KR100459609B1 - organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film - Google Patents

organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film Download PDF

Info

Publication number
KR100459609B1
KR100459609B1 KR10-2002-0062381A KR20020062381A KR100459609B1 KR 100459609 B1 KR100459609 B1 KR 100459609B1 KR 20020062381 A KR20020062381 A KR 20020062381A KR 100459609 B1 KR100459609 B1 KR 100459609B1
Authority
KR
South Korea
Prior art keywords
cobalt
compound
organic
formula
thin film
Prior art date
Application number
KR10-2002-0062381A
Other languages
Korean (ko)
Other versions
KR20040033337A (en
Inventor
김현창
장혁규
김찬용
Original Assignee
주식회사 메카로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메카로닉스 filed Critical 주식회사 메카로닉스
Priority to KR10-2002-0062381A priority Critical patent/KR100459609B1/en
Publication of KR20040033337A publication Critical patent/KR20040033337A/en
Application granted granted Critical
Publication of KR100459609B1 publication Critical patent/KR100459609B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명에 따른 코발트 및 코발트실리사이드 박막 증착을 위한 유기코발트화합물은 하기의 화학식 1의 구조를 갖는 유기코발트화합물을 포함한다. <화학식 1>상기 화학식 1에서 L은 중성리간드로서 알카인(alkyne;CnH2n-2), 알킨(alkene;CnH2n), 다이엔(diene), 트리엔(triene), 고리다이엔(cyclic diene), 고리트리엔(cyclic triene), 이소사이안화물(isocyanide), 알킬니트릴(alkyl nitrile) 중 어느 하나를 채용하며, 이때의 n은 1~4의 숫자를 취한다.The organic cobalt compound for depositing cobalt and cobalt silicide thin films according to the present invention includes an organic cobalt compound having a structure of Formula 1 below. <Formula 1> In Formula 1, L is a neutral ligand, alkane (alkyne; C n H 2n-2 ), alkyne (alkene; C n H 2n ), diene, triene, cyclic diene (cyclic diene) ), Cyclic triene, isocyanide, alkyl nitrile, or any one of these, n is 1 to 4.

Description

코발트 및 코발트실리사이드 박막 증착을 위한 유기코발트화합물과 그 제조방법 및 박막 제조방법{organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film}Organic cobalt compounds for cobalt or cobalt salicide thin film and method about and cobalt thin film for cobalt and cobalt silicide thin film deposition

본 발명은 코발트 및 코발트실리사이드 등의 코발트를 포함하는 박막을 증착하기 위한 유기코발트 화합물과 그 제조방법에 관한 것으로, 더욱 상세하게는 화학기상증착법 또는 원자층증착법에 적용 가능하며 열적·화학적으로 안정한 유기코발트화합물과 이들의 제조 방법 및 상기 유기코발트 화합물을 이용하여 코발트 및 코발트실리사이드 박막을 제조하는 방법에 관한 것이다.The present invention relates to an organic cobalt compound for depositing a thin film containing cobalt, such as cobalt and cobalt silicide, and a method for manufacturing the same. More particularly, the present invention is applicable to chemical vapor deposition or atomic layer deposition and is thermally and chemically stable organic. The present invention relates to a cobalt compound, a method for preparing the same, and a method for preparing a cobalt and cobalt silicide thin film using the organic cobalt compound.

종래에 코발트(Co) 박막을 제조하기 위해서는 실리콘(Si)에 스퍼터링 (sputtering)이나 열증착(thermal evaporation)과 같은 물리적증착법(Physical Vaper Deposition)으로 증착하였다.Conventionally, in order to manufacture a cobalt (Co) thin film, silicon (Si) was deposited by physical vapor deposition (Physical Vaper Deposition) such as sputtering or thermal evaporation.

또한, 열적인 안정성과 화학적 안정성이 우수하고 비저항(10~18μΩ cm)이 낮아서 게이트 전극(gate electrode)이나 층간배선(interconnect), 접착층(contact layer) 등과 디지털 기록매체인 광자기메모리 등에 적용되는 코발트실리사이드 (CoSi2) 박막을 제조하기 위해서는 상기와 같이 제조된 코발트 박막을 증착 후 약 500℃ 이상에서 어닐(anneal)하거나, 분자빔 에피택시(molecular beam epitaxy; MBE) 등을 이용해서 제조하였다.In addition, it has excellent thermal stability, chemical stability, and low resistivity (10 ~ 18μΩcm), so it is applied to gate electrodes, interconnects, contact layers, and cobalt applied to digital recording media such as magneto-optical memory. In order to prepare a silicide (CoSi 2 ) thin film, the cobalt thin film prepared as described above was annealed at about 500 ° C. or more after deposition, or prepared using molecular beam epitaxy (MBE).

하지만, 메모리 및 비메모리 반도체 소자의 집적도가 높아지고 그 구조가 점점 복잡해짐에 따라 코발트 박막의 높은 종횡비(high aspect ratio)와 우수한 단차피복성(step coverage)이 중요한 공정요소로 평가되고 있지만, 상기와 같은 물리적 증착법으로는 한계가 있었다.However, as the integration degree of memory and non-memory semiconductor devices increases and the structure becomes more complicated, high aspect ratio and excellent step coverage of cobalt thin films are evaluated as important process factors. The same physical vapor deposition method was limited.

따라서, 종래 물리적 증착법의 대안으로서 널리 쓰이고 있는 박막 제조방법으로는 휘발성 유기금속 화합물을 사용하는 유기금속화학증착법(Metal Organic Chemical Vapor Deposition;이하 MOCVD)법이 있다. 상기 MOCVD법은 이송가스 (carrier gas)에 의한 버블링(bubbling) 방식이나 주입된 액체원료를 기화기(vaporizer)로 기화시키는 등 다양한 방법에 의해 기화된 유기금속화합물이 가열된 기판에 흡착 후 분해되어 증착되는 원리이다.Therefore, a thin film manufacturing method widely used as an alternative to the conventional physical vapor deposition method is a metal organic chemical vapor deposition method (MOCVD) method using a volatile organometallic compound. The MOCVD method is decomposed after adsorption of the vaporized organometallic compound on a heated substrate by various methods such as bubbling by a carrier gas or vaporizing the injected liquid raw material with a vaporizer. It is the principle of deposition.

이러한 화학증착법은 고집적소자에 있어서 필수적인 높은 종횡비와 우수한 단차피복성을 갖기 때문에 기존의 스퍼터링과 열증착법 같은 물리적증착법을 대체하고 있는 추세이지만, 더욱 미세화된 256MB 이상의 초고집적 반도체 제조공정에서는 더 높은 종횡비와 단차피복성을 얻기 위해서 원자층증착법(atomic layer deposition;이하 ALD)을 적용하고 있다.These chemical vapor deposition methods tend to replace conventional physical vapor deposition methods such as sputtering and thermal evaporation because they have high aspect ratios and excellent step coverage, which are essential for high-integration devices. In order to obtain step coverage, atomic layer deposition (ALD) has been applied.

원자층 증착법이란 반응물질을 챔버 내부로 순차적으로 주입하고 제거하는 방식으로 반도체 기판 상에 원자층을 증착하는 방법이다. 이러한 원자층 증착법은 화학기상증착법(Chemical Vaper Deposition;CVD)처럼 화학반응을 사용하는 증착법이지만 각각의 가스를 동시에 주입하여 챔버 내에서 혼합되지 않고 한 종류의 가스씩 펄스 형태로 흘려진다는 점에서 CVD법과 구별된다.The atomic layer deposition method is a method of depositing an atomic layer on a semiconductor substrate by sequentially injecting and removing a reactant into a chamber. The atomic layer deposition method is a deposition method using a chemical reaction, such as chemical vapor deposition (CVD), but CVD in that each type of gas is injected at the same time and flows in a pulse by one kind of gas without mixing in the chamber. It is distinguished from the law.

이때, 상기의 화학증착법 또는 원자층증착법에 있어서 화합물이 갖추어야 할 조건으로는 높은 기화 특성, 기화 온도와 분해 온도의 큰 격차, 낮은 독성, 화학적 안정성, 열적 안정성 및 화합물 합성과 열분해의 용이함 등이 있다. 또한, 기화하는 과정 및 기체상으로 이송하는 과정에서 자발적으로 분해되거나 다른 물질과 반응하는 부반응이 없어야 하며, 특히 원자층증착법의 경우에는 특별히 반응가스와의 반응이 용이해야한다.In this case, the chemical vapor deposition or atomic layer deposition method has a condition that the compound has a high vaporization characteristics, a large gap between the vaporization temperature and decomposition temperature, low toxicity, chemical stability, thermal stability and easy compound synthesis and pyrolysis . In addition, there should be no side reactions spontaneously decomposing or reacting with other substances in the process of vaporization and transfer to the gas phase, and especially in the case of atomic layer deposition, the reaction with the reaction gas should be easy.

종래에 사용되고 있는 코발트 증착용 화합물로는 대표적으로Co(CO)3(NO)[cobalt tricarbonyl nitrosyl], Co(CO)2Cp[cabalt dicarbonyl cyclopentadienyl], Co2(CO)8[dicobalt octacarbonyl], CoCp2[biscyclopentadienyl cobalt] 등이 알려져 있다.Conventionally used cobalt deposition compounds include Co (CO) 3 (NO) [cobalt tricarbonyl nitrosyl], Co (CO) 2 Cp [cabalt dicarbonyl cyclopentadienyl], Co 2 (CO) 8 [dicobalt octacarbonyl], CoCp 2 [biscyclopentadienyl cobalt] and the like are known.

하지만, Co(CO)3(NO), Co(CO)2Cp 화합물은 액체이고 증기압이 상당히 높은 장점이 있지만, 상온에서 열분해가 발생하는 등 열적으로 불안정하기 때문에 공정상에서 많은 어려움을 초래할 수 있다. 나아가, Co2(CO)8, CoCp2화합물은 고체일뿐만 아니라 증기압도 비교적 낮기 때문에 공정 적용시에 더욱 더 많은 어려움이 따른다. 아울러 cyclopentadienyl 계통의 화합물들은 증착온도가 300℃ 이상으로서 상대적으로 높을 뿐만 아니라 리간드의 분해특성상 탄소 오염이 심각하였다.However, although Co (CO) 3 (NO) and Co (CO) 2 Cp compounds are liquid and have a high vapor pressure, they may cause a lot of difficulties in the process due to thermal instability such as pyrolysis at room temperature. Furthermore, Co 2 (CO) 8 , CoCp 2 compounds are not only solid but also have relatively low vapor pressures, which present more and more difficulties in the application of the process. In addition, the cyclopentadienyl compounds were relatively high as the deposition temperature was higher than 300 ° C, and the carbon contamination was severe due to the decomposition characteristics of the ligands.

본 발명은 상기와 같이 문제점을 해결하기 위해 창안된 것으로서, 화학증착법 또는 원자층증착법을 이용한 박막의 제조 공정에 있어서 원료화합물의 열적·화학적 불안정성으로 인한 공정상의 문제점을 개선하고, 우수한 열적 안정성과 높은 증기압, 수분, 공기 등에 민감하게 반응하지 않으며, 반응가스와 증착 온도의 변화 등과 같은 공정조건만 변화시킴으로서 탄소 등의 불순물없는 순수한 코발트 박막을 증착 가능하게 하는 코발트 및 코발트실리사이드 박막 증착을 위한 유기코발트화합물과 그 제조방법 및 박막 제조방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the problems as described above, in the manufacturing process of the thin film using the chemical vapor deposition method or atomic layer deposition method to improve the process problems due to the thermal and chemical instability of the raw material compound, excellent thermal stability and high Organic cobalt compounds for the deposition of cobalt and cobalt silicide thin films that do not react sensitively to vapor pressure, moisture, air, etc., and make it possible to deposit pure cobalt thin films free of impurities such as carbon by only changing process conditions such as changes in reaction gas and deposition temperature. And to provide a method for manufacturing the same and a thin film has an object.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to.

도 1은 원자층 증착법에 사용되는 장치를 나타낸 도면이다.1 is a view showing a device used in the atomic layer deposition method.

도 2 및 도 3은 본 발명에 따라 제조된 코발트 화합물의 열적 안정도 실험결과를 나타낸 그래프로서, 도 2는 가열보관 전의 상태를 나타내며 도 3은 가열보관 후 2개월이 경과된 상태를 나타낸다.2 and 3 are graphs showing the thermal stability test results of the cobalt compound prepared according to the present invention, Figure 2 shows the state before heating storage, Figure 3 shows the state 2 months after heating storage.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 코발트 및 코발트실리사이드 박막 증착을 위한 유기코발트화합물은 하기의 화학식 1의 구조를 갖는 유기코발트화합물을 포함한다.In order to achieve the above object, an organic cobalt compound for depositing a cobalt and cobalt silicide thin film according to the present invention includes an organic cobalt compound having a structure of Formula 1 below.

상기 화학식 1에서 L은 중성리간드로서 알카인(alkyne;CnH2n-2), 알킨(alkene;CnH2n), 다이엔(diene), 트리엔(triene), 고리다이엔(cyclic diene), 고리트리엔(cyclic triene), 이소사이안화물(isocyanide), 알킬니트릴(alkyl nitrile) 중 어느 하나를 채용하며, 이때의 n은 1~4의 숫자를 취한다.In Formula 1, L is a neutral ligand, alkane (alkyne; C n H 2n-2 ), alkyne (alkene; C n H 2n ), diene, triene, cyclic diene (cyclic diene) ), Cyclic triene, isocyanide, alkyl nitrile, or any one of these, n is 1 to 4.

바람직하게, 본 발명의 유기코발트화합물에 있어서 상기 중성리간드 L은 하기의 화학식 2와 같은 유기화합물을 포함하는 것을 특징으로 하는 유기코발트화합물을 포함한다.Preferably, in the organic cobalt compound of the present invention, the neutral ligand L includes an organic cobalt compound, characterized in that it comprises an organic compound, such as the following formula (2).

1) alkyne : R1-C≡C-R2 1) alkyne: R 1 -C≡CR 2

2) alkene : R3R4C=CR5R6 2) alkene: R 3 R 4 C = CR 5 R 6

3) diene : R7R8C=CR9-CR10=CR11R12 3) diene: R 7 R 8 C = CR 9 -CR 10 = CR 11 R 12

4) triene : R13R14C=CR15-CR16=CR17-CR18=CR19R20 4) triene: R 13 R 14 C = CR 15 -CR 16 = CR 17 -CR 18 = CR 19 R 20

5) cyclic diene : 1,3(1,4)-cyclohexadiene, 1,3(1,4)-cycloheptadiene,5) Cyclic diene: 1,3 (1,4) -cyclohexadiene, 1,3 (1,4) -cycloheptadiene,

cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1,cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1,

5-cyclooctadiene5-cyclooctadiene

6) cyclic triene : 1,3,5-cycloheptadiene6) Cyclic triene: 1,3,5-cycloheptadiene

7) isocyanide : R21-NC7) isocyanide: R 21 -NC

8) alkyl nitrile : R22-CN8) alkyl nitrile: R 22 -CN

상기 화학식 2에서 R1부터 R22는 각각 독립적으로 수소(H), 탄소(C) 숫자 1부터 10까지의 포화 또는 불포화 알킬, (과)불화알킬, 알콕시알킬(-CR2OR), 아미노알킬(-CR2NR2), 알킬실리콘(-SiR3), 알콕시실리콘(-Si(OR)3), 알킬알콕시실리콘(-Si(R)3-n(OR)n), 알킬실릴옥시(-OSiR3), 알콕시(-OR), 알킬아미노(-NR2) 중 어느 하나를 채용할 수 있으며, 특히 고리다이엔의 경우에는 화학식 2의 5), 6)에 예시된 화합물 뿐만아니라 고리내부에 수소(H), 탄소 숫자 1부터 10까지의 포화 또는 불포화 알킬, (과)불화알킬, 알콕시알킬(-CR2OR), 아미노알킬(-CR2NR2), 알킬실리콘(-SiR3), 알콕시실리콘(-Si(OR)3), 알킬알콕시실리콘(-Si(R)3-n(OR)n), 알킬실릴옥시(-OSiR3), 알콕시(-OR), 알킬아미노(-NR2) 중 어느 하나가 치환되어있는 화합물을 포함하는 것이 바람직하다.In Formula 2, R 1 to R 22 are each independently hydrogen (H), carbon (C) 1 to 10 saturated or unsaturated alkyl, (or) fluorinated alkyl, alkoxyalkyl (-CR 2 OR), aminoalkyl (-CR 2 NR 2 ), alkylsilicone (-SiR 3 ), alkoxysilicone (-Si (OR) 3 ), alkylalkoxysilicon (-Si (R) 3-n (OR) n ), alkylsilyloxy (- OSiR 3 ), alkoxy (-OR), alkylamino (-NR 2 ) may be employed, and especially in the case of cyclic dienes, as well as the compounds exemplified in 5) and 6) Hydrogen (H), saturated or unsaturated alkyl of from 1 to 10 carbon atoms, (also) fluorinated alkyl, alkoxyalkyl (-CR 2 OR), aminoalkyl (-CR 2 NR 2 ), alkylsilicone (-SiR 3 ), Alkoxysilicon (-Si (OR) 3 ), Alkylalkoxysilicon (-Si (R) 3-n (OR) n ), Alkylsilyloxy (-OSiR 3 ), Alkoxy (-OR), Alkylamino (-NR 2 It is preferable that any one of) contains the compound substituted.

또한, 본 발명에 따르면 상기 화학식 1과 같이 제조되는 화합물 중에서 화학식 2의 1)인 알카인 화합물들이 바람직하며, 더욱 바람직하게는 R1, R2는 각각 독립적으로 수소 내지 탄소 1부터 10까지의 알킬기, 트리알킬실리콘기를 가지는 화합물이다. 대표적인 화합물로는 t-부틸아세틸렌(R1=H, R2= t-부틸), 트리메틸실릴아세틸렌(R1=H, R2=트리메틸실릴;-SiMe3) , 비스트리메틸실릴아세틸렌(R1, R2=트리메틸실릴;-SiMe3),트리에틸실릴아세틸렌, 1-트리메틸실릴-1-프로파인(propyne), 1(2)-펜타인(pentyne), 1(2)(3)-헥사인(hexyne), 1(2)-헵타인(heptyne) , 1(2)(4)-옥타인 (octyne) 등이 있다.Further, according to the present invention, alkane compounds of 1) of Formula 2 are preferable among the compounds prepared as in Chemical Formula 1, and more preferably, R 1 and R 2 are each independently hydrogen to an alkyl group having from 1 to 10 carbon atoms. And a compound having a trialkylsilicone group. Representative compounds include t-butylacetylene (R 1 = H, R 2 = t-butyl), trimethylsilylacetylene (R 1 = H, R 2 = trimethylsilyl; -SiMe 3 ), bistrimethylsilylacetylene (R 1 , R 2 = trimethylsilyl; -SiMe 3 ), triethylsilylacetylene, 1-trimethylsilyl-1-propyne, 1 (2) -pentyne, 1 (2) (3) -hexane hexyne, 1 (2) -heptyne, 1 (2) (4) -octane and the like.

본 발명의 또 다른 측면에 따르면, 본 발명의 유기코발트화합물을 제조하는 방법은 코발트카르보닐에 용매를 먼저 첨가하는 단계와, 그 혼합물 용액에 상기 화학식 2의 유기화합물을 첨가하는 단계를 포함하는 것을 특징으로 하는 유기화합물의 제조 방법을 포함한다. 아울러, 사용되는 용매로는 포화 및 불포화, 방향족 탄화수소, (고리)에테르, 에스테르, (고리)아민, 알콜, 아세톤 중 어느 하나를 포함하는 것이 바람직하다.According to another aspect of the invention, the method for producing an organic cobalt compound of the present invention comprises the step of first adding a solvent to the cobalt carbonyl, and adding the organic compound of formula 2 to the mixture solution It includes a method for producing an organic compound characterized by. In addition, the solvent used preferably contains any of saturated and unsaturated, aromatic hydrocarbons, (ring) ethers, esters, (ring) amines, alcohols, and acetone.

상술한 코발트화합물은 코발트 및 코발트실리사이드 박막을 제조하는 방법으로서 화학증착법 또는 원자층증착법에 원료 물질로 사용될 수 있으며, 이때 상기 화합물들은 하기의 반응식 1과 같은 제조 공정으로 제조된다.The cobalt compound described above may be used as a raw material in a chemical vapor deposition method or an atomic layer deposition method as a method for producing a cobalt and cobalt silicide thin film, wherein the compounds are prepared by the preparation process shown in Scheme 1 below.

원료물질인 Co2(CO)8에 리간드(L)를 첨가하여 리간드가 자발적으로 치환반응을 일으키도록 유도하며, 이때의 모든 반응 과정은 공기와의 접촉을 배제하기 위해불활성 기류(Ar, N2)에서 이루어진다.Ligand (L) is added to Co 2 (CO) 8 as a raw material to induce a spontaneous substitution reaction of the ligand. In this case, all reaction processes are performed in order to exclude contact with air (Ar, N 2). Takes place).

좀 더 자세히 설명하면, 코발트카르보닐(Co2(CO)8)과 상기 화학식 2의 L로 표시되는 알카인(alkyne;CnH2n-2), 알킨(alkene;CnH2n), 다이엔(diene), 트리엔 (triene), 고리다이엔(cyclic diene), 고리트리엔(cyclic triene), 이소사이안화물 (isocyanide), 알킬니트릴(alkyl nitrile) 등의 화합물을 반응시켜서 원하는 코발트 화합물을 제조한다. 이를 위해서는, 먼저 고체인 코발트카르보닐을 용매에 희석시켜서 분산용액을 제조한다. 이후 상기 분산용액에 리간드 화합물을 반응시켜서 코발트 화합물을 생성한다.In more detail, cobaltcarbonyl (Co 2 (CO) 8 ) and alkyne represented by L of Chemical Formula 2 (C n H 2n-2 ), alkyne (alkene; C n H 2n ), die Cobalt compounds desired by reacting compounds such as diene, triene, cyclic diene, cyclic triene, isocyanide and alkyl nitrile To prepare. To this end, first, cobalt carbonyl as a solid is diluted in a solvent to prepare a dispersion solution. Thereafter, a ligand compound is reacted with the dispersion solution to produce a cobalt compound.

또한, 코발트를 포함하는 박막 증착을 위한 화합물의 증착특성 향상을 위해서 상기 제조된 코발트 화합물(화학식 1)에 상기 화학식 2의 유기화합물 중 하나 또는 하나 이상을 가하여 혼합물 형태로 제조할 수 있으며, 다른 한편으로는 상기 화학식 1의 화합물에 포화 또는 불포화탄화수소류, 에테르류(고리에테르 포함), 에스테르류, 알콜류, 아민류(고리아민 포함), 설파이드류(고리설파이드 포함), 포스핀류, 베타-디키톤류, 베타-키토에스테르류 등의 유기화합물을 가하여 코발트 화합물을 제조하는 것도 가능하다.In addition, in order to improve the deposition properties of the compound for thin film deposition including cobalt can be prepared in the form of a mixture by adding one or more of the organic compounds of the formula (2) to the prepared cobalt compound (Formula 1), on the other hand Examples of the compound represented by Formula 1 include saturated or unsaturated hydrocarbons, ethers (including cyclic ethers), esters, alcohols, amines (including cyclic amines), sulfides (including cyclic sulfides), phosphines, and beta-dikitones. It is also possible to add cobalt compounds by adding organic compounds such as beta-chitoesters.

한편, 상기 반응에 사용 가능한 용매로는 포화 및 불포화, 방향족 탄화수소, (고리)에테르, 에스테르, (고리)아민, 알콜, 아세톤 등이 바람직하며, 더욱 바람직하게는 석유에테르, 헥산, 펜탄, 헵탄, 에틸에테르, 테트라하이드로퓨란(THF), 벤젠, 톨루엔, 에틸알콜, 메틸알콜, 이소프로필알콜, 아세톤 중 어느 하나를 채용한다.On the other hand, as the solvent usable in the reaction, saturated and unsaturated, aromatic hydrocarbons, (ring) ethers, esters, (ring) amines, alcohols, acetone, and the like are preferable, more preferably petroleum ether, hexane, pentane, heptane, Ethyl ether, tetrahydrofuran (THF), benzene, toluene, ethyl alcohol, methyl alcohol, isopropyl alcohol, acetone are employed.

이하에서는 상기 화합물의 제조방법을 구체적인 예를 들어 설명한다.Hereinafter, the production method of the compound will be described with specific examples.

1) -Co2(CO)6(t-부틸아세틸렌)의 제조1) Preparation of -Co 2 (CO) 6 (t-butylacetylene)

먼저, 원료물질 Co2(CO)8(40g, 0.117몰)에 석유에테르 100mL을 가해서 진한 갈색의 분산용액을 제조한다. 제조된 분산용액에 t-부틸아세틸렌(9.6g, 0.117몰)을 첨가하고, 상온에서 약 12시간 가량 교반한다. 반응이 진행됨에 따라 일산화탄소 (CO) 가스가 발생되며, 이때 반응물인 Co2(CO)8고체가 모두 녹고 가스 발생이 중지되면 반응이 종료된 것으로 간주한다. 반응이 종료되면 진한 적색 용액에서 액체질소 트랩을 이용해 용매를 제거한 후 80℃부터 90℃ 영역에서 진공증류하여 진한 적색의 1차 생성물(39g)을 얻는다. 1차 생성된 화합물은 다시 감압상태(0.1torr)에서 55 ~ 60℃로 가열하고 드라이아이스로 냉각된 용기에 진한 적색의 순수한 생성물 -Co2(CO)6(t-부틸아세틸렌)을 증류하여 제조한다. 제조된 화합물은1H(13C)-NMR을 이용해서 잔류 유기물을 분석하였으며, ICP-MS를 이용해서 잔류 미량금속 불순물들을 분석하였으며, 그 결과를 하기의 표 1에 나타내었다.First, 100 mL of petroleum ether is added to the raw material Co 2 (CO) 8 (40 g, 0.117 mol) to prepare a dark brown dispersion solution. T-butylacetylene (9.6 g, 0.117 mol) is added to the prepared dispersion, and the mixture is stirred at room temperature for about 12 hours. As the reaction proceeds, carbon monoxide (CO) gas is generated, and when the reactant Co 2 (CO) 8 solid is dissolved and gas generation stops, the reaction is considered to have ended. At the end of the reaction, the solvent was removed from the dark red solution using a liquid nitrogen trap, followed by vacuum distillation at 80 ° C. to 90 ° C. to obtain a dark red primary product (39 g). The primary compound was prepared by heating to 55-60 ° C. under reduced pressure (0.1torr) and distilling deep red pure product -Co 2 (CO) 6 (t-butylacetylene) into a vessel cooled with dry ice. do. The prepared compound was analyzed for residual organic matter using 1 H ( 13 C) -NMR, the residual trace metal impurities were analyzed using ICP-MS, the results are shown in Table 1 below.

2)-Co2(CO)6(트리메틸실릴아세틸렌)의 제조Preparation of 2) -Co 2 (CO) 6 (trimethylsilylacetylene)

상기 화합물 -Co2(CO)6(t-부틸아세틸렌)의 제조 공정과 동일한 방법으로Co2(CO)8(40g, 0.117몰)과 트리메틸실릴아세틸렌(0.117몰)을 반응 시킨 후 약 60℃ ~ 70℃ 영역에서 진공증류하여 화합물 -Co2(CO)6(트리메틸실릴아세틸렌)(수율 70%)을 제조하였다. 제조된 화합물은1H(13C)-NMR을 이용해서 잔류 유기물을 분석하였으며, ICP-MS를 이용해서 잔류 미량금속 불순물들을 분석하였으며, 그 결과를 하기의 표 1에 나타내었다.After reacting Co 2 (CO) 8 (40 g, 0.117 mole) with trimethylsilylacetylene (0.117 mole) in the same manner as the process for preparing compound -Co 2 (CO) 6 (t-butylacetylene), about 60 ° C to Vacuum distillation at 70 ° C. yielded compound -Co 2 (CO) 6 (trimethylsilylacetylene) (yield 70%). The prepared compound was analyzed for residual organic matter using 1 H ( 13 C) -NMR, the residual trace metal impurities were analyzed using ICP-MS, the results are shown in Table 1 below.

3)-Co2(CO)6(L)의 제조3) -Co 2 (CO) 6 (L) Preparation

상기 화합물 -Co2(CO)6(t-부틸아세틸렌)의 제조 공정과 동일한 방법으로 Co2(CO)8(40g, 0.117몰)과 t-부틸이소시안화물, 트리메틸실릴시안화물, 트리메틸아세토니트릴(0.117몰) 등을 각각 별도로 반응시킨 후 약 70℃ ~ 80℃ 영역에서 진공증류하여 화합물 -Co2(CO)6(t-부틸이소시안화물), -Co2(CO)6(트리메틸실릴시안화물), -Co2(CO)6(트리메틸아세토니트릴)(수율 70%)을 각각 제조하였다. 제조된 화합물은1H(13C)-NMR을 이용해서 잔류 유기물을 분석하였으며, ICP-MS를 이용해서 잔류 미량금속 불순물들을 분석하였으며, 그 결과를 하기의 표 1에 나타내었다.Co 2 (CO) 8 (40 g, 0.117 mol) and t-butyl isocyanide, trimethylsilyl cyanide, trimethylacetonitrile in the same manner as in the preparation of the compound -Co 2 (CO) 6 (t-butylacetylene) ( 0.117 mole), and the like are reacted separately, and then vacuum distilled in the range of about 70 ° C. to 80 ° C. to give compounds -Co 2 (CO) 6 (t-butyl isocyanide) and -Co 2 (CO) 6 (trimethylsilyl cyanide). ), -Co 2 (CO) 6 (trimethylacetonitrile) (yield 70%), respectively. The prepared compound was analyzed for residual organic matter using 1 H ( 13 C) -NMR, the residual trace metal impurities were analyzed using ICP-MS, the results are shown in Table 1 below.

화합물compound 끊는점(℃/torr)Breaking point (℃ / torr) H-NMR스펙트럼(ppm)H-NMR spectrum (ppm) Co2(CO)6(t-부틸아세틸렌)Co 2 (CO) 6 (t-butylacetylene) 55/0.155 / 0.1 5.5(s), 1.1(s)5.5 (s), 1.1 (s) Co2(CO)6(트리메틸실릴아세틸렌)Co 2 (CO) 6 (trimethylsilylacetylene) 60/0.160 / 0.1 5.1(s), 0.1(s)5.1 (s), 0.1 (s) Co2(CO)6(비스트리메틸실릴아세틸렌)Co 2 (CO) 6 (bistrimethylsilylacetylene) 80/0.180 / 0.1 0.12(s)0.12 (s) Co2(CO)6(1-hexyne)Co 2 (CO) 6 (1-hexyne) 65/0.165 / 0.1 5.5(s), 2.2(t), 1.7(m), 1.5(m),0.9(t)5.5 (s), 2.2 (t), 1.7 (m), 1.5 (m), 0.9 (t) Co2(CO)6(1-pentyne)Co 2 (CO) 6 (1-pentyne) 55/0.155 / 0.1 5.5(s), 2.2(t), 1.5(m), 0.9(t)5.5 (s), 2.2 (t), 1.5 (m), 0.9 (t) Co2(CO)6(t-부틸이소시안화물)Co 2 (CO) 6 (t-butyl isocyanide) 70/0.170 / 0.1 1.5(s)1.5 (s) Co2(CO)6(트리메틸실릴니트릴)Co 2 (CO) 6 (trimethylsilylnitrile) 75/0.175 / 0.1 0.2(s)0.2 (s)

표 1은 반응식 1의 방법에 의해 제조된 화합물들의1H-NMR 스펙트럼과 증류시의 끊는점으로서1H-NMR 스펙트럼을 통해서 화합물이 순수하게 제조됨을 확인할 수 있다. 상기 화합물들은 55 ~ 80℃ 범위에서 증류되는 액체 또는 고체로서 증착시 필요한 적당한 증기압을 나타내며, 증류시에도 열분해가 나타나지 않음으로서 열적 안전성이 우수한 것을 확인할 수 있다. 특히, Co2(CO)6(t-부틸아세틸렌) 화합물은 액체이며 증기압이 가장 높고, 열적 안정도(도 2, 3의 스펙트럼 참조)가 우수할 뿐만 아니라 공기중에 노출되어도 쉽게 분해되지 않고, 물과도 반응하지 않기 때문에 코발트 증착을 위한 공정에 적용이 가장 용이한 유기코발트 화합물임을 알 수 있다.Table 1 can be seen that by the 1 H-NMR spectrum as a breaking point at the time of 1 H-NMR spectra of the compounds prepared by the method of Scheme 1 with distilled compound is prepared in pure water. The compounds have a suitable vapor pressure required for deposition as a liquid or solid distilled in the range of 55 ~ 80 ℃, it can be confirmed that the thermal stability is excellent because no thermal decomposition during distillation. In particular, the Co 2 (CO) 6 (t-butylacetylene) compound is a liquid and has the highest vapor pressure, excellent thermal stability (see the spectra of FIGS. 2 and 3), and does not readily decompose upon exposure to air. Since it does not react, it can be seen that the organic cobalt compound is most easily applied to a process for cobalt deposition.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 원자층 증착법에 사용되는 장치를 나타낸 도면으로서, 본 발명에 의해 제조된 유기코발트화합물을 채용하여 코발트 또는 코발트실리사이트 박막을 제조한다.1 is a view showing an apparatus used in the atomic layer deposition method, a cobalt or cobalt silicide thin film is prepared by employing the organic cobalt compound prepared according to the present invention.

상기 도면을 참조하여 상기 방법 1)에 의해 제조된 화합물 -Co2(CO)6(t-부틸아세틸렌)을 이용하여 코발트 박막을 제조하는 방법을 살펴본다. 먼저, 원료물질인 -Co2(CO)6(t-부틸아세틸렌)을 스테인레스 스틸 버블러 용기(미도시)에 저장하고, 60℃ 이하의 온도로 가열한 상태에서 운송기체 예컨대 수소, 질소, 아르곤, 헬륨 등과 함께 가스주입구(20, 22)를 통해 반응 챔버(10) 내부로 기체상태로 공급한다. 이때, 원료물질의 공급은 운송기체와 같은 가스주입구를 사용하거나 별도로 사용할 수 있다. 공급된 상기 코발트 화합물은 상온 ~ 500℃의 온도로 가열되어있는 실리콘웨이퍼(30)에 증착되면서 박막을 형성한다. 박막 한층이 증착되면 펌프(40)로 잔류가스를 배출시키면서 소정의 두께가 될 때까지 공정을 반복 실시한다. 이때, 수소나 실란 또는 암모니아 등의 반응가스를 챔버 내부로 같이 도입함으로서 증착속도와 증착온도를 향상시킬 수 있다. 다른 한편으로, 상기 종래기술에서 서술했듯이 300℃ 이상으로 어닐하는 과정으로 코발트실리사이드 박막을 제조할 수 있다.With reference to the drawings looks at a method for producing a cobalt thin film using the compound -Co 2 (CO) 6 (t-butylacetylene) prepared by the method 1). First, -Co 2 (CO) 6 (t-butylacetylene), a raw material, is stored in a stainless steel bubbler container (not shown), and a carrier gas such as hydrogen, nitrogen, or argon is heated at a temperature of 60 ° C or lower. In addition, helium and the like are supplied in the gas state into the reaction chamber 10 through the gas inlets 20 and 22. At this time, the supply of the raw material may be used separately or using a gas inlet, such as a transport gas. The cobalt compound supplied is deposited on the silicon wafer 30 heated to a temperature of room temperature to 500 ° C to form a thin film. When a thin film is deposited, the process is repeated until the predetermined thickness is achieved while discharging the residual gas to the pump 40. At this time, by introducing a reaction gas such as hydrogen, silane or ammonia into the chamber, the deposition rate and the deposition temperature can be improved. On the other hand, the cobalt silicide thin film can be prepared by annealing at 300 ° C. or higher as described in the prior art.

또한, 본 발명에 따르면 상기 반응식 1에 의해 제조된 코발트 화합물은 증착 공정시 코발트소스와 반응가스를 계속적으로 주입하여 성막하는 일반적인 화학기상증착법과, 코발트소스와 반응가스를 순차적으로 도입하는 원자층증착법에 모두 채용 가능하다.In addition, according to the present invention, the cobalt compound prepared according to Scheme 1 has a general chemical vapor deposition method of continuously injecting a cobalt source and a reaction gas into a film during the deposition process, and an atomic layer deposition method of sequentially introducing a cobalt source and a reaction gas. All can be adopted.

도 2 및 도 3은 본 발명에 따라 제조된 코발트 화합물 -Co2(CO)6(t-부틸아세틸렌)의 열적 안정도 실험결과를 나타낸 그래프이다. 본 발명에서 제조된 화합물은 공정시 재현성 확보를 위해 공정온도에서의 열적 안정도 실험이 필수적이므로, 공정온도인 60℃로 가열된 상태에서의 화합물의 변질 여부를 살펴보았다. 실험방법은 유리로된 샘플용기에 수g의 화합물을 담아서 60℃로 가열 유지되고있는 챔버에 보관하고, 시간이 경과됨에 따라서1H-NMR 장비를 이용해 분석하였다. 도 2는 가열보관하기 전의 상태를 나타낸 도면이며, 도 3은 가열보관 후 2개월 이상 경과된 상태의 결과를 나타낸다. 도 3에서 알 수 있듯이, 가열 보관 후 2개월 이상 경과하였음에도 처음상태 즉, 도 2와 동일한 외관과1H-NMR 스펙트럼을 나타내었다.2 and 3 are graphs showing the thermal stability test results of the cobalt compound -Co 2 (CO) 6 (t-butylacetylene) prepared according to the present invention. Since the compound prepared in the present invention is a thermal stability test at the process temperature is essential to ensure reproducibility during the process, it was examined whether the compound is deteriorated while heated to a process temperature of 60 ° C. Experimental method was put in a glass sample container containing several grams of compound and kept in a chamber kept heated to 60 ℃, and analyzed with 1 H-NMR equipment over time. Figure 2 is a view showing a state before heating storage, Figure 3 shows the result of a state elapsed two months or more after heating storage. As can be seen in Figure 3, even after two months or more after heating and storage, the initial state, that is, the same appearance and 1 H-NMR spectrum as shown in Figure 2.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this and is within the equal range of a common technical idea in the technical field to which this invention belongs, and a claim to be described below. Of course, various modifications and variations are possible.

본 코발트 및 코발트실리사이드 박막 증착을 위한 유기코발트화합물과 그 제조방법 및 박막 제조방법에 따르면, 열적·화학적으로 안정성이 우수하고 공기나수분과의 반응성이 거의 없기 때문에 증착공정시 재현성을 확보할 수 있는 유기화합물을 제조할 수 있다. 또한, 상기 유기코발트화합물은 단순한 열분해만으로도 쉽게 순수한 코발트 박막을 성장시킬 수 있으며 수소나 실란, 암모니아 등의 적당한 반응가스를 사용한다면 증착속도나 증착온도를 현격하게 향상시킬 수 있다. 또한, 상기 유기코발트화합물은 화학증착법 또는 원자층증착법에 원료물질로 채용되어 코발트 또는 코발트실리사이드 박막을 제조할 수 있으며, 특히 코발트소스와 반응가스를 순차적으로 도입하는 원자층증착법을 사용할 경우 고에스펙트비를 나타내는 고집적 반도체소자 공정에서 우수한 단차피복성을 나타낼 수 있다.According to the present organic cobalt compound for cobalt and cobalt silicide thin film deposition, a method of manufacturing the same, and a thin film manufacturing method, it is possible to secure reproducibility during the deposition process because of excellent thermal and chemical stability and little reactivity with air or moisture. Organic compounds can be prepared. In addition, the organic cobalt compound can easily grow a pure cobalt thin film by simple pyrolysis, and can significantly improve the deposition rate or deposition temperature by using a suitable reaction gas such as hydrogen, silane, or ammonia. In addition, the organic cobalt compound is used as a raw material in the chemical vapor deposition method or atomic layer deposition method to produce a cobalt or cobalt silicide thin film, especially when using an atomic layer deposition method of introducing a cobalt source and a reaction gas sequentially It can exhibit excellent step coverage in a highly integrated semiconductor device process exhibiting a ratio.

Claims (9)

코발트 및 코발트실리사이드 박막을 증착하기 위한 하기의 화학식 1의 구조를 갖는 유기코발트화합물.An organic cobalt compound having a structure of Formula 1 below for depositing cobalt and cobalt silicide thin films. <화학식 1><Formula 1> 상기 화학식 1에서 L은 중성리간드로서 알카인(alkyne;CnH2n-2), 알킨(alkene;CnH2n), 다이엔(diene), 트리엔(triene), 고리다이엔(cyclic diene), 고리트리엔(cyclic triene), 이소사이안화물(isocyanide), 알킬니트릴(alkyl nitrile) 중 어느 하나를 채용하며, 이때의 n은 1~4의 숫자를 취한다.In Formula 1, L is a neutral ligand, alkane (alkyne; C n H 2n-2 ), alkyne (alkene; C n H 2n ), diene, triene, cyclic diene (cyclic diene) ), Cyclic triene, isocyanide, alkyl nitrile, or any one of these, n is 1 to 4. 제 1항에 있어서,The method of claim 1, 상기 중성리간드(L)는 하기의 화학식 2와 같은 유기화합물을 포함하는 것을 특징으로 하는 유기코발트화합물.The neutral ligand (L) is an organic cobalt compound, characterized in that it comprises an organic compound, such as the formula (2). <화학식 2><Formula 2> 1) alkyne : R1-C≡C-R2 1) alkyne: R 1 -C≡CR 2 2) alkene : R3R4C=CR5R6 2) alkene: R 3 R 4 C = CR 5 R 6 3) diene : R7R8C=CR9-CR10=CR11R12 3) diene: R 7 R 8 C = CR 9 -CR 10 = CR 11 R 12 4) triene : R13R14C=CR15-CR16=CR17-CR18=CR19R20 4) triene: R 13 R 14 C = CR 15 -CR 16 = CR 17 -CR 18 = CR 19 R 20 5) cyclic diene : 1,3(1,4)-cyclohexadiene, 1,3(1,4)-cycloheptadiene,5) Cyclic diene: 1,3 (1,4) -cyclohexadiene, 1,3 (1,4) -cycloheptadiene, cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1,cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1, 5-cyclooctadiene5-cyclooctadiene 6) cyclic triene : 1,3,5-cycloheptadiene6) Cyclic triene: 1,3,5-cycloheptadiene 7) isocyanide : R21-NC7) isocyanide: R 21 -NC 8) alkyl nitrile : R22-CN8) alkyl nitrile: R 22 -CN 상기 화학식 2에서 R1부터 R22는 각각 독립적으로 수소(H), 탄소(C) 숫자 1부터 10까지의 포화 또는 불포화 알킬, (과)불화알킬, 알콕시알킬(-CR2OR), 아미노알킬(-CR2NR2), 알킬실리콘(-SiR3), 알콕시실리콘(-Si(OR)3), 알킬알콕시실리콘(-Si(R)3-n(OR)n), 알킬실릴옥시(-OSiR3), 알콕시(-OR), 알킬아미노(-NR2) 중 어느 하나를 취할 수 있으며, 고리다이엔의 경우에는 화학식 2의 5), 6)에 예시된 화합물 뿐만아니라 고리내부에 수소(H), 탄소 숫자 1부터 10까지의 포화 또는 불포화 알킬, (과)불화알킬, 알콕시알킬(-CR2OR), 아미노알킬(-CR2NR2), 알킬실리콘(-SiR3), 알콕시실리콘(-Si(OR)3), 알킬알콕시실리콘(-Si(R)3-n(OR)n), 알킬실릴옥시(-OSiR3), 알콕시(-OR), 알킬아미노(-NR2) 중 어느 하나가 치환되어있는 화합물을 포함하는 것을 특징으로 하는 유기코발트화합물.In Formula 2, R 1 to R 22 are each independently hydrogen (H), carbon (C) 1 to 10 saturated or unsaturated alkyl, (or) fluorinated alkyl, alkoxyalkyl (-CR 2 OR), aminoalkyl (-CR 2 NR 2 ), alkylsilicone (-SiR 3 ), alkoxysilicone (-Si (OR) 3 ), alkylalkoxysilicon (-Si (R) 3-n (OR) n ), alkylsilyloxy (- OSiR 3 ), alkoxy (-OR), alkylamino (-NR 2 ), and in the case of cyclic dienes, as well as the compounds exemplified in 5), 6) of Formula 2 as well as hydrogen ( H), saturated or unsaturated alkyl having 1 to 10 carbon atoms, (also) fluorinated alkyl, alkoxyalkyl (-CR 2 OR), aminoalkyl (-CR 2 NR 2 ), alkylsilicone (-SiR 3 ), alkoxysilicone In (-Si (OR) 3 ), alkylalkoxysilicones (-Si (R) 3-n (OR) n ), alkylsilyloxy (-OSiR 3 ), alkoxy (-OR), alkylamino (-NR 2 ) An organic cobalt compound, characterized in that it contains a compound which is substituted. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 중성리간드(L)는 t-부틸아세틸렌(R1=H, R2= t-부틸), 트리메틸실릴아세틸렌(R1=H, R2=트리메틸실릴;-SiMe3), 비스트리메틸실릴아세틸렌(R1, R2=트리메틸실릴;-SiMe3), 트리에틸실릴아세틸렌, 1-트리메틸실릴-1-프로파인(propyne), 1(2)-펜타인(pentyne), 1(2)(3)-헥사인(hexyne), 1(2)-헵타인(heptyne), 1(2)(4)-옥타인(octyne) 중 어느 하나를 포함하는 것을 특징으로 하는 유기코발트화합물.The neutral ligand (L) is t-butylacetylene (R 1 = H, R 2 = t-butyl), trimethylsilylacetylene (R 1 = H, R 2 = trimethylsilyl; -SiMe 3 ), bistrimethylsilylacetylene ( R 1 , R 2 = trimethylsilyl; -SiMe 3 ), triethylsilylacetylene, 1-trimethylsilyl-1-propyne, 1 (2) -pentyne, 1 (2) (3) An organic cobalt compound comprising any one of hexayne, hexyne, 1 (2) -heptyne, and 1 (2) (4) -octane. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 중성리간드(L)는 t-부틸이소이산화물, 트리메틸아세토니트릴, 트리메틸실릴시안화물 중 어느 하나를 포함하는 것을 특징으로 유기코발트화합물.The neutral ligand (L) is an organic cobalt compound, characterized in that it comprises any one of t-butyl iso dioxide, trimethyl acetonitrile, trimethyl silyl cyanide. 제 1항 또는 제 2항의 유기코발트화합물을 이용하여 화학기상증착법 또는 원자층증착법으로 코발트 또는 코발트실리사이드 박막을 제조하는 방법.A method of preparing a cobalt or cobalt silicide thin film by chemical vapor deposition or atomic layer deposition using the organic cobalt compound of claim 1 or 2. 제 1항의 화합물에 하나 이상의 상기 화학식 2의 1) ~ 8)의 유기화합물이 함유되어 있는 혼합물을 이용해서 화학증착법 또는 원자증착법으로 코발트를 포함하는 박막을 증착하는 방법.A method of depositing a thin film comprising cobalt by chemical vapor deposition or atomic vapor deposition using a mixture containing at least one organic compound of formula 2) in the compound of claim 1. 제 1항의 화합물에 하나 이상의 포화 또는 불포화탄화수소류, 에테르류(고리에테르 포함), 에스테르류, 알콜류, 아민류(고리아민 포함), 설파이드류(고리설파이드 포함), 포스핀류, 베타-디키톤류, 베타-키토에스테르류 등의 유기화합물이 함유되어있는 혼합물을 사용해서 화학증착법 또는 원자증착법으로 코발트를 포함하는 박막을 증착하는 방법.At least one saturated or unsaturated hydrocarbons, ethers (including cyclic ethers), esters, alcohols, amines (including cyclic amines), sulfides (including cyclic sulfides), phosphines, beta-dikitones, A method of depositing a thin film containing cobalt by chemical vapor deposition or atomic vapor deposition using a mixture containing organic compounds such as beta-chitoesters. 유기코발트화합물을 제조하는 방법에 있어서,In the method for producing an organic cobalt compound, 코발트카르보닐에 용매를 첨가하여 분산용액을 제조하는 단계와,Preparing a dispersion solution by adding a solvent to cobalt carbonyl, 상기 분산용액에 상기 화학식 2의 유기화합물을 첨가하는 단계를 포함하고,Adding the organic compound of Formula 2 to the dispersion solution; 상기 용매에는 포화 및 불포화, 방향족 탄화수소, (고리)에테르, 에스테르, (고리)아민, 알콜, 아세톤 중 어느 하나를 채용하는 것을 특징으로 하는 제조방법.The solvent is any one of saturated and unsaturated, aromatic hydrocarbon, (ring) ether, ester, (ring) amine, alcohol, acetone is employed. 제 8항에 있어서,The method of claim 8, 상기 용매는 석유에테르, 헥산, 펜탄, 헵탄, 에틸에테르, 테트라하이드로퓨란(THF), 벤젠, 톨루엔, 에틸알콜, 메틸알콜, 이소프로필알콜, 아세톤 중 어느 하나를 채용하는 것을 특징으로 하는 제조방법.The solvent is any one of petroleum ether, hexane, pentane, heptane, ethyl ether, tetrahydrofuran (THF), benzene, toluene, ethyl alcohol, methyl alcohol, isopropyl alcohol, acetone.
KR10-2002-0062381A 2002-10-14 2002-10-14 organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film KR100459609B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062381A KR100459609B1 (en) 2002-10-14 2002-10-14 organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0062381A KR100459609B1 (en) 2002-10-14 2002-10-14 organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film

Publications (2)

Publication Number Publication Date
KR20040033337A KR20040033337A (en) 2004-04-28
KR100459609B1 true KR100459609B1 (en) 2004-12-03

Family

ID=37332779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0062381A KR100459609B1 (en) 2002-10-14 2002-10-14 organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film

Country Status (1)

Country Link
KR (1) KR100459609B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180158687A1 (en) * 2016-11-23 2018-06-07 Entegris, Inc. Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539274B1 (en) 2003-07-15 2005-12-27 삼성전자주식회사 Method for depositing cobalt layer
US20180134738A1 (en) * 2016-11-01 2018-05-17 Versum Materials Us, Llc Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
KR102123331B1 (en) 2018-12-19 2020-06-17 주식회사 한솔케미칼 Cobalt precursors, preparation method thereof and process for the formation of thin films using the same
KR102504310B1 (en) 2020-07-28 2023-02-28 주식회사 한솔케미칼 Cobalt compounds, precursor composition including the same, and preparing method of thin film using the same
KR102557282B1 (en) 2020-12-21 2023-07-20 주식회사 한솔케미칼 Novel compounds, precursor composition including the same, and preparing method of thin film using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015186A (en) * 1999-07-08 2001-02-26 마쉬 윌리엄 에프 Liquid precursor mixtures for deposition of multicomponent metal containing materials
US6214729B1 (en) * 1998-09-01 2001-04-10 Micron Technology, Inc. Metal complexes with chelating C-, N-donor ligands for forming metal-containing films
US6346477B1 (en) * 2001-01-09 2002-02-12 Research Foundation Of Suny - New York Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214729B1 (en) * 1998-09-01 2001-04-10 Micron Technology, Inc. Metal complexes with chelating C-, N-donor ligands for forming metal-containing films
KR20010015186A (en) * 1999-07-08 2001-02-26 마쉬 윌리엄 에프 Liquid precursor mixtures for deposition of multicomponent metal containing materials
US6346477B1 (en) * 2001-01-09 2002-02-12 Research Foundation Of Suny - New York Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180158687A1 (en) * 2016-11-23 2018-06-07 Entegris, Inc. Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
CN109996803A (en) * 2016-11-23 2019-07-09 恩特格里斯公司 Six carbonyl of alkynyl halide, the two cobalt precursor object of chemical vapor deposition for cobalt
US10872770B2 (en) 2016-11-23 2020-12-22 Entegris, Inc. Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
JP2021183723A (en) * 2016-11-23 2021-12-02 インテグリス・インコーポレーテッド Haloalkynyl dicobalt hexacarbonyl precursor for cobalt chemical vapor deposition
CN109996803B (en) * 2016-11-23 2022-01-11 恩特格里斯公司 Haloalkynyl hexacarbonylcobaltic precursors for chemical vapor deposition of cobalt
US11804375B2 (en) 2016-11-23 2023-10-31 Entegris, Inc. Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
JP7425773B2 (en) 2016-11-23 2024-01-31 インテグリス・インコーポレーテッド Haloalkynyl dicobalt hexacarbonyl precursor for chemical vapor deposition of cobalt

Also Published As

Publication number Publication date
KR20040033337A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
KR101260858B1 (en) Metal-containing compound process for producing the same metal-containing thin film and method of forming the same
JP6596737B2 (en) Metal complexes containing amidoimine ligands
EP2069373B1 (en) Organometallic precursor compounds
EP1814892B1 (en) Organometallic compounds and processes for preparation thereof
KR101521198B1 (en) Methods of forming thin metal-containing films by chemical phase deposition
US7547796B2 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
WO2007041089A2 (en) Organometallic compounds and methods of use thereof
TWI727091B (en) Metal complexes containing allyl ligands
US20090200524A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2020502044A (en) Metal complexes containing cyclopentadienyl ligand
US9034761B2 (en) Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
US20160348243A1 (en) Process for the generation of thin inorganic films
KR100459609B1 (en) organic cobalt compounds for cobalt or cobalt salicide thin film and method thereof and method of cobalt thin film
EP3397790B1 (en) Cobalt-containing film forming compositions, their synthesis, and use in film deposition
US20090136684A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
TW201736632A (en) Process for the generation of thin inorganic films
KR20050121506A (en) Organocobalt compounds and solution composition for cobalt containing thin film and method of cobalt thin film
KR102682682B1 (en) Group 5 metal compounds, precursor compositions including the same, and process for the formation of thin films using the same
TWI757325B (en) Process for the generation of thin inorganic films
KR20230089234A (en) Molybdenum compound, manufacturing method thereof, and composition for thin film containing the same
KR20230009325A (en) Molybdenum precursor compound, method for preparing the same, and method for depositing molybdenum-containing thin film using the same
KR20200099003A (en) A tungsten precursor compound and tungsten containing thin film prepared by using the same
WO2017116667A1 (en) Iron-containing film forming compositions, their synthesis, and use in film deposition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100930

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee