KR102553854B1 - 반도체장치 - Google Patents

반도체장치 Download PDF

Info

Publication number
KR102553854B1
KR102553854B1 KR1020180077231A KR20180077231A KR102553854B1 KR 102553854 B1 KR102553854 B1 KR 102553854B1 KR 1020180077231 A KR1020180077231 A KR 1020180077231A KR 20180077231 A KR20180077231 A KR 20180077231A KR 102553854 B1 KR102553854 B1 KR 102553854B1
Authority
KR
South Korea
Prior art keywords
signal
delay
address
circuit
back bias
Prior art date
Application number
KR1020180077231A
Other languages
English (en)
Other versions
KR20200004149A (ko
Inventor
양승민
이경연
이병철
최돈현
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020180077231A priority Critical patent/KR102553854B1/ko
Priority to US16/212,407 priority patent/US10607684B2/en
Publication of KR20200004149A publication Critical patent/KR20200004149A/ko
Application granted granted Critical
Publication of KR102553854B1 publication Critical patent/KR102553854B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4082Address Buffers; level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • G11C5/146Substrate bias generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • H03K5/134Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selection, chip selection, array selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits

Abstract

반도체장치는 테스트모드신호에 응답하여 백바이어스전압의 전압레벨에 따라 내부노드에 전하 공급시점을 조절하고, 상기 내부노드의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로 및 상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 지연량이 가변되는 어드레스입력회로를 포함한다.

Description

반도체장치{SEMICONDUCTOR DEVICE}
본 발명은 파워다운동작 중 뱅크선택신호의 생성구간 동안 어드레스에 의해 셀프리프레쉬동작을 수행하는 반도체장치에 관한 것이다.
일반적인 반도체장치들은 또 다른 반도체장치들과 패키지 되어 하나의 제품으로 출시된다. 이러한 대부분의 반도체장치는 외부에서 전송되는 각종 신호들을 입력패드를 통해 수신하기 위한 수신회로와 내부의 신호를 출력패드를 통해 출력하기 위한 출력회로에 의해 각종 신호들을 입출력한다.
이와 같은 각종 신호들이 입출력되는 전달 경로들은 각각의 특성차이에 의해 지연량이 각기 상이하게 설정된다. 또한, SDRAM과 같은 동기식 반도체장치들은 클럭(clock)에 동기 되어 각종 신호를 입출력하게 되는데, 신호 입출력 시 지연량은 PVT(Process Voltage Temperature) 특성 변화에 따라 다양하게 발생할 수 있다. 따라서, PVT(Process Voltage Temperature) 특성 변화에 맞추어 입출력되는 신호의 지연시간을 조절하기 위한 기술이 필요하다. 본 발명의 배경기술은 미국 등록특허 US 9,287,858호에 개시되어 있다.
본 발명은 파워다운모드 시 백바이어스전압의 전압레벨이 증가하는 경우 지연된 어드레스와 뱅크선택신호 간의 지연량을 매칭함으로써 셀프리프레쉬동작을 안정적으로 수행하는 반도체장치를 제공한다.
이를 위해 본 발명은 테스트모드신호에 응답하여 백바이어스전압의 전압레벨에 따라 내부노드에 전하 공급시점을 조절하고, 상기 내부노드의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로 및 상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 지연량이 가변되는 어드레스입력회로를 포함하는 반도체장치를 제공한다.
또한, 본 발명은 파워다운모드 시 전압레벨이 증가하는 백바이어스전압에 응답하여 내부노드에 전하 공급시점을 지연하고, 상기 내부노드의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로 및 상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 지연량이 가변되는 어드레스입력회로를 포함하는 반도체장치를 제공한다.
본 발명에 의하면 파워다운모드 시 백바이어스전압의 전압레벨이 증가하는 경우 지연된 어드레스와 뱅크선택신호 간의 지연량을 매칭함으로써 셀프리프레쉬동작을 안정적으로 수행할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 반도체장치의 구성을 도시한 블럭도이다.
도 2는 도 1에 도시된 반도체장치에 포함된 테스트모드제어회로의 구성을 도시한 회로도이다.
도 3은 도 1에 도시된 반도체장치에 포함된 지연량조절회로의 구성을 도시한 도면이다.
도 4는 도 3에 도시된 지연량조절회로에 포함된 제1 지연회로의 구성을 도시한 회로도이다.
도 5는 도 3에 도시된 지연량조절회로에 포함된 제2 지연회로의 구성을 도시한 회로도이다.
도 6은 도 1에 도시된 반도체장치에 포함된 어드레스입력회로의 구성을 도시한 블럭도이다.
도 7 및 8은 본 발명의 일 실시예에 따른 반도체장치의 동작을 설명하기 위한 타이밍도이다.
도 9는 도 1 내지 도 7에 도시된 반도체장치가 적용된 전자시스템의 일 실시예에 따른 구성을 도시한 도면이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명의 권리 보호 범위가 이들 실시예에 의해 제한되는 것은 아니다.
도 1에 도시된 바와 같이 본 발명의 일 실시예에 따른 반도체장치는 전압조절회로(10), 테스트모드제어회로(20), 지연량조절회로(30), 어드레스입력회로(40) 및 코어회로(50)를 포함할 수 있다.
전압조절회로(10)는 파워다운신호(PD)에 응답하여 백바이어스전압(VBB)의 전압레벨을 조절할 수 있다. 전압조절회로(10)는 파워다운신호(PD)가 로직하이레벨로 인에이블되는 경우 백바이어스전압(VBB)의 전압레벨을 조절할 수 있다. 전압조절회로(10)는 파워다운신호(PD)가 로직하이레벨로 인에이블되는 경우 전압레벨이 증가하는 백바이어스전압(VBB)을 생성할 수 있다. 파워다운신호(PD)는 반도체장치가 파워다운모드에 진입하기 위해 인에이블되는 신호로 설정될 수 있다. 파워다운신호(PD)가 인에이블되는 로직레벨은 실시예에 따라 로직하이레벨 또는 로직로우레벨로 설정될 수 있다.
테스트모드제어회로(20)는 파워다운신호(PD) 및 테스트인에이블신호(TMEN)에 응답하여 테스트모드신호(TM)를 생성할 수 있다. 테스트모드제어회로(20)는 파워다운신호(PD)가 로직하이레벨로 인에이블되고 테스트인에이블신호(TMEN)가 로직하이레벨로 인에이블되는 경우 로직하이레벨로 인에이블되는 테스트모드신호(TM)를 생성할 수 있다. 테스트인에이블신호(TMEN)는 파워다운모드 중 어드레스를 래치하기 위한 뱅크선택신호의 생성시점을 조절하기 위한 테스트모드에 진입하기 위해 인에이블되는 신호로 설정될 수 있다. 테스트모드신호(TM)가 인에이블되는 로직레벨은 실시예에 따라 로직하이레벨 또는 로직로우레벨로 설정될 수 있다.
지연량조절회로(30)는 테스트모드신호(TM)에 응답하여 백바이어스전압(VBB)의 전압레벨에 따라 내부노드(도 5의 nd31,nd32)에 전하 공급시점을 조절할 수 있다. 지연량조절회로(30)는 파워다운모드 시 전압레벨이 증가하는 백바이어스전압(VBB)에 응답하여 내부노드(도 5의 nd31,nd32)에 전하 공급시점을 지연할 수 있다. 지연량조절회로(30)는 내부노드(도 5의 nd31,nd32)의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호(BKACT)를 지연하여 뱅크선택신호(BKSEL)를 생성할 수 있다. 제1 지연량은 백바이어스전압(VBB)의 전압레벨에 비례하여 지연량이 증가될 수 있다.
어드레스입력회로(40)는 백바이어스전압(VBB)을 입력 받아 구동될 수 있다. 어드레스입력회로(40)는 뱅크선택신호(BKSEL)에 응답하여 어드레스(ADD<1:N>)를 입력 받아 내부어드레스(IADD<1:N>)를 생성할 수 있다. 어드레스입력회로(40)는 백바이어스전압(VBB)의 전압레벨에 따라 어드레스(ADD<1:N>)를 지연하는 제2 지연량이 가변될 수 있다. 어드레스입력회로(40)는 제2 지연량에 의해 어드레스(ADD<1:N>)를 지연하여 내부어드레스(IADD<1:N>)를 생성할 수 있다. 제2 지연량은 백바이어스전압(VBB)의 전압레벨에 비례하여 지연량이 증가될 수 있다. 어드레스(ADD<1:N>)는 파워다운동작 중 셀프리프레쉬동작 시 코어회로(50)에 포함된 다수의 워드라인(미도시)을 순차적으로 활성화하기 위해 카운팅되는 신호로 설정될 수 있다. 어드레스(ADD<1:N>)는 코어회로(50)에 포함된 다수의 워드라인(미도시)을 활성화하기 위해 외부로부터 입력되는 신호로 설정될 수 있다.
코어회로(50)는 다수의 워드라인(미도시)을 포함하고, 다수의 워드라인(미도시)에 연결된 다수의 메모리셀(미도시)을 포함할 수 있다. 코어회로(50)는 파워다운모드 중 셀프리프레쉬동작 시 순차적으로 카운팅되는 내부어드레스(IADD<1:N>)에 응답하여 다수의 워드라인(미도시)이 순차적으로 활성화 할 수 있다. 코어회로(50)는 내부어드레스(IADD<1:N>)에 응답하여 다수의 메모리셀(미도시)을 활성화 할 수 있다. 코어회로(50)는 활성화 된 메모리셀(미도시)에 데이터(미도시)를 저장 또는 메모리셀(미도시)에 저장된 데이터(미도시)를 출력할 수 있다.
도 2를 참고하면 테스트모드제어회로(20)는 낸드게이트(NAND21) 및 인버터(IV21)를 포함할 수 있다.
테스트모드제어회로(20)는 파워다운신호(PD) 및 테스트인에이블신호(TMEN)에 응답하여 인에이블되는 테스트모드신호(TM)를 생성할 수 있다. 테스트모드제어회로(20)는 파워다운신호(PD) 및 테스트인에이블신호(TMEN)를 논리곱 연산을 수행하여 테스트모드신호(TM)를 생성할 수 있다. 테스트모드제어회로(20)는 파워다운신호(PD)가 로직하이레벨이고 테스트인에이블신호(TMEN)가 로직하이레벨인 경우 로직하이레벨로 인에이블되는 테스트모드신호(TM)를 생성할 수 있다.
도 3을 참고하면 지연량조절회로(30)는 전달신호생성회로(31), 지연회로(32) 및 논리회로(33)를 포함할 수 있다.
전달신호생성회로(31)는 테스트모드신호(TM)에 응답하여 액티브신호(BKACT)를 제1 전달신호(TS1) 또는 제2 전달신호(TS2)로 전달할 수 있다. 전달신호생성회로(31)는 테스트모드신호(TM)가 로직로우레벨로 디스에이블되는 경우 액티브신호(BKACT)를 제1 전달신호(TS1)로 전달할 수 있다. 전달신호생성회로(31)는 테스트모드신호(TM)가 로직하이레벨로 인에이블되는 경우 액티브신호(BKACT)를 제2 전달신호(TS2)로 전달할 수 있다.
지연회로(32)는 제1 지연회로(310) 및 제2 지연회로(320)를 포함할 수 있다.
제1 지연회로(310)는 제1 전달신호(TS1)를 버퍼링하여 제1 지연신호(DS1)를 생성할 수 있다. 제1 지연회로(310)는 제1 전달신호(TS1)를 소정구간 지연하여 제1 지연신호(DS1)를 생성할 수 있다. 제1 지연회로(310)의 지연량은 실시예에 따라 다양하게 설정될 수 있다.
제2 지연회로(320)는 제2 전달신호(TS2)를 버퍼링하여 제2 지연신호(DS2)를 생성할 수 있다. 제2 지연회로(320)는 백바이어스전압(VBB)의 전압레벨에 따라 제1 지연량이 설정될 수 있다. 제2 지연회로(320)는 제1 지연량으로 제2 전달신호(TS2)를 지연하여 제2 지연신호(DS2)를 생성할 수 있다.
이와 같은 지연회로(32)는 제1 전달신호(TS1)를 소정구간 지연하여 제1 지연신호(DS1)를 생성할 수 있다. 지연회로(32)는 백바이어스전압(VBB)의 전압레벨에 따라 설정되는 제1 지연량으로 제2 전달신호(TS2)를 지연하여 제2 지연신호(DS2)를 생성할 수 있다.
논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2) 중 어느 하나가 로직하이레벨로 생성되는 경우 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성할 수 있다. 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 뱅크선택신호(BKSEL)를 생성할 수 있다.
도 4를 참고하면 제1 지연회로(310)는 인버터들(IV31,IV32) 및 저항들(R31,R32)을 포함할 수 있다.
제1 지연회로(310)는 인버터들(IV31,IV32) 및 저항들(R31,R32)이 직렬로 연결되어 구현될 수 있다. 제1 지연회로(310)는 인버터들(IV31,IV32) 및 저항들(R31,R32)에 의해 설정되는 지연량으로 제1 전달신호(TS1)를 지연하여 제1 지연신호(DS1)를 생성할 수 있다. 제1 지연회로(310)는 다수의 인버터들이 연결되는 인버터체인으로 구현될 수 있다.
도 5를 참고하면 제2 지연회로(320)는 제1 버퍼(321), 제2 전하공급회로(322), 제2 버퍼(323) 및 제2 전하공급회로(324)를 포함할 수 있다.
제1 버퍼(321)는 인버터(IV33) 및 저항(R33)을 포함할 수 있다. 제1 버퍼(321)는 인버터(IV33) 및 저항(R33)이 직렬연결되어 구현될 수 있다. 제1 버퍼(321)는 제2 전달신호(TS2)를 반전 버퍼링하여 내부노드(nd31)로 출력할 수 있다.
제1 전하공급회로(322)는 스위치소자들(N31,N32), 제1 캐패시터(MC1) 및 제2 캐패시터(MC2)를 포함할 수 있다. 스위치소자(N31)는 내부노드(nd31)와 제1 캐패시터(MC1) 사이에 연결되고, 백바이어스전압(VBB)에 응답하여 턴온될 수 있다. 스위치소자(N32)는 내부노드(nd31)와 제2 캐패시터(MC2) 사이에 연결되고, 백바이어스전압(VBB)에 응답하여 턴온될 수 있다. 제1 캐패시터(MC1)의 게이트는 스위치소자(N31)와 연결되고 바디전압에 백바이어스전압(VBB)을 인가 받을 수 있다. 제1 캐패시터(MC1)는 PMOS 트랜지스터형 캐패시터로 구현되어 내부노드(nd31)의 전하량을 조절할 수 있다. 제1 캐패시터(MC1)는 바디전압의 전압레벨이 증가하는 경우 턴온전압레벨이 증가할 수 있다. 제1 캐패시터(MC1)는 내부노드(nd31)의 전압레벨이 턴온전압레벨까지 증가하는 경우 턴온될 수 있다. 제1 캐패시터(MC1)는 턴온전압레벨이 증가할 수 록 턴온 시간이 지연될 수 있다. 턴온전압레벨은 트랜지스터의 문턱전압(Vth: Threshold voltage)으로 설정될 수 있다. 제2 캐패시터(MC2)의 게이트는 스위치소자(N32)와 연결되고 바디전압에 접지전압(VSS)을 인가 받을 수 있다. 제2 캐패시터(MC2)는 NMOS 트랜지스터형 캐패시터로 구현되어 내부노드(nd31)의 전하량을 조절할 수 있다.
이와 같은 제1 전하공급회로(322)는 내부노드(nd31)에 연결되어 백바이어스전압(VBB)의 전압레벨에 따라 구동시점이 조절되어 내부노드(nd31)에 전하를 공급할 수 있다. 제1 전하공급회로(322)는 백바이어스전압(VBB)의 전압레벨이 증가하는 경우 구동시점이 지연되어 내부노드(nd31)에 전하를 공급할 수 있다.
제2 버퍼(323)는 인버터(IV34) 및 저항(R34)을 포함할 수 있다. 제2 버퍼(323)는 인버터(IV34) 및 저항(R34)이 직렬연결되어 구현될 수 있다. 제2 버퍼(323)는 내부노드(nd31)의 신호를 반전 버퍼링하여 내부노드(nd32)로 출력할 수 있다. 내부노드(nd32)는 제2 지연신호(DS2)가 출력되는 노드로 설정될 수 있다.
제2 전하공급회로(324)는 스위치소자들(N33,N34), 제3 캐패시터(MC3) 및 제4 캐패시터(MC4)를 포함할 수 있다. 스위치소자(N33)는 내부노드(nd32)와 제3 캐패시터(MC3) 사이에 연결되고, 백바이어스전압(VBB)에 응답하여 턴온될 수 있다. 스위치소자(N34)는 내부노드(nd32)와 제4 캐패시터(MC4) 사이에 연결되고, 백바이어스전압(VBB)에 응답하여 턴온될 수 있다. 제3 캐패시터(MC3)의 게이트는 스위치소자(N33)와 연결되고 바디전압에 백바이어스전압(VBB)을 인가 받을 수 있다. 제3 캐패시터(MC3)는 PMOS 트랜지스터형 캐패시터로 구현되어 내부노드(nd32)의 전하량을 조절할 수 있다. 제3 캐패시터(MC3)는 바디전압의 전압레벨이 증가하는 경우 턴온전압레벨이 증가할 수 있다. 제3 캐패시터(MC3)는 내부노드(ND32)의 전압레벨이 턴온전압레벨까지 증가하는 경우 턴온될 수 있다. 제3 캐패시터(MC3)는 턴온전압레벨이 증가할 수 록 턴온 시간이 지연될 수 있다. 턴온전압레벨은 PMOS 트랜지스터의 문턱전압(Vth: Threshold voltage)으로 설정될 수 있다. 제4 캐패시터(MC4)의 게이트는 스위치소자(N34)와 연결되고 바디전압에 접지전압(VSS)을 인가 받을 수 있다. 제4 캐패시터(MC4)는 NMOS 트랜지스터형 캐패시터로 구현되어 내부노드(nd32)의 전하량을 조절할 수 있다.
이와 같은 제2 전하공급회로(324)는 내부노드(nd32)에 연결되어 백바이어스전압(VBB)의 전압레벨에 따라 구동시점이 조절되어 내부노드(nd32)에 전하를 공급할 수 있다. 제2 전하공급회로(324)는 백바이어스전압(VBB)의 전압레벨이 증가하는 경우 구동시점이 지연되어 내부노드(nd32)에 전하를 공급할 수 있다.
도 6을 참고하면 어드레스입력회로(40)는 래치회로(41) 및 전달회로(42)를 포함할 수 있다.
래치회로(41)는 어드레스(ADD<1:N>)를 래치할 수 있다. 래치회로(41)는 백바이어스전압(VBB)의 전압레벨에 따라 설정되는 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력할 수 있다. 래치회로(41)는 일반적인 래치회로로 구현되어 백바이어스전압(VBB)의 전압레벨이 증가할 수록 지연량이 증가할 수 있다.
전달회로(42)는 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력할 수 있다. 전달회로(42)는 뱅크선택신호(BKSEL)가 로직하이레벨로 인에이블되는 경우 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력할 수 있다. 전달회로(42)는 뱅크선택신호(BKSEL)가 로직하이레벨로 인에이블되는 구간 동안 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력할 수 있다.
도 7을 참고하여 본 발명의 일 실시예에 따른 반도체장치의 파워다운모드 중 테스트모드에 진입하지 않고 셀프리프레쉬동작을 위한 래치어드레스와 뱅크선택신호의 생성시점을 설명하면 다음과 같다.
우선, 백바이어스전압(VBB)의 전압레벨이 0.9V로 생성되는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 0.9V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직로우레벨의 테스트인에이블신호(TMEN)에 의해 로직로우레벨로 디스에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 전달신호생성회로(31)는 테스트모드신호(TM)가 로직로우레벨로 디스에이블되는 경우 액티브신호(BKACT)를 제1 전달신호(TS1)로 전달한다.
지연량조절회로(30)의 지연회로(32)는 제1 전달신호(TS1)를 버퍼링하여 제1 지연신호(DS1)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 X2 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨에 따라 설정되는 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 X1 시점이다.
전달회로(42)는 X2 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다.
다음으로, 백바이어스전압(VBB)의 전압레벨이 1.2V로 증가하는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 1.2V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직로우레벨의 테스트인에이블신호(TMEN)에 의해 로직로우레벨로 디스에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 전달신호생성회로(31)는 테스트모드신호(TM)가 로직로우레벨로 디스에이블되는 경우 액티브신호(BKACT)를 제1 전달신호(TS1)로 전달한다.
지연량조절회로(30)의 지연회로(32)는 제1 전달신호(TS1)를 버퍼링하여 제1 지연신호(DS1)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 X2 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨이 1.2V로 증가하므로 앞서 백바이어스전압(VBB)의 전압레벨이 0.9V인 경우보다 지연량이 증가한 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 X2 시점이다.
전달회로(42)는 X2 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다. 이때, X2 시점은 래치어드레스(LADD<1:N>)가 생성되는 시점이므로 내부어드레스(IADD<1:N>)는 X2 시점 이전의 래치어드레스(LADD<1:N>) 또는 X2 시점 이후의 래치어드레스(LADD<1:N>)로부터 생성될 가능성이 있다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다. 하지만, 활성화되는 워드라인(미도시)은 원치 않은 워드라인(미도시)일 수 있다.
다음으로, 백바이어스전압(VBB)의 전압레벨이 1.5V로 증가하는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 1.5V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직로우레벨의 테스트인에이블신호(TMEN)에 의해 로직로우레벨로 디스에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 전달신호생성회로(31)는 테스트모드신호(TM)가 로직로우레벨로 디스에이블되는 경우 액티브신호(BKACT)를 제1 전달신호(TS1)로 전달한다.
지연량조절회로(30)의 지연회로(32)는 제1 전달신호(TS1)를 버퍼링하여 제1 지연신호(DS1)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 X2 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨이 1.2V로 증가하므로 앞서 백바이어스전압(VBB)의 전압레벨이 1.2V인 경우보다 지연량이 증가한 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 X3 시점이다.
전달회로(42)는 X2 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다. 이때, X2 시점은 래치어드레스(LADD<1:N>)가 생성되기 이전 시점이므로 내부어드레스(IADD<1:N>)는 X3 시점 이전의 래치어드레스(LADD<1:N>)로부터 생성된다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다. 하지만, 활성화되는 워드라인(미도시)은 원치 않은 워드라인(미도시)임을 알 수 있다.
이와 같은 본 발명의 반도체장치는 파워다운모드 시 백바이어스전압(VBB)의 전압레벨이 증가하는 경우 지연된 래치어드레스(LADD<1:N>)와 뱅크선택신호(BKSEL) 간의 지연량 미스 매칭으로 인해 셀프리프레쉬동작 오류가 발생할 수 있다.
도 8을 참고하여 본 발명의 일 실시예에 따른 반도체장치의 파워다운모드 중 테스트모드에 진입하여 셀프리프레쉬동작을 위한 래치어드레스와 뱅크선택신호의 생성시점을 설명하면 다음과 같다.
우선, 백바이어스전압(VBB)의 전압레벨이 0.9V로 생성되는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 0.9V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직하이레벨의 테스트인에이블신호(TMEN)에 의해 로직하이레벨로 인에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 전달신호생성회로(31)는 테스트모드신호(TM)가 로직하이레벨로 인에이블되는 경우 액티브신호(BKACT)를 제2 전달신호(TS2)로 전달한다.
지연량조절회로(30)의 지연회로(32)는 백바이어스전압(VBB)의 전압레벨에 따라 설정되는 제1 지연량으로 제2 전달신호(TS2)를 지연하여 제2 지연신호(DS2)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 Y2 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨에 따라 설정되는 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 Y1 시점이다.
전달회로(42)는 Y2 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다.
다음으로, 백바이어스전압(VBB)의 전압레벨이 1.2V로 증가하는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 1.2V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직하이레벨의 테스트인에이블신호(TMEN)에 의해 로직하이레벨로 인에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 지연회로(32)는 백바이어스전압(VBB)의 전압레벨이 0.9V인 경우보다 지연량이 증가한 제1 지연량으로 제2 전달신호(TS2)를 지연하여 제2 지연신호(DS2)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 Y4 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨이 1.2V로 증가하므로 앞서 백바이어스전압(VBB)의 전압레벨이 0.9V인 경우보다 지연량이 증가한 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 Y3 시점이다.
전달회로(42)는 Y4 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다. 이때, 내부어드레스(IADD<1:N>)는 Y3 시점 이후의 래치어드레스(LADD<1:N>)로부터 생성된다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다.
다음으로, 백바이어스전압(VBB)의 전압레벨이 1.5V로 증가하는 경우를 설명하면 다음과 같다.
전압조절회로(10)는 파워다운모드에 진입하기 위해 로직하이레벨로 인에이블되는 파워다운신호(PD)에 응답하여 1.5V의 전압레벨을 갖는 백바이어스전압(VBB)을 생성한다.
테스트모드제어회로(20)는 로직하이레벨의 파워다운신호(PD) 및 로직하이레벨의 테스트인에이블신호(TMEN)에 의해 로직하이레벨로 인에이블되는 테스트모드신호(TM)를 생성한다.
지연량조절회로(30)의 지연회로(32)는 백바이어스전압(VBB)의 전압레벨이 1.2V인 경우보다 지연량이 증가한 제1 지연량으로 제2 전달신호(TS2)를 지연하여 제2 지연신호(DS2)를 생성한다.
지연량조절회로(30)의 논리회로(33)는 제1 지연신호(DS1) 및 제2 지연신호(DS2)를 논리합 연산을 수행하여 Y6 시점에 로직하이레벨로 인에이블되는 뱅크선택신호(BKSEL)를 생성한다.
어드레스입력회로(40)의 래치회로(41)는 백바이어스전압(VBB)의 전압레벨이 1.5V로 증가하므로 앞서 백바이어스전압(VBB)의 전압레벨이 1.2V인 경우보다 지연량이 증가한 제2 지연량으로 래치된 어드레스(ADD<1:N>)를 지연하여 래치어드레스(LADD<1:N>)로 출력한다. 이때, 래치어드레스(LADD<1:N>)가 생성되는 시점은 Y5 시점이다.
전달회로(42)는 Y6 시점에 뱅크선택신호(BKSEL)에 응답하여 래치어드레스(LADD<1:N>)를 내부어드레스(IADD<1:N>)로 출력한다. 이때, 내부어드레스(IADD<1:N>)는 Y5 시점 이후의 래치어드레스(LADD<1:N>)로부터 생성된다.
코어회로(50)는 내부어드레스(IADD<1:N>)에 따라 다수의 워드라인(미도시) 중 하나가 활성화 되어 셀프리프레쉬동작을 수행한다.
이와 같은 본 발명의 반도체장치는 파워다운모드 시 백바이어스전압(VBB)의 전압레벨이 증가하는 경우 지연된 래치어드레스(LADD<1:N>)와 뱅크선택신호(BKSEL) 간의 지연량을 매칭함으로써 셀프리프레쉬동작을 안정적으로 수행할 수 있다.
앞서, 도 1 내지 도 8에서 살펴본 반도체장치는 메모리시스템, 그래픽시스템, 컴퓨팅시스템 및 모바일시스템 등을 포함하는 전자시스템에 적용될 수 있다. 예를 들어, 도 9를 참고하면 본 발명의 일 실시예에 따른 전자시스템(1000)은 데이터저장부(1001), 메모리컨트롤러(1002), 버퍼메모리(1003) 및 입출력인터페이스(1004)를 포함할 수 있다.
데이터저장부(1001)는 메모리컨트롤러(1002)로부터의 제어신호에 따라 메모리컨트롤러(1002)로부터 인가되는 데이터를 저장하고 저장된 데이터를 판독하여 메모리컨트롤러(1002)에 출력한다. 한편, 데이터저장부(1001)는 전원이 차단되어도 데이터를 잃지 않고 계속 저장할 수 있는 비휘발성 메모리를 포함할 수 있다. 비휘발성 메모리는 플래쉬 메모리(Nor Flash Memory, NAND Flash Memory), 상변환 메모리(Phase Change Random Access Memory; PRAM), 저항 메모리(Resistive Random Access Memory;RRAM), 스핀 주입자화반전 메모리(Spin Transfer Torque Random Access Memory; STTRAM), 자기메모리(Magnetic Random Access Memory; MRAM)로 구현될 수 있다.
메모리컨트롤러(1002)는 입출력인터페이스(1004)를 통해 외부기기(호스트 장치)로부터 인가되는 명령어를 디코딩하고 디코딩된 결과에 따라 데이터저장부(1001) 및 버퍼메모리(1003)에 대한 데이터 입출력을 제어한다. 도 9에서는 메모리컨트롤러(1002)가 하나의 블록으로 표시되었으나, 메모리컨트롤러(1002)는 비휘발성 메모리를 제어하기 위한 컨트롤러와 휘발성 메모리인 버퍼메모리(1003)를 제어하기 위한 컨트롤러가 독립적으로 구성될 수 있다.
버퍼메모리(1003)는 메모리컨트롤러(1002)에서 처리할 데이터 즉 데이터저장부(1001)에 입출력되는 데이터를 임시적으로 저장할 수 있다. 버퍼메모리(1003)는 제어신호에 따라 메모리컨트롤러(1002)에서 인가되는 데이터를 저장할 수 있다. 버퍼메모리(1003)는 저장된 데이터를 판독하여 메모리컨트롤러(1002)에 출력한다. 버퍼메모리(1003)는 DRAM(Dynamic Random Access Memory), Mobile DRAM, SRAM(Static Random Access Memory) 등의 휘발성 메모리를 포함할 수 있다. 버퍼메모리(1003)는 도 1에 도시된 반도체장치를 포함할 수 있다.
입출력인터페이스(1004)는 메모리컨트롤러(1002)와 외부기기(호스트) 사이의 물리적 연결을 제공하여 메모리컨트롤러(1002)가 외부기기로부터 데이터 입출력을 위한 제어신호를 수신하고 외부기기와 데이터를 교환할 수 있도록 해준다. 입출력인터페이스(1004)는 USB, MMC, PCI-E, SAS, SATA, PATA, SCSI, ESDI, 및 IDE 등과 같은 다양한 인터페이스 프로토콜들 중 하나를 포함할 수 있다.
전자시스템(1000)은 호스트 장치의 보조 기억장치 또는 외부 저장장치로 사용될 수 있다. 전자시스템(1000)은 고상 디스크(Solid State Disk; SSD), USB 메모리(Universal Serial Bus Memory), 씨큐어 디지털 카드(Secure Digital; SD), 미니 씨큐어 디지털 카드(mini Secure Digital card; mSD), 마이크로 씨큐어 디지털 카드(micro SD), 고용량 씨큐어 디지털 카드(Secure Digital High Capacity; SDHC), 메모리 스틱 카드(Memory Stick Card), 스마트 미디어 카드(Smart Media Card; SM), 멀티 미디어 카드(Multi Media Card; MMC), 내장 멀티 미디어 카드(Embedded MMC; eMMC), 컴팩트 플래시 카드(Compact Flash; CF) 등을 포함할 수 있다.
10. 전압조절회로 20. 테스트모드제어회로
30. 지연량조절회로 31. 전달신호생성회로
32. 지연회로 33. 논리회로
40. 어드레스입력회로 41. 래치회로
42. 전달회로 50. 코어회로
310. 제1 지연회로 320. 제2 지연회로
321. 제1 버퍼 322. 제1 전하공급회로
323. 제2 버퍼 324. 제2 전하공급회로

Claims (20)

  1. 테스트모드신호에 응답하여 백바이어스전압의 전압레벨에 따라 내부노드에 전하 공급시점을 조절하고, 상기 내부노드의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로; 및
    상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 지연량이 가변되는 어드레스입력회로를 포함하는 반도체장치.
  2. ◈청구항 2은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서, 상기 제1 지연량 및 상기 제2 지연량은 상기 백바이어스전압의 전압레벨에 비례하여 지연량이 증가하는 반도체장치.
  3. ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서, 상기 백바이어스전압은 파워다운모드 시 전압레벨이 증가하는 전압인 반도체장치.
  4. ◈청구항 4은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서, 상기 어드레스는 파워다운모드 중 셀프리프레쉬동작 시 순차적으로 카운팅되는 신호인 반도체장치.
  5. ◈청구항 5은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서, 상기 지연량조절회로는
    상기 테스트모드신호에 응답하여 상기 액티브신호를 제1 전달신호 또는 제2 전달신호로 전달하는 전달신호생성회로;
    상기 제1 전달신호를 소정구간 지연하여 제1 지연신호를 생성하고, 상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제1 지연량으로 상기 제2 전달신호를 지연하여 제2 지연신호를 생성하는 지연회로; 및
    상기 제1 지연신호 또는 상기 제2 지연신호 중 어느 하나가 생성되는 경우 인에이블되는 상기 뱅크선택신호를 생성하는 논리회로를 포함하는 반도체장치.
  6. ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈
    제 5 항에 있어서, 상기 지연회로는
    상기 제1 전달신호를 소정구간 지연하여 상기 제1 지연신호를 생성하는 제1 지연회로; 및
    상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제1 지연량으로 상기 제2 전달신호를 지연하여 상기 제2 지연신호를 생성하는 제2 지연회로를 포함하는 반도체장치.
  7. ◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈
    제 6 항에 있어서, 상기 제2 지연회로는
    상기 제2 지연신호를 반전 지연하여 제1 내부노드로 출력하는 제1 버퍼;
    상기 제1 내부노드에 연결되어 상기 백바이어스전압의 전압레벨에 따라 구동시점이 조절되어 상기 제1 내부노드에 전하를 공급하는 제1 전하공급회로;
    상기 제1 내부노드의 신호를 반전 지연하여 상기 제2 지연신호가 출력되는 제2 내부노드로 출력하는 제2 버퍼; 및
    상기 제2 내부노드에 연결되어 상기 백바이어스전압의 전압레벨에 따라 구동시점이 조절되어 상기 제2 내부노드에 전하를 공급하는 제2 전하공급회로를 포함하는 반도체장치.
  8. ◈청구항 8은(는) 설정등록료 납부시 포기되었습니다.◈
    제 7 항에 있어서, 상기 제1 전하공급회로 및 상기 제2 전하공급회로는 상기 백바이어스전압을 바디전압으로 공급받고, 상기 백바이어스전압의 전압레벨이 증가하는 경우 턴온전압레벨이 증가하는 트랜지스터를 포함하는 반도체장치.
  9. ◈청구항 9은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서, 상기 어드레스입력회로는
    상기 어드레스를 래치하고, 상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제2 지연량으로 래치된 상기 어드레스를 지연하여 래치어드레스로 출력하는 래치회로; 및
    상기 뱅크선택신호에 응답하여 상기 래치어드레스를 상기 내부어드레스로 출력하는 전달회로를 포함하는 반도체장치.
  10. ◈청구항 10은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서,
    파워다운모드 시 인에이블되는 파워다운신호에 응답하여 상기 백바이어스전압의 전압레벨을 조절하는 전압조절회로;
    상기 파워다운신호 및 테스트인에이블신호가 인에이블되는 경우 인에이블되는 상기 테스트모드신호를 생성하는 테스트모드제어회로; 및
    다수의 워드라인을 포함하고, 상기 내부어드레스에 응답하여 활성화되는 워드라인에 대한 셀프리프레쉬동작을 수행하는 코어회로를 더 포함하는 반도체장치.
  11. ◈청구항 11은(는) 설정등록료 납부시 포기되었습니다.◈
    제 10 항에 있어서, 상기 테스트인에이블신호는 상기 파워다운모드 시 상기 뱅크선택신호의 생성시점을 조절하기 위한 테스트모드에 진입하기 위해 인에이블되는 신호인 반도체장치.
  12. 파워다운모드 시 전압레벨이 증가하는 백바이어스전압에 응답하여 내부노드에 전하 공급시점을 지연하고, 상기 내부노드의 전하량에 따라 가변하는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로; 및
    상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 지연량이 가변되는 어드레스입력회로를 포함하는 반도체장치.
  13. ◈청구항 13은(는) 설정등록료 납부시 포기되었습니다.◈
    제 12 항에 있어서, 상기 제1 지연량 및 상기 제2 지연량은 상기 백바이어스전압의 전압레벨에 비례하여 지연량이 증가하는 반도체장치.
  14. ◈청구항 14은(는) 설정등록료 납부시 포기되었습니다.◈
    제 12 항에 있어서, 상기 지연량조절회로는
    테스트모드신호에 응답하여 상기 액티브신호를 제1 전달신호 또는 제2 전달신호로 전달하는 전달신호생성회로;
    상기 제1 전달신호를 소정구간 지연하여 제1 지연신호를 생성하고, 상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제1 지연량으로 상기 제2 전달신호를 지연하여 제2 지연신호를 생성하는 지연회로; 및
    상기 제1 지연신호 또는 상기 제2 지연신호 중 어느 하나가 생성되는 경우 인에이블되는 상기 뱅크선택신호를 생성하는 논리회로를 포함하는 반도체장치.
  15. ◈청구항 15은(는) 설정등록료 납부시 포기되었습니다.◈
    제 14 항에 있어서, 상기 테스트모드신호는 상기 파워다운모드 시 상기 뱅크선택신호의 생성시점을 조절하기 위한 테스트모드에 진입하기 위해 인에이블되는 신호인 반도체장치.
  16. ◈청구항 16은(는) 설정등록료 납부시 포기되었습니다.◈
    제 14 항에 있어서, 상기 지연회로는
    상기 제1 전달신호를 소정구간 지연하여 상기 제1 지연신호를 생성하는 제1 지연회로; 및
    상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제1 지연량으로 상기 제2 전달신호를 지연하여 상기 제2 지연신호를 생성하는 제2 지연회로를 포함하는 반도체장치.
  17. ◈청구항 17은(는) 설정등록료 납부시 포기되었습니다.◈
    제 16 항에 있어서, 상기 제2 지연회로는
    상기 제2 지연신호를 반전 지연하여 제1 내부노드로 출력하는 제1 버퍼;
    상기 제1 내부노드에 연결되어 상기 백바이어스전압의 전압레벨에 따라 구동시점이 조절되어 상기 제1 내부노드에 전하를 공급하는 제1 전하공급회로;
    상기 제1 내부노드의 신호를 반전 지연하여 상기 제2 지연신호가 출력되는 제2 내부노드로 출력하는 제2 버퍼; 및
    상기 제2 내부노드에 연결되어 상기 백바이어스전압의 전압레벨에 따라 구동시점이 조절되어 상기 제2 내부노드에 전하를 공급하는 제2 전하공급회로를 포함하는 반도체장치.
  18. ◈청구항 18은(는) 설정등록료 납부시 포기되었습니다.◈
    제 17 항에 있어서, 상기 제1 전하공급회로 및 상기 제2 전하공급회로는 상기 백바이어스전압을 바디전압으로 공급받고, 상기 백바이어스전압의 전압레벨이 증가하는 경우 턴온전압레벨이 증가하는 트랜지스터를 포함하는 반도체장치.
  19. ◈청구항 19은(는) 설정등록료 납부시 포기되었습니다.◈
    제 12 항에 있어서, 상기 어드레스입력회로는
    상기 어드레스를 래치하고, 상기 백바이어스전압의 전압레벨에 따라 설정되는 상기 제2 지연량으로 래치된 상기 어드레스를 지연하여 래치어드레스로 출력하는 래치회로; 및
    상기 뱅크선택신호에 응답하여 상기 래치어드레스를 상기 내부어드레스로 출력하는 전달회로를 포함하는 반도체장치.
  20. 테스트모드신호에 응답하여 백바이어스전압의 전압레벨에 따라 가변되는 제1 지연량에 의해 액티브신호를 지연하여 뱅크선택신호를 생성하는 지연량조절회로; 및
    상기 백바이어스전압을 입력 받아 구동되고, 상기 뱅크선택신호에 응답하여 어드레스를 입력 받아 내부어드레스를 생성하되, 상기 백바이어스전압의 전압레벨에 따라 가변하는 제2 지연량에 의해 상기 어드레스를 지연하는 어드레스입력회로를 포함하는 반도체장치.
KR1020180077231A 2018-07-03 2018-07-03 반도체장치 KR102553854B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180077231A KR102553854B1 (ko) 2018-07-03 2018-07-03 반도체장치
US16/212,407 US10607684B2 (en) 2018-07-03 2018-12-06 Semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180077231A KR102553854B1 (ko) 2018-07-03 2018-07-03 반도체장치

Publications (2)

Publication Number Publication Date
KR20200004149A KR20200004149A (ko) 2020-01-13
KR102553854B1 true KR102553854B1 (ko) 2023-07-12

Family

ID=69102651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180077231A KR102553854B1 (ko) 2018-07-03 2018-07-03 반도체장치

Country Status (2)

Country Link
US (1) US10607684B2 (ko)
KR (1) KR102553854B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034098A (ja) 2007-09-25 2008-02-14 Renesas Technology Corp 半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655084B1 (ko) * 2006-01-17 2006-12-08 삼성전자주식회사 센스앰프 인에이블 회로 및 이를 갖는 반도체 메모리 장치
US9287858B1 (en) 2014-09-03 2016-03-15 Texas Instruments Incorporated Low leakage shadow latch-based multi-threshold CMOS sequential circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034098A (ja) 2007-09-25 2008-02-14 Renesas Technology Corp 半導体装置

Also Published As

Publication number Publication date
KR20200004149A (ko) 2020-01-13
US10607684B2 (en) 2020-03-31
US20200013450A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US10706899B2 (en) Semiconductor device
US10685697B2 (en) Semiconductor devices and operations thereof
CN110675899B (zh) 延迟电路和使用该延迟电路的半导体系统
US9773541B1 (en) Semiconductor device and semiconductor system
US9792970B2 (en) Semiconductor device and semiconductor system
US9672884B1 (en) Semiconductor devices and semiconductor systems including the same
US10026461B2 (en) Semiconductor devices and semiconductor systems including the same
CN111435605A (zh) 半导体器件及包括半导体器件的半导体系统
US10037788B2 (en) Semiconductor devices and semiconductor systems
KR102553854B1 (ko) 반도체장치
US10559340B2 (en) Semiconductor device
CN110931059B (zh) 提供掉电模式的半导体器件及使用其控制掉电模式的方法
KR102638788B1 (ko) 반도체장치 및 반도체시스템
CN109427378B (zh) 周期控制电路
US11004496B2 (en) Semiconductor devices
US9576628B1 (en) Semiconductor device
US9595305B1 (en) Semiconductor devices
US10110227B2 (en) Internal voltage generation circuit
CN106571159B (zh) 半导体器件以及包括半导体器件的半导体系统
KR102628532B1 (ko) 반도체장치 및 반도체시스템

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right