KR102576737B1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
KR102576737B1
KR102576737B1 KR1020210093708A KR20210093708A KR102576737B1 KR 102576737 B1 KR102576737 B1 KR 102576737B1 KR 1020210093708 A KR1020210093708 A KR 1020210093708A KR 20210093708 A KR20210093708 A KR 20210093708A KR 102576737 B1 KR102576737 B1 KR 102576737B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
added
organic layer
stirred
Prior art date
Application number
KR1020210093708A
Other languages
English (en)
Other versions
KR20220009915A (ko
Inventor
김민준
이동훈
김형석
이상우
서상덕
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20220009915A publication Critical patent/KR20220009915A/ko
Application granted granted Critical
Publication of KR102576737B1 publication Critical patent/KR102576737B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/02Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings
    • C07D421/04Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/02Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings
    • C07D421/10Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/02Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings
    • C07D421/12Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/14Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자{Novel compound and organic light emitting device comprising the same}
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
상기 화학식 1에서,
A는 인접한 고리와 융합된, 벤젠, 나프탈렌, 또는 페난쓰렌 고리이고,
R1은 치환 또는 비치환된 C6-60 아릴이고, R2는 하기 화학식 2로 표시되는 치환기이거나; 또는 R1은 하기 화학식 2로 표시되는 치환기이고, R2는 수소이고,
[화학식 2]
상기 화학식 2에서,
L1은 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴렌이고,
L2는 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
X는 , 또는 이고,
Y는 N, 또는 CH이고, 단 Y 중 적어도 하나는 N이고,
L3 및 L4는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(9), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서, 또는 는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우, 등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
상기 화학식 1에서, 하나 이상의 수소는 중수소로 치환될 수 있다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1, 1-2, 1-3, 1-4 또는 1-5로 표시된다:
[화학식 1-1]
[화학식 1-2]
[화학식 1-3]
[화학식 1-4]
[화학식 1-5]
상기 화학식 1-1 내지 1-5에서, R1 및 R2는 앞서 정의한 바와 같다.
바람직하게는, R1은 페닐, 비페닐릴, 또는 나프틸이고, R2는 상기 화학식 2로 표시되는 치환기이거나; 또는 R1은 상기 화학식 2로 표시되는 치환기이고, R2는 수소이다.
바람직하게는, L1은 단일 결합, 페닐렌, 비페닐디일, 나프틸렌, 디벤조퓨란디일, 또는 디벤조티오펜디일이다.
바람직하게는, L2는 단일 결합, 또는 페닐렌이다.
바람직하게는, L3 및 L4는 각각 독립적으로 단일 결합, 페닐렌, 또는 비페닐디일이다.
Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 벤조페난쓰레닐, 트리페닐레닐, 나프틸페닐, 페닐나프틸, 9H-카바졸-9-일, 또는 하기 화학식 3으로 표시되는 치환기이다:
[화학식 3]
Z는 O, S, N(R4), 또는 C(R5)2이고,
R3는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 2개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
R4는 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이고,
R5는 각각 독립적으로 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이거나, 또는 서로 결합하여 C6-60 방향족 고리를 형성한다.
바람직하게는, 상기 화학식 3은 하기로 구성되는 군으로부터 선택되는 어느 하나로 표시된다:
Figure 112021082529496-pat00017
바람직하게는, Ar1 및 Ar2는 중 적어도 하나는, 페닐, 비페닐릴, 또는 터페닐릴이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure 112021082529496-pat00018
Figure 112021082529496-pat00019
Figure 112021082529496-pat00020
Figure 112021082529496-pat00021
Figure 112021082529496-pat00022
Figure 112021082529496-pat00023
Figure 112021082529496-pat00024
Figure 112021082529496-pat00025
Figure 112021082529496-pat00026
Figure 112021082529496-pat00027
Figure 112021082529496-pat00028
Figure 112021082529496-pat00029
Figure 112021082529496-pat00030
Figure 112021082529496-pat00031
Figure 112021082529496-pat00032
Figure 112021082529496-pat00033
Figure 112021082529496-pat00034
Figure 112021082529496-pat00035
Figure 112021082529496-pat00036
Figure 112021082529496-pat00037
Figure 112021082529496-pat00038
Figure 112021082529496-pat00039
Figure 112021082529496-pat00040
Figure 112021082529496-pat00041
Figure 112021082529496-pat00042
Figure 112021082529496-pat00043
Figure 112021082529496-pat00044
Figure 112021082529496-pat00045
Figure 112021082529496-pat00046
Figure 112021082529496-pat00047
Figure 112021082529496-pat00048
Figure 112021082529496-pat00049
Figure 112021082529496-pat00050
Figure 112021082529496-pat00051
Figure 112021082529496-pat00052
Figure 112021082529496-pat00053
Figure 112021082529496-pat00054
Figure 112021082529496-pat00055
Figure 112021082529496-pat00056
Figure 112021082529496-pat00057
Figure 112021082529496-pat00058
Figure 112021082529496-pat00059
Figure 112021082529496-pat00060
Figure 112021082529496-pat00061
Figure 112021082529496-pat00062
Figure 112021082529496-pat00063
Figure 112021082529496-pat00064
Figure 112021082529496-pat00065
Figure 112021082529496-pat00066
Figure 112021082529496-pat00067
Figure 112021082529496-pat00068
Figure 112021082529496-pat00069
Figure 112021082529496-pat00070
Figure 112021082529496-pat00071
Figure 112021082529496-pat00072
한편, 본 발명은 일례로 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공한다. 하기 반응식 1은, 상기 화학식 1에서 R1은 치환 또는 비치환된 C6-60 아릴이고, R2는 상기 화학식 2로 표시되는 치환기인 경우이다.
[반응식 1]
Figure 112021082529496-pat00073
상기 반응식 1에서, X'를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X'는 할로겐이고, 바람직하게는 클로로, 또는 브로모이다.
상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 본 발명은 일례로 하기 반응식 2와 같은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공한다. 하기 반응식 2는, 상기 화학식 1에서 R1은 상기 화학식 2로 표시되는 치환기이고, R2는 수소인 경우이다.
[반응식 2]
Figure 112021082529496-pat00074
상기 반응식 2에서, X'를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X'는 할로겐이고, 바람직하게는 클로로, 또는 브로모이다.
상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 상기 반응식 1 및 2에서, X가 N인 경우에는 아민 치환 반응으로 제조할 수도 있으며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자차단층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 호스트로 사용할 수 있다. 또한, 상기 유기물 층은 전자차단층을 포함할 수 있고, 상기 전자차단층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
도 3은 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(9), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자차단층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예]
제조예 1: 화합물 A-a의 제조
Figure 112021082529496-pat00075
질소 분위기에서 1-브로모-2-이소티오시아나토벤젠(15 g, 70.1 mmol)를 THF(300 ml)에 넣고 -78℃까지 냉각 후 교반하였다. 충분히 교반한 후 n-부틸리튬(48 ml, 1.6 M, 77.1 mmol)을 투입하였다. 10분 교반 후, selenium powder(6.1 g, 77.1 mmol)를 투입하였다. 30분간 교반 후 상온으로 식히고 2시간 동안 교반하였다. 반응 종결 후, 포화 염화암모늄 수용액(300 ml)을 투입한 후 20분간 교반하였다, 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 A-a_P1를 10.8 g 제조하였다. (수율 72%, MS: [M+H]+= 216)
질소 분위기에서 화합물A-a_P1(15 g, 70 mmol)와 Phosphorus pentachloride(17.5 g, 84.1 mmol), 클로로포름(75 ml), phosphoryl trichloride(96.7 g, 630.4 mmol)를 투입하고 충분히 교반하였다. 2시간 동안 반응 종료 이후, 소디움 카보네이트로 pH 8로 염기화한 후, 클로로포름에 완전히 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-a를 11.2 g 제조하였다. (수율 74%, MS: [M+H]+= 218)
제조예 2: 화합물 A-b의 제조
Figure 112021082529496-pat00076
질소 분위기에서 2-아이오도아닐린(10 g, 45.7 mmol), 4-클로로벤즈알데하이드(7.7 g, 54.8 mmol), selenium powder(10.8 g, 137 mmol), 포타슘 하이드록사이드(5.1 g, 91.3 mmol)를 DMSO(150 ml)에 넣고 교반 및 환류하였다. 이 후 copper(0.3 g, 4.6 mmol)을 투입하였다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 A-b 9 g 제조하였다. (수율 67%, MS: [M+H]+= 294)
제조예 3: 화합물 A-c의 제조
Figure 112021082529496-pat00077
제조예 2에서 4-클로로벤즈알데하이드 대신 3-클로로벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-c를 제조하였다.
제조예 4: 화합물 A-d의 제조
Figure 112021082529496-pat00078
제조예 2에서 4-클로로벤즈알데하이드 대신 4-클로로-1-나프트알데하이드 를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-d를 제조하였다.
제조예 5: 화합물 A-e의 제조
Figure 112021082529496-pat00079
제조예 2에서 2-아이오도아닐린 대신 5-클로로-2-아이오도아닐린을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-e를 제조하였다.
제조예 6: 화합물 A-f의 제조
Figure 112021082529496-pat00080
제조예 2에서 2-아이오도아닐린 대신 4-클로로-2-아이오도아닐린을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-f를 제조하였다.
제조예 7: 화합물 A-g의 제조
Figure 112021082529496-pat00081
제조예 2에서 2-아이오도아닐린 대신 4-클로로-2-아이오도아닐린을 사용하고, 4-클로로벤즈알데하이드 대신 2-나프트알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-g를 제조하였다.
제조예 8: 화합물 A-h의 제조
Figure 112021082529496-pat00082
제조예 2에서 4-클로로벤즈알데하이드 대신 4-클로로-2-나프트알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-h를 제조하였다.
제조예 9: 화합물 A-i의 제조
Figure 112021082529496-pat00083
제조예 2에서 2-아이오도아닐린 대신 2-클로로-6-아이오도아닐린을 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-i를 제조하였다.
제조예 10: 화합물 A-j의 제조
Figure 112021082529496-pat00084
제조예 2에서 2-아이오도아닐린 대신 3-클로로-2-아이오도아닐린을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-j를 제조하였다.
제조예 11: 화합물 A-k의 제조
Figure 112021082529496-pat00085
제조예 2에서 4-클로로벤즈알데하이드 대신 4'-클로로-[1,1'-비페닐]-4-카브알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-k를 제조하였다.
제조예 12: 화합물 A-l의 제조
Figure 112021082529496-pat00086
제조예 2에서 4-클로로벤즈알데하이드 대신 2'-클로로-[1,1'-비페닐]-4-카브알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-l를 제조하였다.
제조예 13: 화합물 A-m의 제조
Figure 112021082529496-pat00087
제조예 2에서 4-클로로벤즈알데하이드 대신 7-클로로-2-나프트알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-m를 제조하였다.
제조예 14: 화합물 A-n의 제조
Figure 112021082529496-pat00088
제조예 2에서 4-클로로벤즈알데하이드 대신 2-클로로벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-n를 제조하였다.
제조예 15: 화합물 A-o의 제조
Figure 112021082529496-pat00089
제조예 2에서 4-클로로벤즈알데하이드 대신 3'-클로로-[1,1'-비페닐]-3-카브알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 A-o를 제조하였다.
제조예 16: 화합물 B-a의 제조
Figure 112021082529496-pat00090
제조예 1에서 1-브로모-2-이소티오시아나토벤젠 대신 1-브로모-2-이소티오시아나토나프탈렌을 사용한 것을 제외하고는 제조예 1과 같은 방법으로 화합물 B-a를 제조하였다.
제조예 17: 화합물 B-b의 제조
Figure 112021082529496-pat00091
제조예 2에서 2-아이오도아닐린 대신 1-아이오도나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 B-b를 제조하였다.
제조예 18: 화합물 B-c의 제조
Figure 112021082529496-pat00092
제조예 2에서 2-아이오도아닐린 대신 4-클로로-1-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 B-c를 합성하였다
제조예 19: 화합물 B-d의 제조
Figure 112021082529496-pat00093
제조예 2에서 2-아이오도아닐린 대신 6-클로로-1-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 B-d를 제조하였다.
제조예 20: 화합물 B-e의 제조
Figure 112021082529496-pat00094
제조예 2에서 2-아이오도아닐린 대신 6-클로로-1-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 B-e를 제조하였다.
제조예 21: 화합물 B-f의 제조
Figure 112021082529496-pat00095
제조예 2에서 2-아이오도아닐린 대신 1-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 3-클로로벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 B-f를 제조하였다.
제조예 22: 화합물 C-a의 제조
Figure 112021082529496-pat00096
제조예 1에서 1-브로모-2-이소티오시아나토벤젠 대신 2-브로모-3-이소티오시아나토나프탈렌을 사용한 것을 제외하고는 제조예 1의 제조 방법과 동일한 방법으로 화합물 C-a를 제조하였다.
제조예 23: 화합물 C-b의 제조
Figure 112021082529496-pat00097
제조예 2에서 2-아이오도아닐린 대신 3-아이오도나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 C-b를 제조하였다.
제조예 24: 화합물 C-c의 제조
Figure 112021082529496-pat00098
제조예 2에서 2-아이오도아닐린 대신 7-클로로-3-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 C-c를 제조하였다.
제조예 25: 화합물 C-d의 제조
Figure 112021082529496-pat00099
제조예 2에서 2-아이오도아닐린 대신 6-클로로-3-아이오도나프탈렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 C-d를 제조하였다.
제조예 26: 화합물 D-a의 제조
Figure 112021082529496-pat00100
제조예 1에서 1-브로모-2-이소티오시아나토벤젠 대신 4-브로모-3-이소티오시아나토페난쓰렌을 사용한 것을 제외하고는 제조예 1과 같은 방법으로 화합물 D-a를 제조하였다.
제조예 27: 화합물 D-b의 제조
Figure 112021082529496-pat00101
제조예 2에서 2-아이오도아닐린 대신 4-아이오도페난쓰렌-3-아민을 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 D-b를 제조하였다.
제조예 28: 화합물 D-c의 제조
Figure 112021082529496-pat00102
제조예 2에서 2-아이오도아닐린 대신 6-클로로-4-아이오도페난쓰렌-3-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 D-c를 제조하였다.
제조예 29: 화합물 D-d의 제조
Figure 112021082529496-pat00103
제조예 2에서 2-아이오도아닐린 대신 7-클로로-4-아이오도페난쓰렌-3-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 D-d를 제조하였다.
제조예 30: 화합물 E-a의 제조
Figure 112021082529496-pat00104
제조예 1에서 1-브로모-2-이소티오시아나토벤젠 대신 3-브로모-2-이소티오시아나토페난쓰렌을 사용한 것을 제외하고는 제조예 1의 제조 방법과 동일한 방법으로 화합물 E-a를 제조하였다.
제조예 31: 화합물 E-b의 제조
Figure 112021082529496-pat00105
제조예 2에서 2-아이오도아닐린 대신 3-아이오도페난쓰렌-2-아민을 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 E-b를 제조하였다.
제조예 32: 화합물 E-c의 제조
Figure 112021082529496-pat00106
제조예 2에서 2-아이오도아닐린 대신 7-클로로-3-아이오도페난쓰렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 E-c를 제조하였다.
제조예 33: 화합물 E-d의 제조
Figure 112021082529496-pat00107
제조예 2에서 2-아이오도아닐린 대신 6-클로로-3-아이오도페난쓰렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 E-d를 제조하였다.
제조예 34: 화합물 E-e의 제조
Figure 112021082529496-pat00108
제조예 2에서 2-아이오도아닐린 대신 9-클로로-3-아이오도페난쓰렌-2-아민을 사용하고, 4-클로로벤즈알데하이드 대신 벤즈알데하이드를 사용한 것을 제외하고는 제조예 2의 제조 방법과 동일한 방법으로 화합물 E-e를 제조하였다.
[실시예]
실시예 1-1
Figure 112021082529496-pat00109
질소 분위기에서 화합물 A-e(15 g, 51.3 mmol)와 비스(피나콜라토)디보론(14.3 g, 56.4 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(7.5 g, 76.9 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.9 g, 1.5 mmol) 및 트리사이클로헥실포스핀(0.9 g, 3.1 mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-e-1를 13.4 g 제조하였다. (수율 68%, MS: [M+H]+= 386)
질소 분위기에서 화합물 A-e-1(15 g, 39 mmol)와 화합물 Trz1(20.4 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1를 21.7 g 제조하였다. (수율 77%, MS: [M+H]+= 721)
실시예 1-2
Figure 112021082529496-pat00110
질소 분위기에서 화합물 A-e-1(15 g, 39 mmol)와 화합물 Trz2(18.4 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2를 18.6 g 제조하였다. (수율 71%, MS: [M+H]+= 671)
실시예 1-3
Figure 112021082529496-pat00111
질소 분위기에서 화합물 A-f(15 g, 51.3 mmol)와 비스(피나콜라토)디보론(14.3 g, 56.4 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(7.5 g, 76.9 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.9 g, 1.5 mmol) 및 트리사이클로헥실포스핀(0.9 g, 3.1 mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-f-1를 12.2 g 제조하였다. (수율 62%, MS: [M+H]+= 386)
질소 분위기에서 화합물 A-f-1(15 g, 39 mmol)와 화합물 Trz3(18.2 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3를 19.4 g 제조하였다. (수율 75%, MS: [M+H]+= 662)
실시예 1-4
Figure 112021082529496-pat00112
질소 분위기에서 화합물 A-f-1(15 g, 39 mmol)와 화합물 Trz4(19.3 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 22.6 g 제조하였다. (수율 78%, MS: [M+H]+= 743)
실시예 1-5
Figure 112021082529496-pat00113
질소 분위기에서 화합물 A-f-1(15 g, 39 mmol)와 화합물 Trz5(23.9 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 23 g 제조하였다. (수율 73%, MS: [M+H]+= 807)
실시예 1-6
Figure 112021082529496-pat00114
질소 분위기에서 화합물 A-f-1(15 g, 39 mmol)와 화합물 Trz6(20.3 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6를 19 g 제조하였다. (수율 68%, MS: [M+H]+= 717)
실시예 1-7
Figure 112021082529496-pat00115
질소 분위기에서 화합물 A-g(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-g-1를 12.8 g 제조하였다. (수율 67%, MS: [M+H]+= 436)
질소 분위기에서 화합물 A-g-1(15 g, 34.5 mmol)와 화합물 Trz4(17 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7를 18.5 g 제조하였다. (수율 72%, MS: [M+H]+= 743)
실시예 1-8
Figure 112021082529496-pat00116
질소 분위기에서 화합물 A-c(15 g, 51.3 mmol)와 비스(피나콜라토)디보론(14.3 g, 56.4 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(7.5 g, 76.9 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.9 g, 1.5 mmol) 및 트리사이클로헥실포스핀(0.9 g, 3.1 mmol)을 투입하였다. 7시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-c-1를 14.8 g 제조하였다. (수율 75%, MS: [M+H]+= 386)
질소 분위기에서 화합물 A-c-1(15 g, 39 mmol)와 화합물 Trz7(19.3 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8를 21.1 g 제조하였다. (수율 78%, MS: [M+H]+= 693)
실시예 1-9
Figure 112021082529496-pat00117
질소 분위기에서 화합물 A-c-1(15 g, 39 mmol)와 화합물 Trz8(19.3 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.1 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 15.7 g 제조하였다. (수율 63%, MS: [M+H]+= 641)
실시예 1-10
Figure 112021082529496-pat00118
질소 분위기에서 화합물 A-h(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-h-1를 14.7 g 제조하였다. (수율 77%, MS: [M+H]+= 436)
질소 분위기에서 화합물 A-h-1(15 g, 34.5 mmol)와 화합물 Trz9(14.8 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10를 15.5 g 제조하였다. (수율 66%, MS: [M+H]+= 681)
실시예 1-11
Figure 112021082529496-pat00119
질소 분위기에서 화합물 B-c(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-c-1를 13.5 g 제조하였다. (수율 71%, MS: [M+H]+= 436)
질소 분위기에서 화합물 B-c-1(15 g, 34.5 mmol)와 화합물 Trz10(18.1 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11를 16 g 제조하였다. (수율 60%, MS: [M+H]+= 773)
실시예 1-12
Figure 112021082529496-pat00120
질소 분위기에서 화합물 B-c-1(15 g, 34.5 mmol)와 화합물 Trz11(17.6 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 16.5 g 제조하였다. (수율 63%, MS: [M+H]+= 757)
실시예 1-13
Figure 112021082529496-pat00121
질소 분위기에서 화합물 B-e(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-e-1를 13.9 g 제조하였다. (수율 73%, MS: [M+H]+= 436)
질소 분위기에서 화합물 B-e-1(15 g, 34.5 mmol)와 화합물 Trz12(16.1 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13를 15.1 g 제조하였다. (수율 61%, MS: [M+H]+= 717)
실시예 1-14
Figure 112021082529496-pat00122
질소 분위기에서 화합물 B-e-1(15 g, 34.5 mmol)와 화합물 Trz13(17 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 17.7 g 제조하였다. (수율 69%, MS: [M+H]+= 743)
실시예 1-15
Figure 112021082529496-pat00123
질소 분위기에서 화합물 B-e-1(15 g, 34.5 mmol)와 화합물 Trz14(14.8 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 18.1 g 제조하였다. (수율 77%, MS: [M+H]+= 681)
실시예 1-16
Figure 112021082529496-pat00124
질소 분위기에서 화합물 B-e-1(15 g, 34.5 mmol)와 화합물 Trz15(14.8 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16를 17.2 g 제조하였다. (수율 73%, MS: [M+H]+= 681)
실시예 1-17
Figure 112021082529496-pat00125
질소 분위기에서 화합물 B-d(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-d-1를 14.9 g 제조하였다. (수율 78%, MS: [M+H]+= 436)
질소 분위기에서 화합물 B-d-1(15 g, 34.5 mmol)와 화합물 Trz16(16.8 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17를 19.6 g 제조하였다. (수율 77%, MS: [M+H]+= 737)
실시예 1-18
Figure 112021082529496-pat00126
질소 분위기에서 화합물 B-d-1(15 g, 34.5 mmol)와 화합물 Trz17(15.2 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18를 18.8 g 제조하였다. (수율 79%, MS: [M+H]+= 691)
실시예 1-19
Figure 112021082529496-pat00127
질소 분위기에서 화합물 B-b(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 10시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-b-1를 12.6 g 제조하였다. (수율 66%, MS: [M+H]+= 436)
질소 분위기에서 화합물 B-b-1(15 g, 34.5 mmol)와 화합물 Trz18(14.3 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19를 15.6 g 제조하였다. (수율 68%, MS: [M+H]+= 667)
실시예 1-20
Figure 112021082529496-pat00128
질소 분위기에서 화합물 B-f(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-f-1를 13.7 g 제조하였다. (수율 72%, MS: [M+H]+= 436)
질소 분위기에서 화합물 B-f-1(15 g, 34.5 mmol)와 화합물 Trz19(18.1 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20를 20.3 g 제조하였다. (수율 76%, MS: [M+H]+= 773)
실시예 1-21
Figure 112021082529496-pat00129
질소 분위기에서 화합물 B-h(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-h-1를 13 g 제조하였다. (수율 70%, MS: [M+H]+= 486)
질소 분위기에서 화합물 B-h-1(15 g, 31 mmol)와 화합물 Trz20(12.8 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21를 13.5 g 제조하였다. (수율 61%, MS: [M+H]+= 717)
실시예 1-22
Figure 112021082529496-pat00130
질소 분위기에서 화합물 C-c(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 C-c-1를 11.8 g 제조하였다. (수율 62%, MS: [M+H]+= 436)
질소 분위기에서 화합물 C-c-1(15 g, 34.5 mmol)와 화합물 Trz15(14.8 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22를 14.3 g 제조하였다. (수율 61%, MS: [M+H]+= 681)
실시예 1-23
Figure 112021082529496-pat00131
질소 분위기에서 화합물 C-c-1(15 g, 34.5 mmol)와 화합물 Trz21(15.2 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23를 18.8 g 제조하였다. (수율 79%, MS: [M+H]+= 691)
실시예 1-24
Figure 112021082529496-pat00132
질소 분위기에서 화합물 C-c-1(15 g, 34.5 mmol)와 화합물 Trz22(13.6 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24를 17.4 g 제조하였다. (수율 78%, MS: [M+H]+= 647)
실시예 1-25
Figure 112021082529496-pat00133
질소 분위기에서 화합물 C-d(15 g, 43.8 mmol)와 비스(피나콜라토)디보론(12.2 g, 48.1 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(6.4 g, 65.7 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.8 g, 1.3 mmol) 및 트리사이클로헥실포스핀(0.7 g, 2.6 mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 C-d-1를 11.6 g 제조하였다. (수율 61%, MS: [M+H]+= 436)
질소 분위기에서 화합물 C-d-1(15 g, 34.5 mmol)와 화합물 Trz23(16.1 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.6 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25를 16.6 g 제조하였다. (수율 67%, MS: [M+H]+= 717)
실시예 1-26
Figure 112021082529496-pat00134
질소 분위기에서 화합물 D-d(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 8시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 D-d-1를 12.2 g 제조하였다. (수율 66%, MS: [M+H]+= 486)
질소 분위기에서 화합물 D-c-1(15 g, 31 mmol)와 화합물 Trz24(12.8 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26를 16.9 g 제조하였다. (수율 76%, MS: [M+H]+= 717)
실시예 1-27
Figure 112021082529496-pat00135
질소 분위기에서 화합물 D-c(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 10시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 D-c-1를 12.6 g 제조하였다. (수율 68%, MS: [M+H]+= 486)
질소 분위기에서 화합물 D-c-1(15 g, 31 mmol)와 화합물 Trz25(11.6 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27를 13.5 g 제조하였다. (수율 64%, MS: [M+H]+= 681)
실시예 1-28
Figure 112021082529496-pat00136
질소 분위기에서 화합물 D-c-1(15 g, 31 mmol)와 화합물 Trz26(12.8 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28를 14.9 g 제조하였다. (수율 67%, MS: [M+H]+= 717)
실시예 1-29
Figure 112021082529496-pat00137
질소 분위기에서 화합물 D-c-1(15 g, 31 mmol)와 화합물 Trz12(14.4 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-29를 14.2 g 제조하였다. (수율 60%, MS: [M+H]+= 767)
실시예 1-30
Figure 112021082529496-pat00138
질소 분위기에서 화합물 D-b(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 9시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 D-b-1를 13.2 g 제조하였다. (수율 71%, MS: [M+H]+= 486)
질소 분위기에서 화합물 D-b-1(15 g, 31 mmol)와 화합물 Trz23(13.6 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30를 15.4 g 제조하였다. (수율 67%, MS: [M+H]+= 741)
실시예 1-31
Figure 112021082529496-pat00139
질소 분위기에서 화합물 E-d(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 7시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 E-d-1를 11.1 g 제조하였다. (수율 60%, MS: [M+H]+= 486)
질소 분위기에서 화합물 E-d-1(15 g, 31 mmol)와 화합물 Trz27(13.3 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31를 16.5 g 제조하였다. (수율 73%, MS: [M+H]+= 731)
실시예 1-32
Figure 112021082529496-pat00140
질소 분위기에서 화합물 E-d-1(15 g, 31 mmol)와 화합물 Trz28(13.3 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-32를 14.5 g 제조하였다. (수율 64%, MS: [M+H]+= 731)
실시예 1-33
Figure 112021082529496-pat00141
질소 분위기에서 화합물 E-c(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 E-c-1를 11.5 g 제조하였다. (수율 62%, MS: [M+H]+= 486)
질소 분위기에서 화합물 E-c-1(15 g, 31 mmol)와 화합물 Trz2(14.6 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33를 16.9 g 제조하였다. (수율 71%, MS: [M+H]+= 771)
실시예 1-34
Figure 112021082529496-pat00142
질소 분위기에서 화합물 E-c-1(15 g, 31 mmol)와 화합물 Trz29(13.3 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-34를 16.1 g 제조하였다. (수율 71%, MS: [M+H]+= 731)
실시예 1-35
Figure 112021082529496-pat00143
질소 분위기에서 화합물 E-c-1(15 g, 31 mmol)와 화합물 Trz23(12 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-35를 15.6 g 제조하였다. (수율 73%, MS: [M+H]+= 691)
실시예 1-36
Figure 112021082529496-pat00144
질소 분위기에서 화합물 E-c-1(15 g, 31 mmol)와 화합물 Trz31(11.6 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-36를 13.7 g 제조하였다. (수율 65%, MS: [M+H]+= 681)
실시예 1-37
Figure 112021082529496-pat00145
질소 분위기에서 화합물 E-e(15 g, 38.2 mmol)와 비스(피나콜라토)디보론(10.7 g, 42 mmol)를 1,4-다이옥산(300 ml)에 환류시키며 교반하였다. 이 후 포타슘 아세테이트(5.6 g, 57.3 mmol)를 투입하고 충분히 교반한 후 비스(디벤질리덴아세톤)팔라듐(0)(0.7 g, 1.1 mmol) 및 트리사이클로헥실포스핀(0.6 g, 2.3 mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 E-e-1를 14.1 g 제조하였다. (수율 76%, MS: [M+H]+= 486)
질소 분위기에서 화합물 E-e-1(15 g, 31 mmol)와 화합물 Trz32(12 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.8 g, 92.9 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-37를 16.5 g 제조하였다. (수율 77%, MS: [M+H]+= 691)
실시예 2-1
Figure 112021082529496-pat00146
질소 분위기에서 화합물 B-a(10 g, 37.5 mmol), 화합물 amine1(15.6 g, 39.4 mmol), 소디움 터트-부톡사이드(4.7 g, 48.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.8 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 13.4 g을 얻었다. (수율 57%, MS: [M+H]+= 627)
실시예 2-2
Figure 112021082529496-pat00147
질소 분위기에서 화합물 B-a(10 g, 37.5 mmol), 화합물 amine2(16.6 g, 39.4 mmol), 소디움 터트-부톡사이드(4.7 g, 48.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.8 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 16.4 g을 얻었다. (수율 67%, MS: [M+H]+= 653)
실시예 2-3
Figure 112021082529496-pat00148
질소 분위기에서 화합물 B-a(10 g, 37.5 mmol), 화합물 amine3(19.1 g, 39.4 mmol), 소디움 터트-부톡사이드(4.7 g, 48.8 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.8 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 14.5 g을 얻었다. (수율 54%, MS: [M+H]+= 717)
실시예 2-4
Figure 112021082529496-pat00149
질소 분위기에서 화합물 B-a(15 g, 56.3 mmol)와 화합물 sub1(19.4 g, 59.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(23.3 g, 168.8 mmol)를 물(70 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-a_1를 16.1 g 제조하였다. (수율 66%, MS: [M+H]+= 434)
질소 분위기에서 화합물 subB-a_1(10 g, 23.1 mmol), 화합물 amine4(7.8 g, 24.3 mmol), 소디움 터트-부톡사이드(2.9 g, 30 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4 9 g을 얻었다. (수율 54%, MS: [M+H]+= 719)
실시예 2-5
Figure 112021082529496-pat00150
질소 분위기에서 화합물 B-a(15 g, 56.3 mmol)와 화합물 sub2(19.4 g, 59.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(23.3 g, 168.8 mmol)를 물(70 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-a_2를 19 g 제조하였다. (수율 78%, MS: [M+H]+= 434)
질소 분위기에서 화합물 subB-a_2(10 g, 23.1 mmol), 화합물 amine5(9 g, 24.3 mmol), 소디움 터트-부톡사이드(2.9 g, 30 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 11.9 g을 얻었다. (수율 67%, MS: [M+H]+= 769)
실시예 2-6
Figure 112021082529496-pat00151
질소 분위기에서 화합물 B-a(15 g, 56.3 mmol)와 화합물 sub3(19.4 g, 59.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(23.3 g, 168.8 mmol)를 물(70 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-a_3를 18.5 g 제조하였다. (수율 76%, MS: [M+H]+= 434)
질소 분위기에서 화합물 subB-a_3(10 g, 23.1 mmol), 화합물 amine4(7.8 g, 24.3 mmol), 소디움 터트-부톡사이드(2.9 g, 30 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 8.5 g을 얻었다. (수율 51%, MS: [M+H]+= 719)
실시예 2-7
Figure 112021082529496-pat00152
질소 분위기에서 화합물 B-b(10 g, 29.2 mmol), 화합물 amine6(12.9 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7 11.5 g을 얻었다. (수율 58%, MS: [M+H]+= 679)
실시예 2-8
Figure 112021082529496-pat00153
질소 분위기에서 화합물 B-b(10 g, 29.2 mmol), 화합물 amine7(11.4 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8 13.6 g을 얻었다. (수율 66%, MS: [M+H]+= 705)
실시예 2-9
Figure 112021082529496-pat00154
질소 분위기에서 화합물 B-b(10 g, 29.2 mmol), 화합물 amine8(12.2 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 10.5 g을 얻었다. (수율 50%, MS: [M+H]+= 718)
실시예 2-10
Figure 112021082529496-pat00155
질소 분위기에서 화합물 B-b(10 g, 29.2 mmol), 화합물 amine9(12.6 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 12.1 g을 얻었다. (수율 58%, MS: [M+H]+= 718)
실시예 2-11
Figure 112021082529496-pat00156
질소 분위기에서 화합물 B-b(10 g, 29.2 mmol), 화합물 amine10(12.6 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11 10.5 g을 얻었다. (수율 50%, MS: [M+H]+= 718)
실시예 2-12
Figure 112021082529496-pat00157
질소 분위기에서 화합물 B-e(10 g, 29.2 mmol), 화합물 amine11(12.2 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-12 12.1 g을 얻었다. (수율 59%, MS: [M+H]+= 705)
실시예 2-13
Figure 112021082529496-pat00158
질소 분위기에서 화합물 B-e(10 g, 29.2 mmol), 화합물 amine12(13.1 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 14.8 g을 얻었다. (수율 69%, MS: [M+H]+= 735)
실시예 2-14
Figure 112021082529496-pat00159
질소 분위기에서 화합물 B-e(10 g, 29.2 mmol), 화합물 amine13(11.8 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 13.9 g을 얻었다. (수율 69%, MS: [M+H]+= 692)
실시예 2-15
Figure 112021082529496-pat00160
질소 분위기에서 화합물 B-e(15 g, 43.8 mmol)와 amine14(19.7 g, 46 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.1 g, 131.3 mmol)를 물 54 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-15를 23 g 제조하였다. (수율 76%, MS: [M+H]+= 693)
실시예 2-16
Figure 112021082529496-pat00161
질소 분위기에서 화합물 B-d(10 g, 29.2 mmol), 화합물 amine15(10.6 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-16 11.6 g을 얻었다. (수율 61%, MS: [M+H]+= 653)
실시예 2-17
Figure 112021082529496-pat00162
질소 분위기에서 화합물 B-d(10 g, 29.2 mmol), 화합물 amine16(13.1 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 13.1 g을 얻었다. (수율 61%, MS: [M+H]+= 735)
실시예 2-18
Figure 112021082529496-pat00163
질소 분위기에서 화합물 B-d(10 g, 29.2 mmol), 화합물 amine17(12.2 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 10.9 g을 얻었다. (수율 53%, MS: [M+H]+= 707)
실시예 2-19
Figure 112021082529496-pat00164
질소 분위기에서 화합물 B-d(15 g, 43.8 mmol)와 amine18(20.3 g, 46 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.1 g, 131.3 mmol)를 물 54 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-19를 23.7 g 제조하였다. (수율 77%, MS: [M+H]+= 705)
실시예 2-20
Figure 112021082529496-pat00165
질소 분위기에서 화합물 B-c(10 g, 29.2 mmol), 화합물 amine19(10.6 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20 12.6 g을 얻었다. (수율 66%, MS: [M+H]+= 653)
실시예 2-21
Figure 112021082529496-pat00166
질소 분위기에서 화합물 B-c(10 g, 29.2 mmol), 화합물 amine20(14.1 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 11.4 g을 얻었다. (수율 51%, MS: [M+H]+= 768)
실시예 2-22
Figure 112021082529496-pat00167
질소 분위기에서 화합물 B-c(15 g, 43.8 mmol)와 amine21(23.2 g, 46 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.1 g, 131.3 mmol)를 물 54 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-22를 21.2 g 제조하였다. (수율 63%, MS: [M+H]+= 769)
실시예 2-23
Figure 112021082529496-pat00168
질소 분위기에서 화합물 B-c(15 g, 43.8 mmol)와 amine22(24.4 g, 46 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.1 g, 131.3 mmol)를 물 54 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-23를 27.8 g 제조하였다. (수율 80%, MS: [M+H]+= 794)
실시예 2-24
Figure 112021082529496-pat00169
질소 분위기에서 화합물 D-c(10 g, 25.5 mmol), 화합물 amine23(8.6 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-24 10.4 g을 얻었다. (수율 60%, MS: [M+H]+= 679)
실시예 2-25
Figure 112021082529496-pat00170
질소 분위기에서 화합물 D-c(10 g, 25.5 mmol), 화합물 amine24(9.8 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-25 9.9 g을 얻었다. (수율 54%, MS: [M+H]+= 723)
실시예 2-26
Figure 112021082529496-pat00171
질소 분위기에서 화합물 D-c(10 g, 25.5 mmol), 화합물 amine25(11.9 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 14.1 g을 얻었다. (수율 69%, MS: [M+H]+= 803)
실시예 2-27
Figure 112021082529496-pat00172
질소 분위기에서 화합물 D-d(10 g, 25.5 mmol), 화합물 amine26(10.3 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-27 12.3 g을 얻었다. (수율 65%, MS: [M+H]+= 742)
실시예 2-28
Figure 112021082529496-pat00173
질소 분위기에서 화합물 D-d(10 g, 25.5 mmol), 화합물 amine27(12.1 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-28 11.1 g을 얻었다. (수율 54%, MS: [M+H]+= 809)
실시예 2-29
Figure 112021082529496-pat00174
질소 분위기에서 화합물 D-d(10 g, 25.5 mmol), 화합물 amine28(10.3 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-29 11.1 g을 얻었다. (수율 59%, MS: [M+H]+= 743)
실시예 2-30
Figure 112021082529496-pat00175
질소 분위기에서 화합물 D-d(15 g, 38.2 mmol)와 amine29(21.9 g, 40.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.6 mmol)를 물 48 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-30를 21.3 g 제조하였다. (수율 65%, MS: [M+H]+= 859)
실시예 2-31
Figure 112021082529496-pat00176
질소 분위기에서 화합물 D-d(15 g, 38.2 mmol)와 amine30(17.2 g, 40.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.6 mmol)를 물 48 ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-31를 19.5 g 제조하였다. (수율 70%, MS: [M+H]+= 729)
실시예 2-32
Figure 112021082529496-pat00177
질소 분위기에서 화합물 D-a(10 g, 31.6 mmol), 화합물 amine31(14.1 g, 33.2 mmol), 소디움 터트-부톡사이드(3.9 g, 41.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-32 13.4 g을 얻었다. (수율 60%, MS: [M+H]+= 707)
실시예 2-33
Figure 112021082529496-pat00178
질소 분위기에서 화합물 D-a(10 g, 31.6 mmol), 화합물 amine32(13.1 g, 33.2 mmol), 소디움 터트-부톡사이드(3.9 g, 41.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-33 10.7 g을 얻었다. (수율 50%, MS: [M+H]+= 677)
실시예 2-34
Figure 112021082529496-pat00179
질소 분위기에서 화합물 D-b(10 g, 25.5 mmol), 화합물 amine33(10.3 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-34 11.4 g을 얻었다. (수율 62%, MS: [M+H]+= 723)
실시예 2-35
Figure 112021082529496-pat00180
질소 분위기에서 화합물 D-b(10 g, 25.5 mmol), 화합물 amine34(9.3 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-35 10.4 g을 얻었다. (수율 58%, MS: [M+H]+= 707)
실시예 2-36
Figure 112021082529496-pat00181
질소 분위기에서 화합물 E-d(10 g, 25.5 mmol), 화합물 amine35(10.3 g, 26.7 mmol), 소디움 터트-부톡사이드(3.2 g, 33.1 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-36 9.6 g을 얻었다. (수율 51%, MS: [M+H]+= 743)
실시예 2-37
Figure 112021082529496-pat00182
질소 분위기에서 화합물 A-f(10 g, 34.2 mmol), 화합물 amine36(16.5 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-37 16.2 g을 얻었다. (수율 66%, MS: [M+H]+= 718)
실시예 2-38
Figure 112021082529496-pat00183
질소 분위기에서 화합물 A-f(10 g, 34.2 mmol), 화합물 amine37(13.8 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-38 14.9 g을 얻었다. (수율 68%, MS: [M+H]+= 643)
실시예 2-39
Figure 112021082529496-pat00184
질소 분위기에서 화합물 A-f(15 g, 51.3 mmol)와 amine38(25 g, 53.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.3 g, 153.8 mmol)를 물(64 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-39를 25.7 g 제조하였다. (수율 74%, MS: [M+H]+= 679)
실시예 2-40
Figure 112021082529496-pat00185
질소 분위기에서 화합물 A-f(10 g, 34.2 mmol), 화합물 amine39(12.4 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-40 12.5 g을 얻었다. (수율 56%, MS: [M+H]+= 653)
실시예 2-41
Figure 112021082529496-pat00186
질소 분위기에서 화합물 A-e(10 g, 34.2 mmol), 화합물 amine40(15.1 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-41 14.8 g을 얻었다. (수율 64%, MS: [M+H]+= 679)
실시예 2-42
Figure 112021082529496-pat00187
질소 분위기에서 화합물 A-e(15 g, 51.3 mmol)와 amine41(25.3 g, 53.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.3 g, 153.8 mmol)를 물(64 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-42를 14.3 g 제조하였다. (수율 73%, MS: [M+H]+= 383)
실시예 2-43
Figure 112021082529496-pat00188
질소 분위기에서 화합물 A-e(15 g, 51.3 mmol)와 amine42(31.2 g, 53.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.3 g, 153.8 mmol)를 물(64 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-43를 24.8 g 제조하였다. (수율 61%, MS: [M+H]+= 794)
실시예 2-44
Figure 112021082529496-pat00189
질소 분위기에서 화합물 A-A(10 g, 46.2 mmol), 화합물 amine43(24.3 g, 48.5 mmol), 소디움 터트-부톡사이드(5.8 g, 60 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 0.9 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-44 20.5 g을 얻었다. (수율 65%, MS: [M+H]+= 683)
실시예 2-45
Figure 112021082529496-pat00190
질소 분위기에서 화합물 A-I(10 g, 34.2 mmol), 화합물 amine44(16.5 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-45 17.2 g을 얻었다. (수율 70%, MS: [M+H]+= 718)
실시예 2-46
Figure 112021082529496-pat00191
질소 분위기에서 화합물 A-i(15 g, 51.3 mmol)와 화합물 amine45(27.2 g, 53.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(21.3 g, 153.8 mmol)를 물(64 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-46를 26.5 g 제조하였다. (수율 72%, MS: [M+H]+= 719)
실시예 2-47
Figure 112021082529496-pat00192
질소 분위기에서 화합물 A-j(10 g, 34.2 mmol), 화합물 amine46(15.1 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)를 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-47 15.8 g을 얻었다. (수율 68%, MS: [M+H]+= 679)
실시예 2-48
Figure 112021082529496-pat00193
질소 분위기에서 화합물 A-j(10 g, 34.2 mmol), 화합물 amine47(14.3 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)를 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-48 12.3 g을 얻었다. (수율 55%, MS: [M+H]+= 657)
실시예 2-49
Figure 112021082529496-pat00194
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine48(17.5 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-49 16.3 g을 얻었다. (수율 64%, MS: [M+H]+= 744)
실시예 2-50
Figure 112021082529496-pat00195
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine49(17.4 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-50 13.9 g을 얻었다. (수율 55%, MS: [M+H]+= 741)
실시예 2-51
Figure 112021082529496-pat00196
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine50(14.8 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-51 12.1 g을 얻었다. (수율 53%, MS: [M+H]+= 669)
실시예 2-52
Figure 112021082529496-pat00197
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine51(16.9 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-52 16.9 g을 얻었다. (수율 68%, MS: [M+H]+= 729)
실시예 2-53
Figure 112021082529496-pat00198
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine52(14.9 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-53 11.5 g을 얻었다. (수율 50%, MS: [M+H]+= 673)
실시예 2-54
Figure 112021082529496-pat00199
질소 분위기에서 화합물 A-b(10 g, 34.2 mmol), 화합물 amine53(16.5 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-54 13.5 g을 얻었다. (수율 55%, MS: [M+H]+= 718)
실시예 2-55
Figure 112021082529496-pat00200
질소 분위기에서 화합물 A-k(10 g, 27.1 mmol), 화합물 amine54(10 g, 28.5 mmol), 소디움 터트-부톡사이드(3.4 g, 35.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-55 12.6 g을 얻었다. (수율 68%, MS: [M+H]+= 685)
실시예 2-56
Figure 112021082529496-pat00201
질소 분위기에서 화합물 A-l(10 g, 27.1 mmol), 화합물 amine55(9.9 g, 28.5 mmol), 소디움 터트-부톡사이드(3.4 g, 35.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-56 10 g을 얻었다. (수율 54%, MS: [M+H]+= 683)
실시예 2-57
Figure 112021082529496-pat00202
질소 분위기에서 화합물 A-m(10 g, 29.2 mmol), 화합물 amine56(12.9 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-57 10.6 g을 얻었다. (수율 50%, MS: [M+H]+= 729)
실시예 2-58
Figure 112021082529496-pat00203
질소 분위기에서 화합물 A-d(10 g, 29.2 mmol), 화합물 amine57(12.6 g, 30.6 mmol), 소디움 터트-부톡사이드(3.6 g, 37.9 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-58 14.5 g을 얻었다. (수율 69%, MS: [M+H]+= 719)
실시예 2-59
Figure 112021082529496-pat00204
질소 분위기에서 화합물 A-n(10 g, 34.2 mmol), 화합물 amine58(13.8 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-59 14.5 g을 얻었다. (수율 66%, MS: [M+H]+= 643)
실시예 2-60
Figure 112021082529496-pat00205
질소 분위기에서 화합물 A-c(10 g, 34.2 mmol), 화합물 amine59(16.9 g, 35.9 mmol), 소디움 터트-부톡사이드(4.3 g, 44.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.7 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-60 16.4 g을 얻었다. (수율 66%, MS: [M+H]+= 729)
실시예 2-61
Figure 112021082529496-pat00206
질소 분위기에서 화합물 A-o(10 g, 27.1 mmol), 화합물 amine60(13.1 g, 28.5 mmol), 소디움 터트-부톡사이드(3.4 g, 35.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-61 14.2 g을 얻었다. (수율 66%, MS: [M+H]+= 794)
실시예 2-62
Figure 112021082529496-pat00207
질소 분위기에서 화합물 A-a(15 g, 69.3 mmol)와 화합물 sub4(23.9 g, 72.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(28.7 g, 207.8 mmol)를 물(86 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subA-a_1를 19.9 g 제조하였다. (수율 75%, MS: [M+H]+= 384)
질소 분위기에서 화합물 subA-a_1(10 g, 26.1 mmol), 화합물 amine61(8.1 g, 27.4 mmol), 소디움 터트-부톡사이드(3.3 g, 34 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 3시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-62 8.6 g을 얻었다. (수율 51%, MS: [M+H]+= 643)
실시예 2-63
Figure 112021082529496-pat00208
질소 분위기에서 화합물 A-a(15 g, 69.3 mmol)와 화합물 sub5(23.9 g, 72.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(28.7 g, 207.8 mmol)를 물(86 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subA-a_2를 16.4 g 제조하였다. (수율 62%, MS: [M+H]+= 384)
질소 분위기에서 화합물 subA-a_2(10 g, 26.1 mmol), 화합물 amine61(8.1 g, 27.4 mmol), 소디움 터트-부톡사이드(3.3 g, 34 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류하였다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 2시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거하였다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-63 9.6 g을 얻었다. (수율 57%, MS: [M+H]+= 643)
실시예 2-64
Figure 112021082529496-pat00209
질소 분위기에서 화합물 A-a(15 g, 69.3 mmol)와 화합물 sub6(23.9 g, 72.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(28.7 g, 207.8 mmol)를 물(86 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subA-a_3를 17.2 g 제조하였다. (수율 65%, MS: [M+H]+= 384)
질소 분위기에서 화합물 subA-a_3(15 g, 39.2 mmol)와 amine62(15.6 g, 41.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.3 g, 117.6 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-64를 16 g 제조하였다. (수율 60%, MS: [M+H]+= 683)
[실험예]
실험예 1-1
ITO(indium tin oxide)가 1,000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에, 하기 HI-1 화합물을 1150 Å의 두께로 형성하되 하기 A-1 화합물을 1.5 wt% 농도로 p-doping하여 정공주입층을 형성하였다. 상기 정공주입층 위에, 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 상기 정공수송층 위에, 하기 EB-1 화합물을 진공 증착하여 막 두께 150 Å의 전자차단층을 형성하였다. 상기 전자차단층 위에, 호스트로서 앞서 제조한 화합물 1-1과 도판트로서 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 발광층을 형성하였다. 상기 발광층 위에, 하기 HB-1 화합물을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 상기 정공저지층 위에, 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 막 두께 300 Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에, 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure 112021082529496-pat00210
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 1-2 내지 1-37
발광층 제조시 호스트로 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교실험예 1-1 내지 1-4
발광층 제조시 호스트로 하기 표 2에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 2에 기재된 화합물 B-1, B-2, B-3 및 B-4는 각각 하기와 같다.
Figure 112021082529496-pat00211
상기 실험예 1-1 내지 1-37 및 비교실험예 1-1 내지 1-4에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압 및 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 1 및 2에 나타내었다. 이때, 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간(hr)을 의미한다.
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 1-1 화합물 EB-1 화합물1-1 4.05 16.06 121 적색
실험예 1-2 화합물 EB-1 화합물1-2 4.07 16.84 108 적색
실험예 1-3 화합물 EB-1 화합물1-3 4.14 16.99 115 적색
실험예 1-4 화합물 EB-1 화합물1-4 4.05 16.32 120 적색
실험예 1-5 화합물 EB-1 화합물1-5 4.16 16.62 104 적색
실험예 1-6 화합물 EB-1 화합물1-6 4.08 16.11 100 적색
실험예 1-7 화합물 EB-1 화합물1-7 4.08 16.80 124 적색
실험예 1-8 화합물 EB-1 화합물1-8 4.18 16.97 112 적색
실험예 1-9 화합물 EB-1 화합물1-9 4.00 16.93 105 적색
실험예 1-10 화합물 EB-1 화합물1-10 4.10 16.54 101 적색
실험예 1-11 화합물 EB-1 화합물1-11 4.06 16.70 116 적색
실험예 1-12 화합물 EB-1 화합물1-12 4.07 16.25 124 적색
실험예 1-13 화합물 EB-1 화합물1-13 4.17 16.49 122 적색
실험예 1-14 화합물 EB-1 화합물1-14 4.11 16.94 126 적색
실험예 1-15 화합물 EB-1 화합물1-15 4.15 16.35 125 적색
실험예 1-16 화합물 EB-1 화합물1-16 4.18 16.91 128 적색
실험예 1-17 화합물 EB-1 화합물1-17 4.02 16.47 108 적색
실험예 1-18 화합물 EB-1 화합물1-18 4.17 16.03 113 적색
실험예 1-19 화합물 EB-1 화합물1-19 4.14 16.29 119 적색
실험예 1-20 화합물 EB-1 화합물1-20 4.17 16.40 101 적색
실험예 1-21 화합물 EB-1 화합물1-21 4.00 17.18 158 적색
실험예 1-22 화합물 EB-1 화합물1-22 4.31 17.78 175 적색
실험예 1-23 화합물 EB-1 화합물1-23 4.31 16.99 172 적색
실험예 1-24 화합물 EB-1 화합물1-24 4.45 17.52 157 적색
실험예 1-25 화합물 EB-1 화합물1-25 4.31 17.53 180 적색
실험예 1-26 화합물 EB-1 화합물1-26 4.28 16.43 174 적색
실험예 1-27 화합물 EB-1 화합물1-27 4.39 16.28 161 적색
실험예 1-28 화합물 EB-1 화합물1-28 4.17 17.98 158 적색
실험예 1-29 화합물 EB-1 화합물1-29 4.43 17.23 177 적색
실험예 1-30 화합물 EB-1 화합물1-30 4.30 17.11 173 적색
실험예 1-31 화합물 EB-1 화합물1-31 4.00 17.02 178 적색
실험예 1-32 화합물 EB-1 화합물1-32 4.39 16.07 164 적색
실험예 1-33 화합물 EB-1 화합물1-33 4.39 16.73 157 적색
실험예 1-34 화합물 EB-1 화합물1-34 4.41 17.01 150 적색
실험예 1-35 화합물 EB-1 화합물1-35 4.30 17.11 168 적색
실험예 1-36 화합물 EB-1 화합물1-36 4.34 16.55 157 적색
실험예 1-37 화합물 EB-1 화합물1-37 4.36 17.74 174 적색
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교실험예 1-1 화합물 EB-1 화합물B-1 4.69 13.35 95 적색
비교실험예 1-2 화합물 EB-1 화합물B-2 4.74 14.28 87 적색
비교실험예 1-3 화합물 EB-1 화합물B-3 4.63 14.70 81 적색
비교실험예 1-4 화합물 EB-1 화합물B-4 4.81 12.36 76 적색
상기 표 1 및 2에 나타난 바와 같이, 본 발명의 화합물을 발광층의 호스트로 사용하였을 때, 비교실험예 1-1 내지 1-4 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인할 수 있었다. 이로부터, 본 발명의 화합물을 발광층의 호스트로 사용했을 때 비교실험예에서 사용한 화합물 대비 발광층 내에서 도판트로 에너지 전달이 잘 이뤄진다는 것을 확인할 수 있었다. 즉, 비교실험예에서 사용한 화합물 대비 발광층 내에서 더 안정적인 균형을 통해 전자와 정공이 결합하여 엑시톤을 형성하여 효율과 수명을 개선할 수 있음을 확인할 수 있었다.
실험예 2-1 내지 2-64
발광층 제조시 호스트로 하기 RH-1 화합물을 사용하고, 전자차단층 제조시 하기 표 3 내지 5에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
Figure 112021082529496-pat00212
비교실험예 2-1 내지 2-5
전자차단층 제조시 하기 표 6에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 2-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 6에 기재된 화합물 B-5, B-6, B-7, B-8 및 B-9는 각각 하기와 같다.
Figure 112021082529496-pat00213
상기 실험예 2-1 내지 2-64 및 비교실험예 2-1 내지 2-5에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압 및 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 3 내지 6에 나타내었다. 이때, 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간(hr)을 의미한다.
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 2-1 화합물 2-1 화합물 RH-1 4.28 16.05 120 적색
실험예 2-2 화합물 2-2 화합물 RH-1 4.26 15.78 131 적색
실험예 2-3 화합물 2-3 화합물 RH-1 4.13 15.23 116 적색
실험예 2-4 화합물 2-4 화합물 RH-1 4.15 17.08 123 적색
실험예 2-5 화합물 2-5 화합물 RH-1 4.30 16.59 118 적색
실험예 2-6 화합물 2-6 화합물 RH-1 4.28 15.82 110 적색
실험예 2-7 화합물 2-7 화합물 RH-1 4.28 17.49 114 적색
실험예 2-8 화합물 2-8 화합물 RH-1 4.15 16.31 110 적색
실험예 2-9 화합물 2-9 화합물 RH-1 4.16 15.19 119 적색
실험예 2-10 화합물 2-10 화합물 RH-1 4.13 15.69 121 적색
실험예 2-11 화합물 2-11 화합물 RH-1 4.30 17.48 130 적색
실험예 2-12 화합물 2-12 화합물 RH-1 4.30 17.04 129 적색
실험예 2-13 화합물 2-13 화합물 RH-1 4.29 17.86 142 적색
실험예 2-14 화합물 2-14 화합물 RH-1 4.29 17.98 139 적색
실험예 2-15 화합물 2-15 화합물 RH-1 4.24 17.85 134 적색
실험예 2-16 화합물 2-16 화합물 RH-1 4.34 17.77 128 적색
실험예 2-17 화합물 2-17 화합물 RH-1 4.20 17.88 146 적색
실험예 2-18 화합물 2-18 화합물 RH-1 4.35 17.52 124 적색
실험예 2-19 화합물 2-19 화합물 RH-1 4.35 17.29 122 적색
실험예 2-20 화합물 2-20 화합물 RH-1 4.22 17.34 130 적색
실험예 2-21 화합물 2-21 화합물 RH-1 4.00 16.98 157 적색
실험예 2-22 화합물 2-22 화합물 RH-1 4.19 17.36 166 적색
실험예 2-23 화합물 2-23 화합물 RH-1 4.40 16.99 162 적색
실험예 2-24 화합물 2-24 화합물 RH-1 4.25 16.83 162 적색
실험예 2-25 화합물 2-25 화합물 RH-1 4.45 16.53 167 적색
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 2-26 화합물 2-26 화합물 RH-1 4.28 16.50 170 적색
실험예 2-27 화합물 2-27 화합물 RH-1 4.45 17.51 166 적색
실험예 2-28 화합물 2-28 화합물 RH-1 4.24 17.86 159 적색
실험예 2-29 화합물 2-29 화합물 RH-1 4.31 17.64 167 적색
실험예 2-30 화합물 2-30 화합물 RH-1 4.32 17.93 178 적색
실험예 2-31 화합물 2-31 화합물 RH-1 4.43 17.16 122 적색
실험예 2-32 화합물 2-32 화합물 RH-1 4.28 17.21 103 적색
실험예 2-33 화합물 2-33 화합물 RH-1 4.26 17.80 124 적색
실험예 2-34 화합물 2-34 화합물 RH-1 4.20 17.62 122 적색
실험예 2-35 화합물 2-35 화합물 RH-1 4.21 17.98 103 적색
실험예 2-36 화합물 2-36 화합물 RH-1 4.35 17.59 123 적색
실험예 2-37 화합물 2-37 화합물 RH-1 4.34 17.81 105 적색
실험예 2-38 화합물 2-38 화합물 RH-1 4.26 17.65 129 적색
실험예 2-39 화합물 2-39 화합물 RH-1 4.39 17.65 128 적색
실험예 2-40 화합물 2-40 화합물 RH-1 4.21 17.55 108 적색
실험예 2-41 화합물 2-41 화합물 RH-1 4.36 16.71 137 적색
실험예 2-42 화합물 2-42 화합물 RH-1 4.25 16.18 151 적색
실험예 2-43 화합물 2-43 화합물 RH-1 4.43 16.99 152 적색
실험예 2-44 화합물 2-44 화합물 RH-1 4.42 17.98 148 적색
실험예 2-45 화합물 2-45 화합물 RH-1 4.44 16.37 158 적색
실험예 2-46 화합물 2-46 화합물 RH-1 4.21 16.32 146 적색
실험예 2-47 화합물 2-47 화합물 RH-1 4.18 16.58 152 적색
실험예 2-48 화합물 2-48 화합물 RH-1 4.37 17.79 147 적색
실험예 2-49 화합물 2-49 화합물 RH-1 4.15 16.09 130 적색
실험예 2-50 화합물 2-50 화합물 RH-1 4.30 17.70 153 적색
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실험예 2-51 화합물 2-51 화합물 RH-1 4.20 17.38 122 적색
실험예 2-52 화합물 2-52 화합물 RH-1 4.35 17.50 145 적색
실험예 2-53 화합물 2-53 화합물 RH-1 4.20 17.17 149 적색
실험예 2-54 화합물 2-54 화합물 RH-1 4.31 17.93 132 적색
실험예 2-55 화합물 2-55 화합물 RH-1 4.23 17.42 138 적색
실험예 2-56 화합물 2-56 화합물 RH-1 4.25 17.46 137 적색
실험예 2-57 화합물 2-57 화합물 RH-1 4.40 17.74 145 적색
실험예 2-58 화합물 2-58 화합물 RH-1 4.32 17.61 121 적색
실험예 2-59 화합물 2-59 화합물 RH-1 4.21 17.76 125 적색
실험예 2-60 화합물 2-60 화합물 RH-1 4.34 17.92 142 적색
실험예 2-61 화합물 2-61 화합물 RH-1 4.24 17.08 151 적색
실험예 2-62 화합물 2-62 화합물 RH-1 4.42 17.58 160 적색
실험예 2-63 화합물 2-63 화합물 RH-1 4.29 17.12 168 적색
실험예 2-64 화합물 2-64 화합물 RH-1 4.18 16.00 168 적색
전자차단층 호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교실험예 2-1 화합물 B-5 화합물 RH-1 4.69 14.05 84 적색
비교실험예 2-2 화합물 B-6 화합물 RH-1 4.64 14.52 92 적색
비교실험예 2-3 화합물 B-7 화합물 RH-1 4.61 13.82 73 적색
비교실험예 2-4 화합물 B-8 화합물 RH-1 4.65 13.26 97 적색
비교실험예 2-5 화합물 B-9 화합물 RH-1 5.02 5.41 9 적색
상기 표 3 내지 6에 나타난 바와 같이, 본 발명의 화합물을 전자차단층으로 사용하였을 때, 비교실험예 2-1 내지 2-5 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인할 수 있었다.
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자수송층
9: 전자차단층

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]

    상기 화학식 1에서,
    A는 인접한 고리와 융합된, 벤젠, 나프탈렌, 또는 페난쓰렌 고리이고,
    R1은 치환 또는 비치환된 C6-60 아릴이고, R2는 하기 화학식 2로 표시되는 치환기이거나; 또는 R1은 하기 화학식 2로 표시되는 치환기이고, R2는 수소이고,
    [화학식 2]

    상기 화학식 2에서,
    L1은 단일 결합, 페닐렌, 비페닐디일, 나프틸렌, 디벤조퓨란디일, 또는 디벤조티오펜디일이고,
    L2는 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    X는 , 또는 이고,
    Y는 N, 또는 CH이고, 단 Y 중 적어도 하나는 N이고,
    L3 및 L4는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 벤조페난쓰레닐, 트리페닐레닐, 나프틸페닐, 페닐나프틸, 9H-카바졸-9-일, 또는 하기 화학식 3으로 표시되는 치환기이다:
    [화학식 3]

    Z는 O, S, N(R4), 또는 C(R5)2이고,
    R3는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 2개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
    R4는 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이고,
    R5는 각각 독립적으로 치환 또는 비치환된 C1-60 알킬; 또는 치환 또는 비치환된 C6-60 아릴이거나, 또는 서로 결합하여 C6-60 방향족 고리를 형성한다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1, 1-2, 1-3, 1-4 또는 1-5로 표시되는,
    화합물:
    [화학식 1-1]

    [화학식 1-2]

    [화학식 1-3]

    [화학식 1-4]

    [화학식 1-5]

    상기 화학식 1-1 내지 1-5에서,
    R1 및 R2는 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    R1은 페닐, 비페닐릴, 또는 나프틸이고, R2는 상기 화학식 2로 표시되는 치환기이거나; 또는
    R1은 상기 화학식 2로 표시되는 치환기이고, R2는 수소인,
    화합물.
  4. 삭제
  5. 제1항에 있어서,
    L2는 단일 결합, 또는 페닐렌인,
    화합물.
  6. 제1항에 있어서,
    L3 및 L4는 각각 독립적으로 단일 결합, 페닐렌, 또는 비페닐디일인,
    화합물.
  7. 삭제
  8. 제1항에 있어서,
    상기 화학식 3은 하기로 구성되는 군으로부터 선택되는 어느 하나로 표시되는,
    화합물:
    Figure 112023044534302-pat00224
    .
  9. 제1항에 있어서,
    Ar1 및 Ar2는 중 적어도 하나는, 페닐, 비페닐릴, 또는 터페닐릴인,
    화합물.
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure 112021082529496-pat00225

    Figure 112021082529496-pat00226

    Figure 112021082529496-pat00227

    Figure 112021082529496-pat00228

    Figure 112021082529496-pat00229

    Figure 112021082529496-pat00230

    Figure 112021082529496-pat00231

    Figure 112021082529496-pat00232

    Figure 112021082529496-pat00233

    Figure 112021082529496-pat00234

    Figure 112021082529496-pat00235

    Figure 112021082529496-pat00236

    Figure 112021082529496-pat00237

    Figure 112021082529496-pat00238

    Figure 112021082529496-pat00239

    Figure 112021082529496-pat00240

    Figure 112021082529496-pat00241

    Figure 112021082529496-pat00242

    Figure 112021082529496-pat00243

    Figure 112021082529496-pat00244

    Figure 112021082529496-pat00245

    Figure 112021082529496-pat00246

    Figure 112021082529496-pat00247

    Figure 112021082529496-pat00248

    Figure 112021082529496-pat00249

    Figure 112021082529496-pat00250

    Figure 112021082529496-pat00251

    Figure 112021082529496-pat00252

    Figure 112021082529496-pat00253

    Figure 112021082529496-pat00254

    Figure 112021082529496-pat00255

    Figure 112021082529496-pat00256

    Figure 112021082529496-pat00257

    Figure 112021082529496-pat00258

    Figure 112021082529496-pat00259

    Figure 112021082529496-pat00260

    Figure 112021082529496-pat00261

    Figure 112021082529496-pat00262

    Figure 112021082529496-pat00263

    Figure 112021082529496-pat00264

    Figure 112021082529496-pat00265

    Figure 112021082529496-pat00266

    Figure 112021082529496-pat00267

    Figure 112021082529496-pat00268

    Figure 112021082529496-pat00269

    Figure 112021082529496-pat00270

    Figure 112021082529496-pat00271

    Figure 112021082529496-pat00272

    Figure 112021082529496-pat00273

    Figure 112021082529496-pat00274

    Figure 112021082529496-pat00275

    Figure 112021082529496-pat00276

    Figure 112021082529496-pat00277

    Figure 112021082529496-pat00278

    Figure 112021082529496-pat00279

  11. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제3항, 제5항, 제6항 및 제8항 내지 제10항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  12. 제11항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인,
    유기 발광 소자.
  13. 제11항에 있어서,
    상기 화합물을 포함하는 유기물층은 전자차단층인,
    유기 발광 소자.
KR1020210093708A 2020-07-16 2021-07-16 신규한 화합물 및 이를 이용한 유기 발광 소자 KR102576737B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200088130 2020-07-16
KR1020200088130 2020-07-16

Publications (2)

Publication Number Publication Date
KR20220009915A KR20220009915A (ko) 2022-01-25
KR102576737B1 true KR102576737B1 (ko) 2023-09-08

Family

ID=80049319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210093708A KR102576737B1 (ko) 2020-07-16 2021-07-16 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
KR (1) KR102576737B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023096318A1 (ko) * 2021-11-26 2023-06-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN114478210A (zh) * 2022-02-26 2022-05-13 江苏壹药新材料有限公司 一种7-氯萘-2-甲醛的合成方法
KR20240010328A (ko) * 2022-07-15 2024-01-23 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
KR102078106B1 (ko) * 2013-11-07 2020-02-17 에스에프씨주식회사 헤테로아릴 아민기를 포함하는 피렌 유도체 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
KR20220009915A (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
JP7293565B2 (ja) 有機発光素子
KR102469107B1 (ko) 유기 발광 소자
KR102576737B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102602156B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102592082B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102623893B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102583651B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102629456B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102441472B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102413613B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102639657B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102633769B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20220038009A (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
KR20220008668A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
CN113015729A (zh) 新型化合物及利用其的有机发光器件
KR102602155B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102568928B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102465241B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102576738B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102623891B1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
KR102601118B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102662721B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR20230148771A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20230069868A (ko) 유기 발광 소자
KR20240004118A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant