에, 본원은 신규 루테늄 화합물, 상기 루테늄 화합물의 제조 방법, 상기 루테늄 화합물을 포함하는 막 증착용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 루테늄-함유 막의 증착 방법을 제공하고자 한다.Accordingly, the present application is to provide a novel ruthenium compound, a method for preparing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a ruthenium-containing film using the precursor composition.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는, 루테늄 화합물을 제공한다:A first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
[화학식 1] [Formula 1]
Figure PCTKR2015005232-appb-I000001
;
Figure PCTKR2015005232-appb-I000001
;
상기 화학식 1 에서, In Chemical Formula 1,
R1 내지 R4은 각각 독립적으로 H, 또는 선형 또는 분지형의 C1-5 알킬기를 포함하고,R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
n은 0 내지 3의 정수임.n is an integer from 0 to 3.
본원의 제 2 측면은, 하기 반응식 1에 나타낸 바와 같이, 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이엔 중성 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 루테늄 화합물의 제조 방법을 제공한다:As shown in Scheme 1 below, the second aspect of the present application is a [RuX 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2 in an organic solvent containing a primary alcohol or a secondary alcohol having 5 or less carbon atoms, It provides a method for producing a ruthenium compound, comprising reacting a mixture containing a carbonate salt of an alkali metal represented by M 2 CO 3 and a diene neutral ligand represented by the following formula (3) to obtain a ruthenium compound of the formula do:
[화학식 1][Formula 1]
Figure PCTKR2015005232-appb-I000002
;
Figure PCTKR2015005232-appb-I000002
;
[화학식 2][Formula 2]
Figure PCTKR2015005232-appb-I000003
;
Figure PCTKR2015005232-appb-I000003
;
[화학식 3][Formula 3]
Figure PCTKR2015005232-appb-I000004
;
Figure PCTKR2015005232-appb-I000004
;
[반응식 1] Scheme 1
Figure PCTKR2015005232-appb-I000005
;
Figure PCTKR2015005232-appb-I000005
;
상기 식들에서,In the above formulas,
M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
R1 내지 R4은 각각 독립적으로 H, 또는 선형 또는 분지형의 C1-5 알킬기를 포함하고,R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
n은 0 내지 3의 정수임.n is an integer from 0 to 3.
본원의 제 3 측면은, 상기 본원의 제 1 측면에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 증착용 전구체 조성물을 제공한다.A third aspect of the present application provides a precursor composition for ruthenium-containing film deposition, comprising the ruthenium compound according to the first aspect of the present application.
본원의 제 4 측면은, 상기 본원의 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 이용하여 루테늄-함유 막을 형성하는 것을 포함하는, 루테늄-함유 막의 증착 방법을 제공한다.A fourth aspect of the present application provides a method of depositing a ruthenium-containing film, comprising forming a ruthenium-containing film using the ruthenium-containing film deposition composition according to the third aspect of the present application.
본원의 일 구현예에 의하면, 원자층 증착법 또는 화학기상증착법의 전구체로서 사용된 종래의 루테늄 전구체 화합물에 비해 초기 막 성장이 빠르고, 원자층 증착의 원료 기체 공급 주기 당 막 형성이 훨씬 빠른 루테늄 화합물 및 그의 제조 방법을 제공할 수 있다. 본원의 일 구현예에 따른 신규 루테늄 화합물은 루테늄-함유 막 또는 박막을 형성하는 데에 사용될 수 있고 상업적인 원료로부터 쉽게 대량 생산할 수 있다.According to one embodiment of the present invention, a ruthenium compound having a faster initial film growth and much faster film formation per feed gas supply cycle of atomic layer deposition than a conventional ruthenium precursor compound used as a precursor of atomic layer deposition or chemical vapor deposition. It is possible to provide a production method thereof. The novel ruthenium compounds according to one embodiment of the present disclosure can be used to form ruthenium-containing films or thin films and can be easily mass produced from commercial raw materials.
본원의 일 구현예에 의하면, 루테늄 화합물을 사용하고 원자층 증착법에 의해 루테늄-함유 막을 성막하는 경우, 전기 전도도가 높고 표면이 평탄한 루테늄-함유 막을 형성할 수 있다. 본원의 일 구현예에 따른 루테늄 화합물을 사용한 원자층 증착법은 초기 막 성장이 빠르고, 필요한 두께의 루테늄-함유 막을 형성하는 데에 걸리는 시간이 종래에 알려진 원자층 증착법을 사용한 경우와 비교해서 단축될 수 있다. 따라서, 본원의 일 구현예에 따른 루테늄 화합물을 루테늄-함유 막을 제조하는 반도체 생산 공정에 적용하는 경우, 막 형성 장비의 생산성을 증대시킬 수 있을 것으로 기대된다.According to one embodiment of the present application, when a ruthenium compound is used and a ruthenium-containing film is formed by atomic layer deposition, a ruthenium-containing film having a high electrical conductivity and a flat surface can be formed. Atomic layer deposition using a ruthenium compound according to one embodiment of the present application is faster initial film growth, the time taken to form a ruthenium-containing film of the required thickness can be shortened compared to the case using a conventionally known atomic layer deposition method have. Therefore, when applying the ruthenium compound according to an embodiment of the present application to the semiconductor production process for producing a ruthenium-containing film, it is expected that the productivity of the film forming equipment can be increased.
도 1은 본원의 실시예 1에 따라 제조된 루테늄 화합물의 열 무게 분석 그래프이다.1 is a thermal gravimetric graph of a ruthenium compound prepared according to Example 1 of the present application.
도 2는 본원의 실시예 1에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 그래프이다.2 is a differential scanning calorimetry analysis graph of ruthenium compounds prepared according to Example 1 of the present application.
도 3은 본원의 실시예 2에 따라 제조된 루테늄 화합물의 열 무게 분석 그래프이다.3 is a thermogravimetric analysis graph of ruthenium compound prepared according to Example 2 of the present application.
도 4는 본원의 실시예 2에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 그래프이다.4 is a differential scanning calorimeter analysis graph of ruthenium compounds prepared according to Example 2 of the present application.
도 5는 본원의 실시예 3에 따라 제조된 루테늄 화합물의 열 무게 분석 그래프이다.5 is a thermogravimetric analysis graph of the ruthenium compound prepared according to Example 3 of the present application.
도 6은 본원의 실시예 3에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 그래프이다.6 is a differential scanning calorimeter analysis graph of ruthenium compounds prepared according to Example 3 of the present application.
도 7은 본원의 실시예 4에 따라 제조된 루테늄 화합물의 열 무게 분석 그래프이다.7 is a thermogravimetric analysis graph of ruthenium compound prepared according to Example 4 of the present application.
도 8은 본원의 실시예 4에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 그래프이다.8 is a differential scanning calorimeter analysis graph of a ruthenium compound prepared according to Example 4 of the present application.
도 9는 본원의 실시예 5에 따라 산화실리콘 (SiO2) 기재 위에 형성된 루테늄-함유 막의 원자층 증착 주기 회수와 형성된 막의 두께의 관계를 나타낸 그래프이다.FIG. 9 is a graph showing the relationship between the number of atomic layer deposition cycles of a ruthenium-containing film formed on a silicon oxide (SiO 2 ) substrate and the thickness of the formed film according to Example 5 of the present application.
도 10은 본원의 실시예 5에 따라 산화실리콘 기재 위에 형성된 루테늄-함유 막의 X-선 회절 분석 결과이다.FIG. 10 is an X-ray diffraction analysis of a ruthenium-containing film formed on a silicon oxide substrate according to Example 5 herein.
도 11은 본원의 실시예 6에 따른 루테늄-함유 막의 원자층 증착 주기 회수와 형성된 두께의 관계를 나타낸 그래프이다.11 is a graph showing the relationship between the number of atomic layer deposition cycles and the thickness formed of a ruthenium-containing film according to Example 6 of the present application.
도 12는 본원의 실시예 6에 따른 루테늄-함유 막의 전기 비저항을 나타낸 그래프이다.12 is a graph showing the electrical resistivity of a ruthenium-containing film according to Example 6 of the present application.
도 13은 본원의 실시예 6에 따른 루테늄-함유 막의 X-선 회절 분석 결과이다.13 is an X-ray diffraction analysis of the ruthenium-containing film according to Example 6 of the present application.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다. Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, 용어 "알킬기"는, 각각, 선형 또는 분지형의, 포화 C1-10 또는 C1-5 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. Throughout this specification, the term "alkyl group" may include linear or branched, saturated C 1-10 or C 1-5 alkyl groups, respectively, for example methyl, ethyl, propyl, butyl, pentyl , Hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof, but may not be limited thereto.
본원 명세서 전체에서, 용어 "알칼리 금속"은 주기율표의 1 족에 속하는 금속을 의미하는 것으로서, Li, Na, K, Rb, 또는 Cs일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "alkali metal" refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, K, Rb, or Cs, but may not be limited thereto.
본원 명세서 전체에서, 용어 "중성 리간드"는 한 개 또는 두 개 이상의 이중결합 또는 삼중결합을 포함하는 탄화수소 화합물로서, 예를 들어, 선형, 분지형, 또는 열린 고리형의 C1-10 알카인 (alkyne); 선형, 분지형, 또는 열린 고리형의 C1-10 알켄 (alkene); 선형, 분지형, 또는 열린 고리형의 C1-10 다이엔 (diene); 및 선형, 분지형, 또는 열린 고리형의 C1-10 트라이엔 (triene)으로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. Throughout this specification, the term "neutral ligand" is a hydrocarbon compound comprising one or two or more double bonds or triple bonds, for example, linear, branched, or open cyclic C 1-10 alkane ( alkyne); Linear, branched, or open cyclic C 1-10 alkenes; Linear, branched, or open cyclic C 1-10 dienes; And linear, branched, or open cyclic C 1-10 triene, but may not be limited thereto.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는, 루테늄 화합물을 제공한다:A first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
[화학식 1] [Formula 1]
Figure PCTKR2015005232-appb-I000006
;
Figure PCTKR2015005232-appb-I000006
;
상기 화학식 1 에서, In Chemical Formula 1,
R1 내지 R4은 각각 독립적으로 H, 또는 선형 또는 분지형의 C1-5 알킬기를 포함하고,R 1 To R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
n은 0 내지 3의 정수임.n is an integer from 0 to 3.
본원의 일 구현예에 있어서, 상기 선형 또는 분지형의 C1-5 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the linear or branched C 1-5 alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof However, this may not be limited.
본원의 일 구현예에 있어서, n은 0이고, R1 내지 R4가 각각 독립적으로, H; 또는 메틸기, 에틸기, iso-프로필기 및 tert-부틸기로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, n is 0, and R 1 to R 4 are each independently H; Or a methyl group, an ethyl group, an iso-propyl group, and a tert-butyl group may be selected from the group consisting of, but may not be limited thereto.
본원의 일 구현예에 따른 루테늄 화합물은, (p-cymene){CH2=CHCH=CH2}Ru, (p-cymene){MeCH=CHCH=CH2}Ru, (p-cymene){EtCH=CHCH=CH2}Ru, (p-cymene){nPrCH=CHCH=CH2}Ru, (p-cymene){iPrCH=CHCH=CH2}Ru, (p-cymene){nBuCH=CHCH=CH2}Ru, (p-cymene){iBuCH=CHCH=CH2}Ru, (p-cymene){secBuCH=CHCH=CH2}Ru, (p-cymene){tBuCH=CHCH=CH2}Ru, (p-cymene){(n-pentyl)CH=CHCH=CH2}Ru, (p-cymene){(iso-pentyl)CH=CHCH=CH2}Ru, (p-cymene){(sec-pentyl)CH=CHCH=CH2}Ru, (p-cymene){(neo-pentyl)CH=CHCH=CH2}Ru, (p-cymene){(tert-pentyl)CH=CHCH=CH2}Ru, (p-cymene){(3-pentyl)CH=CHCH=CH2}Ru, (p-cymene){CH2=C(Me)CH=CH2}Ru, (p-cymene){CH2=C(Et)CH=CH2}Ru, (p-cymene){CH2=C(nPr)CH=CH2}Ru, (p-cymene){CH2=C(iPr)CH=CH2}Ru, (p-cymene){CH2=C(nBu)CH=CH2}Ru, (p-cymene){CH2=C(iBu)CH=CH2}Ru, (p-cymene){CH2=C(secBu)CH=CH2}Ru, (p-cymene){CH2=C(tBu)CH=CH2}Ru, (p-cymene){CH2=C(n-pentyl)CH=CH2}Ru, (p-cymene){CH2=C(iso-pentyl)CH=CH2}Ru, (p-cymene){CH2=C(sec-pentyl)CH=CH2}Ru, (p-cymene){CH2=C(neo-pentyl)CH=CH2}Ru, (p-cymene){CH2=C(tert-pentyl)CH=CH2}Ru, (p-cymene){CH2=C(3-pentyl)CH=CH2}Ru, (p-cymene){MeCH=CHCH=CHMe}Ru, (p-cymene){EtCH=CHCH=CHEt}Ru, (p-cymene){nPrCH=CHCH=CHnPr}Ru, (p-cymene){iPrCH=CHCH=CHiPr}Ru, (p-cymene){nBuCH=CHCH=CHnBu}Ru, (p-cymene){iBuCH=CHCH=CHiBu}Ru, (p-cymene){secBuCH=CHCH=CHsecBu}Ru, (p-cymene){tBuCH=CHCH=CHtBu}Ru, (p-cymene){(n-pentyl)CH=CHCH=CH(n-pentyl)}Ru, (p-cymene){(iso-pentyl)CH=CHCH=CH(iso-pentyl)}Ru, (p-cymene){(sec-pentyl)CH=CHCH=CH(sec-pentyl)}Ru, (p-cymene){(neo-pentyl)CH=CHCH=CH(neo-pentyl)}Ru, (p-cymene){(tert-pentyl)CH=CHCH=CH(tert-pentyl)}Ru, (p-cymene){(3-pentyl)CH=CHCH=CH(3-pentyl)}Ru, (p-cymene){CH2=C(Me)=C(Me)=CH2}Ru, (p-cymene){CH2=C(Et)C(Et)=CH2}Ru, (p-cymene){CH2=C(nPr)C(nPr)=CH2}Ru, (p-cymene){CH2=C(iPr)C(iPr)=CH2}Ru, (p-cymene){CH2=C(nBu)C(nBu)=CH2}Ru, (p-cymene){CH2=C(iBu)C(iBu)=CH2}Ru, (p-cymene){CH2=C(secBu)C(secBu)=CH2}Ru, (p-cymene){CH2=C(tBu)C(tBu)=CH2}Ru, (p-cymene){CH2=C(n-pentyl)C(n-pentyl)=CH2}Ru, (p-cymene){CH2=C(iso-pentyl)C(iso-pentyl)=CH2}Ru, (p-cymene){CH2=C(sec-pentyl)C(sec-pentyl)=CH2}Ru, (p-cymene){CH2=C(neopentyl)C(neopentyl)=CH2}Ru, (p-cymene){CH2=C(tert-pentyl)C(tert-pentyl)=CH2}Ru, (p-cymene){CH2=C(3-pentyl)C(3-pentyl)=CH2}Ru, (p-cymene){MeCH=C(Me)CH=CH2}Ru, (p-cymene){MeCH=CHC(Me)=CH2}Ru, (p-cymene){MeCH=C(Et)CH=CH2}Ru, (p-cymene){MeCH=CHC(Et)=CH2}Ru, (p-cymene){MeCH=CHCH=CHEt}Ru, (p-cymene){MeCH=C(nPr)CH=CH2}Ru, (p-cymene){MeCH=CHC(nPr)=CH2}Ru, (p-cymene){MeCH=CHCH=CHnPr}Ru, (p-cymene){MeCH=C(iPr)CH=CH2}Ru, (p-cymene){MeCH=CHC(iPr)=CH2}Ru, (p-cymene){MeCH=CHCH=CHiPr}Ru, (p-cymene){MeCH=C(nBu)CH=CH2}Ru, (p-cymene){MeCH=CHC(nBu)=CH2}Ru, (p-cymene){MeCH=CHCH=CHnBu}Ru, (p-cymene){MeCH=C(iBu)CH=CH2}Ru, (p-cymene){MeCH=CHC(iBu)=CH2}Ru, (p-cymene){MeCH=CHCH=CHiBu}Ru, (p-cymene){MeCH=C(secBu)CH=CH2}Ru, (p-cymene){MeCH=CHC(secBu)=CH2}Ru, (p-cymene){MeCH=CHCH=CHsecBu}Ru, (p-cymene){MeCH=C(tBu)CH=CH2}Ru, (p-cymene){MeCH=CHC(tBu)=CH2}Ru, (p-cymene){MeCH=CHCH=CHtBu}Ru, (p-cymene){EtCH=C(Me)CH=CH2}Ru, (p-cymene){EtCH=CHC(Me)=CH2}Ru, (p-cymene){EtCH=C(Et)CH=CH2}Ru, (p-cymene){EtCH=CHC(Et)=CH2}Ru, (p-cymene){EtCH=C(nPr)CH=CH2}Ru, (p-cymene){EtCH=CHC(nPr)=CH2}Ru, (p-cymene){EtCH=CHCH=CHnPr}Ru, (p-cymene){EtCH=C(iPr)CH=CH2}Ru, (p-cymene){EtCH=CHC(iPr)=CH2}Ru, (p-cymene){EtCH=CHCH=CHiPr}Ru, (p-cymene){EtCH=C(nBu)CH=CH2}Ru, (p-cymene){EtCH=CHC(nBu)=CH2}Ru, (p-cymene){EtCH=CHCH=CHnBu}Ru, (p-cymene){EtCH=C(iBu)CH=CH2}Ru, (p-cymene){EtCH=CHC(iBu)=CH2}Ru, (p-cymene){EtCH=CHCH=CHiBu}Ru, (p-cymene){EtCH=C(secBu)CH=CH2}Ru, (p-cymene){EtCH=CHC(secBu)=CH2}Ru, (p-cymene){EtCH=CHCH=CHsecBu}Ru, (p-cymene){EtCH=C(tBu)CH=CH2}Ru, (p-cymene){EtCH=CHC(tBu)=CH2}Ru, (p-cymene){EtCH=CHCH=CHtBu}Ru, (p-cymene){iPrCH=C(Me)CH=CH2}Ru, (p-cymene){iPrCH=CHC(Me)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHMe}Ru, (p-cymene){iPrCH=C(Et)CH=CH2}Ru, (p-cymene){iPrCHCH=CHC(Et)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHEt}Ru, (p-cymene){iPrCH=C(nPr)CH=CH2}Ru, (p-cymene){iPrCH=CHC(nPr)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHnPr}Ru, (p-cymene){iPrCH=C(iPr)CH=CH2}Ru, (p-cymene){iPrCH=CHC(iPr)=CH2}Ru, (p-cymene){iPrCH=C(nBu)CH=CH2}Ru, (p-cymene){iPrCH=CHC(nBu)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHnBu}Ru, (p-cymene){iPrCH=C(iBu)CH=CH2}Ru, (p-cymene){iPrCH=CHC(iBu)=CH2}Ru, (p-cymene){iPrCHCH=CHCH=CHiBu}Ru, (p-cymene){iPrCH=C(secBu)CH=CH2}Ru, (p-cymene){iPrCH=CHC(secBu)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHsecBu}Ru, (p-cymene){iPrCH=C(tBu)CH=CH2}Ru, (p-cymene){iPrCH=CHC(tBu)=CH2}Ru, (p-cymene){iPrCH=CHCH=CHtBu}Ru, (p-cymene){tBuCH=C(Me)CH=CH2}Ru, (p-cymene){tBuCH=CHC(Me)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHMe}Ru, (p-cymene){tBuCH=C(Et)CH=CH2}Ru, (p-cymene){tBuCH=CHC(Et)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHEt}Ru, (p-cymene){tBuCH=C(nPr)CH=CH2}Ru, (p-cymene){tBuCH=CHC(nPr)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHnPr}Ru, (p-cymene){tBuCH=C(iPr)CH=CH2}Ru, (p-cymene){tBuCH=CHC(iPr)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHiPr}Ru, (p-cymene){tBuCH=C(nBu)CH=CH2}Ru, (p-cymene){tBuCH=CHC(nBu)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHnBu}Ru, (p-cymene){tBuCH=C(iBu)CH=CH2}Ru, (p-cymene){tBuCH=CHC(iBu)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHiBu}Ru, (p-cymene){tBuCH=C(secBu)CH=CH2}Ru, (p-cymene){tBuCH=CHC(secBu)=CH2}Ru, (p-cymene){tBuCH=CHCH=CHsecBu}Ru, (p-cymene){tBuCH=C(tBu)CH=CH2}Ru, (p-cymene){tBuCH=CHC(tBu)=CH2}Ru, (p-cymene){CH2=CHCH2CH=CH2}Ru, (p-cymene){MeCH=CHCH2CH=CH2}Ru, (p-cymene){EtCH=CHCH2CH=CH2}Ru, (p-cymene){nPrCH=CHCH2CH=CH2}Ru, (p-cymene){iPrCH=CHCH2CH=CH2}Ru, (p-cymene){nBuCH=CHCH2CH=CH2}Ru, (p-cymene){iBuCH=CHCH2CH=CH2}Ru, (p-cymene){secBuCH=CHCH2CH=CH2}Ru, (p-cymene){tBuCH=CHCH2CH=CH2}Ru, (p-cymene){(n-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){(iso-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){(sec-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){(neo-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){(tert-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){(3-pentyl)CH=CHCH2CH=CH2}Ru, (p-cymene){CH2=C(Me)CH2CH=CH2}Ru, (p-cymene){CH2=C(Et)CH2CH=CH2}Ru, (p-cymene){CH2=C(nPr)CH2CH=CH2}Ru, (p-cymene){CH2=C(iPr)CH2CH=CH2}Ru, (p-cymene){CH2=C(nBu)CH2CH=CH2}Ru, (p-cymene){CH2=C(iBu)CH2CH=CH2}Ru, (p-cymene){CH2=C(secBu)CH2CH=CH2}Ru, (p-cymene){CH2=C(tBu)CH2CH=CH2}Ru, (p-cymene){CH2=C(n-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=C(iso-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=C(sec-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=C(neo-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=C(tert-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=C(3-pentyl)CH2CH=CH2}Ru, (p-cymene){CH2=CH(CH2)2CH=CH2}Ru, (p-cymene){MeCH=CH(CH2)2CH=CH2}Ru, (p-cymene){EtCH=CH(CH2)2CH=CH2}Ru, (p-cymene){nPrCH=CH(CH2)2CH=CH2}Ru, (p-cymene){iPrCH=CH(CH2)2CH=CH2}Ru, (p-cymene){nBuCH=CH(CH2)2CH=CH2}Ru, (p-cymene){iBuCH=CH(CH2)2CH=CH2}Ru, (p-cymene){secBuCH=CH(CH2)2CH=CH2}Ru, (p-cymene){tBuCH=CH(CH2)2CH=CH2}Ru, (p-cymene){(n-pentyl)CH=CH(CH2)2CH=CH2}Ru, (p-cymene){(iso-pentyl)CH=CH(CH2)2CH=CH2}Ru, (p-cymene){(sec-pentyl)CH=CH(CH2)2CH=CH2}Ru, (p-cymene){(neo-pentyl)CH=CH(CH2)2CH=CH2}Ru, (p-cymene){(tert-pentyl)CH=CH(CH2)2CH=CH2}Ru, (p-cymene){CH2=CH(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(Me)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(Et)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(nPr)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(iPr)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(nBu)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(iBu)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(secBu)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(tBu)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(n-pentyl)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(iso-pentyl)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(sec-pentyl)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(neo-pentyl)(CH2)2CH=CH2}Ru, (p-cymene){CH2=C(tert-pentyl)(CH2)2CH=CH2}Ru, 및 (p-cymene){CH2=C(3-pentyl)(CH2)2CH=CH2}Ru 로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으며, 상기 루테늄 화합물은, 예를 들어, (p-cymene)(1,3-butadiene)Ru, (p-cymene)(isoprene)Ru, (p-cymene)(2,5-dimethyl-1,3-hexadiene)Ru 및 (p-cymene)(1,5-hexadiene)Ru로 이루어진 군으로부터 선택되는 것을 포함하는 것 일 수 있으나, 이에 제한되지 않을 수 있다.Ruthenium compound according to an embodiment of the present application, (p-cymene) {CH 2 = CHCH = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH 2 } Ru, (p-cymene) { n PrCH = CHCH = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CH 2 } Ru, (p-cymene) { n BuCH = CHCH = CH 2 } Ru, (p-cymene) { i BuCH = CHCH = CH 2 } Ru, (p-cymene) { sec BuCH = CHCH = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CH 2 } Ru, (p-cymene) {(n-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {(iso-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {( sec-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {(neo-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {(tert-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {(3-pentyl) CH = CHCH = CH 2 } Ru, (p-cymene) {CH 2 = C (Me) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (Et) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n Pr) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Pr) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n Bu) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Bu) CH = CH 2 } Ru, (p- cymene) {CH 2 = C ( sec Bu) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( t Bu) CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n-pentyl) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (iso-pentyl) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (sec-pentyl) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (neo-pentyl) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (tert-pentyl ) CH = CH 2 } Ru, (p-cymene) {CH 2 = C (3-pentyl) CH = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CHMe} Ru, (p-cymene) { EtCH = CHCH = CHEt} Ru, (p-cymene) { n PrCH = CHCH = CH n Pr} Ru, (p-cymene) { i PrCH = CHCH = CH i Pr} Ru, (p-cymene) { n BuCH = CHCH = CH n Bu} Ru, (p-cymene) { i BuCH = CHCH = CH i Bu} Ru, (p-cymene) { sec BuCH = CHCH = CH sec Bu} Ru, (p-cymene) { t BuCH = CHCH = CH t Bu} Ru, (p-cymene) {(n-pentyl) CH = CHCH = CH (n-pentyl)} Ru, (p-cymene) {(iso-pentyl) CH = CHCH = CH (iso-pentyl)} Ru, (p-cymene) {(sec-pentyl) CH = CHCH = CH (sec-pentyl)} Ru, (p-cymene) {(neo-pentyl) CH = CHCH = CH (neo -pentyl)} Ru, (p-cymene) {(tert-pentyl) CH = CHCH = CH (tert-pentyl)} Ru, (p-cymene) {(3-pentyl) CH = CHCH = CH (3-pentyl )} Ru, (p-cymene) {CH 2 = C (Me) = C (Me) = CH 2 } Ru, (p-cymene) {CH 2 = C (Et) C (Et) = CH 2 } Ru , (p-cymene) {CH 2 = C ( n Pr) C ( n Pr) = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Pr) C ( i Pr) = CH 2 } Ru , (p-cymene) {CH 2 = C ( n Bu) C ( n Bu) = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Bu) C ( i Bu) = CH 2 } Ru , (p-cymene) {CH 2 = C ( sec Bu) C ( sec Bu) = CH 2 } Ru, (p-cymene) {CH 2 = C ( t Bu) C ( t Bu) = CH 2 } Ru, (p-cymene) {CH 2 = C (n-pentyl) C (n-pentyl) = CH 2 } Ru, (p-cymene) {CH 2 = C (iso-pentyl) C (iso-pentyl) = CH 2 } Ru, (p-cymene) {CH 2 = C (sec-pentyl) C (sec-pentyl) = CH 2 } Ru, (p-cymene) {CH 2 = C (neopentyl) C (neopentyl) = CH 2 } Ru, (p-cymene) {CH 2 = C (tert-pentyl) C (tert-pentyl) = CH 2 } Ru, (p-cymene) {CH 2 = C (3-pentyl) C (3-pentyl) = CH 2 } Ru, ( p-cymene) {MeCH = C (Me) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC (Me) = CH 2 } Ru, (p-cymene) {MeCH = C (Et) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC (Et) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CHEt} Ru, (p-cymene) {MeCH = C ( n Pr) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( n Pr) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH n Pr} Ru, (p-cymene) {MeCH = C ( i Pr) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( i Pr) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH i Pr} Ru, (p- cymene) {MeCH = C ( n Bu) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( n Bu) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH n Bu} Ru, (p-cymene) {MeCH = C ( i Bu) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( i Bu) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH i Bu} Ru, (p-cymene) {MeCH = C ( sec Bu) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( sec Bu) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH sec Bu} Ru, (p -cymene) {MeCH = C ( t Bu) CH = CH 2 } Ru, (p-cymene) {MeCH = CHC ( t Bu) = CH 2 } Ru, (p-cymene) {MeCH = CHCH = CH t Bu } Ru, (p-cymene) {EtCH = C (Me) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC (Me) = CH 2 } Ru, (p-cymene) {EtCH = C ( Et) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC (Et) = CH 2 } Ru, (p-cymene) {EtCH = C ( n Pr) CH = CH 2 } Ru, (p- cymene) {EtCH = CHC ( n Pr) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH n Pr} Ru, (p-cymene) {EtCH = C ( i Pr) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC ( i Pr) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH i Pr} Ru, (p-cymene) {EtCH = C ( n Bu) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC ( n Bu) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH n Bu} Ru, (p-cymene) {EtCH = C ( i Bu) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC ( i Bu) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH i Bu} Ru, (p- cymene) {EtCH = C ( sec Bu) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC ( sec Bu) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH sec Bu} Ru, (p-cymene) {EtCH = C ( t Bu) CH = CH 2 } Ru, (p-cymene) {EtCH = CHC ( t Bu) = CH 2 } Ru, (p-cymene) {EtCH = CHCH = CH t Bu} Ru, (p-cymene) { i PrCH = C (Me) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC (Me) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CHMe} Ru, (p -cymene) { i PrCH = C (Et) CH = CH 2 } Ru, (p-cymene) { i PrCHCH = CHC (Et) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CHEt} Ru, (p-cymene) { i PrCH = C ( n Pr) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( n Pr) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CH n Pr} Ru, (p-cymene) { i PrCH = C ( i Pr) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( i Pr) = CH 2 } Ru , (p-cymene) { i PrCH = C ( n Bu) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( n Bu) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CH n Bu} Ru, (p-cymene) { i PrCH = C ( i Bu) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( i Bu) = CH 2 } Ru, (p-cymene) { i PrCHCH = CHCH = CH i Bu} Ru, (p-cymene) { i PrCH = C ( sec Bu) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( sec Bu) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CH sec Bu} Ru, (p-cymene) { i PrCH = C ( t Bu) CH = CH 2 } Ru, (p-cymene) { i PrCH = CHC ( t Bu) = CH 2 } Ru, (p-cymene) { i PrCH = CHCH = CH t Bu} Ru, (p-cymene) { t BuCH = C (Me) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC (Me) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CHMe} Ru, (p-cymene) { t BuCH = C (Et) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC (Et) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CHEt} Ru, (p-cymene) { t BuCH = C ( n Pr) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC ( n Pr) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CH n Pr} Ru, (p-cymene) { t BuCH = C ( i Pr) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC ( i Pr) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CH i Pr} Ru, (p-cymene) { t BuCH = C ( n Bu) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC ( n Bu) = CH 2 } Ru , (p-cymene) { t BuCH = CHCH = CH n Bu} Ru, (p-cymene) { t BuCH = C ( i Bu) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC ( i Bu) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CH i Bu} Ru, (p-cymene) { t BuCH = C ( sec Bu) CH = CH 2 } Ru, (p- cymene) { t BuCH = CHC ( sec Bu) = CH 2 } Ru, (p-cymene) { t BuCH = CHCH = CH sec Bu} Ru, (p-cymene) { t BuCH = C ( t Bu) CH = CH 2 } Ru, (p-cymene) { t BuCH = CHC ( t Bu) = CH 2 } Ru, (p-cymene) {CH 2 = CHCH 2 CH = CH 2 } Ru, (p-cymene) {MeCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {EtCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) { n PrCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) { i PrCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) { n BuCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) { i BuCH = CH CH 2 CH = CH 2 } Ru, (p-cymene) { sec BuCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) { t BuCH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(n-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(iso-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(sec-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(neo-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(tert-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {(3-pentyl) CH = CHCH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (Me) CH 2 CH = CH 2 } Ru, ( p-cymene) {CH 2 = C (Et) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n Pr) CH 2 CH = CH 2 } Ru, (p-cymene) { CH 2 = C ( i Pr) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n Bu) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Bu) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( sec Bu) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( t Bu) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (n-pentyl) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (iso-pentyl) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (sec-pentyl) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (neo-pentyl) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (tert-pentyl) CH 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (3-pentyl) CH 2 CH = CH 2 } Ru, (pc ymene) {CH 2 = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {MeCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {EtCH = CH ( CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) { n PrCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) { i PrCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) { n BuCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) { i BuCH = CH (CH 2 ) 2 CH = CH 2 } Ru, ( p-cymene) { sec BuCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) { t BuCH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {( n-pentyl) CH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {(iso-pentyl) CH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {(sec-pentyl) CH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {(neo-pentyl) CH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p- cymene) {(tert-pentyl) CH = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = CH (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (Me) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (Et) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( n Pr) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Pr) (CH 2 ) 2 CH = CH 2 } Ru, (p- cymene) {CH 2 = C ( n Bu) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( i Bu) (CH 2 ) 2 CH = CH 2 } Ru, ( p-cymene) {CH 2 = C ( sec Bu) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C ( t Bu) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (n-pentyl) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (iso-pentyl) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (sec- pentyl) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (neo-pentyl) (CH 2 ) 2 CH = CH 2 } Ru, (p-cymene) {CH 2 = C (tert-pentyl) (CH 2 ) 2 CH = CH 2 } Ru, and (p-cymene) {CH 2 = C (3-pentyl) (CH 2 ) 2 CH = CH 2 } Ru The ruthenium compound may be, for example, (p-cymene) (1,3-butadiene) Ru, (p-cymene) (isoprene) Ru, (p-cymene) (2,5- dimethyl-1,3-hexadiene) Ru and (p-cymene) (1,5-hexadiene) Ru, but may include those selected from the group consisting of, but may not be limited thereto.
본원의 제 2 측면은, 하기 반응식 1에 나타낸 바와 같이, 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이엔 중성 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 루테늄 화합물의 제조 방법을 제공한다:As shown in Scheme 1 below, the second aspect of the present application is a [RuX 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2 in an organic solvent containing a primary alcohol or a secondary alcohol having 5 or less carbon atoms, It provides a method for producing a ruthenium compound, comprising reacting a mixture containing a carbonate salt of an alkali metal represented by M 2 CO 3 and a diene neutral ligand represented by the following formula (3) to obtain a ruthenium compound of the formula do:
[화학식 1][Formula 1]
Figure PCTKR2015005232-appb-I000007
;
Figure PCTKR2015005232-appb-I000007
;
[화학식 2][Formula 2]
Figure PCTKR2015005232-appb-I000008
;
Figure PCTKR2015005232-appb-I000008
;
[화학식 3][Formula 3]
Figure PCTKR2015005232-appb-I000009
;
Figure PCTKR2015005232-appb-I000009
;
[반응식 1] Scheme 1
Figure PCTKR2015005232-appb-I000010
;
Figure PCTKR2015005232-appb-I000010
;
상기 식들에서,In the above formulas,
M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
R1 내지 R4은 각각 독립적으로 H, 또는 선형 또는 분지형의 C1-5 알킬기를 포함하고,R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
n은 0 내지 3의 정수임.n is an integer from 0 to 3.
본원의 일 구현예에 있어서, 상기 화학식 1의 루테늄 화합물 수득을 위한 반응은 환류 반응일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 용매는 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the organic solvent may include a primary alcohol or a secondary alcohol having 5 or less carbon atoms, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올은 용매로서 역할을 하는 동시에 환원제로서도 작용할 수 있다. 따라서, 본원에 따른 루테늄 화합물은 별도의 환원제가 요구되지 않는 경제적이고 간소한 공정으로 제조될 수 있다.  In one embodiment of the present application, the primary alcohol or secondary alcohol having 5 or less carbon atoms may serve as a solvent and also act as a reducing agent. Therefore, ruthenium compounds according to the present application can be produced in an economical and simple process that does not require a separate reducing agent.
본원의 일 구현예에 있어서, 상기 1 차 알코올 또는 2 차 알코올은 메탄올, 에탄올, n-프로필 알코올, iso-프로필 알코올, n-부탄올, iso-부탄올, n-펜탄올, iso-펜탄올, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the primary alcohol or secondary alcohol is methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso-pentanol, and It may include one selected from the group consisting of a combination thereof, but may not be limited thereto.
본원의 일 구현예에 있어서, 하기 반응식 2에 나타낸 바와 같이, 상기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물은, 유기 용매 중에서 루테늄 트리클로라이드 수화물 (RuX3·nH2O) 및 하기 화학식 4로서 표시되는 α-테르피넨 (α-terpinene) 또는 하기 화학식 5로서 표시되는 γ-테르피넨을 함유하는 혼합물을 반응시키는 것을 포함하는 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 이때, 상기 α-테르피넨 또는 γ-테르피넨 대신에, β-테르피넨, δ-테르피넨, α-펠란드렌 (α-phellandrene), β-펠란드렌, 또는 이들의 이성질체를 사용할 수 있다. 본원의 일 구현예에 있어서, 상기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물 형성을 위한 반응은 환류 반응일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, as shown in Scheme 2, [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 is ruthenium trichloride hydrate (RuX 3 · nH 2 O) in an organic solvent. And a mixture containing α-terpinene represented by the following Chemical Formula 4 or a mixture containing γ-terpinene represented by the following Chemical Formula 5, but is not limited thereto. Can be. In this case, instead of the α-terpinene or γ-terpinene, β-terpinene, δ-terpinene, α-phellandrene, α-phellandrene, or an isomer thereof may be used. . In one embodiment of the present application, the reaction for forming the [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 may be a reflux reaction, but may not be limited thereto.
[화학식 4][Formula 4]
Figure PCTKR2015005232-appb-I000011
;
Figure PCTKR2015005232-appb-I000011
;
[화학식 5][Formula 5]
Figure PCTKR2015005232-appb-I000012
;
Figure PCTKR2015005232-appb-I000012
;
[반응식 2] Scheme 2
Figure PCTKR2015005232-appb-I000013
;
Figure PCTKR2015005232-appb-I000013
;
상기 식들에서, In the above formulas,
X는 Cl, Br, 또는 I를 포함하고, X comprises Cl, Br, or I,
n은 0 또는 10 이하의 정수임.n is an integer of 0 or 10 or less.
상기 [RuX2(p-cymene)]2 화합물의 제조를 위해, 상기 루테늄 트리할라이드 수화물 (RuX3·nH2O) 및 상기 화학식 4의 α-테르피넨 또는 상기 화학식 5의 γ-테르피넨을, 알코올을 포함하는 유기 용매에 첨가한 후 용해시켜 반응시킨다. 여기에 상기 화학식 4의 α-테르피넨 또는 상기 화학식 5의 γ-테르피넨을 첨가한 후 반응시켜 상기 [RuX2(p-cymene)]2 화합물을 형성할 수 있다. 그 다음, 상기 반응식 1 또는 2와 같이, 상기 형성된 [RuX2(p-cymene)]2 화합물; 알칼리 금속의 카보네이트염 (M2CO3) 또는 알칼리 금속; 및 상기 다이아자다이엔 리간드를 함유하는 혼합물을 환류 반응시켜 상기 화학식 1로서 표시되는 루테늄 화합물을 제조한다. For the preparation of the RuX 2 (p-cymene) 2 compound, the ruthenium trihalide hydrate (RuX 3 · nH 2 O) and α-terpinene of the formula (4) or γ-terpinene of the formula (5), It is added to an organic solvent containing alcohol and then dissolved to react. The [RuX 2 (p-cymene)] 2 compound may be formed by adding the α-terpinene of Formula 4 or the γ-terpinene of Formula 5 and reacting the same. Then, as in Scheme 1 or 2, the formed [RuX 2 (p-cymene)] 2 compound; Carbonate salts of alkali metals (M 2 CO 3 ) or alkali metals; And reflux reaction of the mixture containing the diazadiene ligand to prepare a ruthenium compound represented by Chemical Formula 1.
본원의 제 3 측면은, 상기 본원의 제 1 측면에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 제공한다. 상기 루테늄-함유 막은 나노미터 두께의 박막일 수 있으나, 이에 제한되지 않는다.A third aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application. The ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
본원의 제 4 측면은, 상기 본원의 제 3 측면에 따른 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 이용하여 루테늄-함유 막 또는 박막을 형성하는 것을 포함하는, 루테늄-함유 막 또는 박막의 증착 방법을 제공한다. 상기 루테늄-함유 막은 나노미터 두께의 박막일 수 있으나, 이에 제한되지 않는다. A fourth aspect of the present application, comprising forming a ruthenium-containing film or thin film using the ruthenium-containing film or precursor composition for thin film deposition according to the third aspect of the present application, a method of depositing a ruthenium-containing film or thin film To provide. The ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막 또는 박막의 증착 방법은 상기 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 증착 챔버 내에 위치한 기재에 증착시켜 루테늄-함유 막 또는 박막을 형성하는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 막의 증착 방법은 당업계에 공지된 방법, 장치 등을 이용하고 필요한 경우 추가 반응 기체를 함께 이용하여 수행될 수 있다.In one embodiment of the present invention, the method of depositing a ruthenium-containing film or thin film includes depositing the ruthenium-containing film or precursor composition for thin film deposition on a substrate located in a deposition chamber to form a ruthenium-containing film or thin film It may be, but may not be limited thereto. The deposition method of the film can be carried out using methods, apparatus, etc. known in the art and, if necessary, with additional reaction gases.
본원의 일 구현예에 있어서, 상기 막을 증착하는 것은 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)은 당업계에 공지된 증착 장치, 증착 조건, 추가 반응 기체 등을 이용하여 수행될 수 있다.In one embodiment of the present disclosure, depositing the film may include, but is not limited to, performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD). The organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) may be performed using deposition apparatuses, deposition conditions, additional reaction gases, and the like, known in the art.
본원의 일 구현예에 따른 루테늄 화합물은 루테늄 중심 금속과 리간드 사이에 결합이 약한 배위 결합에 의하여 연결되어 있는 착물 (complex)이므로, 비교적 낮은 온도에서도 리간드의 분해가 잘 일어나 증착 온도를 낮출 수 있다. 아울러, 상기 루테늄 중심 금속으로부터 분리된 p-사이민(p-cymene) 및 다이엔 중성 리간드는 진공 배기를 통하여 반응 챔버에서 쉽게 제거되므로 탄소, 질소, 산소 등 불순물이 증착된 막에 잔류하지 않을 수 있다.The ruthenium compound according to the exemplary embodiment of the present invention is a complex in which a weak coordination bond is connected between the ruthenium center metal and the ligand, and thus, decomposition of the ligand may occur well at a relatively low temperature, thereby lowering the deposition temperature. In addition, since p-cymene and diene neutral ligand separated from the ruthenium center metal are easily removed from the reaction chamber through vacuum exhaust, impurities such as carbon, nitrogen, and oxygen may not remain in the deposited film. have.
본원의 일 구현예에 있어서, 상기 막을 증착하는 것은 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, depositing the film may include, but is not limited to, performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
상기 본원의 제 3 측면 및 제 4 측면에 대하여, 본원의 제 1 측면 및 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제 2 측면에 대해 설명한 내용은 본원의 제 3 측면 및 제 4 측면 각각에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.With respect to the third and fourth aspects of the present application, detailed descriptions of portions overlapping with the first and second aspects of the present application are omitted, but the descriptions of the first and second aspects of the present application are described herein. The same may apply to each of the third and fourth aspects of, although the description is omitted.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only provided to help understanding of the present application, and the contents of the present application are not limited to the following Examples.
<제조예 1> [RuCl2(p-cymene)]2의 제조Preparation Example 1 Preparation of [RuCl 2 (p-cymene)] 2
불꽃 건조된 500 mL 슈렝크 (Schlenk) 플라스크에서 루테늄 트리클로라이드 수화물 (Ruthenium trichloride hydrated, RuClnH2O) 27 g (0.13 mol, 1 당량)을 에탄올 (ethanol, C2H5OH) 200 mL에 용해시킨 후, 이 용액에 α-테르피넨 (α-terpinene) 35.4 g (0.26 mol, 2 당량)을 상온에서 천천히 첨가하고, 이 혼합액을 15 시간 동안 환류 (reflux)시킨 후 반응을 완결시켰다.In a flame-dried 500 mL Schlenk flask, 27 g (0.13 mol, 1 equiv) of ruthenium trichloride hydrated (RuCl 3 · nH 2 O) was added to 200 mL of ethanol (C 2 H 5 OH). After dissolving in, 35.4 g (0.26 mol, 2 equivalents) of α-terpinene was slowly added to the solution at room temperature, and the mixture was refluxed for 15 hours, and then the reaction was completed.
상기 반응 종료 후 여과하여 얻은 짙은 갈색의 고체를 n-헥산 (n-hexane, C6H14) 50 mL를 이용하여 세 차례 세척한 후 진공 건조하여 적갈색의 고체 화합물 RuCl2(p-cymene)]2을 수득하였다.After the reaction was completed, the dark brown solid obtained by filtration was washed three times with 50 mL of n-hexane (n-hexane, C 6 H 14 ), followed by vacuum drying to give a reddish brown solid compound RuCl 2 (p-cymene)] 2 was obtained.
<실시예 1> (p-cymene)(1,3-butadiene)Ru의 제조Example 1 Preparation of (p-cymene) (1,3-butadiene) Ru
불꽃 건조된 500 mL 슈렝크 플라스크에서, 상기 제조예 1에서 제조된 [RuCl2(p-cymene)]2 20 g (0.032 mol, 1 당량)과 Na2CO3 20.78 g (0.196 mol, 6 당량)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액을 2 시간 동안 교반시켰다. 1,3-부타디엔 (1,3-Butadiene) 44.2 g (0.816 mol, 25 당량)을 상기 2 시간 동안 교반된 현탁액에 천천히 버블링시켜 혼합하고, 이 혼합액을 2 일 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 500 mL Schlenk flask, 20 g (0.032 mol, 1 equivalent) of [RuCl 2 (p-cymene)] 2 prepared in Preparation Example 1 and 20.78 g (0.196 mol, 6 equivalents) of Na 2 CO 3 were prepared . Was mixed with 400 mL of 2-propanol to prepare a suspension, which was stirred for 2 hours. 44.2 g (0.816 mol, 25 equiv) of 1,3-butadiene was slowly bubbled into the stirred suspension for 2 hours and mixed, and the mixture was refluxed for 2 days to complete the reaction. .
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트(Celite) 패드와 유리 프릿(frit)을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 감압 하에서 증류하여 하기 화학식 6으로서 표시되는 노란색 액체 화합물 4.2 g (수율 22.2%)을 수득하였다:After the reaction was completed, the solvent and the volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. After filtering the n-hexane extract through a Celite pad and a glass frit, the obtained filtrate was removed from the solvent under reduced pressure, and distilled under reduced pressure to yield 4.2 g of a yellow liquid compound represented by the following Chemical Formula 6 (yield) 22.2%) was obtained:
[화학식 6][Formula 6]
Figure PCTKR2015005232-appb-I000014
;
Figure PCTKR2015005232-appb-I000014
;
끓는점 (bp) 95℃(0.3 torr);Boiling point (bp) 95 ° C. (0.3 torr);
원소분석 (elemental analysis) 계산치 (C14H20Ru): C 58.11, H 6.97; 실측치 C 56.95, H 6.80;Elemental analysis calculated (C 14 H 20 Ru): C 58.11, H 6.97; Found C 56.95, H 6.80;
1H-NMR (400 MHz, C6D6, 25℃) δ 5.035, 4.977 (m, 4H, C6 H 4); 4.733 (m, 2H, CH2=CHCH=CH2); 2.206 (septet, 1H, CH(CH3)2); 1.852 (s, 3H, CH 3); 1.031 (d, 6H, CH(CH 3)2); 0.333 (d, 4H, CH 2=CHCH=CH 2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 5.035, 4.977 (m, 4H, C 6 H 4 ); 4.733 (m, 2H, CH 2 = C H C H = CH 2 ); 2.206 (septet, 1 H, C H (CH 3 ) 2 ); 1.852 (s, 3H, C H 3 ); 1.031 (d, 6H, CH (C H 3 ) 2 ); 0.333 (d, 4H, C H 2 = CHCH = C H 2 ).
<실시예 2> (p-cymene)(isoprene)Ru의 제조Example 2 Preparation of (p-cymene) (isoprene) Ru
불꽃 건조된 1,000 mL 슈렝크 플라스크에서, 상기 제조예 1에서 제조된 [RuCl2(p-cymene)]2 30 g (0.049 mol, 1 당량)과 Na2CO3 31.2 g (0.294 mol, 6 당량)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액을 2 시간 동안 교반시켰다. 이소프렌 (isoprene) 16.7 g (0.245 mol, 5 당량)을 상온에서 상기 2 시간 동안 교반된 현탁액에 천천히 첨가하여 혼합하고, 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 1,000 mL Schlenk flask, 30 g (0.049 mol, 1 equivalent) of [RuCl 2 (p-cymene)] 2 prepared in Preparation Example 1 and 31.2 g (0.294 mol, 6 equivalents) of Na 2 CO 3 were prepared. Was mixed with 400 mL of 2-propanol to prepare a suspension, which was stirred for 2 hours. 16.7 g (0.245 mol, 5 equivalents) of isoprene was slowly added to the stirred suspension at room temperature for 2 hours to mix, and the mixture was refluxed for 15 hours to complete the reaction.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 감압 하에서 증류하여 하기 화학식 7로서 표시되는 노란색 고체 화합물 16.2 g (수율 54.5%)을 수득하였다:After the reaction was completed, the solvent and the volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate obtained was freed of solvent under reduced pressure, and distilled under reduced pressure to obtain 16.2 g (yield 54.5%) of a yellow solid compound represented by the following Chemical Formula 7. :
[화학식 7][Formula 7]
Figure PCTKR2015005232-appb-I000015
;
Figure PCTKR2015005232-appb-I000015
;
끓는점 (bp) 97℃ (0.3 torr);Boiling point (bp) 97 ° C. (0.3 torr);
녹는점 (mp) 48℃;Melting point (mp) 48 ° C .;
원소분석 (elemental analysis) 계산치 (C15H22Ru): C 59.38, H 7.31; 실측치 C 59.60, H 7.56;Elemental analysis calculated (C 15 H 22 Ru): C 59.38, H 7.31; Found C 59.60, H 7.56;
1H-NMR (400 MHz, C6D6, 25℃) δ 5.125, 4.915, 4.706 (m, 4H, C6 H 4); 4.680 (m, 1H, CH2=CHC(CH3)=CH2); 2.307 (septet, 1H, CH(CH3)2); 1.967 (s, 3H, CH2=CHC(CH 3)=CH2); 1.886, 0.381 (m, 2H, CH 2=CHC(CH3)=CH2); 1.818, 0.195 (m, 2H, CH2=CHC(CH3)=CH 2); 1.779 (s, 3H, CH 3); 1.111 (t, 6H, CH(CH 3)2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 5.125, 4.915, 4.706 (m, 4H, C 6 H 4 ); 4.680 (m, 1H, CH 2 = C H C (CH 3 ) = CH 2 ); 2.307 (septet, 1 H, C H (CH 3 ) 2 ); 1.967 (s, 3H, CH 2 = CHC (C H 3 ) = CH 2 ); 1.886, 0.381 (m, 2H, C H 2 = CHC (CH 3 ) = CH 2 ); 1.818, 0.195 (m, 2H, CH 2 = CHC (CH 3 ) = C H 2 ); 1.779 (s, 3 H, C H 3 ); 1.111 (t, 6H, CH (C H 3 ) 2 ).
<실시예 3> (p-cymene)(2,5-dimethyl-1,3-hexadiene)Ru의 제조Example 3 Preparation of (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru
불꽃 건조된 500 mL 슈렝크 플라스크에서, 상기 제조예 1에서 제조된 [RuCl2(p-cymene)]2 25 g (0.040 mol, 1 당량)과 Na2CO3 25.9 g (0.245 mol, 6 당량)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액을 2 시간 동안 교반시켰다. 2,5-디메틸-2,4-헥사디엔 (2,5-Dimethyl-2,4-hexadiene) 18 g (0.163 mol, 4 당량)을 상기 2 시간 동안 교반된 현탁액에 천천히 첨가하여 혼합하고, 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 500 mL Schlenk flask, 25 g (0.040 mol, 1 equivalent) of [RuCl 2 (p-cymene)] 2 prepared in Preparation Example 1 and 25.9 g (0.245 mol, 6 equivalents) of Na 2 CO 3 were prepared. Was mixed with 400 mL of 2-propanol to prepare a suspension, which was stirred for 2 hours. 18 g (0.163 mol, 4 equivalents) of 2,5-dimethyl-2,4-hexadiene (2,5-Dimethyl-2,4-hexadiene) is slowly added to the stirred suspension for 2 hours, followed by mixing The mixture was refluxed for 15 hours and then the reaction was completed.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 감압 하에서 증류하여 하기 화학식 8로서 표시되는 노란색 액체 화합물 16.5 g (수율 57%)을 수득하였다:After the reaction was completed, the solvent and the volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate obtained was freed of solvent under reduced pressure, and distilled under reduced pressure to obtain 16.5 g (yield 57%) of a yellow liquid compound represented by the following Chemical Formula 8. :
[화학식 8][Formula 8]
Figure PCTKR2015005232-appb-I000016
;
Figure PCTKR2015005232-appb-I000016
;
끓는점 (bp) 110℃ (0.3 torr);Boiling point (bp) 110 ° C. (0.3 torr);
원소분석 (elemental analysis) 계산치 (C18H28Ru): C 62.58, H 8.17; 실측치 C 55.73, H 7.84;Elemental analysis calculated (C 18 H 28 Ru): C 62.58, H 8.17; Found C 55.73, H 7.84;
1H-NMR (400 MHz, C6D6, 25℃) δ 5.030, 4.863, 4.591, 4.428 (m, 4H, C6 H 4); 4.411 (m, 1H, CH2=C(CH3)CH=CHCH(CH3)2); 2.413 (septet, 1H, CH(CH3)2); 1.994 (m, 6H, CH(CH 3)2); 1.787, 0.287 (m, 2H, CH 2=C(CH3)CH=CHCH(CH3)2); 1.448 (m, 1H, CH2=C(CH3)CH=CHCH(CH3)2); 1.229 (d, 6H, CH2=C(CH3)CH=CHCH(CH 3)2), 1.182 (s, 3H, CH3); 1.162 (s, 3H, CH2=C(CH 3)CH=CHCH(CH3)2); 0.530 (t, 1H, CH2=C(CH3)CH=CHCH(CH3)2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 5.030, 4.863, 4.591, 4.428 (m, 4H, C 6 H 4 ); 4.411 (m, 1H, CH 2 = C (CH 3 ) C H = CHCH (CH 3 ) 2 ); 2.413 (septet, 1 H, C H (CH 3 ) 2 ); 1.994 (m, 6H, CH (C H 3 ) 2 ); 1.787, 0.287 (m, 2H, C H 2 = C (CH 3 ) CH = CHCH (CH 3 ) 2 ); 1.448 (m, 1H, CH 2 = C (CH 3 ) CH = CHC H (CH 3 ) 2 ); 1.229 (d, 6H, CH 2 = C (CH 3) CH = CHCH (C H 3) 2), 1.182 (s, 3H, CH 3); 1.162 (s, 3H, CH 2 ═C (C H 3 ) CH═CHCH (CH 3 ) 2 ); 0.530 (t, 1H, CH 2 = C (CH 3 ) CH = C H CH (CH 3 ) 2 ).
<실시예 4> (p-cymene)(1,5-hexadiene)Ru의 제조Example 4 Preparation of (p-cymene) (1,5-hexadiene) Ru
불꽃 건조된 1,000 mL 슈렝크 플라스크에서, 상기 제조예 1에서 제조된 [RuCl2(p-cymene)]2 30 g (0.049 mol, 1 당량)과 Na2CO3 31.1 g (0.294 mol, 6 당량)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액을 2 시간 동안 교반시켰다. 1,5-헥사디엔 (1,5-Hexadiene) 16.10 g (0.196 mol, 4 당량)을 상온에서 상기 2 시간 동안 교반된 현탁액에 천천히 첨가하여 혼합하고, 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 1,000 mL Schlenk flask, 30 g (0.049 mol, 1 equivalent) of [RuCl 2 (p-cymene)] 2 prepared in Preparation Example 1 and 31.1 g (0.294 mol, 6 equivalents) of Na 2 CO 3 were prepared . Was mixed with 400 mL of 2-propanol to prepare a suspension, which was stirred for 2 hours. 16.10 g (0.196 mol, 4 equivalents) of 1,5-hexadiene (1,5-Hexadiene) is slowly added to the stirred suspension at room temperature for 2 hours, mixed, the mixture is refluxed for 15 hours, and then the reaction is carried out. Completed
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 9로서 표시되는 노란색 액체 화합물 17.5 g (수율 56%)을 수득하였다:After the reaction was completed, the solvent and the volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate was removed under reduced pressure and distilled under reduced pressure to give 17.5 g (yield 56%) of a yellow liquid compound represented by the following Formula 9.
[화학식 9][Formula 9]
Figure PCTKR2015005232-appb-I000017
;
Figure PCTKR2015005232-appb-I000017
;
끓는점 (bp) 105℃ (0.3 torr);Boiling point (bp) 105 ° C. (0.3 torr);
원소분석 (elemental analysis) 계산치 (C16H24Ru): C 60.54, H 7.62; 실측치 C 59.64, H 7.41;Elemental analysis calculated (C 16 H 24 Ru): C 60.54, H 7.62; Found C 59.64, H 7.41;
1H-NMR (400 MHz, C6D6, 25℃) δ 4.990, 4.831, 4.689 (m, 4H, C6 H 4); 4.667 (m, 2H, CH2=CHCH2CH2CH=CH2); 4.361, 0.802 (m, 4H, CH 2=CHCH2CH2CH=CH 2); 2.334 (septet, 1H, CH(CH3)2); 2.005 (s, 3H, CH 3); 1.395 (d, 6H, CH(CH 3)2); 1.150 (m, 4H, CH2=CHCH 2CH 2CH=CH2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 4.990, 4.831, 4.689 (m, 4H, C 6 H 4 ); 4.667 (m, 2H, CH 2 = C H CH 2 CH 2 C H = CH 2 ); 4.361, 0.802 (m, 4H, C H 2 = CHCH 2 CH 2 CH = C H 2 ); 2.334 (septet, 1 H, C H (CH 3 ) 2 ); 2.005 (s, 3 H, C H 3 ); 1.395 (d, 6H, CH (C H 3 ) 2 ); 1.150 (m, 4H, CH 2 = CHC H 2 C H 2 CH = CH 2 ).
<실험예 1> 열 무게 분석 및 시차 주사 열량계 실험Experimental Example 1 Thermogravimetric Analysis and Differential Scanning Calorimeter Experiment
상기 실시예 1 내지 실시예 4에서 제조된 루테늄 화합물들의 기초 열적 특성을 분석하기 위하여 열 무게 분석 (TGA) 및 시차 주사 열량계 분석 (DSC)을 실시하였다. 이때 샘플의 무게를 약 5 mg 취하여 알루미나 시료용기에 넣은 후 10 ℃/min의 승온 속도로 500℃까지 측정하였고, 측정된 결과를 도 1 내지 도 8에 나타내었다.In order to analyze the basic thermal characteristics of the ruthenium compounds prepared in Examples 1 to 4, thermal gravimetric analysis (TGA) and differential scanning calorimetry analysis (DSC) were performed. At this time, the weight of the sample was taken to about 5 mg and placed in an alumina sample container, and measured up to 500 ° C. at a temperature rising rate of 10 ° C./min. The measured results are shown in FIGS. 1 to 8.
도 1 내지 도 8에서 확인할 수 있듯이, 본원의 화학식 6 내지 화학식 9의 루테늄 화합물들은 TGA 그래프에서 모두 150℃ 내지 250℃의 온도에서 급격한 질량감소가 일어났으며, 온도에 따른 무게 감소에서 원래 시료의 1/2 무게에 도달할 때에 해당하는 온도, T1/2은 217℃ 내지 228℃였다. 또한 DSC 그래프에서 본원의 화학식 6 내지 화학식 9의 루테늄 화합물은 각각 320℃, 336℃, 357℃, 및 281℃에서 화합물의 분해에 따른 흡열 봉우리를 나타내었다.As can be seen in Figures 1 to 8, the ruthenium compounds of the formulas 6 to 9 of the present application in the TGA graph, all of the sudden mass loss occurred at a temperature of 150 ℃ to 250 ℃, the weight loss with temperature of the original sample When it reached 1/2 weight, the temperature corresponding to T 1/2 was 217 ° C to 228 ° C. In addition, the ruthenium compounds of Chemical Formulas 6 to 9 herein exhibited endothermic peaks due to decomposition of the compounds at 320 ° C, 336 ° C, 357 ° C, and 281 ° C, respectively.
<실시예 5> 실시예 2에서 제조된 (p-cymene)(isoprene)Ru 화합물 기체와 산소 기체를 사용하여 원자층 증착법에 의한 루테늄-함유 막의 형성Example 5 Formation of Ruthenium-containing Film by Atomic Layer Deposition Method Using (p-cymene) (isoprene) Ru Compound Gas and Oxygen Gas Prepared in Example 2
상기 실시예 2에서 제조된 화학식 7로서 표시되는 (p-cymene)(isoprene)Ru 화합물을 전구체로서 사용하여 원자층 증착 공정에 의한 성막 평가를 수행하였다. 증착에 사용된 기재로는 실리콘 기재 위에 산화실리콘 (SiO2) 막이 100 nm 두께로 입혀진 웨이퍼를 사용하였다. 이때, 기재의 온도는 180℃ 내지 275℃로 조절하였고 상기 전구체는 스테인리스강 재질의 용기에 담아 85℃의 온도에서 상기 용기를 가열하여 기화시켰다. 엔시디 회사의 루시다 D-100 원자층 증착 장비에서 운반 기체와 함께 이송된 실시예 2에서 제조된 루테늄 전구체 기체와, 질소(N2) 기체에 20 부피% 농도로 희석된 산소 (O2) 기체를 교대로 원자층 증착 챔버 안에 놓인 기재에 접촉시켰다. 실시예 2에서 제조된 Ru 전구체 공급 5 초 -> N2 기체 공급 10 초 -> O2 기체 공급 3 초 -> N2 기체 공급 10 초의 원자층 증착 주기를 100 회 내지 400 회 반복하여 기재 온도 275℃에서 루테늄-함유 막을 형성하였다. 상기 형성된 루테늄-함유 막의 단면을 주사 전자 현미경을 이용하여 측정한 뒤, 그 두께를 도 9에 나타내었다. X-선 회절분석기 (X-ray Diffractometer; XRD)를 이용하여 측정된, 여러 기재 온도에서 형성된 루테늄-함유 막들의 XRD 패턴을 도 10에 나타내었다. 원자층 증착 주기를 200 회 반복하여 두께 25 nm로 형성된 루테늄-함유 막의 전기 비저항을 측정한 결과 42 μΩ·cm로 나타났으며, 이로부터 형성된 상기 류테늄-함유 막의 전기 전도도가 매우 우수한 것임을 알 수 있었다. Film formation evaluation by an atomic layer deposition process was performed using the (p-cymene) (isoprene) Ru compound represented by Formula 7 prepared as Example 2 as a precursor. As the substrate used for the deposition, a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used. At this time, the temperature of the substrate was adjusted to 180 ℃ to 275 ℃ and the precursor was placed in a stainless steel container and vaporized by heating the vessel at a temperature of 85 ℃. The ruthenium precursor gas prepared in Example 2 transferred together with the carrier gas in the Lucida D-100 atomic layer deposition equipment of Enshidi company, and oxygen (O 2 ) gas diluted to 20% by volume in nitrogen (N 2 ) gas. Were alternately contacted with the substrate placed in the atomic layer deposition chamber. Ru precursor supply prepared in Example 2 5 seconds-> N 2 gas supply 10 seconds-> O 2 gas supply 3 seconds-> N 2 gas supply Atomic layer deposition cycle of 10 seconds to 100 to 400 times to repeat the substrate temperature 275 A ruthenium-containing film was formed at &lt; RTI ID = 0.0 &gt; The cross section of the formed ruthenium-containing film was measured using a scanning electron microscope, and the thickness thereof is shown in FIG. 9. XRD patterns of ruthenium-containing films formed at various substrate temperatures, measured using an X-ray Diffractometer (XRD), are shown in FIG. 10. As a result of measuring the electrical resistivity of the ruthenium-containing film formed to a thickness of 25 nm by repeating the atomic layer deposition cycle 200 times, it was found to be 42 μΩ · cm, indicating that the ruthenium-containing film formed therefrom has excellent electrical conductivity. there was.
도 9를 통해 원자증 증착 기체 공급 주기 횟수와 형성된 루테늄-함유 막의 두께를 비교해본 결과, SiO2 기재 위에서 상기 실시예 2에서 제조된 루테늄 화합물을 사용한 원자층 증착법은 기체 공급 주기 당 막 성장이 크고 (~0.12 nm/cycle), 핵 형성이 어려워서 초기 막 성장에 불리한 산화실리콘 표면에서도 인큐베이션 사이클이 매우 짧다(~7 cycle)는 것을 알 수 있었다. 아울러, 도 10에서 확인할 수 있듯이, 225℃ 이상의 기재 온도에서는 결정성의 Ru 금속막이 형성된 것을 알 수 있었다. 결정성이 좋은 금속 막은 전기 전도도가 더욱 우수하다고 일반적으로 알려져 있다. As a result of comparing the number of atomic vapor deposition gas supply cycles and the thickness of the formed ruthenium-containing film through FIG. 9, the atomic layer deposition method using the ruthenium compound prepared in Example 2 on a SiO 2 substrate has a large film growth per gas supply cycle. (~ 0.12 nm / cycle), it was found that the incubation cycle is very short (~ 7 cycles) even on the surface of silicon oxide, which is difficult to nucleate due to difficult nucleation. 10, it was found that a crystalline Ru metal film was formed at a substrate temperature of 225 ° C. or higher. Metal films with good crystallinity are generally known to have better electrical conductivity.
<실시예 6> 실시예 1에서 제조된 (p-cymene)(1,3-butadiene)Ru 화합물 기체와 산소 기체를 사용하여 원자층 증착법에 의한 루테늄-함유 막의 형성Example 6 Formation of Ruthenium-Containing Film by Atomic Layer Deposition Using (p-cymene) (1,3-butadiene) Ru Compound Gas and Oxygen Gas Prepared in Example 1
상기 실시예 1에서 제조된 화학식 6으로서 표시되는 (p-cymene)(1,3-butadiene)Ru 화합물을 전구체로서 사용하여 원자층 증착 공정에 의한 성막 평가를 수행하였다. 증착에 사용된 기재로는 실리콘 기재 위에 산화실리콘 (SiO2) 막이 100 nm 두께로 입혀진 웨이퍼를 사용하였다. 이때, 기재의 온도는 180 내지 310℃로 조절하였고 상기 전구체는 스테인리스강 재질의 용기에 담아 84℃의 온도에서 상기 용기를 가열하여 기화시켰다. 엔시디 회사의 루시다 D-100 원자층 증착 장비에서 운반 기체와 함께 이송된 루테늄 전구체 기체와, 질소(N2) 기체에 20 부피% 농도로 희석된 산소 (O2) 기체를 교대로 원자층 증착 챔버 안에 놓인 상기 기재에 접촉시켰다. 실시예 1에서 제조된 Ru 전구체 공급 5 초 -> N2 기체 공급 10 초 -> O2 기체 공급 1 초 -> N2 기체 공급 10 초의 원자층 증착 주기를 100 회 내지 400 회 반복하여 기재 온도 225℃에서 루테늄-함유 막을 형성하였다. 상기 형성된 루테늄-함유 막의 단면을 주사 전자 현미경을 이용하여 측정한 뒤, 그 두께를 도 11에 나타내었다. 상기 루테늄-함유 막들의 전기 비저항을 도 12에 나타내었다. X-선 회절분석기 (X-ray Diffractometer; XRD)를 이용하여 측정된, 여러 기재 온도에서 형성된 루테늄-함유 막들의 XRD 패턴을 도 13에 나타내었다.Film formation evaluation by an atomic layer deposition process was performed using a (p-cymene) (1,3-butadiene) Ru compound represented by Chemical Formula 6 prepared in Example 1 as a precursor. As the substrate used for the deposition, a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used. At this time, the temperature of the substrate was adjusted to 180 to 310 ℃ and the precursor was put in a container made of stainless steel material was vaporized by heating the vessel at a temperature of 84 ℃. Atomic Layer Deposition of Ruthenium Precursor Gas Transferred with Carrier Gas and Oxygen (O 2 ) Gas Dilute to 20% by Volume in Nitrogen (N 2 ) Gas from Encidi's Lucida D-100 Atomic Layer Deposition Equipment The substrate was placed in the chamber. Ru precursor supply prepared in Example 1 5 seconds-> N 2 gas supply 10 seconds-> O 2 gas supply 1 second- > N 2 gas supply Atomic layer deposition cycle of 10 seconds to 100 to 400 times to repeat the substrate temperature 225 A ruthenium-containing film was formed at &lt; RTI ID = 0.0 &gt; The cross section of the formed ruthenium-containing film was measured using a scanning electron microscope, and the thickness thereof is shown in FIG. 11. The electrical resistivity of the ruthenium-containing films is shown in FIG. 12. XRD patterns of ruthenium-containing films formed at various substrate temperatures, measured using an X-ray Diffractometer (XRD), are shown in FIG. 13.
도 11을 통해 원자층 증착 기체 공급 주기 횟수와 형성된 루테늄-함유 막의 두께를 비교해본 결과, SiO2 기재 위에서 상기 실시예 1에서 제조된 루테늄 화합물을 사용한 원자층 증착법은 기체 공급 주기 당 막 성장이 크고 (~0.106 nm/cycle), 핵 형성이 어려워서 초기 막 성장에 불리한 산화실리콘 표면에서도 인큐베이션 사이클이 매우 짧다(~7 cycle)는 것을 알 수 있었다. 도 12에서 알 수 있듯이, 원자층 증착 주기를 200 회 이상 반복하여 20 nm 이상의 두께로 형성된 막은 전기 전도도가 높아서 비저항을 측정한 결과가 40 μΩ·cm 미만으로 나타났으며, 형성된 막의 전기 전도도가 매우 우수한 것임을 알 수 있었다. 아울러, 도 13에서 확인할 수 있듯이, 200℃ 이상의 기재 온도에서는 결정성의 Ru 금속막이 형성된 것을 알 수 있었다. 결정성이 좋은 금속 막이 전기 전도도가 더 우수하다고 일반적으로 알려져 있다. As a result of comparing the number of atomic layer deposition gas supply cycles and the thickness of the formed ruthenium-containing film through FIG. 11, the atomic layer deposition method using the ruthenium compound prepared in Example 1 on a SiO 2 substrate has a large film growth per gas supply cycle. (~ 0.106 nm / cycle), it was found that the incubation cycle is very short (~ 7 cycles) even on the surface of silicon oxide, which is difficult to nucleate due to difficult nucleation. As can be seen in FIG. 12, the film formed with a thickness of 20 nm or more by repeating the atomic layer deposition cycle 200 times or more has a high electrical conductivity, and the result of measuring the resistivity was found to be less than 40 μΩ · cm, and the electrical conductivity of the formed film was very high. It was found to be excellent. 13, it was found that a crystalline Ru metal film was formed at a substrate temperature of 200 ° C. or higher. It is generally known that metal films with good crystallinity have better electrical conductivity.
또한 20 nm 두께로 형성된 루테늄-함유 막의 표면을 원자힘현미경(atomic force microscopy)을 이용하여 관찰한 결과, 상기 루테늄-함유 막의 표면 요철이 1.36 nm인 것으로 나타났으며, 이러한 결과로부터 매우 평탄한 막이 얻어진 것임을 알 수 있었다.In addition, when the surface of the ruthenium-containing film formed to a thickness of 20 nm was observed by atomic force microscopy, the surface irregularities of the ruthenium-containing film were 1.36 nm, and from these results, a very flat film was obtained. It could be seen that.
<실시예 7> 실시예 3에서 제조된 (p-cymene)(2,5-dimethyl-1,3-hexadiene)Ru 화합물 기체와 산소 기체를 사용하여 원자층 증착법에 의한 루테늄-함유 막의 형성Example 7 Formation of Ruthenium-containing Film by Atomic Layer Deposition Using (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru Compound Gas and Oxygen Gas Prepared in Example 3
상기 실시예 3에서 제조된 화학식 8로서 표시되는 (p-cymene)(2,5-dimethyl-1,3-hexadiene)Ru 화합물을 전구체로서 사용하여 원자층 증착 공정에 의한 성막 평가를 수행하였다. 증착에 사용된 기재로는 실리콘 기재 위에 산화실리콘 (SiO2) 막이 100 nm 두께로 입혀진 웨이퍼를 사용하였다. 이때, 기재의 온도는 180℃ 내지 310℃로 조절하였고 상기 전구체는 스테인리스강 재질의 용기에 담아 90℃의 온도에서 상기 용기를 가열하면서 기화시켰다. 엔시디 회사의 루시다 D-100 원자층 증착 장비에서 운반 기체와 함께 이송된 루테늄 전구체 기체와, 질소(N2) 기체에 20 부피% 농도로 희석된 산소 (O2) 기체를 교대로 원자층 증착 챔버 안에 놓인 기재에 접촉시켰다. 실시예 3에서 제조된 Ru 전구체 공급 5 초 -> N2 기체 공급 10 초 -> O2 기체 공급 2 초 -> N2 기체 공급 10 초의 원자층 증착 주기를 반복하여 기재 온도 225℃에서 루테늄-함유 막을 형성하였다. Film formation evaluation by an atomic layer deposition process was performed using (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru compound represented by Chemical Formula 8 prepared in Example 3 as a precursor. As the substrate used for the deposition, a wafer coated with a silicon oxide (SiO 2 ) film 100 nm thick on a silicon substrate was used. At this time, the temperature of the substrate was adjusted to 180 ℃ to 310 ℃ and the precursor was vaporized while heating the vessel at a temperature of 90 ℃ in a container made of stainless steel. Atomic Layer Deposition of Ruthenium Precursor Gas Transferred with Carrier Gas and Oxygen (O 2 ) Gas Dilute to 20% by Volume in Nitrogen (N 2 ) Gas from Encidi's Lucida D-100 Atomic Layer Deposition Equipment The substrate was placed in the chamber. Ru precursor supply 5 seconds-> N 2 gas supply 10 seconds-> O 2 gas supply 2 seconds-> N 2 gas supply prepared in Example 3 by repeating the atomic layer deposition cycle of 10 seconds ruthenium-containing at a substrate temperature of 225 ℃ A film was formed.
원자증 증착 기체 공급 주기 횟수와 형성한 루테늄-함유 막의 두께를 비교한 결과, 기재 온도 225℃에서 기체 공급 주기 당 막 성장은 0.096 nm/cycle, 인큐베이션 사이클은 ~12 cycle로 나타났다. 기재 온도 225℃에서 형성된 루테늄-함유 막의 전기 비저항을 측정한 결과는 55 내지 65 μΩ·cm이었다. 또한 20 nm 두께로 형성된 루테늄-함유 막의 표면을 원자힘현미경(atomic force microscopy)을 이용하여 관찰한 결과, 상기 루테늄-함유 막의 표면 요철이 1.35 nm인 것으로 나타났으며, 이러한 결과로부터 매우 평탄한 막이 얻어진 것임을 알 수 있었다.As a result of comparing the number of atomic vapor deposition gas supply cycles with the thickness of the formed ruthenium-containing film, the film growth was 0.096 nm / cycle and the incubation cycle was ~ 12 cycles per gas supply cycle at the substrate temperature of 225 ° C. The electrical resistivity of the ruthenium-containing film formed at the substrate temperature of 225 ° C. was 55 to 65 μΩ · cm. In addition, the surface of the ruthenium-containing film formed to a thickness of 20 nm was observed by atomic force microscopy, and the surface unevenness of the ruthenium-containing film was 1.35 nm. From this result, a very flat film was obtained. It could be seen that.
특히, 상기 제조예 1에서 출발물질로서 사용된 테르피넨 화합물은 수십 Kg 또는 수백 Kg에 이르는 대용량을 상업적으로 쉽게 구할 수 있다. 따라서 상기 테르피넨으로부터 합성되는 실시예 1 내지 실시예 4의 루테늄 화합물을 포함하는 본 발명의 루테늄 화합물은 상업적인 원료로부터 쉽게 대량 생산할 수 있으므로 Ru을 함유하는 막을 증착하는 목적으로 산업에 이용하기에 매우 유리하다.In particular, the terpinene compound used as the starting material in Preparation Example 1 can be easily obtained commercially a large capacity up to several tens of Kg or hundreds of Kg. Therefore, the ruthenium compound of the present invention comprising the ruthenium compounds of Examples 1 to 4 synthesized from the terpinene can be easily produced in large quantities from commercial raw materials, which is very advantageous for industrial use for the purpose of depositing a film containing Ru. Do.
아울러, 본원에 따른 루테늄 화합물을 사용하고 원자층 증착법에 의해 루테늄-함유 막을 성막하는 경우, 전기 전도도가 높고 표면이 평탄한 루테늄-함유 막을 형성할 수 있다. 본원에 따른 루테늄 화합물을 사용한 원자층 증착법은 초기 막 성장이 빠르고, 특히 기체 공급 주기 당 막 성장이 종래에 알려진 원자층 증착법보다 거의 2 배이거나, 또는 그 이상인 0.096 내지 0.12 nm/cycle로 빠르기 때문에, 필요한 두께의 루테늄-함유 막을 형성하는 데에 걸리는 시간이 종래에 알려진 원자층 증착법을 사용한 경우와 비교해서 반으로 단축시킬 수 있다. 본원에 따른 루테늄 화합물을 루테늄-함유 막을 제조하는 반도체 생산 공정에 적용하는 경우, 막 형성 장비의 생산성 또한 2 배로 증대시킬 수 있을 것으로 기대된다.In addition, when using a ruthenium compound according to the present application and forming a ruthenium-containing film by atomic layer deposition, a ruthenium-containing film having high electrical conductivity and a flat surface can be formed. The atomic layer deposition method using the ruthenium compound according to the present application is fast because the initial film growth is faster, especially since the film growth per gas supply cycle is almost twice or faster than the conventionally known atomic layer deposition method, 0.096 to 0.12 nm / cycle, The time taken to form the ruthenium-containing film of the required thickness can be shortened in half compared with the case of using a conventionally known atomic layer deposition method. When the ruthenium compound according to the present application is applied to a semiconductor production process for producing a ruthenium-containing film, the productivity of the film forming equipment is also expected to be doubled.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. .

Claims (9)

  1. 하기 화학식 1로서 표시되는, 루테늄 화합물:Ruthenium compound represented by the following general formula (1):
    [화학식 1] [Formula 1]
    Figure PCTKR2015005232-appb-I000018
    ;
    Figure PCTKR2015005232-appb-I000018
    ;
    상기 화학식 1 에서, In Chemical Formula 1,
    R1 내지 R4은 각각 독립적으로 H, 또는 선형 또는 분지형의 C1-5 알킬기를 포함하고,R 1 to R 4 each independently include H, or a linear or branched C 1-5 alkyl group,
    n은 0 내지 3의 정수임.n is an integer from 0 to 3.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 선형 또는 분지형의 C1-5 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 루테늄 화합물.The linear or branched C 1-5 alkyl group is a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pen A ruthenium compound, comprising one selected from the group consisting of a tilyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and isomers thereof.
  3. 제 1 항에 있어서, The method of claim 1,
    n은 0이고, R1 내지 R4가 각각 독립적으로, H; 또는 메틸기, 에틸기, iso- 프로필기 및 tert-부틸기로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 루테늄 화합물.n is 0, and R 1 to R 4 are each independently H; Or a methyl group, an ethyl group, an iso-propyl group, and a tert-butyl group.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 루테늄 화합물이 (p-cymene)(1,3-butadiene)Ru, (p-cymene)(isoprene)Ru, (p-cymene)(2,5-dimethyl-1,3-hexadiene)Ru 및 (p-cymene)(1,5-hexadiene)Ru로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 루테늄 화합물.The ruthenium compound is selected from (p-cymene) (1,3-butadiene) Ru, (p-cymene) (isoprene) Ru, (p-cymene) (2,5-dimethyl-1,3-hexadiene) Ru and (p -cymene) (1,5-hexadiene) Ru, which comprises a compound selected from the group consisting of.
  5. 하기 반응식 1에 나타낸 바와 같이,As shown in Scheme 1 below,
    탄소수 5 이하의 1 차 알코올 또는 2 차 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이엔 중성 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것[RuX 2 (p-cymene)] 2 compound represented by the following formula ( 2 ), an carbonate salt of an alkali metal represented by M 2 CO 3 , and the following formula in an organic solvent containing a primary alcohol or a secondary alcohol having 5 or less carbon atoms Reacting a mixture containing a diene neutral ligand represented by 3 to obtain a ruthenium compound of the formula
    을 포함하는,Including,
    제 1 항 내지 제 4 항 중 어느 한 항에 따른 루테늄 화합물의 제조 방법:Process for preparing a ruthenium compound according to any one of claims 1 to 4
    [화학식 1][Formula 1]
    Figure PCTKR2015005232-appb-I000019
    ;
    Figure PCTKR2015005232-appb-I000019
    ;
    [화학식 2][Formula 2]
    Figure PCTKR2015005232-appb-I000020
    ;
    Figure PCTKR2015005232-appb-I000020
    ;
    [화학식 3][Formula 3]
    Figure PCTKR2015005232-appb-I000021
    ;
    Figure PCTKR2015005232-appb-I000021
    ;
    [빈응식 1][Vinction 1]
    Figure PCTKR2015005232-appb-I000022
    ;
    Figure PCTKR2015005232-appb-I000022
    ;
    상기 식들에서,In the above formulas,
    M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
    X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
    R1 내지 R4 및 n은 각각 제 1 항에서 정의된 바와 같음.R 1 to R 4 and n are each as defined in claim 1.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 1 차 알코올 또는 2 차 알코올은, 메탄올, 에탄올, n-프로필 알코올, iso-프로필 알코올, n-부탄올, iso-부탄올, n-펜탄올, iso-펜탄올, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 루테늄 화합물의 제조 방법.The primary alcohol or secondary alcohol is a group consisting of methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso-pentanol, and combinations thereof A method of producing a ruthenium compound, comprising those selected from.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 증착용 전구체 조성물.A ruthenium-containing film precursor composition comprising the ruthenium compound according to any one of claims 1 to 4.
  8. 제 7 항에 따른 루테늄-함유 막 증착용 전구체 조성물을 이용하여 루테늄-함유 막을 형성하는 것을 포함하는, 루테늄-함유 막의 증착 방법.A method of depositing a ruthenium-containing film, comprising forming a ruthenium-containing film using the ruthenium-containing film deposition composition according to claim 7.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 막을 증착하는 것은 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것인, 루테늄-함유 박막의 증착 방법.Depositing the film comprises performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
PCT/KR2015/005232 2014-05-30 2015-05-26 Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same WO2015182946A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580028799.8A CN106459113B (en) 2014-05-30 2015-05-26 The film deposition method of novel ruthenium compound, preparation method, the film deposition precursor composition comprising it and utilization precursor composition
JP2017515645A JP6284682B2 (en) 2014-05-30 2015-05-26 Novel ruthenium compound, process for producing the same, precursor composition for film deposition including the same, and film deposition method using the same
US15/314,839 US9957614B2 (en) 2014-05-30 2015-05-26 Ruthenium compound, preparation method therefor, precursor composition for film deposition containing same, and method for depositing film by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0065854 2014-05-30
KR20140065854 2014-05-30
KR10-2014-0163832 2014-11-21
KR1020140163832A KR101703871B1 (en) 2014-05-30 2014-11-21 Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same

Publications (1)

Publication Number Publication Date
WO2015182946A1 true WO2015182946A1 (en) 2015-12-03

Family

ID=54699219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005232 WO2015182946A1 (en) 2014-05-30 2015-05-26 Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same

Country Status (1)

Country Link
WO (1) WO2015182946A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000044B2 (en) 2018-06-22 2024-06-04 Applied Materials, Inc. Catalyzed deposition of metal films

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082543A (en) * 2008-01-28 2009-07-31 (주)디엔에프 A new ruthenium compound and vapor deposition method using the same
KR20100060482A (en) * 2008-11-27 2010-06-07 주식회사 유피케미칼 Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
KR20120012319A (en) * 2010-07-30 2012-02-09 영남대학교 산학협력단 Method for forming thin film by atomic layer deposition, metal line having the thin film in semiconductor device and method for manufacturing the same
KR20120085892A (en) * 2009-11-14 2012-08-01 우미코레 아게 운트 코 카게 Process for preparing ruthenium(0)-olefin complexes
KR20130043557A (en) * 2011-10-20 2013-04-30 주식회사 한솔케미칼 Ruthenium compounds with good step coverage, and deposited film using them
KR20140131219A (en) * 2013-05-03 2014-11-12 한국화학연구원 Ruthenium precursors, preparation method thereof and process for the formation of thin films using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082543A (en) * 2008-01-28 2009-07-31 (주)디엔에프 A new ruthenium compound and vapor deposition method using the same
KR20100060482A (en) * 2008-11-27 2010-06-07 주식회사 유피케미칼 Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
KR20120085892A (en) * 2009-11-14 2012-08-01 우미코레 아게 운트 코 카게 Process for preparing ruthenium(0)-olefin complexes
KR20120012319A (en) * 2010-07-30 2012-02-09 영남대학교 산학협력단 Method for forming thin film by atomic layer deposition, metal line having the thin film in semiconductor device and method for manufacturing the same
KR20130043557A (en) * 2011-10-20 2013-04-30 주식회사 한솔케미칼 Ruthenium compounds with good step coverage, and deposited film using them
KR20140131219A (en) * 2013-05-03 2014-11-12 한국화학연구원 Ruthenium precursors, preparation method thereof and process for the formation of thin films using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000044B2 (en) 2018-06-22 2024-06-04 Applied Materials, Inc. Catalyzed deposition of metal films

Similar Documents

Publication Publication Date Title
KR101703871B1 (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2010071364A9 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
KR20100060482A (en) Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
US6420582B1 (en) Organometallic compounds for chemical vapor deposition and their preparing processes, and processes for chemical vapor deposition of precious-metal films and precious-metal compound films
JP5265570B2 (en) Method for depositing ruthenium-containing films
US20030212285A1 (en) Methods for preparing ruthenium and osmium compounds and films
WO2021133080A1 (en) Yttrium/lanthanide metal precursor compound, composition comprising same for forming film, and method for forming yttrium/lanthanide metal-containing film using composition
WO2015130108A1 (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using same
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
KR20080061381A (en) Organometallic compounds and methods of use thereof
US20220018018A1 (en) Raw material for chemical deposition containing ruthenium complex, and chemical deposition method using the raw material for chemical deposition
WO2022025332A1 (en) Cobalt compound, precursor composition including same, and method for preparing thin film using same
WO2014189340A1 (en) Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same
WO2017135715A1 (en) Group 4 metal element-containing compound, method for preparing same, precursor composition containing same for film deposition, and method for depositing film using same
WO2014178684A1 (en) Ruthenium precursor, preparation method therefor and method for forming thin film using same
WO2015182946A1 (en) Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same
WO2022139535A1 (en) Thin film forming method using top-surface modifier
KR20050086898A (en) Ruthenium compound and process for producing metallic ruthenium film
WO2019066179A1 (en) Vapor deposition precursor having excellent thermal stability and reactivity and preparing method therefor
WO2023080505A1 (en) Novel organometallic compound, method for preparing same, and method for preparing thin film using same
KR20140138085A (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
WO2023013949A1 (en) Ruthenium organometallic compound, method for preparing same, and method for manufacturing thin film using same
WO2020130215A1 (en) Cobalt precursor, method for preparing same, and method for preparing thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515645

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15314839

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799740

Country of ref document: EP

Kind code of ref document: A1