WO2014189340A1 - Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same - Google Patents

Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same Download PDF

Info

Publication number
WO2014189340A1
WO2014189340A1 PCT/KR2014/004667 KR2014004667W WO2014189340A1 WO 2014189340 A1 WO2014189340 A1 WO 2014189340A1 KR 2014004667 W KR2014004667 W KR 2014004667W WO 2014189340 A1 WO2014189340 A1 WO 2014189340A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
group
formula
ruthenium compound
iso
Prior art date
Application number
PCT/KR2014/004667
Other languages
French (fr)
Korean (ko)
Inventor
한원석
김소영
이미희
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority claimed from KR1020140062819A external-priority patent/KR20140138085A/en
Publication of WO2014189340A1 publication Critical patent/WO2014189340A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds

Definitions

  • the present application relates to a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a film using the precursor composition.
  • ruthenium is used to minimize leakage current. It is necessary to use an electrode.
  • ruthenium metal Since ruthenium metal is excellent in adhesion to copper metal and difficult to form a solid solution with Cu, it is actively applied to seed layer in Cu wiring process using electroplating during semiconductor manufacturing process. Is being studied.
  • RuO 2 ruthenium oxide
  • ⁇ bulk 46 ⁇ ⁇ cm
  • thermal stability 800 ° C.
  • Application as a lower electrode is a potent material.
  • ruthenium metals and ruthenium oxides have excellent step coverage on uneven surfaces for use as capacitor electrodes in next generation electronic devices that are becoming extremely fine, especially DRAM (Dynamic Random Access Memory) devices with high step ratios.
  • DRAM Dynamic Random Access Memory
  • a liquid at room temperature and having a relatively high vapor pressure using 2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium [2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) Ru, DER] and an oxygen-containing gas Atomic layer deposition is also known.
  • 2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium [2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) Ru, DER] and an oxygen-containing gas Atomic layer deposition is also known.
  • film growth per raw material supply cycle is only 0.034 nm / cycle ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition” Chemistry of Materials, volume 22, 2850-2856 (2010)].
  • the present application is to provide a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition comprising the ruthenium compound, and a method for depositing a film using the precursor composition.
  • a first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • the second aspect of the present application is represented as a RuX 2 (p-cymene)] compound represented by the following formula ( 2 ), M 2 CO 3 , in an organic solvent containing an alcohol having 5 or less carbon atoms.
  • a method for preparing a ruthenium compound according to the first aspect of the present application comprising reacting a mixture containing a carbonate salt of an alkali metal and a diazadiene ligand represented by the following general formula (3) to obtain a ruthenium compound of the general formula (1) to provide:
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • the third aspect of the present application is represented by the [RuX 2 (p-cymene)] 2 compound, the alkali metal (M) and the following formula
  • a process for preparing a ruthenium compound according to the first aspect of the present application comprising reacting a mixture containing a diazadiene ligand to obtain a ruthenium compound of Formula 1:
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • a fourth aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application.
  • the fifth aspect of the present application provides a method of depositing a ruthenium-containing film or thin film using the ruthenium-containing film or precursor composition for thin film deposition according to the fourth aspect of the present application.
  • a ruthenium compound and a method for preparing the same are much faster than a conventional ruthenium precursor compound used as a precursor of atomic layer deposition or chemical vapor deposition, per film feed cycle of a raw material gas of atomic layer deposition.
  • the novel ruthenium compounds according to one embodiment of the present disclosure can be used to form ruthenium-containing films or thin films and can be easily mass produced from commercial raw materials.
  • DSC differential scanning calorimetry
  • 3A-3D are images of cross-sectional Scanning Electron Microscopy (SEM) of ruthenium-containing thin films formed according to Example 2 herein.
  • Example 4 is a result of Auger analysis of a ruthenium-containing thin film formed on a silicon (Si) substrate according to Example 2 of the present application.
  • Example 5 is a result of OJ analysis of a ruthenium-containing thin film formed on a titanium nitride (TiN) substrate according to Example 2 of the present application.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl group may include linear or branched, saturated or unsaturated C 1-10 or C 1-5 alkyl groups, for example, methyl, ethyl, propyl, Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof may be included, but may not be limited thereto.
  • alkali metal refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, K, Rb, or Cs, but may not be limited thereto.
  • halogen refers to an element belonging to Group 17 of the periodic table, which may be F, Cl, Br or I, but may not be limited thereto.
  • a first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • ruthenium by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using the novel ruthenium compound itself or a composition comprising the novel ruthenium compound It is possible to deposit a thin film containing.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof However, this may not be limited.
  • R 1 and R 2 may be an iso-propyl group or tert-butyl group, but may not be limited thereto.
  • HNCHCHNH in the diazadiene ligand may be abbreviated as H-DAD
  • MeNCHCHNMe may be abbreviated as Me-DAD
  • EtNCHCHNEt may be abbreviated as Et-DAD
  • n PrNCHCHN n Pr is abbreviated as n Pr-DAD I PrNCHCHN i Pr may be abbreviated as i Pr-DAD
  • n BuNCHCHN n Bu may be abbreviated as n Bu-DAD
  • t BuNCHCHN t Bu may be abbreviated as t Bu-DAD
  • sec BuNCHCHN sec Bu may be abbreviated as sec Bu-DAD.
  • the second aspect of the present application is represented by the compound [RuX 2 (p-cymene)] 2 represented by the following Chemical Formula 2, M 2 CO 3 in an organic solvent containing an alcohol having 5 or less carbon atoms.
  • a method for producing a ruthenium compound according to the first aspect of the present application comprising reacting a mixture containing a carbonate salt of an alkali metal and a diazadiene ligand represented by Formula 3 to obtain a ruthenium compound of Formula 1 Provides:
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
  • the organic solvent may include a primary alcohol or a secondary alcohol having 5 or less carbon atoms, but may not be limited thereto.
  • the primary alcohol or secondary alcohol having 5 or less carbon atoms may serve as a solvent and also act as a reducing agent.
  • ruthenium compounds according to one embodiment of the present application can be prepared in an economical and simple process that does not require a separate reducing agent.
  • the primary alcohol or secondary alcohol having 5 or less carbon atoms is methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso- Pentanol, and combinations thereof may be selected from the group consisting of, but may not be limited thereto.
  • M comprises Li, Na, or K
  • X comprises Cl, Br, or I
  • R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  • the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
  • the organic solvent includes an ether selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, ethylene glycol dimethyl ether (DME), and ethylene glycol diethyl ether. It may be, but may not be limited thereto.
  • the [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 may be a ruthenium trihalide hydrate ( It is prepared by a method comprising reacting a mixture containing RuX 3 ⁇ nH 2 O) and ⁇ -terpinene represented by the following formula (4) or ⁇ -terpinene represented by the following formula (5): It may be, but may not be limited thereto.
  • ⁇ -terpinene, ⁇ -terpinene, ⁇ -Phellandrene, ⁇ -phellandrene, or an isomer thereof may be used instead of the ⁇ -terpinene or ⁇ -terpinene.
  • X is Cl, Br, or I
  • n is an integer of 0 or 10 or less.
  • the ruthenium trihalide hydrate (RuX 3 ⁇ nH 2 O) and ⁇ -terpinene of the formula (4) or ⁇ -terpinene of the formula (5) are alcohols. It may be added to an organic solvent containing and reacted to form the compound [RuX 2 (p-cymene)] 2 . Then, as in Scheme 1 or 2, the formed [RuX 2 (p-cymene)] 2 compound; Carbonate salts of alkali metals (M 2 CO 3 ) or alkali metals; And reflux reaction of the mixture containing the diazadiene ligand to prepare a ruthenium compound represented by Chemical Formula 1.
  • a fourth aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application.
  • the fifth aspect of the present application provides a method of depositing a ruthenium-containing film or a thin film using the ruthenium compound according to the first aspect of the present application or the ruthenium-containing film or the precursor composition for thin film deposition.
  • the ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
  • depositing the ruthenium-containing film may be performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • depositing the ruthenium-containing film comprises contacting a substrate including a ruthenium compound according to the first aspect of the present disclosure or a precursor composition for depositing a ruthenium-containing film according to the third aspect to a substrate surface. It may be carried out by a process comprising the.
  • depositing the ruthenium-containing film comprises contacting a substrate comprising a ruthenium compound according to the first aspect of the present application or a precursor composition for ruthenium-containing film deposition according to the third aspect to a substrate. And at the same time or alternately may be carried out by a process further comprising contacting the substrate containing the reaction gas to the substrate.
  • the deposition of the ruthenium-containing film may include alternately applying a gas and a reaction gas including a ruthenium compound according to the first aspect of the present disclosure or a ruthenium-containing film deposition composition according to the third aspect to the substrate surface.
  • Atomic layer deposition (ALD) methods may be used, but may not be limited thereto.
  • depositing the ruthenium-containing film comprises simultaneously contacting a substrate surface with a gas and a reaction gas comprising a ruthenium compound according to the first aspect of the present application or a precursor composition for ruthenium-containing film deposition according to the third aspect.
  • Chemical vapor deposition (CVD) may be used, but the present invention may not be limited thereto.
  • the gas comprising a ruthenium compound according to the first aspect of the present application or a ruthenium-containing film deposition composition according to the third aspect is bubbling, gas phase flow control method
  • the substrate surface may be contacted using a known method such as a direct liquid injection method or a liquid transfer method.
  • the reaction gas used in the ALD and CVD method is a semiconductor such as hydrogen (H 2 ) gas, ammonia (NH 3 ) gas, oxygen (O 2 ) gas, ozone (O 3 ) gas
  • the gas used in the process may be used to form a ruthenium-containing film, but may not be limited thereto.
  • a ruthenium-containing film containing less impurities may be formed.
  • a ruthenium oxide film may be formed, but may not be limited thereto.
  • the ruthenium compound according to the exemplary embodiment of the present invention is a complex in which a weak coordination bond is connected between the ruthenium center metal and the ligand, and thus, decomposition of the ligand may occur well at a relatively low temperature, thereby lowering the deposition temperature.
  • the ligands of p-cymene and diazadiene separated from the ruthenium center metal are easily removed from the reaction chamber through vacuum exhaust, impurities such as carbon, nitrogen, and oxygen are reduced in the deposited thin film, or No impurities remain or substantially no residue.
  • N, N'- diisopropyl-1,4-diaza-1,3-butadiene N, N'- diisopropyl-1,4- diaza-1,3-butadiene, i
  • a solution of 37 g (0.259 mol, 3 equivalents) of Pr-DAD was slowly added to the stirred suspension at room temperature for 3 hours, and then the mixture was refluxed for 15 hours to complete the reaction.
  • the compound for the comparative example was prepared as follows.
  • Boiling point (bp) 105 ° C. (0.3 torr);
  • thermogravimetric analysis TGA
  • DSC differential scanning calorimetry analysis
  • FIG. 1 is a thermal gravimetric analysis (TGA) graph of ruthenium compound prepared according to Example 1
  • FIG. 2 is a differential scanning calorimetry (DSC) graph of ruthenium compound prepared according to Example 1.
  • TGA thermal gravimetric analysis
  • DSC differential scanning calorimetry
  • Example 2 Formation of ruthenium-containing thin film by atomic layer deposition using (p-cymene) ( i Pr-DAD) Ru and oxygen (O 2 ) gas prepared in Example 1
  • Substrates used for deposition include a silicon (Si) wafer, a wafer coated with a silicon oxide (SiO 2 ) film on the silicon substrate as 100 nm thick, a wafer coated with a silicon nitride (SiN) film on a silicon substrate as 50 nm thick, and a silicon substrate A wafer in which a titanium nitride (TiN) film was coated as 50 nm thick was used.
  • the temperature of the substrate was adjusted to 250 °C and the precursor is placed in a container of stainless steel (stainless steel) material using argon gas having a flow rate of 60 sccm as a carrier gas of the precursor while heating the vessel at a temperature of 120 °C It was fed to the substrate surface in a gaseous state.
  • the working pressure of the reactor was adjusted to 0.5 torr, and ruthenium precursor gas and oxygen (O 2 ) gas were alternately contacted with the substrate placed in the atomic layer deposition chamber. The oxygen gas was flowed at 60 sccm.
  • FIGS. 3A-3D are images of cross-sectional Scanning Electron Microscopy (SEM) of ruthenium-containing thin films formed according to Example 2, and FIG. 4 is on a silicon (Si) substrate according to Example 2 Auger analysis result of the formed ruthenium-containing thin film (Auger) analysis, Figure 5 is a result of the ozone analysis of the ruthenium-containing thin film formed on a titanium nitride (TiN) substrate according to this embodiment. As can be seen from Figures 3a to 3d, it was confirmed that even on Si and SiO 2 substrates, a film having a flat surface having almost no difference with TiN was obtained.
  • SEM Scanning Electron Microscopy
  • the terpinene compound used as a starting material in Preparation Example 1 can be easily obtained commercially even at a large capacity of several tens of Kg or hundreds of Kg. Therefore, the ruthenium compound of Example 1 synthesized from the terpinene can be easily mass-produced from commercial raw materials, and is liquid at room temperature, which is very advantageous for industrial use for the purpose of depositing a film containing Ru.
  • novel ruthenium compounds according to the present invention can be easily mass-produced from commercial raw materials, and are liquid at room temperature, which is very advantageous for industrial use for the purpose of depositing a film containing Ru.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention relates to a novel ruthenium compound, a method for manufacturing the ruthenium compound, a precursor composition for depositing a film, the precursor composition comprising the ruthenium compound, and a method for depositing a film by using the precursor composition.

Description

신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법Novel ruthenium compound, method for preparing the same, precursor composition for film deposition comprising the same, and method for depositing a film using the same
본원은 신규 루테늄 화합물, 상기 루테늄 화합물의 제조 방법, 상기 루테늄 화합물을 포함하는 막 증착용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 막의 증착 방법에 관한 것이다.The present application relates to a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition including the ruthenium compound, and a method for depositing a film using the precursor composition.
루테늄 (Ruthenium) 금속은 열적, 화학적 안정성이 우수할 뿐만 아니라 낮은 비저항 (ρbulk = 7.6 μΩ·cm) 및 큰 일함수 (Φbulk = 4.71 eV)를 갖고 있어 트랜지스터의 게이트 전극, 또는 DRAM 또는 FeRAM의 커패시터 (Capacitor) 전극 물질로서 사용될 수 있다. 특히 차세대 DRAM 커패시터의 고유전 물질의 재료로서 타이타늄을 포함한 산화물인 TiO2 및 STO (SrTiO3), BST [(Ba, Sr)TiO3] 등을 사용할 때 누설전류 (Leakage current)를 최소화하기 위해서는 루테늄 전극을 사용할 필요가 있다.Ruthenium metals not only have excellent thermal and chemical stability, but also have a low resistivity (ρ bulk = 7.6 μΩ · cm) and large work function (Φ bulk = 4.71 eV). Capacitor can be used as the electrode material. In particular, when using TiO 2 , STO (SrTiO 3 ), and BST [(Ba, Sr) TiO 3 ], which are oxides containing titanium, as the material of the high dielectric material of the next generation DRAM capacitor, ruthenium is used to minimize leakage current. It is necessary to use an electrode.
루테늄 금속은 구리 금속과의 접착성이 우수할 뿐만 아니라 Cu와의 고용체 형성이 어렵기 때문에, 반도체 제조 공정 중 전기도금 (Electroplating)을 이용한 Cu 배선 공정에 있어서 씨드층 (Seed layer)으로의 적용이 활발하게 연구되고 있다.Since ruthenium metal is excellent in adhesion to copper metal and difficult to form a solid solution with Cu, it is actively applied to seed layer in Cu wiring process using electroplating during semiconductor manufacturing process. Is being studied.
한편 루테늄 산화물 (RuO2) 또한 전도성 물질로서 비저항이 낮고 (ρbulk = 46 μΩ·cm), 800℃에서도 열적 안정성이 뛰어나 향후 금속-절연물-금속 커패시터 (Metal-Insulator-Metal capacitor; MIM capacitor)의 하부전극으로서의 적용이 유력한 물질이다.Meanwhile, ruthenium oxide (RuO 2 ) is also a conductive material with low resistivity (ρ bulk = 46 μΩ · cm) and excellent thermal stability at 800 ° C. Application as a lower electrode is a potent material.
이들 루테늄 금속 및 루테늄 산화물을, 극미세화 되는 차세대 전자소자, 특히 높은 단차비를 갖는 DRAM (Dynamic Random Access Memory) 소자의 커패시터 전극으로서 사용하기 위해 요철이 심한 표면에 우수한 단차 피복성 (Step Coverage)을 구현할 수 있는 유기 금속 화학기상 증착법이나 원자층 증착법을 적용할 필요가 있고, 따라서 이에 적합한 루테늄 전구체 화합물의 개발이 필요하다.These ruthenium metals and ruthenium oxides have excellent step coverage on uneven surfaces for use as capacitor electrodes in next generation electronic devices that are becoming extremely fine, especially DRAM (Dynamic Random Access Memory) devices with high step ratios. There is a need to apply an organometallic chemical vapor deposition method or an atomic layer deposition method that can be implemented, and thus a development of a suitable ruthenium precursor compound is required.
원자층 증착법에 의하여 루테늄 금속막 또는 산화막을 형성할 때 비스(에틸사이클로펜타디에닐)루테늄 [Bis(ethylcyclopentadienyl)ruthenium, (EtCp)2Ru] 전구체 화합물과 산소 함유 기체가 흔히 쓰인다. 그러나, (EtCp)2Ru은 상온에서 액체이고 증기압이 높은 장점이 있지만, (EtCp)2Ru 전구체 화합물을 사용한 원자층 증착법은 원료 공급 주기당 막 성장 (0.05 nm/cycle 미만)이 느리다는 단점을 갖는다 ["Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition" Journal of Applied Physics, volume 103, 113509 (2008)]. 또한, 상온에서 액체이고 증기압이 비교적 높은 2,4-(다이메틸펜타디에닐)(에틸사이클로펜타디에닐)루테늄 [2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru, DER]과 산소 함유 기체를 사용한 원자층 증착법도 알려져 있다. 그러나 DER을 사용한 원자층 증착법의 경우에도 원료 공급 주기당 막 성장이 0.034 nm/cycle에 불과하다 ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition" Chemistry of Materials, volume 22, 2850-2856 (2010)].Bis (ethylcyclopentadienyl) ruthenium (EtCp) 2 Ru] precursor compound and oxygen-containing gas are commonly used to form a ruthenium metal film or an oxide film by atomic layer deposition. However, while (EtCp) 2 Ru is liquid at room temperature and has a high vapor pressure, atomic layer deposition using (EtCp) 2 Ru precursor compound has the disadvantage of slow film growth (less than 0.05 nm / cycle) per raw material feed cycle. "Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition" Journal of Applied Physics, volume 103, 113509 (2008). In addition, a liquid at room temperature and having a relatively high vapor pressure using 2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium [2,4- (dimethylpentadienyl) (ethylcyclopentadienyl) Ru, DER] and an oxygen-containing gas Atomic layer deposition is also known. However, even in the case of atomic layer deposition using DER, film growth per raw material supply cycle is only 0.034 nm / cycle ["Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition" Chemistry of Materials, volume 22, 2850-2856 (2010)].
이에, 본원은 신규 루테늄 화합물, 상기 루테늄 화합물의 제조 방법, 상기 루테늄 화합물을 포함하는 막 증착용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 막의 증착 방법을 제공하고자 한다.Accordingly, the present application is to provide a novel ruthenium compound, a method for producing the ruthenium compound, a precursor composition for film deposition comprising the ruthenium compound, and a method for depositing a film using the precursor composition.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는, 루테늄 화합물을 제공한다:A first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000001
;
Figure PCTKR2014004667-appb-I000001
;
상기 화학식 1 에서, In Chemical Formula 1,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 제 2 측면은, 하기 반응식 1에 나타난 바와 같이, 탄소수 5 이하의 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 상기 본원의 제 1 측면에 따른 루테늄 화합물의 제조 방법을 제공한다:As shown in Scheme 1 below, the second aspect of the present application is represented as a RuX 2 (p-cymene)] compound represented by the following formula ( 2 ), M 2 CO 3 , in an organic solvent containing an alcohol having 5 or less carbon atoms. A method for preparing a ruthenium compound according to the first aspect of the present application, comprising reacting a mixture containing a carbonate salt of an alkali metal and a diazadiene ligand represented by the following general formula (3) to obtain a ruthenium compound of the general formula (1) to provide:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000002
;
Figure PCTKR2014004667-appb-I000002
;
[화학식 2][Formula 2]
Figure PCTKR2014004667-appb-I000003
;
Figure PCTKR2014004667-appb-I000003
;
[화학식 3][Formula 3]
Figure PCTKR2014004667-appb-I000004
Figure PCTKR2014004667-appb-I000004
[반응식 1]Scheme 1
Figure PCTKR2014004667-appb-I000005
;
Figure PCTKR2014004667-appb-I000005
;
상기 식들에서,In the above formulas,
M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 제 3 측면은, 하기 반응식 2에 나타난 바와 같이, 에테르계 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, 알칼리 금속 (M) 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 상기 본원의 제 1 측면에 따른 루테늄 화합물의 제조 방법을 제공한다:The third aspect of the present application, as shown in Scheme 2 below, is represented by the [RuX 2 (p-cymene)] 2 compound, the alkali metal (M) and the following formula There is provided a process for preparing a ruthenium compound according to the first aspect of the present application, comprising reacting a mixture containing a diazadiene ligand to obtain a ruthenium compound of Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000006
;
Figure PCTKR2014004667-appb-I000006
;
[화학식 2][Formula 2]
Figure PCTKR2014004667-appb-I000007
;
Figure PCTKR2014004667-appb-I000007
;
[화학식 3][Formula 3]
Figure PCTKR2014004667-appb-I000008
Figure PCTKR2014004667-appb-I000008
[반응식 2] Scheme 2
Figure PCTKR2014004667-appb-I000009
;
Figure PCTKR2014004667-appb-I000009
;
상기 식들에서,In the above formulas,
M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 제 4 측면은, 상기 본원의 제 1 측면에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 제공한다.A fourth aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application.
본원의 제 5 측면은, 상기 본원의 제 4 측면에 따른 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 이용한, 루테늄-함유 막 또는 박막의 증착 방법을 제공한다.The fifth aspect of the present application provides a method of depositing a ruthenium-containing film or thin film using the ruthenium-containing film or precursor composition for thin film deposition according to the fourth aspect of the present application.
본원의 일 구현예에 의하면, 원자층 증착법 또는 화학기상증착법의 전구체로서 사용된 종래의 루테늄 전구체 화합물에 비해 원자층 증착의 원료 기체 공급 주기 당 막 형성이 훨씬 빠른 루테늄 화합물 및 그의 제조 방법이 제공된다. 본원의 일 구현예에 따른 신규 루테늄 화합물은 루테늄-함유 막 또는 박막을 형성하는 데에 사용될 수 있고 상업적인 원료로부터 용이하게 대량 생산할 수 있다.According to one embodiment of the present application, a ruthenium compound and a method for preparing the same are much faster than a conventional ruthenium precursor compound used as a precursor of atomic layer deposition or chemical vapor deposition, per film feed cycle of a raw material gas of atomic layer deposition. . The novel ruthenium compounds according to one embodiment of the present disclosure can be used to form ruthenium-containing films or thin films and can be easily mass produced from commercial raw materials.
도 1은, 본원의 실시예 1에 따라 제조된 루테늄 화합물의 열 무게 분석 (TGA) 그래프이다.1 is a thermogravimetric analysis (TGA) graph of ruthenium compound prepared according to Example 1 herein.
도 2는, 본원의 실시예 1에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 (DSC) 그래프이다.2 is a differential scanning calorimetry (DSC) graph of ruthenium compounds prepared according to Example 1 herein.
도 3a 내지 3d는, 본원의 실시예 2에 따라 형성한 루테늄-함유 박막들의 단면 주사 전자 현미경 (Scanning Electron Microscopy; SEM) 의 이미지이다.3A-3D are images of cross-sectional Scanning Electron Microscopy (SEM) of ruthenium-containing thin films formed according to Example 2 herein.
도 4는, 본원의 실시예 2에 따라 실리콘 (Si) 기재 위에 형성한 루테늄-함유 박막의 오제이 (Auger) 분석 결과이다.4 is a result of Auger analysis of a ruthenium-containing thin film formed on a silicon (Si) substrate according to Example 2 of the present application.
도 5는, 본원의 실시예 2에 따라 질화 티타늄 (TiN) 기재 위에 형성한 루테늄-함유 박막의 오제이 분석 결과이다.5 is a result of OJ analysis of a ruthenium-containing thin film formed on a titanium nitride (TiN) substrate according to Example 2 of the present application.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다. Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, 용어 "알킬기"는, 각각, 선형 또는 분지형의, 포화 또는 불포화의 C1-10 또는 C1-5 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. Throughout this specification, the term "alkyl group" may include linear or branched, saturated or unsaturated C 1-10 or C 1-5 alkyl groups, for example, methyl, ethyl, propyl, Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof may be included, but may not be limited thereto.
본원 명세서 전체에서, 용어 "알칼리 금속"은 주기율표의 1 족에 속하는 금속을 의미하는 것으로서, Li, Na, K, Rb, 또는 Cs일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "alkali metal" refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, K, Rb, or Cs, but may not be limited thereto.
본원 명세서 전체에서, 용어 "할로겐"은 주기율표의 17 족에 속하는 원소를 의미하는 것으로서, F, Cl, Br 또는 I 일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "halogen" refers to an element belonging to Group 17 of the periodic table, which may be F, Cl, Br or I, but may not be limited thereto.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는, 루테늄 화합물을 제공한다:A first aspect of the present application provides a ruthenium compound, represented by the following Chemical Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000010
;
Figure PCTKR2014004667-appb-I000010
;
상기 화학식 1 에서, In Chemical Formula 1,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 일 구현예에 있어서, 상기 신규 루테늄 화합물 자체 또는 상기 신규 루테늄 화합물을 포함하는 조성물을 이용하여 화학기상 증착법 (Chemical Vapor Deposition; CVD) 또는 원자층 증착법 (Atomic Layer Deposition; ALD) 방법에 의하여 루테늄-함유 박막을 증착할 수 있다. In one embodiment of the present application, ruthenium by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using the novel ruthenium compound itself or a composition comprising the novel ruthenium compound It is possible to deposit a thin film containing.
본원의 일 구현예에 있어서, 상기 C1-5의 선형 또는 분지형 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof However, this may not be limited.
본원의 일 구현예에 있어서, R1 및 R2가 iso-프로필기 또는 tert-부틸기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present disclosure, R 1 and R 2 may be an iso-propyl group or tert-butyl group, but may not be limited thereto.
본원의 일 구현예에 따른 루테늄 화합물은, (p-cymene)(HNCHCHNH)Ru, (p-cymene)(MeNCHCHNMe)Ru, (p-cymene)(EtNCHCHNEt)Ru, (p-cymene)(nPrNCHCHNnPr)Ru, (p-cymene)(iPrNCHCHNiPr)Ru, (p-cymene)(nBuNCHCHNnBu)Ru, (p-cymene)(iBuNCHCHNiBu)Ru, (p-cymene)(tBuNCHCHNtBu)Ru, 또는 (p-cymene)(secBuNCHCHNsecBu)Ru일 수 있으나, 이에 제한되지 않을 수 있다.Ruthenium compound according to an embodiment of the present application, (p-cymene) (HNCHCHNH) Ru, (p-cymene) (MeNCHCHNMe) Ru, (p-cymene) (EtNCHCHNEt) Ru, (p-cymene) ( n PrNCHCHN n Pr) Ru, (p-cymene) ( i PrNCHCHN i Pr) Ru, (p-cymene) ( n BuNCHCHN n Bu) Ru, ( p-cymene) ( i BuNCHCHN i Bu) Ru, (p-cymene) ( t BuNCHCHN t Bu) Ru, or (p-cymene) ( sec BuNCHCHN sec Bu) Ru, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 화합물에 포함되는 다이아자다이엔 리간드 (R1-N=CH-CH=N-R2)는 탄소와 질소 사이에 각각 두 개의 이중결합을 함유하는 것으로서 두 개의 질소 원자에 존재하는 각각의 비공유 전자쌍을 이용하여 중심 루테늄 금속에 배위 결합에 의해 결합되는 것일 수 있다. 상기 다이아자다이엔 리간드 중 HNCHCHNH는 H-DAD로서 약칭될 수 있고, MeNCHCHNMe 는 Me-DAD로서 약칭될 수 있고, EtNCHCHNEt 는 Et-DAD로서 약칭될 수 있고, nPrNCHCHNnPr 는 nPr-DAD로서 약칭될 수 있고, iPrNCHCHNiPr 는 iPr-DAD로서 약칭될 수 있고, nBuNCHCHNnBu 는 nBu-DAD로서 약칭될 수 있고, tBuNCHCHNtBu 는 tBu-DAD로서 약칭될 수 있으며, secBuNCHCHNsecBu 는 secBu-DAD로서 약칭될 수 있다.According to one embodiment of the present application, the diazadiene ligand (R 1 -N = CH-CH = NR 2 ) included in the compound contains two double bonds between carbon and nitrogen, respectively, to two nitrogen atoms. It may be coupled by coordination bonds to the central ruthenium metal using each of the unshared electron pairs present. HNCHCHNH in the diazadiene ligand may be abbreviated as H-DAD, MeNCHCHNMe may be abbreviated as Me-DAD, EtNCHCHNEt may be abbreviated as Et-DAD, and n PrNCHCHN n Pr is abbreviated as n Pr-DAD I PrNCHCHN i Pr may be abbreviated as i Pr-DAD, n BuNCHCHN n Bu may be abbreviated as n Bu-DAD, t BuNCHCHN t Bu may be abbreviated as t Bu-DAD, sec BuNCHCHN sec Bu may be abbreviated as sec Bu-DAD.
본원의 제 2 측면은, 하기 반응식 1에 나타난 바와 같이, 탄소수 5 이하의 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 상기 본원의 제 1 측면에 따른 루테늄 화합물의 제조 방법을 제공한다:As shown in Scheme 1 below, the second aspect of the present application is represented by the compound [RuX 2 (p-cymene)] 2 represented by the following Chemical Formula 2, M 2 CO 3 in an organic solvent containing an alcohol having 5 or less carbon atoms. A method for producing a ruthenium compound according to the first aspect of the present application, comprising reacting a mixture containing a carbonate salt of an alkali metal and a diazadiene ligand represented by Formula 3 to obtain a ruthenium compound of Formula 1 Provides:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000011
;
Figure PCTKR2014004667-appb-I000011
;
[화학식 2][Formula 2]
Figure PCTKR2014004667-appb-I000012
;
Figure PCTKR2014004667-appb-I000012
;
[화학식 3][Formula 3]
Figure PCTKR2014004667-appb-I000013
Figure PCTKR2014004667-appb-I000013
[반응식 1]Scheme 1
Figure PCTKR2014004667-appb-I000014
;
Figure PCTKR2014004667-appb-I000014
;
상기 식들에서, In the above formulas,
M은 Li, Na, 또는 K를 포함하고, M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고, X comprises Cl, Br, or I,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 일 구현예에 있어서, 상기 화학식 1의 루테늄 화합물 수득을 위한 반응은 환류 반응일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 용매는 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올은 용매로서 역할을 하는 동시에 환원제로서도 작용할 수 있다. 따라서, 본원의 일 구현예에 따른 루테늄 화합물은 별도의 환원제가 요구되지 않는 경제적이고 간소한 공정으로 제조될 수 있다. In one embodiment of the present application, the organic solvent may include a primary alcohol or a secondary alcohol having 5 or less carbon atoms, but may not be limited thereto. In one embodiment of the present application, the primary alcohol or secondary alcohol having 5 or less carbon atoms may serve as a solvent and also act as a reducing agent. Thus, ruthenium compounds according to one embodiment of the present application can be prepared in an economical and simple process that does not require a separate reducing agent.
본원의 일 구현예에 있어서, 상기 탄소수 5 이하의 1 차 알코올 또는 2 차 알코올은 메탄올, 에탄올, n-프로필 알코올, iso-프로필 알코올, n-부탄올, iso-부탄올, n-펜탄올, iso-펜탄올, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the primary alcohol or secondary alcohol having 5 or less carbon atoms is methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso- Pentanol, and combinations thereof may be selected from the group consisting of, but may not be limited thereto.
본원의 제 3 측면은, 하기 반응식 2에 나타난 바와 같이, 에테르계 용매를 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, 알칼리 금속 (M) 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 화학식 1의 루테늄 화합물을 수득하는 것을 포함하는, 상기 본원의 제 1 측면에 따른 루테늄 화합물의 제조 방법을 제공한다:The third aspect of the present application, as shown in Scheme 2 below, [RuX 2 (p-cymene)] 2 compound represented by the following formula ( 2 ), an alkali metal (M) and the following formula in an organic solvent comprising an ether solvent Provided is a process for preparing a ruthenium compound according to the first aspect of the present application, comprising reacting a mixture containing a diazadiene ligand represented as 3 to obtain a ruthenium compound of Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2014004667-appb-I000015
;
Figure PCTKR2014004667-appb-I000015
;
[화학식 2][Formula 2]
Figure PCTKR2014004667-appb-I000016
;
Figure PCTKR2014004667-appb-I000016
;
[화학식 3][Formula 3]
Figure PCTKR2014004667-appb-I000017
Figure PCTKR2014004667-appb-I000017
[반응식 2] Scheme 2
Figure PCTKR2014004667-appb-I000018
;
Figure PCTKR2014004667-appb-I000018
;
상기 식들에서, In the above formulas,
M은 Li, Na, 또는 K를 포함하고, M comprises Li, Na, or K,
X는 Cl, Br, 또는 I를 포함하고, X comprises Cl, Br, or I,
R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
본원의 일 구현예에 있어서, 상기 화학식 1의 루테늄 화합물 수득을 위한 반응은 환류 반응일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the reaction for obtaining the ruthenium compound of Formula 1 may be a reflux reaction, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 유기 용매는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 에틸렌 글리콜 디메틸 에테르 (DME, ethylene glycol dimethyl ether), 및 에틸렌 글리콜 디에틸 에테르로 이루어진 군으로부터 선택된 에테르를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, the organic solvent includes an ether selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, ethylene glycol dimethyl ether (DME), and ethylene glycol diethyl ether. It may be, but may not be limited thereto.
본원 제 2 측면 또는 제 3 측면의 일 구현예에 있어서, 하기 반응식 3에 나타난 바와 같이, 상기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물은, 유기 용매 중에서 루테늄 트리할라이드 수화물 (RuX3·nH2O) 및 하기 화학식 4로서 표시되는 α-테르피넨 (α-Terpinene) 또는 하기 화학식 5로서 표시되는 γ-테르피넨을 함유하는 혼합물을 반응시키는 것을 포함하는 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 이때, 상기 α-테르피넨 또는 γ-테르피넨 대신에 β-테르피넨, δ-테르피넨, α-펠란드렌 (α-Phellandrene), β-펠란드렌, 또는 이들의 이성질체를 사용할 수도 있다:In one embodiment of the second aspect or the third aspect of the present application, as shown in Scheme 3 below, the [RuX 2 (p-cymene)] 2 compound represented by Chemical Formula 2 may be a ruthenium trihalide hydrate ( It is prepared by a method comprising reacting a mixture containing RuX 3 · nH 2 O) and α-terpinene represented by the following formula (4) or γ-terpinene represented by the following formula (5): It may be, but may not be limited thereto. In this case, β-terpinene, δ-terpinene, α-Phellandrene, β-phellandrene, or an isomer thereof may be used instead of the α-terpinene or γ-terpinene.
[화학식 4][Formula 4]
Figure PCTKR2014004667-appb-I000019
Figure PCTKR2014004667-appb-I000019
[화학식 5][Formula 5]
Figure PCTKR2014004667-appb-I000020
Figure PCTKR2014004667-appb-I000020
[반응식 3]Scheme 3
Figure PCTKR2014004667-appb-I000021
;
Figure PCTKR2014004667-appb-I000021
;
상기 식들에서, In the above formulas,
X는 Cl, Br, 또는 I이고, X is Cl, Br, or I,
n은 0 또는 10 이하의 정수임.n is an integer of 0 or 10 or less.
상기 [RuX2(p-cymene)]2 화합물의 제조를 위해, 상기 루테늄 트리할라이드 수화물 (RuX3·nH2O) 및 상기 화학식 4의 α-테르피넨 또는 상기 화학식 5의 γ-테르피넨을 알코올을 포함하는 유기 용매에 첨가한 후 반응시켜 상기 [RuX2(p-cymene)]2 화합물을 형성할 수 있다. 그 다음, 상기 반응식 1 또는 2와 같이, 상기 형성된 [RuX2(p-cymene)]2 화합물; 알칼리 금속의 카보네이트염 (M2CO3) 또는 알칼리 금속; 및 상기 다이아자다이엔 리간드를 함유하는 혼합물을 환류 반응시켜 상기 화학식 1로서 표시되는 루테늄 화합물을 제조한다. For preparing the RuX 2 (p-cymene) 2 compound, the ruthenium trihalide hydrate (RuX 3 · nH 2 O) and α-terpinene of the formula (4) or γ-terpinene of the formula (5) are alcohols. It may be added to an organic solvent containing and reacted to form the compound [RuX 2 (p-cymene)] 2 . Then, as in Scheme 1 or 2, the formed [RuX 2 (p-cymene)] 2 compound; Carbonate salts of alkali metals (M 2 CO 3 ) or alkali metals; And reflux reaction of the mixture containing the diazadiene ligand to prepare a ruthenium compound represented by Chemical Formula 1.
본원의 제 4 측면은, 상기 본원의 제 1 측면에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 제공한다.A fourth aspect of the present application provides a ruthenium-containing film or precursor composition for thin film deposition, comprising the ruthenium compound according to the first aspect of the present application.
본원의 제 5 측면은, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 또는 박막 증착용 전구체 조성물을 이용한, 루테늄-함유 막 또는 박막의 증착 방법을 제공한다. 상기 루테늄-함유 막은 나노미터 두께의 박막일 수 있으나, 이에 제한되지 않는다.The fifth aspect of the present application provides a method of depositing a ruthenium-containing film or a thin film using the ruthenium compound according to the first aspect of the present application or the ruthenium-containing film or the precursor composition for thin film deposition. The ruthenium-containing film may be a nanometer-thick thin film, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막을 증착하는 것은 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, depositing the ruthenium-containing film may be performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막을 증착하는 것은, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 포함하는 기체를 기재 표면에 접촉시키는 것을 포함하는 공정에 의하여 수행될 수 있다.In one embodiment of the present disclosure, depositing the ruthenium-containing film comprises contacting a substrate including a ruthenium compound according to the first aspect of the present disclosure or a precursor composition for depositing a ruthenium-containing film according to the third aspect to a substrate surface. It may be carried out by a process comprising the.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막을 증착하는 것은, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 포함하는 기체를 기재에 접촉시킴과 동시에 또는 교대로 반응 기체를 함유하는 기체를 상기 기재에 접촉시키는 것을 추가 포함하는 공정에 의하여 수행될 수 있다. 예를 들어, 상기 루테늄-함유 막을 증착하는 것은, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 포함하는 기체와 반응 기체를 교대로 기재 표면에 접촉시키는 원자층 증착 (atomic layer deposition; ALD) 방법을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 루테늄-함유 막을 증착하는 것은, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 포함하는 기체와 반응 기체를 동시에 기재 표면에 접촉시키는 화학 기상 증착 (chemical vapor deposition; CVD) 방법을 사용할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, depositing the ruthenium-containing film comprises contacting a substrate comprising a ruthenium compound according to the first aspect of the present application or a precursor composition for ruthenium-containing film deposition according to the third aspect to a substrate. And at the same time or alternately may be carried out by a process further comprising contacting the substrate containing the reaction gas to the substrate. For example, the deposition of the ruthenium-containing film may include alternately applying a gas and a reaction gas including a ruthenium compound according to the first aspect of the present disclosure or a ruthenium-containing film deposition composition according to the third aspect to the substrate surface. Atomic layer deposition (ALD) methods may be used, but may not be limited thereto. For example, depositing the ruthenium-containing film comprises simultaneously contacting a substrate surface with a gas and a reaction gas comprising a ruthenium compound according to the first aspect of the present application or a precursor composition for ruthenium-containing film deposition according to the third aspect. Chemical vapor deposition (CVD) may be used, but the present invention may not be limited thereto.
막 증착을 위한 ALD 장치 또는 CVD 장치에 있어서, 상기 본원의 제 1 측면에 따른 루테늄 화합물 또는 제 3 측면에 따른 루테늄-함유 막 증착용 전구체 조성물을 포함하는 기체는 버블링, 기체상 유량제어 방법, 직접 액체 주입 방법, 또는 액체 이송 방법 등의 알려진 방법을 사용하여 기재 표면에 접촉되는 것일 수 있다.In the ALD apparatus or CVD apparatus for film deposition, the gas comprising a ruthenium compound according to the first aspect of the present application or a ruthenium-containing film deposition composition according to the third aspect is bubbling, gas phase flow control method, The substrate surface may be contacted using a known method such as a direct liquid injection method or a liquid transfer method.
본원의 일 구현예에 있어서, 상기 ALD 및 CVD 방법에 이용되는 반응 기체로는 수소 (H2) 기체, 암모니아 (NH3) 기체, 산소 (O2) 기체, 또는 오존 (O3) 기체 등 반도체 공정에 사용하는 기체를 사용하여 루테늄-함유 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 ALD 및 CVD 방법에 수소 기체 및/또는 암모니아 기체를 사용하여 막을 형성하는 경우, 불순물이 적게 포함된 루테늄-함유 막을 형성할 수 있다. 예를 들어, 산소 기체 또는 오존 기체를 사용하여 막을 형성하는 경우, 루테늄 산화물 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the reaction gas used in the ALD and CVD method is a semiconductor such as hydrogen (H 2 ) gas, ammonia (NH 3 ) gas, oxygen (O 2 ) gas, ozone (O 3 ) gas The gas used in the process may be used to form a ruthenium-containing film, but may not be limited thereto. For example, when the film is formed by using hydrogen gas and / or ammonia gas in the ALD and CVD methods, a ruthenium-containing film containing less impurities may be formed. For example, when the film is formed using oxygen gas or ozone gas, a ruthenium oxide film may be formed, but may not be limited thereto.
본원의 제 4 측면 및 제 5 측면은 각각 본원의 제 1 측면에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 증착용 전구체 조성물 및 상기 따른 루테늄-함유 막 증착용 전구체 조성물을 이용한 루테늄-함유 막의 증착 방법에 관한 것으로서, 본원의 제 1 측면 내지 제 3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 3 측면에 대해 설명한 내용은 본원의 제 4 측면 및 제 5 측면 각각에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Deposition of a ruthenium-containing film using a ruthenium-containing film precursor composition and a ruthenium-containing film precursor composition according to the fourth and fifth aspects of the present invention, each comprising a ruthenium compound according to the first aspect of the present application. As to the method, detailed descriptions of portions overlapping with the first to third aspects of the present disclosure have been omitted, but the descriptions of the first to third aspects of the present disclosure are directed to the fourth and fifth aspects of the present disclosure. The same may be applied even if the explanation is omitted in each.
본원의 일 구현예에 따른 루테늄 화합물은 루테늄 중심 금속과 리간드 사이에 결합이 약한 배위 결합에 의하여 연결되어 있는 착물 (complex)이므로, 비교적 낮은 온도에서도 리간드의 분해가 잘 일어나 증착 온도를 낮출 수 있다. 아울러, 상기 루테늄 중심 금속으로부터 분리된 p-사이민(p-cymene) 및 다이아자다이엔의 리간드는 진공 배기를 통하여 반응 챔버에서 쉽게 제거되므로 증착된 박막에 탄소, 질소, 산소 등 불순물이 감소되거나 상기 불순물이 잔류하지 않거나 실질적으로 잔류하지 않는다.The ruthenium compound according to the exemplary embodiment of the present invention is a complex in which a weak coordination bond is connected between the ruthenium center metal and the ligand, and thus, decomposition of the ligand may occur well at a relatively low temperature, thereby lowering the deposition temperature. In addition, since the ligands of p-cymene and diazadiene separated from the ruthenium center metal are easily removed from the reaction chamber through vacuum exhaust, impurities such as carbon, nitrogen, and oxygen are reduced in the deposited thin film, or No impurities remain or substantially no residue.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only provided to help understanding of the present application, and the contents of the present application are not limited to the following Examples.
[실시예] EXAMPLE
<제조예 1> [RuCl2(p-cymene)]2의 제조 Preparation Example 1 Preparation of [RuCl 2 (p-cymene)] 2
불꽃 건조된 500 mL 슐렝크 (Schlenk) 플라스크에서 루테늄 트리클로라이드 수화물 (Ruthenium trichloride hydrated, RuCl3·nH2O) 27 g (0.13 mol, 1 당량)을 에탄올 (ethanol, C2H5OH) 200 mL에 용해시킨 후 이 용액에 α-테르피넨 (α-Terpinene) 35.4 g (0.26 mol, 2 당량)을 상온에서 천천히 첨가하고, 이 혼합액을 15 시간 동안 환류 (reflux)시킨 후 반응을 완결시켰다.In a flame-dried 500 mL Schlenk flask, 27 g (0.13 mol, 1 equiv) of ruthenium trichloride hydrated, RuCl 3 nH 2 O was added to 200 mL of ethanol (C 2 H 5 OH). After dissolving in the solution, 35.4 g (0.26 mol, 2 equivalents) of α-terpinene was slowly added to the solution at room temperature, and the mixture was refluxed for 15 hours, and then the reaction was completed.
반응 종료 후 여과하여 얻은 짙은 갈색의 고체를 n-헥산 (n-hexane, C6H14) 50 mL를 이용하여 세 차례 세척한 후 진공 건조하여 적갈색의 고체 화합물 RuCl2(cymene)]2을 수득하였다.After the completion of the reaction, the dark brown solid obtained by filtration was washed three times with 50 mL of n-hexane (n-hexane, C 6 H 14 ), followed by vacuum drying to obtain a reddish brown solid compound RuCl 2 (cymene)] 2 . It was.
<실시예 1> (p-cymene)(iPr-DAD)Ru의 제조 Example 1 Preparation of (p-cymene) ( i Pr-DAD) Ru
제 1 방법1st way
불꽃 건조된 1,000 mL 슐렝크 플라스크에서, 제조예 1에서 제조된 [RuCl2(p-cymene)]2 53 g (0.087 mol, 1 당량)과 Na2CO3 50.5 g (0.476 mol, 5.5 당량)을 2-프로판올 (2-propanol, (CH3)2CHOH) 500 mL에 혼합하여 현탁액을 제조하였고 상기 현탁액을 3 시간 동안 교반시켰다. 2-프로판올 200 mL에 N,N'-다이아이소프로필-1,4-다이아자-1,3-부타다이엔 (N,N'-diisopropyl-1,4-diaza-1,3-butadiene, iPr-DAD) 37 g (0.259 mol, 3 당량)을 용해시킨 용액을 상온에서 상기 3 시간 동안 교반된 현탁액에 천천히 첨가한 후 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 1,000 mL Schlenk flask, 53 g (0.087 mol, 1 equiv) of [RuCl 2 (p-cymene)] 2 and 50.5 g (0.476 mol, 5.5 equiv) of Na 2 CO 3 prepared in Preparation Example 1 were prepared. A suspension was prepared by mixing into 500 mL of 2-propanol ((CH 3 ) 2 CHOH) and the suspension was stirred for 3 hours. In 2-propanol and 200 mL N, N'- diisopropyl-1,4-diaza-1,3-butadiene (N, N'- diisopropyl-1,4- diaza-1,3-butadiene, i A solution of 37 g (0.259 mol, 3 equivalents) of Pr-DAD) was slowly added to the stirred suspension at room temperature for 3 hours, and then the mixture was refluxed for 15 hours to complete the reaction.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 (n-hexane, C6H14) 500 mL로 추출하였다. n-헥산 추출물을 셀라이트 (Celite) 패드와 유리 프릿 (frit)을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 하기 화학식 6으로서 표시되는 진한 적포도주색 액체 화합물 28.0 g (수율 43%)을 수득하였다:After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane (n-hexane, C 6 H 14 ). After filtering the n-hexane extract through a Celite pad and a glass frit, the obtained filtrate was removed under reduced pressure and distilled under reduced pressure to give 28.0 g of a deep red wine liquid compound represented by Chemical Formula 6 below. Yield 43%) was obtained:
[화학식 6][Formula 6]
Figure PCTKR2014004667-appb-I000022
;
Figure PCTKR2014004667-appb-I000022
;
끓는점 (bp) 110℃ (0.3 torr);Boiling point (bp) 110 ° C. (0.3 torr);
원소분석 (elemental analysis) 계산치 (C18H30N2Ru) C 57.57, H 8.05, N 7.46, 실측치 C 57.25, H 7.69, N 7.55;Elemental analysis calculated (C 18 H 30 N 2 Ru) C 57.57, H 8.05, N 7.46, found C 57.25, H 7.69, N 7.55;
1H-NMR(400 MHz, C6D6, 25℃) δ 7.044 (s, 2H, N=CH), 4.606 (m, 4H, C6 H 4), 4.502 (septet, 2H, NCH(CH3)3), 2.437 (septet, 1H, CH(CH3)2), 2.095 (s, 3H, CH 3), 1.460 (d, 12H, NCH(CH 3)3), 1.154 (d, 6H, CH(CH 3)2). 1 H-NMR (400 MHz, C 6 D 6 , 25 ° C.) δ 7.044 (s, 2H, N = C H ), 4.606 (m, 4H, C 6 H 4 ), 4.502 (septet, 2H, NC H ( CH 3 ) 3 ), 2.437 (septet, 1H, C H (CH 3 ) 2 ), 2.095 (s, 3H, C H 3 ), 1.460 (d, 12H, NCH (C H 3 ) 3 ), 1.154 (d , 6H, CH (C H 3 ) 2 ).
제 2 방법2nd way
불꽃 건조된 1,000 mL 슈렝크 플라스크에서, 제조예 1에서 제조된 [RuCl2(p-cymene)]2 30 g (0.049 mol, 1 당량)을 에틸렌 글리콜 디메틸 에테르 (Ethylene glycol dimethyl ether; CH3OCH2CH2OCH3) 500 mL에 혼합하여 현탁액을 제조하였고 상기 현탁액에 Na 4.6 g (0.20 mol, 4.1 당량)을 투입한 후 1 시간 동안 교반시켰다. 에틸렌 글리콜 디메틸 에테르 100 mL에 N,N'-다이아이소프로필-1,4-다이아자-1,3-부타디엔 14.4 g (0.102 mol, 2.1 당량)을 용해시킨 용액을 상온에서 상기 1 시간 동안 교반된 현탁액에 천천히 첨가한 후 이 혼합액을 15 시간 동안 상온에서 반응을 완결시켰다.In a flame-dried 1,000 mL Schlenk flask, 30 g (0.049 mol, 1 equivalent) of [RuCl 2 (p-cymene)] 2 prepared in Preparation Example 1 was added to ethylene glycol dimethyl ether; CH 3 OCH 2 CH 2 OCH 3 ) was mixed with 500 mL of a suspension to prepare a suspension, and 4.6 g (0.20 mol, 4.1 equivalents) of Na was added to the suspension, followed by stirring for 1 hour. A solution of 14.4 g (0.102 mol, 2.1 equivalents) of N, N' -diisopropyl-1,4-diaza-1,3-butadiene in 100 mL of ethylene glycol dimethyl ether was stirred at room temperature for 1 hour. After slowly adding to the suspension, the mixture was completed for 15 hours at room temperature.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL로 추출하였다. n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 증류하여 상기 화학식 6로서 표시되는 진한 적포도주색 액체 화합물을 18.7 g (수율 53%)을 수득하였다. 상기 제 1 방법에서 수득된 화학식 6의 액체 화합물과 동일한 원소분석 및 NMR 분석결과를 확인하였다.After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate was removed under reduced pressure, and distilled under reduced pressure to give 18.7 g (yield 53%) of the dark red wine liquid compound represented by Chemical Formula 6. Obtained. The same elemental analysis and NMR analysis results as the liquid compound of formula 6 obtained in the first method were confirmed.
iPr-DAD 대신 tBu-DAD를 사용하여 실시예 1과 같은 방법으로 (p-cymene)(tBu-DAD)Ru를 제조할 수 있다. (p-cymene) ( t Bu-DAD) Ru may be prepared in the same manner as in Example 1 using t Bu-DAD instead of i Pr-DAD.
<비교예>Comparative Example
비교예를 위한 화합물은 하기와 같이 제조되었다.The compound for the comparative example was prepared as follows.
[RuClRuCl 22 (benzene)](benzene)] 22 의 제조Manufacture
불꽃 건조된 500 mL 슐렝크 플라스크에서 루테늄 트리클로라이드 수화물 27 g (0.13 mol, 1 당량)을 에탄올 200 mL에 용해시킨 후 이 용액에 1,3-사이클로헥사다이엔 (1,3-cyclohexadiene) 20.8 g (0.26 mol, 2 당량)을 상온에서 천천히 첨가하고, 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 500 mL Schlenk flask, 27 g (0.13 mol, 1 equivalent) of ruthenium trichloride hydrate was dissolved in 200 mL of ethanol, and 20.8 g of 1,3-cyclohexadiene was added to the solution. (0.26 mol, 2 equiv) was added slowly at room temperature and the mixture was refluxed for 15 hours before the reaction was completed.
반응 종료 후 여과하여 얻은 짙은 갈색의 고체를 n-헥산 50 mL를 이용하여 세 차례 세척한 후 진공 건조하여 적갈색의 고체 화합물 [RuCl2(benzene)]2을 수득하였다.After the completion of the reaction, the dark brown solid obtained by filtration was washed three times with 50 mL of n-hexane, followed by vacuum drying to give a reddish brown solid compound [RuCl 2 (benzene)] 2 .
(benzene)((benzene) ( ii Pr-DAD)Ru의 제조Preparation of Pr-DAD) Ru
불꽃 건조된 1,000 mL 슐렝크 플라스크에서, 상기에서 제조된 [RuCl2(benzene)]2 43.3 g (0.087 mol, 1 당량)과 Na2CO3 50.5 g (0.476 mol, 5.5 당량)을 2-프로판올 (2-propanol) 500 mL에 혼합하여 현탁액을 만든 후 상기 현탁액을 3 시간 동안 교반시켰다. iPr-DAD 37 g (0.259 mol, 3 당량)을 2-프로판올 200 mL에 용해시킨 용액을 상온에서 상기 3 시간 동안 교반된 현탁액에 천천히 첨가한 후 이 혼합액을 15 시간 동안 환류시킨 후 반응을 완결시켰다.In a flame-dried 1,000 mL Schlenk flask, 43.3 g (0.087 mol, 1 equiv) of [RuCl 2 (benzene)] 2 and 50.5 g (0.476 mol, 5.5 equiv) of Na 2 CO 3 prepared above were prepared with 2-propanol ( 2-propanol) was mixed to 500 mL to form a suspension, and the suspension was stirred for 3 hours. i A solution of 37 g (0.259 mol, 3 equivalents) of Pr-DAD dissolved in 200 mL of 2-propanol was slowly added to the stirred suspension at room temperature for 3 hours and then the mixture was refluxed for 15 hours to complete the reaction. I was.
상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL로 추출하였다. n-헥산 추출물을 셀라이트 패드와 유리 프릿을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고 감압 하에서 승화시켜 하기 화학식 7로서 표시되는 진한 적갈색 고체 화합물을 수득하였다:After the reaction was completed, the solvent and volatile side reactions were removed under reduced pressure and extracted with 500 mL of n-hexane. The n-hexane extract was filtered through a pad of celite and a glass frit, and the filtrate was removed under reduced pressure and then sublimed under reduced pressure to obtain a dark reddish brown solid compound represented by the following Chemical Formula 7:
[화학식 7][Formula 7]
Figure PCTKR2014004667-appb-I000023
;
Figure PCTKR2014004667-appb-I000023
;
수율 (yield) 21.57 g (39%);Yield 21.57 g (39%);
끓는점 (bp) 105℃ (0.3 torr);Boiling point (bp) 105 ° C. (0.3 torr);
원소분석 (elemental analysis) 계산치 (C14H22N2Ru) C 52.64, H 6.94, N 8.77, 실측치 C 51.97, H 6.82, N 8.57;Elemental analysis calculated (C 14 H 22 N 2 Ru) C 52.64, H 6.94, N 8.77, found C 51.97, H 6.82, N 8.57;
1H-NMR(400 MHz, C6D6, 25R(4d 7.055 (s, 2H, NCH), 4.829 (s, 6H, C6 H 6), 4.404 (septet, 2H, NCH(CH3)3), 1.415 (d, 12H, NCH(CH 3)3). 1 H-NMR (400 MHz, C 6 D 6 , 25R (4 d 7.055 (s, 2H, NC H ), 4.829 (s, 6H, C 6 H 6 ), 4.404 (septet, 2H, NC H (CH 3) ) 3 ), 1.415 (d, 12H, NCH (C H 3 ) 3 ).
본 비교예에 있어서, 이미 공지된 화합물인 (benzene)(iPr-DAD)Ru 또한 본원의 일 구현예에 따른 제조 방법을 이용하여 제조될 수 있음을 확인하였다. 그러나, 본 비교예의 화합물은 상온에서 고체로 존재하므로, 상기 실시예 1에서 제조된 상기 신규 루테늄 화합물 [(p-cymene)(iPr-DAD)Ru]과 달리, 화학기상 증착법 또는 원자층 증착법을 위한 전구체로서 불리한 측면이 있음을 알 수 있었다.In this comparative example, it was confirmed that (benzene) ( i Pr-DAD) Ru, which is a known compound, may also be prepared using the preparation method according to one embodiment of the present application. However, since the compound of the present comparative example exists as a solid at room temperature, unlike the novel ruthenium compound [(p-cymene) ( i Pr-DAD) Ru] prepared in Example 1, chemical vapor deposition or atomic layer deposition is performed. It was found that there are disadvantageous aspects as precursors.
<실험예 1> 열 무게 분석 및 시차 주사 열량계 실험 Experimental Example 1 Thermogravimetric Analysis and Differential Scanning Calorimeter Experiment
상기 실시예 1에서 제조된 루테늄 화합물의 기초 열적 특성을 분석하기 위하여 열 무게 분석 (TGA) 및 시차 주사 열량계 분석 (DSC)을 실시하였다. 이때 샘플의 무게를 약 5 mg 취하여 알루미나 시료용기에 넣은 후 10 ℃/min의 승온 속도로 50℃까지 측정하였고, 측정된 결과를 도 1 및 도 2에 나타내었다.In order to analyze the basic thermal properties of the ruthenium compound prepared in Example 1, thermogravimetric analysis (TGA) and differential scanning calorimetry analysis (DSC) were performed. At this time, the weight of the sample was taken to about 5 mg and placed in an alumina sample container and measured up to 50 ° C. at a temperature rising rate of 10 ° C./min.
이와 관련하여, 도 1은 실시예 1에 따라 제조된 루테늄 화합물의 열 무게 분석 (TGA) 그래프이고, 도 2는 실시예 1에 따라 제조된 루테늄 화합물의 시차 주사 열량계 분석 (DSC) 그래프이다. 도 1에서 확인할 수 있듯이, 상기 실시예 1에 따른 루테늄 화합물은 TGA 그래프에서 모두 150℃ 내지 250℃에서 급격한 질량 감소가 일어나며, T1/2 (온도에 따른 무게 감소에서 원래 시료의 1/2 무게에 도달할 때에 해당하는 온도)은 228℃였다. 또한, 도 2에서 확인할 수 있듯이, 상기 실시예 1에 따른 루테늄 화합물은 DSC 그래프에서 285℃ 및 347℃에서 화합물의 분해에 따른 흡열 봉우리를 보여준다.In this regard, FIG. 1 is a thermal gravimetric analysis (TGA) graph of ruthenium compound prepared according to Example 1, and FIG. 2 is a differential scanning calorimetry (DSC) graph of ruthenium compound prepared according to Example 1. FIG. As can be seen in Figure 1, the ruthenium compounds according to Example 1 in all the TGA graph in the sudden mass loss occurs at 150 ℃ to 250 ℃, T 1/2 (weight loss of the original sample at the weight loss with temperature 1/2) At the time of reaching the temperature) was 228 ° C. In addition, as can be seen in Figure 2, the ruthenium compound according to Example 1 shows an endothermic peak due to decomposition of the compound at 285 ℃ and 347 ℃ in the DSC graph.
<실시예 2> 실시예 1에서 제조된 (p-cymene)(iPr-DAD)Ru과 산소(O2) 기체를 사용한 원자층 증착법에 의한 루테늄-함유 박막의 형성 <Example 2> Formation of ruthenium-containing thin film by atomic layer deposition using (p-cymene) ( i Pr-DAD) Ru and oxygen (O 2 ) gas prepared in Example 1
상기 실시예 1에서 제조된 상기 화학식 6으로서 표시되는 (p-cymene)(iPr-DAD)Ru을 전구체로서 사용하고 산소(O2) 기체를 사용하여 원자층 증착 (ALD) 공정에 의한 성막 평가를 수행하였다. 증착에 사용된 기재로는 실리콘 (Si) 웨이퍼, 실리콘 기재 위에 산화 실리콘 (SiO2) 막이 100 nm 두께로서 입혀진 웨이퍼, 실리콘 기재 위에 질화 실리콘 (SiN) 막이 50 nm 두께로서 입혀진 웨이퍼, 및 실리콘 기재 위에 질화 티타늄 (TiN) 막이 50 nm 두께로서 입혀진 웨이퍼를 사용하였다. 이때, 기재의 온도는 250℃로 조절하였고 상기 전구체는 스테인리스강 (stainless steel) 재질의 용기에 담아 120℃의 온도에서 용기를 가열하면서 60 sccm의 유속을 갖는 아르곤 가스를 전구체의 운반가스로 사용하여 기체 상태로 기재 표면으로 공급하였다. 반응기의 공정 압력 (working pressure)은 0.5 torr로 조절하고, 루테늄 전구체 기체와 산소 (O2) 기체를 교대로 원자층 증착 챔버 안에 놓인 기재에 접촉시켰다. 상기 산소 기체는 60 sccm으로 흘려주었다. 전구체 기체 공급 20 초 -> Ar 기체 공급 10 초 -> 산소 기체 공급 10 초 -> Ar 기체 공급 10 초의 원자층 증착 주기를 200 회 반복한 후에 형성된 루테늄 금속 박막의 단면을 주사 전자 현미경 (SEM)을 이용하여 측정한 뒤, 그 결과를 도 3에 나타내었고, 오제이 (Auger) 분광기를 이용하여 형성된 루테늄-함유 박막의 루테늄, 탄소, 질소, 및 산소 함량을 도 4 및 도 5에 나타내었다. Evaluation of film formation by atomic layer deposition (ALD) process using (p-cymene) (iPr-DAD) Ru represented by Chemical Formula 6 prepared in Example 1 as a precursor and using oxygen (O 2 ) gas. Was performed. Substrates used for deposition include a silicon (Si) wafer, a wafer coated with a silicon oxide (SiO 2 ) film on the silicon substrate as 100 nm thick, a wafer coated with a silicon nitride (SiN) film on a silicon substrate as 50 nm thick, and a silicon substrate A wafer in which a titanium nitride (TiN) film was coated as 50 nm thick was used. At this time, the temperature of the substrate was adjusted to 250 ℃ and the precursor is placed in a container of stainless steel (stainless steel) material using argon gas having a flow rate of 60 sccm as a carrier gas of the precursor while heating the vessel at a temperature of 120 ℃ It was fed to the substrate surface in a gaseous state. The working pressure of the reactor was adjusted to 0.5 torr, and ruthenium precursor gas and oxygen (O 2 ) gas were alternately contacted with the substrate placed in the atomic layer deposition chamber. The oxygen gas was flowed at 60 sccm. After scanning the precursor gas supply 20 seconds-> Ar gas supply 10 seconds-> Oxygen gas supply 10 seconds-> Ar gas supply 10 seconds of atomic layer deposition cycle 200 times, the cross section of the ruthenium metal thin film formed was subjected to scanning electron microscopy (SEM). After the measurement, the results are shown in FIG. 3, and the ruthenium, carbon, nitrogen, and oxygen contents of the ruthenium-containing thin film formed using an Auger spectrometer are shown in FIGS. 4 and 5.
이와 관련하여, 도 3a 내지 3d는 실시예 2에 따라 형성한 루테늄-함유 박막들의 단면 주사 전자 현미경(Scanning Electron Microscopy, SEM)의 이미지이고, 도 4는 실시예 2에 따라 실리콘 (Si) 기재 위에 형성한 루테늄-함유 박막의 오제이 (Auger) 분석 결과이며, 도 5는 본 실시예에 따라 질화 티타늄 (TiN) 기재 위에 형성한 루테늄-함유 박막의 오제이 분석 결과이다. 도 3a 내지 3d에서 확인할 수 있듯이, Si와 SiO2 기재 위에서도 TiN과 거의 차이가 없는 표면이 평탄한 막이 얻어진 것을 확인할 수 있었다. 이것으로 보아 얇은 두께에서도 기재의 표면을 완전히 덮는 Ru 함유 막을 얻을 수 있음을 기대할 수 있다. 아울러, 도 4 및 도 5 에서 확인할 수 있듯이, 실리콘 기재 및 질화 티타늄 기재 위에 모두 루테늄 함량이 약 90%인 루테늄 금속 막이 형성된 것을 알 수 있었다. 또한, 원자층 증착의 기체 공급 주기를 150, 200, 400, 600 회 반복하여 형성한 루테늄 막의 두께를 측정함으로써, 기체 공급 주기 당 막 성장이 0.12 nm/cycle로 기존에 알려진 Ru 전구체보다 훨씬 크다는 것을 알았다.In this regard, FIGS. 3A-3D are images of cross-sectional Scanning Electron Microscopy (SEM) of ruthenium-containing thin films formed according to Example 2, and FIG. 4 is on a silicon (Si) substrate according to Example 2 Auger analysis result of the formed ruthenium-containing thin film (Auger) analysis, Figure 5 is a result of the ozone analysis of the ruthenium-containing thin film formed on a titanium nitride (TiN) substrate according to this embodiment. As can be seen from Figures 3a to 3d, it was confirmed that even on Si and SiO 2 substrates, a film having a flat surface having almost no difference with TiN was obtained. From this, it can be expected that a Ru-containing film that completely covers the surface of the substrate can be obtained even at a thin thickness. In addition, as can be seen in Figures 4 and 5, it can be seen that the ruthenium metal film having a ruthenium content of about 90% on both the silicon substrate and the titanium nitride substrate. In addition, by measuring the thickness of the ruthenium film formed by repeating the gas supply cycle of atomic layer deposition 150, 200, 400, and 600 times, it was found that the film growth per gas supply cycle was much larger than the Ru precursor known at 0.12 nm / cycle. okay.
특히, 상기 제조예 1에서 출발물질로서 사용된 테르피넨 화합물은 수십 Kg 또는 수백 Kg에 이르는 대용량일지라도 상업적으로 쉽게 구할 수 있다. 따라서 상기 테르피넨으로부터 합성되는 실시예 1의 루테늄 화합물은 상업적인 원료로부터 쉽게 대량 생산할 수 있고, 상온에서 액체이므로 Ru을 함유하는 막을 증착하는 목적으로 산업에 이용하기에 매우 유리하다.In particular, the terpinene compound used as a starting material in Preparation Example 1 can be easily obtained commercially even at a large capacity of several tens of Kg or hundreds of Kg. Therefore, the ruthenium compound of Example 1 synthesized from the terpinene can be easily mass-produced from commercial raw materials, and is liquid at room temperature, which is very advantageous for industrial use for the purpose of depositing a film containing Ru.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The foregoing description is for the purpose of illustration, and Those skilled in the art will understand that the present invention can be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. Should be interpreted as
본원에 따른 신규 루테늄 화합물은 상업적인 원료로부터 쉽게 대량 생산할 수 있고, 상온에서 액체이므로 Ru을 함유하는 막을 증착하는 목적으로 산업에 이용하기에 매우 유리하다.The novel ruthenium compounds according to the present invention can be easily mass-produced from commercial raw materials, and are liquid at room temperature, which is very advantageous for industrial use for the purpose of depositing a film containing Ru.

Claims (10)

  1. 하기 화학식 1로서 표시되는, 루테늄 화합물:Ruthenium compound represented by the following general formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2014004667-appb-I000024
    ;
    Figure PCTKR2014004667-appb-I000024
    ;
    상기 화학식 1 에서, In Chemical Formula 1,
    R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 C1-5의 선형 또는 분지형 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 루테늄 화합물.The C 1-5 linear or branched alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pen A ruthenium compound, comprising one selected from the group consisting of a tilyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and isomers thereof.
  3. 제 1 항에 있어서, The method of claim 1,
    R1 및 R2가 iso-프로필기 또는 tert-부틸기를 포함하는 것인, 루테늄 화합물.A ruthenium compound in which R 1 and R 2 include an iso-propyl group or tert-butyl group.
  4. 하기 반응식 1에 나타난 바와 같이,As shown in Scheme 1 below,
    탄소수 5 이하의 알코올을 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuX2(p-cymene)]2 화합물, M2CO3로서 표시되는 알칼리 금속의 카보네이트염 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 하기 화학식 1의 루테늄 화합물을 수득하는 것In an organic solvent containing an alcohol having 5 or less carbon atoms, a [RuX 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2, a carbonate salt of an alkali metal represented by M 2 CO 3 , and a diaza represented by the following Chemical Formula 3 Reacting a mixture containing ene ligands to obtain a ruthenium compound of the formula
    을 포함하는, Including,
    제 1 항 내지 제 3 항 중 어느 한 항에 따른 루테늄 화합물의 제조 방법:Process for preparing a ruthenium compound according to any one of claims 1 to 3
    [화학식 1][Formula 1]
    Figure PCTKR2014004667-appb-I000025
    ;
    Figure PCTKR2014004667-appb-I000025
    ;
    [화학식 2][Formula 2]
    Figure PCTKR2014004667-appb-I000026
    ;
    Figure PCTKR2014004667-appb-I000026
    ;
    [화학식 3][Formula 3]
    Figure PCTKR2014004667-appb-I000027
    Figure PCTKR2014004667-appb-I000027
    [반응식 1]Scheme 1
    Figure PCTKR2014004667-appb-I000028
    ;
    Figure PCTKR2014004667-appb-I000028
    ;
    상기 식들에서,In the above formulas,
    M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
    X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
    R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 탄소수 5 이하의 알코올은, n-프로필 알코올, iso-프로필 알코올, n-부탄올, iso-부탄올, n-펜탄올, iso-펜탄올, 및 이들의 조합들로 이루어진 군으로부터 선택되는 1 차 알코올 또는 2 차 알코올을 포함하는 것인, 제 1 항 내지 제 3 항 중 어느 한 항에 따른 루테늄 화합물의 제조 방법.The alcohol having 5 or less carbon atoms is selected from the group consisting of n-propyl alcohol, iso-propyl alcohol, n-butanol, iso-butanol, n-pentanol, iso-pentanol, and combinations thereof. Or a secondary alcohol, the method for producing a ruthenium compound according to any one of claims 1 to 3.
  6. 하기 반응식 2에 나타난 바와 같이,As shown in Scheme 2 below,
    에테르 용매를 포함하는 유기 용매 중에서 하기 화학식 2로서 표시되는 [RuCl2(p-cymene)]2 화합물, 알칼리 금속 (M) 및 하기 화학식 3으로서 표시되는 다이아자다이엔 리간드를 함유하는 혼합물을 반응시켜 화학식 1의 루테늄 화합물을 수득하는 것In an organic solvent containing an ether solvent, a mixture containing a [RuCl 2 (p-cymene)] 2 compound represented by the following Chemical Formula 2, an alkali metal (M) and a diazadiene ligand represented by the following Chemical Formula 3 is reacted To obtain ruthenium compound of 1
    을 포함하는,Including,
    제 1 항 내지 제 3 항 중 어느 한 항에 따른 루테늄 화합물의 제조 방법:Process for preparing a ruthenium compound according to any one of claims 1 to 3
    [화학식 1][Formula 1]
    Figure PCTKR2014004667-appb-I000029
    ;
    Figure PCTKR2014004667-appb-I000029
    ;
    [화학식 2][Formula 2]
    Figure PCTKR2014004667-appb-I000030
    ;
    Figure PCTKR2014004667-appb-I000030
    ;
    [화학식 3][Formula 3]
    Figure PCTKR2014004667-appb-I000031
    Figure PCTKR2014004667-appb-I000031
    [반응식 2]Scheme 2
    Figure PCTKR2014004667-appb-I000032
    ;
    Figure PCTKR2014004667-appb-I000032
    ;
    상기 식들에서,In the above formulas,
    M은 Li, Na, 또는 K를 포함하고,M comprises Li, Na, or K,
    X는 Cl, Br, 또는 I를 포함하고,X comprises Cl, Br, or I,
    R1 및 R2는 각각 독립적으로, H 또는 C1-5의 선형 또는 분지형 알킬기를 포함하는 것임.R 1 and R 2 each independently include H or C 1-5 linear or branched alkyl groups.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 에테르 용매는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 에틸렌 글리콜 디메틸 에테르 (DME, ethylene glycol dimethyl ether), 및 에틸렌 글리콜 디에틸 에테르로 이루어진 군으로부터 선택된 에테르를 포함하는 것인, 제 1 항 내지 제 3 항 중 어느 한 항에 따른 루테늄 화합물의 제조 방법.The ether solvent comprises an ether selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, ethylene glycol dimethyl ether (DME, ethylene glycol dimethyl ether), and ethylene glycol diethyl ether. A method for producing a ruthenium compound according to claim 3.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 루테늄 화합물을 포함하는, 루테늄-함유 막 증착용 전구체 조성물.A ruthenium-containing film precursor composition comprising the ruthenium compound according to any one of claims 1 to 3.
  9. 제 8 항에 따른 루테늄-함유 막 증착용 전구체 조성물을 이용한, 루테늄-함유 막의 증착 방법.A method of depositing a ruthenium-containing film, using the precursor composition for ruthenium-containing film deposition according to claim 8.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 막을 증착하는 것은 유기금속 화학기상 증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것인, 루테늄-함유 막의 증착 방법.And depositing the film comprises performing by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
PCT/KR2014/004667 2013-05-24 2014-05-26 Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same WO2014189340A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0059234 2013-05-24
KR20130059234 2013-05-24
KR10-2014-0062819 2014-05-26
KR1020140062819A KR20140138085A (en) 2013-05-24 2014-05-26 Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same

Publications (1)

Publication Number Publication Date
WO2014189340A1 true WO2014189340A1 (en) 2014-11-27

Family

ID=51933825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004667 WO2014189340A1 (en) 2013-05-24 2014-05-26 Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same

Country Status (1)

Country Link
WO (1) WO2014189340A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150056384A1 (en) * 2012-02-07 2015-02-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
CN112292383A (en) * 2018-07-27 2021-01-29 优美科股份公司及两合公司 Metal organic compound
US11643425B2 (en) * 2018-07-27 2023-05-09 Umicore Ag & Co. Kg Organometallic compounds for the manufacture of a semiconductor element or electronic memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060482A (en) * 2008-11-27 2010-06-07 주식회사 유피케미칼 Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
KR20100071463A (en) * 2008-12-19 2010-06-29 주식회사 유피케미칼 Organometallic precursors for deposition of metal or metal oxide thin films, and deposition process of the thin films
WO2013117955A1 (en) * 2012-02-07 2013-08-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060482A (en) * 2008-11-27 2010-06-07 주식회사 유피케미칼 Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
KR20100071463A (en) * 2008-12-19 2010-06-29 주식회사 유피케미칼 Organometallic precursors for deposition of metal or metal oxide thin films, and deposition process of the thin films
WO2013117955A1 (en) * 2012-02-07 2013-08-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOM, D. H. ET AL.: "Ruthenium complexes with diazadienes. 4.1 Arene diazadiene ruthenium(II) complexes [(.eta.6-arene)(RN:CR':CR':NR)Ru(L)]n+ (n = 1, L = Cl, I, alkyl; n = 2, L = MeCN, .eta.2-C2H4) and arene diazadiene ruthenium(0", ORGANOMETALLIES, vol. 5, 1986, pages 1449 - 1457, XP002359612, DOI: doi:10.1021/om00138a026 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150056384A1 (en) * 2012-02-07 2015-02-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
US9416443B2 (en) * 2012-02-07 2016-08-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
CN112292383A (en) * 2018-07-27 2021-01-29 优美科股份公司及两合公司 Metal organic compound
US11643425B2 (en) * 2018-07-27 2023-05-09 Umicore Ag & Co. Kg Organometallic compounds for the manufacture of a semiconductor element or electronic memory

Similar Documents

Publication Publication Date Title
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
KR101703871B1 (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
WO2021133080A1 (en) Yttrium/lanthanide metal precursor compound, composition comprising same for forming film, and method for forming yttrium/lanthanide metal-containing film using composition
WO2010071364A2 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
KR101369366B1 (en) Imide complex, method for producing the same, metal-containing thin film and method for producing the same
KR20100060482A (en) Organometallic precursors for deposition of ruthenium metal and/or ruthenium oxide thin films, and deposition process of the thin films
US11434563B2 (en) Raw material for chemical deposition containing ruthenium complex, and chemical deposition method using the raw material for chemical deposition
WO2015105337A1 (en) Novel trisilyl amine derivative, method for preparing the same and silicon-containing thin film using the same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
WO2014189340A1 (en) Novel ruthenium compound, method for manufacturing same, precursor composition for depositing film, comprising same, and method for depositing film using same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2022025332A1 (en) Cobalt compound, precursor composition including same, and method for preparing thin film using same
WO2023080505A1 (en) Novel organometallic compound, method for preparing same, and method for preparing thin film using same
WO2015182946A1 (en) Novel ruthenium compound, preparation method therefor, precursor composition for film deposition, containing same, and method for depositing film by using same
KR20150117179A (en) Novel precursor compounds for forming zirconium-containing film, compositions for forming zirconium-containing film comprising the same, and method of forming zirconium-containing film using them as precursors
KR20140138085A (en) Novel ruthenium compound, preparing method thereof, precursor composition for film deposition including the same, and depositing method of film using the same
WO2023013949A1 (en) Ruthenium organometallic compound, method for preparing same, and method for manufacturing thin film using same
WO2024096493A1 (en) Molybdenum precursor compound, method for producing same, and method for depositing molybdenum-containing thin film using same
WO2013157901A1 (en) Precursor compound containing group 4 transition metal, preparation method thereof, precursor composition containing same, and method for depositing thin film using same
WO2022080803A1 (en) Thermally stable ruthenium precursor composition, and method for forming ruthenium-containing film
WO2022139345A1 (en) Novel compound, precursor composition comprising same, and method for preparing thin film using same
WO2024058624A1 (en) Precursor for forming lanthanide metal-containing thin film, method for forming lanthanide metal-containing thin film using same, and semiconductor element including lanthanide metal-containing thin film
WO2018230771A1 (en) Group 4 metal element-containing alkoxy compound, preparation method therefor, film deposition precursor composition cntaining same, and film deposition method using same
WO2017116124A1 (en) Tantalum compound, preparation method therefor, film deposition precursor composition containing same, and method for depositing film by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800720

Country of ref document: EP

Kind code of ref document: A1