KR102547859B1 - 진공단열체, 및 냉장고 - Google Patents

진공단열체, 및 냉장고 Download PDF

Info

Publication number
KR102547859B1
KR102547859B1 KR1020180074307A KR20180074307A KR102547859B1 KR 102547859 B1 KR102547859 B1 KR 102547859B1 KR 1020180074307 A KR1020180074307 A KR 1020180074307A KR 20180074307 A KR20180074307 A KR 20180074307A KR 102547859 B1 KR102547859 B1 KR 102547859B1
Authority
KR
South Korea
Prior art keywords
space
plate member
vacuum
sealing
refrigerator
Prior art date
Application number
KR1020180074307A
Other languages
English (en)
Other versions
KR20200001396A (ko
Inventor
기두찬
정원영
윤덕현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020180074307A priority Critical patent/KR102547859B1/ko
Priority to PCT/KR2019/007765 priority patent/WO2020004957A1/en
Priority to CN201980024385.6A priority patent/CN111936812B/zh
Priority to AU2019292299A priority patent/AU2019292299B2/en
Priority to EP19825425.2A priority patent/EP3814702A4/en
Priority to US16/981,138 priority patent/US11598571B2/en
Publication of KR20200001396A publication Critical patent/KR20200001396A/ko
Priority to US18/106,644 priority patent/US20230251015A1/en
Priority to KR1020230079713A priority patent/KR20230098754A/ko
Application granted granted Critical
Publication of KR102547859B1 publication Critical patent/KR102547859B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • F25D23/082Strips
    • F25D23/087Sealing strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/40Refrigerating devices characterised by electrical wiring

Abstract

본 발명에 따른 진공단열체에는, 진공단열체의 내외를 전기적으로 접속하는 접속선로로서, 구동원으로서 교류전류가 흐르는 교류선로; 구동원으로서 직류전류가 흐르는 직류선로; 및 제어신호가 흐르는 신호선로가 포함된다. 이에 따르면 진공단열체를 관통하는 선로를 줄일 수 있다.

Description

진공단열체, 및 냉장고{Vacuum adiabatic body, and refrigerator}
본 발명은 진공단열체, 및 냉장고에 관한 것이다.
진공단열체는 몸체의 내부를 진공으로 유지하여 열전달을 억제하는 물품이다. 상기 진공단열체는 대류 및 전도에 의한 열전달을 줄일 수 있기 때문에 온장장치 및 냉장장치에 적용될 수 있다. 한편, 종래 냉장고에 적용되는 단열방식은 냉장과 냉동에 따라서 차이는 있지만 대략 30센티미터가 넘는 두께의 발포 폴리우레탄 단열벽을 제공하는 것이 일반적인 방식이었다. 그러나, 이로써 냉장고의 내부 용적이 줄어드는 문제점이 있다.
냉장고의 내부 용적을 늘리기 위하여 상기 냉장고에 진공단열체를 적용하고자 하는 시도가 있다.
먼저, 본 출원인의 등록특허 10-0343719(인용문헌 1)가 있다. 상기 등록특허에 따르면 진공단열패널(Vacuum adiabatic panel)을 제작하고, 상기 진공단열패널을 냉장고의 벽에 내장하고, 상기 진공단열패널의 외부를 스티로폼인 별도 성형물로 마감하는 방식이다. 상기 방식에 따르면 발포가 필요 없고, 단열성능이 향상되는 효과를 얻을 수 있다. 이 방식은 비용이 상승하고 제작방식이 복잡해지는 문제가 있다.
다른 예로서 공개특허 10-2015-0012712(인용문헌 2)에는 진공단열재로 벽을 제공하고 그에 더하여 발포 충전재로 단열벽을 제공하는 것에 대한 기술에 제시되어 있다. 이 방식도 비용이 증가하고 제작방식이 복잡한 문제점이 있다.
또 다른 예로서 냉장고의 벽을 전체로 단일물품인 진공단열체로 제작하는 시도가 있었다. 예를 들어, 미국공개특허공보 US2004/0226956A1(인용문헌 3)에는 진공상태로 냉장고의 단열구조를 제공하는 것에 대하여 개시되어 있다. 그러나 냉장고의 벽을 충분한 진공상태로 제공하여 실용적인 수준의 단열효과를 얻는 것은 어려운 일이다. 상세하게 설명하면, 온도가 서로 다른 외부케이스와 내부케이스와의 접촉부분의 열전달 현상을 막기가 어렵고, 안정된 진공상태를 유지하는 것이 어렵고, 진공상태의 음압에 따른 케이스의 변형을 방지하는 것이 어려운 등의 문제점이 있다. 이들 문제점으로 인하여 인용문헌 3의 기술도 극저온의 냉장장치에 국한하고, 일반 가정에서 적용할 수 있는 수준의 기술은 제공하지 못한다.
더 다른 방식으로서 본 발명의 출원인은 대한민국공개특허공보 10-2017-0016187호(인용문헌 4), 진공단열체 및 냉장고를 출원한 바가 있다. 본 기술은 본체와 도어가 모두 진공단열체로 제공되는 냉장고를 제안하고 있다.
한편, 냉장고를 제작하는 경우에는, 냉장고의 동작을 위한 센서 및 구동부 등과 같은 다양한 부품을 제어하기 위한 제어선로가, 냉장고의 고 내외를 서로 연결한다. 이를 위하여, 발포 등의 방식으로 제작되는 종래의 냉장고는, 발포벽의 내부에 전선을 위치시킬 수 있다. 상기 발포벽은 전선의 사이 간격부를 완벽하게 채울 수 있기 때문에 단열효율의 저하없이 냉장고를 동작시킬 수 있다.
그러나, 인용문헌 4와 같이 진공단열체를 이용하여 냉장고를 제작하는 경우에는 진공성능의 유지 및 제작의 어려움으로 인하여 진공단열체의 내부에 전선을 위치시키기가 어렵다. 진공단열체를 관통하여 전선을 설치하는 경우에는 진공단열체의 단열성능에 영향을 미치기 때문에 바람직하지 않은 것이다. 냉장고의 동작을 위하여 고 내외로 연결되는 선로의 개수는 40여 개에 이르기 때문에 진공단열체의 관통부가 늘어나거나 관통부의 크기가 커짐에 따라서 단열효율의 저하가 커지는 것이다. 더욱이, 냉장고의 대형화 정교화로 인하여 선로의 개수는 점점 더 늘어나고 있는 실정이기 때문에, 진공단열체가 적용되는 냉장고의 고 내외를 연결하는 전선의 설치에 대한 어려움이 크다.
본 발명의 발명자는 리서치를 거듭하여 냉장고의 고 내외를 전력선통신을 통하여 연결하는 대한민국등록특허 10-1316023(인용문헌 5), '배선통합모듈 및 그 모듈을 이용한 배선구조를 갖는 냉장고'가 있는 것을 알았다. 상기 인용문헌 5는 교류전력선통신방식을 이용하여, 고 내에 놓이는 각종 부하에 두 개의 전선을 이용하여 교류방식의 전류를 공급하는 것과 함께, 상기 두 개의 전선을 이용하는 전력선 통신을 수행한다. 결과적으로 상기 발포벽에는 두 개의 전선만이 통과하도록 한다.
상기 인용문헌 5에 따르면, 냉장고의 벽체를 통과하는 전선의 개수는 두 개로 줄어드는 장점이 있다.
이 장점에도 불구하고, 인용문헌 5의 기술은 다음과 같은 문제점으로 인하여 실제로 냉장고에는 적용하기 어렵다. 첫째, 냉장고의 고 내에는, 부하의 직류구동을 위하여 스위칭동작을 수반하는 정류장치가 제공되어야 하고, 정류장치의 발열에 의해서 냉장고의 에너지 소비효율을 크게 떨어뜨리는 문제가 있다. 둘째, 전력선통신을 수행하기 위하여, 고 내의 각 개별 부하에는 전력선 신호 수신을 위한 고주파필터와 A/D컨버터가 필요하고, 전력선 신호 송신을 위한 D/A인버터가 필요하여, 제조비가 급격히 상승하고, 많은 에너지 로스가 발생한다. 셋째, 전력선 통신을 수행할 때 저주파와 고주파의 레벨 차이로 인하여 통신에 사용되는 고주파 성분의 유실가능성이 높은 문제가 있다. 넷째, 두 개의 교류전선을 이용하여 도어의 마이컴, 본체기판, 및 많은 부하의 개별 마이컴이 개별적으로 송수신을 수행하기 때문에, 프로그램의 쓰기에 많은 시간이 걸리고 각 노드 간의 신호 송수신에서 간섭의 우려가 크다. 다섯째, 기판 및 부품이 발포벽의 안에 놓이는 경우에는 수리가 전혀 불가능해 지는 문제점이 있다.
등록특허 10-0343719 공개특허 10-2015-0012712의 도 7 미국공개특허공보 US2004/0226956A1 대한민국공개특허공보 10-2017-0016187호 도 2,3,4, 및 8와, 그 관련설명 대한민국등록특허 10-1316023의 도 1 및 관련설명
본 발명은 상기되는 배경에서 제안되는 것으로서, 내부 공간의 공조를 위하여 진공단열체의 내외를 연결하는 전선의 수를 최소화하는 진공단열체 및 냉장고를 제안한다.
본 발명은 내 공간의 발열량을 최소화하고 신호 송수신을 위한 소모전력을 최소화하는 진공단열체 및 냉장고를 제안한다.
본 발명은 제어기와 부하와의 신호 송수신에서 에러가 발생하지 않도록 하는 진공단열체 및 냉장고를 제안한다.
본 발명에 따른 진공단열체에는, 진공단열체의 내외를 전기적으로 접속하는 접속선로로서, 구동원으로서 교류전류가 흐르는 교류선로; 구동원으로서 직류전류가 흐르는 직류선로; 및 제어신호가 흐르는 신호선로가 포함된다. 이에 따르면 진공단열체를 관통하는 선로를 줄일 수 있다.
다른 측면에 따른 본 발명의 냉장고에는, 저장물을 저장할 수 있는 내부공간을 제공하고 진공단열체로 제공되는 본체; 외부공간이 상기 내부공간과 선택적으로 연통되도록 개방되는 도어; 상기 외부공간에 놓이는 메인 제어기; 상기 내부공간에 놓이고, 상기 내부공간의 부품을 제어하는 보조 제어기; 상기 메인 제어기와 상기 보조 제어기가 접속되어 상기 보조 제어기로 직류전원을 공급하는 직류선로; 상기 메인 제어기와 상기 보조 제어기가 접속되어 제어신호가 흐르는 신호선로; 및 상기 내부공간에 놓이는 발열부에 교류전원을 공급하는 교류선로가 포함된다. 본 발명에 따른 냉장고의 제어를 충분히 수행하면서도 진공단열체를 관통하는 전선의 수를 줄일 수 있다.
또 다른 측면에 따른 본 발명의 냉장고에는, 저장물을 저장할 수 있는 내부공간을 제공하는 진공단열체로 제공되는 본체; 외부공간이 상기 내부공간과 선택적으로 연통되도록 개방되는 도어; 상기 내부공간에 놓이는 발열부; 상기 외부공간에 놓이는 전원제어부; 및 상기 외부공간과 상기 내부공간을 연결하여 전원을 공급하는 여섯개의 선로가 포함된다. 본 발명에 따른 최소수의 선로가 진공단열체의 내외를 관통하도록 하여, 냉장고의 안정동작을 수행하면서도 진공단열체의 단열신뢰성을 확보할 수 있다.
본 발명에 제공되는 진공단열체의 외벽을 제공하는 플레이트 부재 간의 열전달에 저항하는 열저항유닛에는, 진공공간부의 벽을 따라 흐르는 열전도에 저항할 수 있는 전도저항쉬트가 포함되고, 상기 전도저항쉬트와 체결되는 사이드 프레임이 더 포함될 수 있다.
또한, 상기 열저항유닛에는 상기 진공공간부 내부에 판상으로 제공되는 적어도 하나의 복사저항쉬트를 포함하거나 상기 진공공간부 내부에 상기 제 2 플레이트 부재와 상기 제 1 플레이트 부재 간의 복사열전달에 저항하는 다공성물질이 포함될 수 있다.
본 발명에 따르면, 고 내외를 연결하는 전선의 수가 최적화되어, 진공단열체의 관통부의 크기 및 관통부의 수를 줄이면서도 냉장고의 안정된 구동을 얻을 수 있다.
본 발명에 따르면, 냉장고의 고내 공간에서의 별도 발열원을 제거할 수 있어서, 냉장고의 에너지소비효율을 높일 수 있다.
본 발명에 따르면, 제어기와 부하 간의 신호 송수신의 안정성을 담보할 수 있어서, 냉장고의 고장을 방지할 수 있다.
본 발명에 따르면, 직류로 구동하는 상용부하를 진공단열체가 적용되는 냉장고에도 그대로 적용할 수 있기 때문에, 진공단열체가 적용되는 냉장고의 제조비를 낮출 수 있다.
도 1은 실시예에 따른 냉장고의 사시도.
도 2는 냉장고의 본체 및 도어에 사용되는 진공단열체를 개략적으로 나타내는 도면.
도 3은 진공공간부의 내부구성에 대한 다양한 실시예를 보이는 도면.
도 4는 전도저항쉬트 및 그 주변부의 다양한 실시예를 보이는 도면.
도 5는 시뮬레이션을 적용하여 진공압에 따른 단열성능의 변화와 가스전도도의 변화를 나타내는 그래프.
도 6은 서포팅유닛이 사용되는 경우에 진공단열체의 내부를 배기하는 공정을 시간과 압력으로 관찰하는 그래프.
도 7은 진공압과 가스전도도를 비교하는 그래프.
도 8은 진공단열체의 부분 절개도.
도 9는 열교환관로가 진공공간부에서 놓이는 것을 설명하는 도면.
도 10은 실시예에 따른 열교환관로의 부분 절개도.
도 11은 열교환관로가 진공공간부에 놓이는 것을 보이는 도면.
도 12는 고내측으로 인출되는 열교환관로를 보이는 도면.
도 13은 고외측으로 인출되는 열교환관로를 보이는 도면.
도 14는 다른 실시예에 따른 열교환관로의 단면도.
도 15는 더 다른 실시예에 따른 열교환관로의 단면도.
도 16은 더 다른 실시예에 따른 열교환관로를 보이는 도면.
도 17은 도 16의 A-A'의 단면도.
도 18은 도 16의 B-B'의 단면도.
도 19는 열교환관로가 제 2 플레이트 부재를 통과하는 곳의 단면도.
도 20은 실시예에 따른 열교환관로 설치부의 구성을 보이는 도면.
도 21은 관통실링부의 일 실시예를 보이는 단면도.
도 22와 도 23은 다른 실시예에 따른 관통실링부를 나타내는 도면
도 24는 관통실링부의 구성을 보이는 단면도.
도 25 및 도 26은 관통실링부의 제작공정을 보이는 도면.
도 27 내지 도 30은 관통실링부와 관로단열부의 상호관계를 보이는 도면.
도 31 및 도 32는 관통실링부의 다른 실시예를 보이는 도면.
도 33은 냉장고의 제어를 설명하는 구성도.
도 34는 여섯개의 선로에 의한 냉장고의 전체 제어를 더 상세하게 설명하는 도면.
도 35는 상기 메인 제어기와 상기 보조 제어기의 설치위치를 보이는 도면.
도 36은 관로를 이용하는 경우에 상기 메인 제어기와 상기 보조 제어기의 접속을 설명하는 도면.
도 37 내지 도 39는 냉장고 제어의 구성을 비교하여 설명하는 도면으로서, 도 37은 종래의 메인 제어기에서 40여개에 이르는 다수의 선로가 고내로 인입되는 경우를 보이는 도면이고, 도 38은 여섯개의 선로가 상기 관로를 통과하는 경우를 보이고, 도 39는 여섯개의 선로가 상기 실링 프레임과 본체의 외면 사이 간격부를 통과하는 경우를 보이는 도면.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 제안한다. 그러나, 본 발명의 사상이 이하에 제시되는 실시예에 제한되지는 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 제안할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다.
이하에 실시예의 설명을 위하여 제시되는 도면은 실제 물품과는 다르거나 과장되거나 간단하거나 세밀한 부품은 간략하게 표시될 수 있으나, 이는 본 발명 기술사상 이해의 편리를 도모하기 위한 것으로서, 도면에 제시되는 크기와 구조와 형상으로 제한되어 해석되지 않아야 한다. 그러나, 가급적 실제의 모양을 나타내기 위하여 노력한다.
이하의 실시예는, 서로 충돌하지 않는다면, 어느 하나의 실시예의 설명이 다른 하나의 실시예의 설명에 적용될 수도 있고, 어느 하나의 실시예의 일부 구성이 다른 하나의 구성에 특정 부분만이 변형된 상태에서 적용될 수 있다.
이하의 설명에서 진공압은 대기압보다 낮은 그 어떤 압력상태를 의미한다. 그리고, A가 B보다 진공도가 높다는 표현은 A의 진공압이 B의 진공압보다 낮다는 것을 의미한다.
도 1은 실시예에 따른 냉장고의 사시도이다.
도 1을 참조하면, 냉장고(1)에는 저장물을 저장할 수 있는 캐비티(9)가 제공되는 본체(2)와, 상기 본체(2)를 개폐하도록 마련되는 도어(3)가 포함된다. 상기 도어(3)는 회동할 수 있게 배치되거나 슬라이드 이동이 가능하게 배치되어 캐비티(9)를 개폐할 수 있다. 상기 캐티비(9)는 냉장실 및 냉동실 중의 적어도 하나를 제공할 수 있다.
상기 캐비티에 냉기를 공급하는 냉동사이클을 이루는 부품이 마련된다. 상세하게는, 냉매를 압축하는 압축기(4)와, 압축된 냉매를 응축하는 응축기(5)와, 응축된 냉매를 팽창시키는 팽창기(6)와, 팽창된 냉매를 증발시켜 열을 빼앗는 증발기(7)가 포함된다. 전형적인 구조로서, 상기 증발기(7)가 인접하는 위치에 팬을 설치하고, 팬으로부터 송풍된 유체가 상기 증발기(7)를 통과한 다음에 캐비티(9)로 송풍되도록 할 수 있다. 상기 팬에 의한 송풍량 및 송풍방향을 조정하거나 순환 냉매의 양을 조절하거나 압축기의 압축률을 조정함으로써 냉동부하를 조절하여, 냉장공간 또는 냉동공간의 제어를 수행할 수 있다.
도 2는 냉장고의 본체 및 도어에 사용되는 진공단열체를 개략적으로 나타내는 도면으로서, 본체 측 진공단열체는 상면과 측면의 벽이 제거된 상태로 도시되고, 도어 측 진공단열체는 전면의 벽 일부가 제거된 상태의 도면이다. 또한, 전도저항쉬트(60)(63)가 제공되는 부분의 단면을 개략적으로 나타내어 이해가 편리하게 되도록 하였다.
도 2를 참조하면, 진공단열체에는, 저온공간의 벽을 제공하는 제 1 플레이트 부재(10)와, 고온공간의 벽을 제공하는 제 2 플레이트 부재(20)와, 상기 제 1 플레이트 부재(10)와 상기 제 2 플레이트 부재(20)의 사이 간격부로 정의되는 진공공간부(50)가 포함된다. 상기 제 1, 2 플레이트 부재(10)(20) 간의 열전도를 막는 전도저항쉬트(60)(63)가 포함된다. 상기 진공공간부(50)를 밀폐상태로 하기 위하여 상기 제 1 플레이트 부재(10)와 상기 제 2 플레이트 부재(20)를 밀봉하는 밀봉부(61)가 제공된다. 냉장고 또는 온장고에 상기 진공단열체가 적용되는 경우에는, 상기 제 1 플레이트 부재(10)는 이너케이스라고 할 수 있고, 상기 제 2 플레이트 부재(20)는 아웃케이스라고 할 수 있다. 본체 측 진공단열체의 하측 후방에는 냉동사이클을 제공하는 부품이 수납되는 기계실(8)이 놓이고, 상기 진공단열체의 어느 일측에는 진공공간부(50)의 공기를 배기하여 진공상태를 조성하기 위한 배기포트(40)가 제공된다. 또한, 제상수 및 전기선로의 설치를 위하여 진공공간부(50)를 관통하는 관로(64)가 더 설치될 수 있다.
상기 제 1 플레이트 부재(10)는, 제 1 플레이트 부재 측에 제공되는 제 1 공간을 위한 벽의 적어도 일부를 정의할 수 있다. 상기 제 2 플레이트 부재(20)는, 제 2 플레이트 부재 측에 제공되는 제 2 공간을 위한 벽의 적어도 일부를 정의할 수 있다. 상기 제 1 공간과 상기 제 2 공간은 온도가 서로 다른 공간으로 정의할 수 있다. 여기서, 각 공간의 위한 벽은, 공간에 직접 접하는 벽으로서의 기능을 수행하는 경우뿐만 아니라, 공간에 접하지 않는 벽으로서의 기능을 수행할 수도 있다. 예를 들어 각 공간에 접하는 별도의 벽을 더 가지는 물품의 경우에도 실시예의 진공단열체가 적용될 수 있는 것이다.
상기 진공단열체가 단열효과의 손실을 일으키는 요인은, 제 1 플레이트 부재(10)와 제 2 플레이트 부재(20) 간의 열전도와, 제 1 플레이트 부재(10)와 제 2 플레이트 부재(20) 간의 열복사, 및 진공공간부(50)의 가스전도(gas conduction)가 있다.
이하에서는 상기 열전달의 요인과 관련하여 단열손실을 줄이기 위하여 제공되는 열저항유닛에 대하여 설명한다. 한편, 실시예의 진공단열체 및 냉장고는 진공단열체의 적어도 어느 한쪽에 또 다른 단열수단을 더 가지는 것을 배제하지 않는다. 따라서, 다른 쪽 일면에 발포 등을 이용하는 단열수단을 더 가질 수도 있다.
상기 열저항유닛에는 상기 제 3 공간의 벽을 따라 흐르는 열전도에 저항할 수 있는 전도저항쉬트가 포함되고, 상기 전도저항쉬트와 체결되는 사이드 프레임이 더 포함될 수 있다. 상기 전도저항쉬트와 상기 사이드 프레임은 이하의 설명에 의해서 명확해 질 수 있다.
또한, 상기 열저항유닛에는 상기 제 3 공간 내부에 판상으로 제공되는 적어도 하나의 복사저항쉬트를 포함하거나 상기 제 3 공간 내부에 상기 제 2 플레이트 부재와 상기 제 1 플레이트 부재 간의 복사열전달에 저항하는 다공성물질이 포함될 수 있다. 상기 복사저항쉬트와 상기 다공성물질은 이하의 설명에 의해서 명확히 이해될 수 있다.
도 3은 진공공간부의 내부구성에 대한 다양한 실시예를 보이는 도면이다.
먼저 도 3a를 참조하면, 상기 진공공간부(50)는 상기 제 1 공간 및 상기 제 2 공간과는 다른 압력, 바람직하게는 진공 상태의 제 3 공간으로 제공되어 단열손실을 줄일 수 있다. 상기 제 3 공간은 상기 제 1 공간의 온도 및 상기 제 2 공간의 온도의 사이에 해당하는 온도로 제공될 수 있다. 상기 제 3 공간은 진공 상태의 공간으로 제공되기 때문에, 상기 제 1 플레이트 부재(10) 및 상기 제 2 플레이트 부재(20)는 각 공간의 압력차만큼의 힘에 의해서 서로 접근하는 방향으로 수축하는 힘을 받기 때문에 상기 진공공간부(50)는 작아지는 방향으로 변형될 수 있다. 이 경우에는 진공공간부의 수축에 따른 복사전달량의 증가, 상기 플레이트 부재(10)(20)의 접촉에 따른 전도전달량의 증가에 따른 단열손실을 야기할 수 있다.
상기 진공공간부(50)의 변형을 줄이기 위하여 서포팅유닛(30)이 제공될 수 있다. 상기 서포팅유닛(30)에는 바(31)가 포함된다. 상기 바(31)는 제 1 플레이트 부재와 제 2 플레이트 부재의 사이 간격을 지지하기 위하여 상기 플레이트 부재에 대하여 실질적으로 수직한 방향으로 연장될 수 있다. 상기 바(31)의 적어도 어느 일단에는 지지 플레이트(35)가 추가로 제공될 수 있다. 상기 지지 플레이트(35)는 적어도 두 개 이상의 바(31)를 연결하고, 상기 제 1, 2 플레이트 부재(10)(20)에 대하여 수평한 방향으로 연장될 수 있다. 상기 지지 플레이트는 판상으로 제공될 수 있고, 격자형태로 제공되어 상기 제 1, 2 플레이트 부재(10)(20)와 접하는 면적이 작아져서 열전달이 줄어들도록 할 수 있다. 상기 바(31)와 상기 지지 플레이트는 적어도 일 부분에서 고정되어, 상기 제 1, 2 플레이트 부재(10)(20)의 사이에 함께 삽입될 수 있다. 상기 지지 플레이트(35)는 상기 제 1, 2 플레이트 부재(10)(20) 중 적어도 하나에 접촉하여 상기 제 1, 2 플레이트 부재(10)(20)의 변형을 방지할 수 있다. 또한, 상기 바(31)의 연장방향을 기준으로 할 때, 상기 지지플레이트(35)의 총단면적은 상기 바(31)의 총단면적보다 크게 제공하여, 상기 바(31)를 통하여 전달되는 열이 상기 지지 플레이트(35)를 통하여 확산될 수 있다.
상기 서포팅유닛(30)의 재질로는, 높은 압축강도, 낮은 아웃게싱(outgassing) 및 물흡수율, 낮은 열전도율, 고온에서 높은 압축강도, 및 우수한 가공성을 얻기 위하여, PC, glass fiber PC, low outgassing PC, PPS, 및 LCP 중에서 선택되는 수지를 사용할 수 있다.
상기 진공공간부(50)를 통한 상기 제 1, 2 플레이트 부재(10)(20) 간의 열복사를 줄이는 복사저항쉬트(32)에 대하여 설명한다. 상기 제 1, 2 플레이트 부재(10)(20)는 부식방지과 충분한 강도를 제공할 수 있는 스테인레스 재질로 제공될 수 있다. 상기 스테인레스 재질은 방사율이 0.16으로서 비교적 높기 때문에 많은 복사열 전달이 일어날 수 있다. 또한, 수지를 재질로 하는 상기 서포팅유닛의 방사율은 상기 플레이트 부재에 비하여 낮고 제 1, 2 플레이트 부재(10)(20)의 내면에 전체적으로 마련되지 않기 때문에 복사열에 큰 영향을 미치지 못한다. 따라서 상기 복사저항쉬트는 제 1 플레이트 부재(10)와 제 2 플레이트 부재(20) 간의 복사열 전달의 저감에 중점적으로 작용하기 위하여, 상기 진공공간부(50)의 면적의 대부분을 가로질러서 판상으로 제공될 수 있다. 상기 복사저항쉬트(32)의 재질로는, 방사율(emissivity)이 낮은 물품이 바람직하고, 실시예에서는 방사율 0.02의 알루미늄 박판이 바람직하게 사용될 수 있다. 또한, 한 장의 복사저항쉬트로는 충분한 복사열 차단작용을 얻을 수 없기 때문에, 적어도 두 장의 복사저항쉬트(32)가 서로 접촉하지 않도록 일정 간격을 두고 제공될 수 있다. 또한, 적어도 어느 한 장의 복사저항쉬트는 제 1, 2 플레이트 부재(10)(20)의 내면에 접하는 상태로 제공될 수 있다.
도 3b를 참조하면, 서포팅유닛(30)에 의해서 플레이트 부재 간의 간격을 유지하고, 진공공간부(50)의 내부에 다공성물질(33)을 충전할 수 있다. 상기 다공성물질(33)은 제 1, 2 플레이트 부재(10)(20)의 재질인 스테인레스보다는 방사율이 높을 수 있지만, 진공공간부를 충전하고 있으므로 복사열전달의 저항효율이 높다.
본 실시예의 경우에는, 복사저항쉬트(32)가 없이도 진공단열체를 제작할 수 있는 효과가 있다.
도 3c를 참조하면, 진공공간부(50)를 유지하는 서포팅유닛(30)이 제공되지 않는다. 이를 대신하여 다공성물질(33)이 필름(34)에 싸인 상태로 제공되었다. 이때 다공성물질(33)은 진공공간부의 간격을 유지할 수 있도록 압축된 상태로 제공될 수 있다. 상기 필름(34)은 예시적으로 PE재질로서 구멍이 뚫려있는 상태로 제공될 수 있다.
본 실시예의 경우에는, 상기 서포팅유닛(30)이 없이 진공단열체를 제작할 수 있다. 다시 말하면, 상기 다공성물질(33)은 상기 복사저항쉬트(32)의 기능과 상기 서포팅유닛(30)의 기능을 함께 수행할 수 있다.
도 4는 전도저항쉬트 및 그 주변부의 다양한 실시예를 보이는 도면이다. 도 2에는 각 전도저항쉬트가 구조가 간단하게 도시되어 있으나, 본 도면을 통하여 더 상세하게 이해될 수 있을 것이다.
먼저, 도 4a에 제시되는 전도저항쉬트는 본체 측 진공단열체에 바람직하게 적용될 수 있다. 상세하게, 상기 진공단열체의 내부를 진공으로 유지하기 위하여 상기 제 2 플레이트 부재(20)와 상기 제 1 플레이트 부재(10)는 밀봉되어야 한다. 이때 두 플레이트 부재는 각각이 온도가 서로 다르므로 양자 간에 열전달이 발생할 수 있다. 종류가 다른 두 플레이트 부재 간의 열전도를 방지하기 위하여 전도저항쉬트(60)가 마련된다.
상기 전도저항쉬트(60)는 상기 제 3 공간을 위한 벽의 적어도 일부를 정의하고 진공상태를 유지하도록 그 양단이 밀봉되는 밀봉부(61)로 제공될 수 있다. 상기 전도저항쉬트(60)는 상기 제 3 공간의 벽을 따라서 흐르는 열전도량을 줄이기 위하여 마이크로미터 단위의 얇은 박판으로 제공된다. 상기 밀봉부(610)는 용접부로 제공될 수 있다. 즉, 전도저항쉬트(60)와 플레이트 부재(10)(20)가 서로 융착되도록 할 수 있다. 서로 간의 융착 작용을 이끌어내기 위하여 상기 전도저항쉬트(60)와 플레이트 부재(10)(20)는 서로 같은 재질을 사용할 수 있고, 스테인레스를 그 재질로 할 수 있다. 상기 밀봉부(610)는 용접부로 제한되지 않고 코킹 등의 방법을 통하여 제공될 수도 있다. 상기 전도저항쉬트(60)는 곡선 형상으로 제공될 수 있다. 따라서, 상기 전도저항쉬트(60)의 열전도의 거리는 각 플레이트 부재의 직선거리보다 길게 제공되어, 열전도량은 더욱 줄어들 수 있다.
상기 전도저항쉬트(60)를 따라서 온도변화가 일어난다. 따라서, 그 외부와의 열전달을 차단하기 위하여, 상기 전도저항쉬트(60)의 외부에는 차폐부(62)가 제공되어 단열작용이 일어나도록 하는 것이 바람직하다. 다시 말하면, 냉장고의 경우에 제 2 플레이트 부재(20)는 고온이고 제 1 플레이트 부재(10)는 저온이다. 그리고, 상기 전도저항쉬트(60)는 고온에서 저온으로 열전도가 일어나고 열흐름을 따라서 쉬트의 온도가 급격하게 변한다. 그러므로, 상기 전도저항쉬트(60)가 외부에 대하여 개방되는 경우에는 개방된 곳을 통한 열전달이 심하게 발생할 수 있다. 이러한 열손실을 줄이기 위하여 상기 전도저항쉬트(60)의 외부에는 차폐부(62)가 제공되도록 한다. 예를 들어, 상기 전도저항쉬트(60)가 저온공간 또는 고온공간의 어느 쪽에 노출되는 경우에도, 상기 전도저항쉬트(60)는 노출되는 양만큼 전도저항의 역할을 수행하지 못하기 때문에 바람직하지 않게 된다.
상기 차폐부(62)는 상기 전도저항쉬트(60)의 외면에 접하는 다공성물질로 제공될 수도 있고, 상기 전도저항쉬트(60)의 외부에 놓이는 별도의 가스켓으로 예시가능한 단열구조물로 제공될 수도 있고, 본체 측 진공단열체가 도어 측 진공단열체에 대하여 닫힐 때 대응하는 전도저항쉬트(60)와 마주보는 위치에 제공되는 진공단열체의 일 부분으로 제공될 수도 있다. 상기 본체와 상기 도어가 개방되었을 때에도 열손실을 줄이기 위하여, 상기 차폐부(62)는 다공성물질 또는 별도의 단열구조물로 제공되는 것이 바람직할 것이다.
도 4b에 제시되는 전도저항쉬트는 도어 측 진공단열체에 바람직하게 적용될 수 있고, 도 4a에 대하여 달라지는 부분을 상세하게 설명하고, 동일한 부분은 동일한 설명이 적용되는 것으로 한다. 상기 전도저항쉬트(60)의 바깥쪽으로는 사이드 프레임(70)이 더 제공된다. 상기 사이드 프레임(70)은 도어와 본체와의 실링을 위한 부품과 배기공정에 필요한 배기포트와 진공유지를 위한 게터포트 등이 놓일 수 있다. 이는 본체 측 진공단열체의 경우에는 부품의 장착이 편리할 수 있지만, 도어측은 위치가 제한되기 때문이다.
도어 측 진공단열체의 경우에는 상기 전도저항쉬트(60)는 진공공간부의 선단부, 즉 모서리 측면부에 놓이기 어렵다. 이는 도어(3)의 모서리 에지부는 본체와 달리 외부로 드러나기 때문이다. 더 상세하게 상기 전도저항쉬트(60)가 진공공간부의 선단부에 놓이면, 상기 도어(3)의 모서리 에지부는 외부로 드러나기 때문에, 상기 전도저항쉬트(60)의 단열을 위하여 별도의 단열부를 구성해야 하는 불리함이 있기 때문이다.
도 4c에 제시되는 전도저항쉬트는 진공공간부를 관통하는 관로에 바람직하게 설치될 수 있고, 도 4a 및 도 4b에 대하여 달라지는 부분을 상세하게 설명하고, 동일한 부분은 동일한 설명이 적용되는 것으로 한다. 관로(64)가 제공되는 주변부에는 도 4a와 동일한 형상으로 제공될 수 있고, 더 바람직하게는 주름형 전도저항쉬트(63)가 제공될 수 있다. 이에 따르면 열전달경로를 길게 할 수 있고, 압력차에 의한 변형을 방지할 수 있다. 또한 전도저항쉬트의 단열을 위한 별도의 차폐부재도 제공될 수 있다.
다시 도 4a를 참조하여 제 1 플레이트 부재(10)와 제 2 플레이트 부재(20) 간의 열전달경로를 설명한다. 진공단열체를 통과하는 열에는, 상기 진공단열체의 표면, 더 상세하게 상기 전도저항쉬트(60)를 따라서 전달되는 표면전도열(①)과, 상기 진공단열체의 내부에 제공되는 서포팅유닛(30)을 따라서 전도되는 서포터전도열(②)과, 진공공간부의 내부 가스를 통한 가스전도열(③)과, 진공공간부를 통하여 전달되는 복사전달열(④)로 구분할 수 있다.
상기 전달열은 다양한 설계 수치에 따라서 변형될 수 있다. 예를 들어 제 1, 2 플레이트 부재(10)(20)가 변형되지 않고 진공압에 견딜 수 있도록 서포팅유닛을 변경할 수도 있고, 진공압을 변경할 수 있고, 플레이트 부재의 간격길이를 달리할 수 있고, 전도저항유닛의 길이를 변경할 수 있고, 플레이트 부재가 제공하는 각 공간(제 1 공간 및 제 2 공간)의 온도차를 어느 정도를 하는지에 따라서 달라질 수 있다. 실시예의 경우에는 총열전달량이 종래 폴리우레탄을 발포하여 제공되는 단열구조물에 비하여 열전달량이 작아지도록 하는 것을 고려할 때 바람직한 구성을 알아내었다. 여기서, 종래 폴리우레탄을 발포하는 냉장고에서의 실질열전달계수는 19.6mW/mK으로 제시될 수 있다.
이에 따른 실시예의 진공단열체의 열전달량을 상대적으로 분석하면, 가스전도열(③)에 의한 열전달이 가장 작아지게 할 수 있다. 예를 들어 전체 열전달의 4%이하로 이를 제어할 수 있다. 상기 표면전도열(①) 및 상기 서포터전도열(②)의 합으로 정의되는 고체전도열에 의한 열전달이 가장 많다. 예를 들어 75%에 달할 수 있다. 상기 복사전달열(③)은 상기 고체전도열에 비해서는 작지만 가스전도열에 의한 열전달보다는 크게 된다. 예를 들어, 상기 복사전달열(③)은 전체 열전달량의 대략 20%를 차지할 수 있다.
이러한 열전달분포에 따르면, 실질열전달계수(eK: effective K)(W/mK)는 상기 전달열(①②③④)을 비교할 때 수학식 1의 순서를 가질 수 있다.
Figure 112018063343732-pat00001
여기서 상기 실질열전달계수(eK)는 대상 물품의 형상과 온도차를 이용하여 측정할 수 있는 값으로서, 전체 열전달량과 열전달되는 적어도 하나의 부분의 온도를 측정하여 얻어낼 수 있는 값이다. 예를 들어 냉장고 내에 정량적으로 측정이 가능한 가열원을 두고서 발열량을 알고(W), 냉장고의 도어 본체와 도어의 테두리를 통하여 각각 전달되는 열을 도어의 온도분포를 측정하고(K), 열이 전달되는 경로를 환산값으로 확인함으로써(m), 실질열전달계수를 구할 수 있는 것이다.
전체 진공단열체의 상기 실질열전달계수(eK)는 k=QL/A△T로 주어지는 값으로서, Q는 열전달량(W)으로서 히터의 발열량을 이용하여 획득할 수 있고, A는 진공단열체의 단면적(m2)이고, L은 진공단열체의 두께(m)이고, △T는 온도차로서 정의할 수 있다.
상기 표면전도열은, 전도저항쉬트(60)(63)의 입출구의 온도차(△T), 전도저항쉬트의 단면적(A), 전도저항쉬트의 길이(L), 전도저항쉬트의 열전도율(k)(전도저항쉬트의 열전도율은 재질의 물성치로서 미리 알아낼 수 있다)를 통하여 전도열량을 알아낼 수 있다. 상기 서포터전도열은, 서포팅유닛(30)의 입출구의 온도차(△T), 서포팅유닛의 단면적(A), 서포팅유닛의 길이(L), 서포팅유닛의 열전도율(k)을 통하여 전도열량을 알아낼 수 있다. 여기서, 상기 서포팅유닛의 열전도율은 재질의 물성치로서 미리 알아낼 수 있다. 상기 가스전도열(③)과 상기 복사전달열(④)의 합은 상기 전체 진공단열체의 열전달량에서 상기 표면전도열과 상기 서포터전도열을 빼는 것에 의해서 알아낼 수 있다. 상기 가스 전도열과 상기 복사전달열의 비율은 진공공간부의 진공도를 현저히 낮추어 가스 전도열이 없도록 하였을 때의 복사전달열을 구하는 것으로서 알아낼 수 있다.
상기 진공공간부(50)의 내부에 다공성물질이 제공되는 경우에, 다공성물질전도열(⑤)은 상기 서포터전도열(②)과 복사열(④)을 합한 양으로 고려할 수 있다. 상기 다공성물질전도열은 다공성물질의 종류와 양 등의 다양한 변수에 의해서 변경될 수 있다.
실시예에 따르면, 서로 인접하는 바(31)가 이루는 기하학적 중심과 바가 위치하는 곳과의 온도차(△T1)는 0.5도씨 미만으로 제공되는 것이 바람직하다. 또한, 인접하는 바가 이루는 기하학적 중심과 진공단열체의 에지부와의 온도차(△T2)는 5도씨 미만으로 제공되는 것을 바람직하게 제안할 수 있다. 또한, 상기 제 2 플레이트 부재에 있어서, 상기 전도저항쉬트(60)(63)를 통과하는 열전달 경로가 제 2 플레이트 부재와 만나는 지점에서, 제 2 플레이트 부재의 평균온도와의 온도차이가 가장 클 수 있다. 예를 들어, 상기 제 2 공간이 상기 제 1 공간에 비하여 뜨거운 영역인 경우에는, 상기 전도저항쉬트를 통과하는 열전달 경로가 제 2 플레이트 부재와 만나는 제 2 플레이트 부재의 지점에서 온도가 최저가 된다. 마찬가지로, 상기 제 2 공간이 상기 제 1 공간에 비하여 차가운 영역인 경우에는, 상기 전도저항쉬트를 통과하는 열전달 경로가 제 2 플레이트 부재와 만나는 제 2 플레이트 부재의 지점에서 온도가 최고가 된다.
이는 전도저항쉬트를 통과하는 표면전도열을 제외하는 다른 곳을 통한 열전달량은 충분히 제어되어야 하고, 표면전도열이 가장 큰 열전달량을 차지하는 경우에 비로소 전체적으로 진공단열체가 만족하는 전체 열전달량을 달성할 수 있는 이점을 얻는 것을 의미한다. 이를 위하여 상기 전도저항쉬트의 온도변화량은 상기 플레이트 부재의 온도변화량보다 크게 제어될 수 있다.
상기 진공단열체를 제공하는 각 부품의 물리적 특징에 대하여 설명한다. 상기 진공단열체는 진공압에 의한 힘이 모든 부품에 가하여진다. 따라서, 일정한 수준이 강도(strength)(N/m2)를 가지는 재료가 사용되는 것이 바람직하다.
이러한 배경하에서, 상기 플레이트 부재(10)(20)와 상기 사이드 프레임(70)은 진공압에도 불구하고 파손되지 않는 충분한 강도(strength)가 있는 재질로 제공되는 것이 바람직하다. 예를 들어 서포터전도열을 제한하기 위하여 바(31)의 개수를 작게 하는 경우에는 진공압에 의한 플레이트 부재의 변형이 발생하여 외관이 좋지 않은 영향을 줄 수 있다. 상기 복사저항쉬트(32)는 방사율이 낮으면서 용이하게 박막가공이 가능한 물품이 바람직하고, 외부충격에 변형되지 않은 정도의 강도가 확보되어야 한다. 상기 서포팅유닛(30)은 진공압에 의한 힘을 지지하고 외부충격에 견딜 수 있는 강도로 제공되고 가공성이 있어야 한다. 상기 전도저항쉬트(60)는 얇은 판상이면서도 진공압을 견딜 수 있는 재질이 사용되는 것이 바람직하다.
실시예에서는 상기 플레이트 부재, 사이드 프레임, 및 전도저항쉬트는 동일한 강도인 스테인레스 재질을 사용할 수 있다. 상기 복사저항쉬트는 스테인레스보다는 약한 강도인 알루미늄을 사용할 수 있다. 상기 서포팅유닛은 알루미늄보다 약한 강도인 수지를 그 재질로 사용할 수 있다.
상기되는 바와 같은 재질의 측면에서 바라본 강도와 달리, 강성 측면에서의 분석이 요청된다. 상기 강성(stiffness)(N/m)은 쉽게 변형되지 않는 성질로서 동일한 재질을 사용하더라도 그 형상에 따라서 강성이 달라질 수 있다. 상기 전도저항쉬트(60)(63)는 강도가 있는 재질을 사용할 수 있으나, 열저항을 높이고 진공압이 가하여질 때 거친면이 없이 고르게 펼쳐져 방사열을 최소화하기 위하여 강성이 낮은 것이 바람직하다. 상기 복사저항쉬트(32)는 변형으로 다른 부품에 닿지 않도록 하기 위하여 일정 수준의 강성이 요청된다. 특히, 상기 복사저항쉬트의 테두리 부분은 자중에 따른 처짐이 발생하여 전도열을 발생시킬 수 있다. 그러므로, 일정 수준의 강성이 요청된다. 상기 서포팅유닛(30)은 플레이트 부재로부터의 압축응력 및 외부충격에 견딜 수 있는 정도의 강성이 요청된다.
실시예에서는 상기 플레이트 부재, 및 사이드 프레임은 진공압에 의한 변형을 방지하도록 가장 강성이 높은 것이 바람직하다. 상기 서포팅유닛, 특히 바는 두번째로 큰 강성을 가지는 것이 바람직하다. 상기 복사저항쉬트는 서포팅유닛보다는 약하지만 전도저항쉬트보다는 강성을 가지는 것이 바람직하다. 마지막으로 상기 전도저항쉬트는 진공압에 의한 변형이 용이하게 일어나는 것이 바람직하여 가장 강성이 낮은 재질을 사용하는 것이 바람직하다.
상기 진공공간부(50) 내부를 다공성물질(33)로 채우는 경우에도 전도저항쉬트가 가장 강성이 낮도록 하는 것이 바람직하고, 플레이트 부재 및 사이드 프레임이 가장 큰 강성을 가지는 것이 바람직하다.
이하에서는 진공단열체의 내부 상태에 따라서 바람직하게 제시되는 진공압을 설명한다. 이미 설명된 바와 같이 상기 진공단열체의 내부는 열전달을 줄일 수 있도록 진공압을 유지해야 한다. 이때에는 가급적 낮은 진공압을 유지하는 것이 열전달의 저감을 위해서 바람직한 것은 용이하게 예상할 수 있을 것이다.
상기 진공공간부는, 서포팅유닛(30)에 의해서만 열전달에 저항할 수도 있고, 진공공간부(50)의 내부에 서포팅유닛과 함께 다공성물질(33)이 충전되어 열전달에 저항할 수도 있고, 서포팅유닛은 적용하지 않고 다공성물질로 열전달에 저항할 수도 있다.
서포팅유닛만이 제공되는 경우에 대하여 설명한다.
도 5는 시뮬레이션을 적용하여 진공압에 따른 단열성능의 변화와 가스전도도의 변화를 나타내는 그래프이다.
도 5를 참조하면, 진공압이 낮아질수록 즉, 진공도가 높아질수록 본체만의 경우(그래프 1) 또는 본체와 도어를 합한 경우(그래프 2)의 열부하는, 종래의 폴리우레탄을 발포한 물품과 비교하여 열부하(heat load)가 줄어들어서 단열성능이 향상되는 것을 볼 수 있다. 그러나, 단열성능이 향상되는 정도는 점진적으로 낮아지는 것을 볼 수 있다. 또한, 진공압이 낮아질수록 가스전도도(그래프 3)가 낮아지는 것을 볼 수 있다. 그러나, 진공압이 낮아지더라도 단열성능 및 가스전도도가 개선되는 비율은 점진적으로 낮아지는 것을 알 수 있다. 따라서, 가급적 진공압을 낮추는 것이 바람직하지만, 과도한 진공압을 얻기 위해서는 시간이 많이 들고, 과도한 게터(getter)사용으로 비용이 많이 드는 문제점이 있다. 실시예에서는 상기 관점에서 최적의 진공압을 제안한다.
도 6은 서포팅유닛이 사용되는 경우에 진공단열체의 내부를 배기하는 공정을 시간과 압력으로 관찰하는 그래프이다.
도 6을 참조하면, 상기 진공공간부(50)를 진공상태로 조성하기 위하여, 가열하면서(baking) 진공공간부의 부품에 남아있는 잠재적인 기체를 기화시키면서 진공펌프로 진공공간부의 기체를 배기한다. 그러나, 일정 수준 이상의 진공압에 이르면 더 이상 진공압의 수준이 높아지지 않는 지점에 이르게 된다(△t1). 이후에는 진공펌프의 진공공간부의 연결을 끊고 열을 가하여 게터를 활성화시킨다(△t2). 게터가 활성화되면 일정 시간 동안은 진공공간부의 압력이 떨어지지만 정상화되어 일정 수준의 진공압을 유지한다. 게터 활성화 이후에 일정수준의 진공압을 유지할 때의 진공압은 대략 1.8×10-6Torr이다.
실시예에서는 진공펌프를 동작시켜 기체를 배기하더라도 더이상 실질적으로 진공압이 낮아지지 않는 지점을 상기 진공단열체에서 사용하는 진공압의 하한으로 설정하여 진공공간부의 최저 내부 압력을 1.8×10-6Torr로 설정한다.
도 7은 진공압과 가스전도도(gas conductivity)를 비교하는 그래프이다.
도 7을 참조하면, 상기 진공공간부(50) 내부의 사이 갭의 크기에 따라서 진공압에 따른 가스전도열(gas conductivity)을 실질열전달계수(eK)의 그래프로 나타내었다. 상기 진공공간부의 갭은 2.76mm, 6.5mm, 및 12.5mm의 세 가지 경우로 측정하였다. 상기 진공공간부의 갭은 다음과 같이 정의된다. 상기 진공공간부의 내부에 상기 복사저항쉬트(32)가 있는 경우는 상기 복사저항쉬트와 인접한 플레이트 사이의 거리이고, 상기 진공공간부의 내부에 복사저항쉬트가 없는 경우는 상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재 사이의 거리이다.
폴리우레탄을 발포하여 단열재를 제공하는 종래의 실질열전달계수 0.0196 W/mk과 대응되는 지점은 갭의 크기가 작아서 2.76mm인 경우에도 2.65×10-1Torr인 것을 볼 수 있었다. 한편, 진공압이 낮아지더라도 가스전도열에 의한 단열효과의 저감효과가 포화되는 지점은 대략 4.5×10-3Torr인 지점인 것을 확인할 수 있었다. 상기 4.5×10-3Torr의 압력은 가스전도열의 저감효과가 포화되는 지점으로 확정할 수 있다. 또한, 실질열전달계수가 0.1 W/mk일때에는 1.2×10-2Torr이다.
상기 진공공간부에 상기 서포팅유닛이 제공되지 않고 상기 다공성물질이 제공되는 경우에는, 갭의 크기가 수 마이크로미터에서 수백 마이크로미터이다. 이 경우에는, 다공성물질로 인하여 비교적 진공압이 높은 경우에도, 즉 진공도가 낮은 경우에도 복사열전달은 작다. 따라서 그 진공압에 맞는 적절한 진공펌프를 사용한다. 해당하는 진공펌프에 적정한 진공압은 대략 2.0×10-4Torr이다. 또한, 가스 전도열의 저감효과가 포화되는 지점의 진공압은 대략 4.7×10-2Torr이다. 또한, 가스전도열의 저감효과가 종래의 실질열전달계수 0.0196 W/mk에 이르는 압력은 730Torr이다.
상기 진공공간부에 상기 서포팅유닛과 상기 다공성물질이 함께 제공되는 경우에는 상기 서포팅유닛만을 사용하는 경우와 상기 다공성물질만을 사용하는 경우의 중간 정도의 진공압을 조성하여 사용할 수 있다. 상기 다공성물질만이 사용되는 경우에는 가장 낮은 진공압을 조성하여 사용할 수 있다.
이하에서는, 상기 진공단열체의 내부 공간, 즉, 상기 진공공간부(50)에 열교환관로, 전선, 및 파이프 등과 같이 진공단열체의 내외부를 통과하는 부재가 놓이는 실시예를 도 8 내지 도 19를 참조하여 설명한다.
실시예에서는 열교환관로를 예시한다. 실시예가 열교환관로가 아닌 배선인 경우에는, 도면에서 열교환관로를 그대로 배선으로 간주해도 좋다.
상기 열교환관로를 이루는 인입관 및 인출관이 서로 접촉하는 것은 한 쌍 이상의 전선 및 한 쌍 이상의 파이프가 서로 접촉하는 것과 유사하게 생각할 수 있다. 마찬가지로 상기 열교환관로를 이루는 인출관 및 인입관이 서로 분리되어 상기 진공단열체를 통과하는 경우에는 한 쌍 이상의 전선 및 한 쌍 이상의 파이프가 서로 분리되어 상기 진공단열체를 통과하는 것과 마찬가지로 이해할 수 있다.
상기 열교환관로를 이루는 인입관이 인출관의 내부에 있는 경우는, 어느 한 전선이 다른 한 전선의 내부에 놓이는 동축케이블과 유사한 구성으로 제공될 수 있다.
상기 열교환관로는 냉장고의 고내에 놓이는 증발기로 냉매가 인입되는 인입관(171)과 증발기에서 인출되는 냉매의 인출관(172)이 서로 접합되어 이루어진다. 상기 인입관(171)과 인출관인(172) 두 개의 관로가 용접 등의 방식으로 서로 접합된다. 상기 인입관과 인출관의 내부를 유동하는 각 냉매가 서로 열교환을 수행하여 냉동 사이클의 효율을 증진시킬 수 있다.
상기 진공공간부에서 상기 열교환관로의 위치를 지지하는 기술에 대하여 설명한다.
도 8은 진공단열체의 부분 절개도이고, 도 9는 열교환관로가 진공공간부에서 놓이는 것을 도시한다.
도 8 및 도 9를 참조하면, 플레이트 부재(10)(20)의 사이에 서포팅 유닛(30)이 놓인다. 상기 서포팅 유닛(30)에는, 상기 플레이트 부재에 접하는 지지패널(35)과, 상기 플레이트 부재(10)(20)의 사이 간격을 지지하는 적어도 두 개 이상 바람직하게는 다수 개의 바(31)가 포함된다.
상기 바(31)는 도면을 기준으로 하측부가 상측부에 비하여 지름이 크게 제공될 수 있다. 이에 따르면 높은 성형가공성을 확보할 수 있다.
상기 열교환관로(117)는, 상기 진공공간부(50)의 내부에서 다른 부재와의 접촉을 가급적 피하는 것이 바람직하다. 금속, 예를 들어 구리로 제공되는 관로가 타부재에 접하게 되면 열전도에 의해서 열교환효율, 나아가서, 단열이 되지 않기 때문이다. 특히, 플레이트 부재와 열교환관로의 금속 간의 접합은 급속한 열손실을 일으킬 우려가 있다.
상기 열교환관로(117)는, 상하방향으로는 상기 플레이트 부재(10)(20)의 사이 공간에서, 좌우방향으로는 상기 바(31) 들 간의 사이 간격에서, 어느 부재에도 접하지 않게 놓이도록 안내하는 것이 바람직하다. 이로써, 상기 열교환관로(117)가 다른 부재에 접촉하여 열손실이 발생하는 것을 방지할 수 있다.
상기 열교환관로(117)는 구리로 예시할 수 있는 비교적 강성이 낮은 재료가 사용될 수 있고, 외부의 충격이나 힘에 약한 성질을 가진다. 상기 열교환관로(117)의 벤딩 시에 의도하지 않은 어느 일 방향의 힘은 관로의 변형으로 이어져서 진공공간부(50)의 내부 부품에 대한 접촉을 야기할 수 있다. 이 문제는 외부로부터의 충격에 의해서도 마찬가지로 발생할 수 있다. 따라서, 열교환관로(117)는 다른 가이드 부재에 의해서 설치위치가 지지되는 것이 바람직하다.
상기 열교환관로(117)가 타 부재와 이격되는 것을 가이드 하기 위하여, 상기 진공공간부(50)의 내부에는 이격부재가 마련된다. 상기 이격부재는, 열교환관로(117)의 전체 위치에서 벤딩되는 부분에 제공되는 것이 바람직할 수 있다. 도 9에서 A와 B의 영역이 그에 해당할 수 있다.
한편, 도 8 및 도 9에 도시되는 바와 같은 상기 열교환관로(117)는, 두 개의 외접하는 관로로 제공된다. 이 경우에는 두 개의 관로의 인입단 및 인출단에서 서로 분지되는 등의 복잡한 문제가 발생한다.
이 문제를 해결하기 위하여 실시예에 따른 진공단열체에서는, 상기 열교환관로(171)이 인출단부는 상기 제 1 플레이트 부재(10)의 한 부분에서 관통하고, 상기 제 2 플레이트 부재(20)의 한 부분에서 관통하도록 할 수 있다. 이하에서는 실시예로서, 진공단열체의 내부에 상기 열교환관로가 놓이지만 관로가 단일하게 제공되는 경우를 설명한다.
도 10은 실시예에 따른 열교환관로의 부분 절개도이다.
도 10을 참조하면, 실시예에 따른 열교환관로(171)는 인출관(172)의 내부에 인입관(171)이 제공될 수 있다. 이미 설명된 바와 같이, 상기 인출관(172)에는 증발기를 통과하고 나오는 냉매가 유동하고, 상기 인입관(171)에는 증발기로 들어가는 냉매가 유동할 수 있다.
상기 열교환관로(171)에서 냉매 간의 열교환 영역은 상기 인입관(171)이 될 수 있다. 따라서, 상기 인입관(171)과 상기 인출관(172) 간의 열교환을 촉진하기 위한 용접 등과 같은 별도의 작업이 필요가 없으므로 제조공정이 편리해지고, 나아가서 용접부에서 발생할 수 있는 가스 등이 애초에 없어지므로 진공공간부의 내부에 유입될 수 있는 가스가 없어지는 장점이 있다.
실시예에 따른 상기 열교환관로(171)는, 상기 플레이트 부재(10)(20)의 관통부에서 인입관과 인출관이 서로 분지되지 않은 상태이다. 즉, 단일의 관로가 플레이트 부재를 관통하는 것이다. 이에 따르면, 상기 관통부분에서 별도의 관로의 분지가 필요하지 않고, 바(31)와의 간섭을 피하기 위한 필수적인 벤딩부분이 제공되지 않으므로, 관로내부를 유동하는 냉매의 압력손실을 줄일 수 있다.
이하에서는 상기 열교환관로(171)가 상기 플레이트 부재(10)(20)를 통과하는 부분을 더 상세하게 설명한다.
도 11은 상기 열교환관로가 상기 진공공간부에 놓이는 것을 보이는 도면이다.
도 11을 참조하면, 냉장고의 배면에 위치하는 진공공간부(50)의 내부 공간에 상기 열교환관로(171)가 놓인다. 상기 열교환관로(171)는, 단일의 관통부를 거쳐서 상기 제 1 플레이트 부재(10)를 관통하고, 단일의 관통부를 거쳐서 상기 제 2 플레이트 부재(20)를 관통한다.
상기 열교환관로(171)가 제 2 플레이트 부재(20)를 통과하여 기계실로 안내되는 제 1 부분과, 상기 제 1 플레이트 부재(10)를 통과하여 고내측의 증발기로 안내되는 제 2 부분이 있다. 상기 제 1 부분과 상기 제 2 부분에는, 인입관(171) 및 인출관(172) 각각의 플레이트 부재의 통과를 위한 부분의 제공됨이 없다. 즉, 단일의 관통부에 의해서 열교환관로(171)가 각 플레이트 부재를 통과할 수 있다.
상기 제 1 부분에서는 상기 열교환관로(171)가 연장방향으로 따라서 벤딩됨이 없이 직선으로 인출되고, 상기 제 2 부분에서는 상기 열교환관로(171)가 고내측을 향하여 90도 꺾여서 인출되는 것이 차이가 난다.
도 12는 고내측으로 인출되는 열교환관로를 보이고, 도 13은 고외측, 즉 기계실 측으로 인출되는 열교환관로를 보인다. 도 12 및 도 13은 인입관과 인출관이 서로 용접되는 제 1 실시예와 대비하여 인입관이 인출관에 수용되는 제 2 실시예에 따른 장점이 보이도록 한다.
도 12(a)을 참조하면, 제 1 실시예에서는 두 개로 각각 분지되는 인입관(171) 및 인출관(172)이 각각의 관통부(201)를 거쳐서 제 1 플레이트 부재(10)를 통과한다. 두 개의 관통부(201)를 개별적으로 통과한 관(171)(172)는 고내의 증발기로 안내된다. 이에 따르면, 분지된 인입관과 인출관이 서로 다시 접합되지 않는 한, 열교환이 일어나는 관로영역이 그만큼 짧아지므로, 충분한 열교환을 위하여 진공공간부(50)에 놓이는 열교환관로의 길이가 길어져야 하는 단점이 있다.
도 12(b)를 참조하면, 제 2 실시예에서는 분지됨이 없이 인입관(171)이 인출관(172)의 내부에 놓인 상태 그대로 제 1 플레이트 부재(10)를 통과할 수 있다. 따라서 단일의 관통부(201)를 통과하여 상기 열교환관로(171)가 고내의 증발기로 안내될 수 있다. 이에 따르면 인입관과 입출관이 접합된 상태를 유지하기 때문에, 고내로 인출된 다음에도 열교환관로(171)의 열교환작용이 계속 수행될 수 있고, 결국 열교환관로의 길이가 짧아지는 장점이 있다.
도 12의 비교도면에 따르면, 열교환관로가 진공공간부를 관통하는 관통부분의 수가 줄어서 작업의 불편함 및 열손실이 반으로 줄고, 진공공간부의 진공파괴의 우려도 줄어드는 장점이 있다. 또한, 인입관과 인축관의 접촉부인 용접부가 진공공간부로 들어나지 않기 때문에, 진공공간부 내부의 가스 증가를 방지할 수 있고, 결국 제품의 수명을 증가시킬 수 있다. 특히, 용접을 위하여 사용되는 용가재에서 발생하는 가스로 인한 진공압의 영향을 줄일 수 있다.
도 13(a)을 참조하면, 제 1 실시예에서는 두 개로 각각 분지되는 인입관(171) 및 인출관(172)가 각각의 관통부(201)를 거쳐서 제 2 플레이트 부재(20)를 통과한다. 두 개의 관통부(201)를 개별적으로 통과한 관(171)(172)는 고외의 기계실로 안내된다. 이에 따르면, 이에 따르면, 분지된 인입관과 인출관이 서로 다시 접합되지 않는 한, 열교환이 일어나는 관로영역이 그만큼 짧아지므로, 충분한 열교환을 위하여 진공공간부(50)에 놓이는 열교환관로의 길이가 길어져야 하는 단점이 있다.
뿐만 아니라, 상기 인입관(171)이 서로 다른 관통부를 통과하기 위하여, 상기 인출관(172)에서 떨어져서 분지되어야 한다. 이 영역에서 상기 인입관(171)은 바(31)와의 접촉을 피하기 위하여 급격하게 벤딩되므로 관이 협소해지고, 따라서 얘기치 못한 압력손실이 발생할 수 있다.
도 13(b)를 참조하면, 제 2 실시예에서는 분지됨이 없이 인입관(171)이 인출관(172)의 내부에 놓인 상태 그대로 제 2 플레이트 부재(20)를 통과할 수 있다. 따라서 단일의 관통부(201)를 통과하여 상기 열교환관로(171)가 고외의 기계실로 안내될 수 있다. 이에 따르면 인입관 및 인출관이 서로 접합된 상태를 유지할 수 있기 때문에, 고외로 인출된 다음에도 열교환관로(171)의 열교환작용이 계속 수행될 수 있고, 결국 열교환관로의 길이가 짧아지는 장점이 있다.
도 13의 비교도면에 따르면, 열교환관로가 진공공간부를 관통하는 관통부분의 수가 줄어서 작업의 불편함 및 열손실이 반으로 줄고, 진공공간부의 진공파괴의 우려도 줄어드는 장점이 있다. 또한, 인입관과 인출관의 접촉부인 용접부가 진공공간부로 들어나지 않기 때문에, 진공공간부 내부의 가스 증가를 방지할 수 있고, 결국 제품의 수명을 증가시킬 수 있다. 또한, 상기 관통부에서 인입관(171)과 인출관(172)이 서로 분지되지 않고 단일의 관체, 즉, 입출관이 바로 외부로 인출되므로, 상기 인입관(171)을 유동하는 냉매의 압력손실을 줄일 수 있다.
도 14는 다른 실시예에 따른 열교환관로의 단면도이다.
도 14를 참조하면, 상기 인출관(172)의 내부 공간엔 들어 있는 상기 인입관(171)이 주름져있다. 주름지는 인입관(171)은 상기 인출관(172)의 내부 냉매와 더 많은 면적에서 열교환이 수행될 수 있다. 따라서 더 높은 열교환관로(171)에 더 높은 열교환 효율을 얻을 수 있다.
다른 실시예에서 상기 인출관(172)과 상기 관통부(201)는 이종접합용접 방식이나 가스켓 체결과 같은 방식이 적용될 수 있다. 상기 이종접합용접은, 용접이 수행되는 것에 의해서 접촉면이 완전히 실링되는 이점을 기대할 수 있다. 그러나, 상기 인출관(172)은 구리이고 상기 플레이트 부재(10)(20)는 스테인레스 스틸이므로, 서로 다른 재질이 용접으로 접합되므로, 용접이 어렵고 용접이 완료 후에도 안정성이 떨어지는 문제점이 있다.
상기 이종접합용접의 문제를 해소하면서도, 실시예의 열교환관로의 장점을 그대로 가져올 수 있는 더 다른 실시예를 이하에서 설명한다.
도 15는 더 다른 실시예에 따른 열교환관로의 단면도이다.
도 15를 참조하면, 본 실시예의 열교환관로(117)에서는, 상기 인입관(171)과 상기 인출관(172)이 서로 용접 등의 방식으로 접촉된다. 따라서 상기 인입관(171) 및 상기 인출관(172)의 열은 서로 원활히 열교환될 수 있다. 상기 인입관(171) 및 상기 인출관(172)은 접합된 상태로 밀봉부재(173)에 수용될 수 있다. 상기 밀봉부재(173)은 소정의 강도를 가지고, 상기 플레이트 부재(10)(20)와 동일한 재질인 스테인레스 스틸을 재질로 할 수 있다.
상기 밀봉부재(173)는 상기 플레이트 부재(10)(20)와 각각 동종용접의 방식으로 체결될 수 있다. 이미 설명한 바와 같이 동일한 재질의 금속이 용접의 방식으로 접합되는 것에 의해서 두 부재의 접합강도의 향상을 효과를 기대할 수 있다. 따라서, 제조 작업이 편리해지고, 열교환관로의 체결 및 플레이트 부재와의 간격부에서 밀봉유지의 신뢰성이 향상되는 장점이 있다.
상기 밀봉부재(173)의 내부에는 충전재(220)가 충전되어 있다. 상세하게는, 상기 인입관(171)과 상기 인출관(172)의 외면과 상기 밀봉부재(173)의 내면 사이의 간격부에는 충전재(220)가 채워져 있을 수 있다. 상기 충전재(220)로는, 발포 폴리우레탄, 및 유리섬유 등의 다공성 물질이 채워질 수 있다. 상기 충전재(220)에 의해서, 상기 인입관(171)과 상기 인출관(172)의 외면이 상기 밀봉부재(173)의 내면에 직접 접촉하지 않도록 할 수 있고, 이 경우에는 외부, 특히 밀봉부재(173) 자체로 소실될 수 있는 열교환손실을 줄일 수 있다.
상기 충전재(220)는 별도로 제공됨이 없이, 공기에 의한 단열 또는 진공에 의한 단열로 제공될 수 있다.
상기 진공단열 및 상기 공기단열에 의한 단열효과는, 상기 충전재가 별도로 제공되는 실시예에 비하여, 단열의 효과가 낮아질 우려가 있고, 인입관 및 인출관의 위치를 고정하는 것이 어려울 수 있는 단점이 있다.
본 실시예에 따르면, 도 9에 제시되는 실시예와 마찬가지로, 관로가 진공공간부를 관통하는 관통부의 개수가 줄어서 작업의 불편함 및 열손실이 반으로 줄어들고, 진공공간부의 진공파괴의 우려도 줄어든다. 또한, 열교환관로를 이루는 두 관로의 접촉부인 용접부가 진공공간부로 드러나지 않기 때문에, 진공공간부 내부의 가스 증가를 방지할 수 있다. 또한, 상기 관통부에서 별도의 관로의 분지가 필요하지 않기 때문에, 냉매의 압력손실을 줄일 수 있다.
본 실시예에서는, 열교환관로가 플레이트 부재와 체결될 때, 서로 동종용접으로 접합될 수 있기 때문에, 작업이 편리해지고, 체결 및 밀봉유지의 신뢰성이 향상되는 장점을 더 얻을 수 있다.
본 실시예에서는, 상기 인입관(171)과 상기 인출관(172)이 밀봉부재(173)의 내부에 봉입되므로, 열교환관로(117)의 전체적인 벤딩공정이 어려울 수 있다. 예를 들어, 상기 진공공간부(50)의 내부에서 상기 열교환관로(117)가 벤딩되는 부분에서, 벤딩부분의 곡률중심을 기준으로 안쪽과 바깥쪽에 상기 인입관(171)과 상기 인출관(172)이 놓이는 경우, 즉, 상기 인입관(171)과 상기 인출관(172)의 곡률중심은 같지만 곡률반경이 서로 다른 경우에는, 상기 인입관(171)과 상기 인출관(172) 중의 바깥쪽에 놓이는 관로에는 더 큰 스트레스가 가해지기 때문이다.
이 경우에는, 상기 인입관(171)과 상기 인출관(172) 중의 바깥쪽에 놓이는 관로에 가하여지는 큰 스트레스는, 해당하는 관로의 파손 및 용접부위의 파손으로 이어질 수 있다. 이 문제는 냉매의 유동에 적합한 인입관 및 인출관의 직경이 다른 것으로 인하여 더 크게 대두될 수 있다.
본 실시예에서는, 상기되는 서로 다른 관로의 곡률반경에 의해서 발생하는 문제를 해소하기 위하여, 상기 밀봉부재(173)의 내부에서, 상기 인입관(171) 및 상기 인출관(172)이 소정의 상대적인 배치관계를 가지도록 한다. 도면을 바꾸어서 인입관과 인출관의 배치관계를 더 상세하게 설명한다.
도 16은 더 다른 실시예에 따른 열교환관로를 보이는 도면이다.
도 16을 참조하면, 열교환관로의 전체적인 연장방향은 도 11에 제시되는 바와 유사하다.
구체적으로는, 상기 열교환관로(171)는, 단일의 관통부를 거쳐서 상기 제 1 플레이트 부재(10)를 관통하고, 단일의 관통부를 거쳐서 상기 제 2 플레이트 부재(20)를 관통한다.
상기 제 2 플레이트 부재(20)를 관통하는 부분은, 상기 열교환관로(171)가 연장되는 방향을 따라서 벤딩됨이 없이 직선으로 인출된다. 상기 제 1 플레이트 부재(10)를 관통하는 부분은, 상기 열교환관로(171)가 고내 측을 향하여 90도 꺾여서 인출된다.
이와 같은 열교환관로(171)의 연장방향에 따르면, 상기 진공공간부(50)의 내부에서 상기 열교환관로(171)는 3차원의 연장방향을 가진다. 구체적으로, 상기 진공공간부(50)를 제공하는 평면의 연장방향과 동일한 평면 내에서, 세 개의 연장방향(231)(232)(233)을 가진다. 상기 제 3 연장방향(233)에서 고내 측, 다시 말하면 제 1 플레이트 부재(10)를 관통하는 방향으로 연장되는 제 4 연장방향(241)은, 상기 진공공간부(50)를 제공하는 2차원 평면의 내부가 아닌 상기 평면에 교차하는 방향으로 연장된다. 상기 제 4 연장방향(241)은 상기 제 1, 2, 3 연장방향(231)(232)(233)과 같은 평면에 놓이지 않는 것이다. 상기 열교환관로(171)의 연장방향은 3차원의 연장방향을 가진다.
상기 열교환관로(171)의 연장방향에 대해서도 인입관(171) 및 인출관(172)의 파손을 막기 위하여, 상기 열교환관로(171)의 벤딩부에서 상기 인입관(171) 및 상기 인출관(172)은 동일한 곡률반경을 가지도록 하는 것이 바람직하다. 도 16에서 상기 벤딩부는 각각 A, B, 및 C로 표시하였다.
도 17 및 도 18을 참조하여 더 상세하게 설명한다.
도 17은 도 16의 A-A'의 단면도이고, 도 18은 도 16의 B-B'의 단면도이다.
도 17을 참조하면, 상기 밀봉부재(173)의 내부에서 상기 인입관(171)과 상기 인출관(172)는 상하로 배치될 수 있다. 이러한 배치는 벤딩부 A, 및 B를 경과하기까지 유지될 수 있다. 도 17을 기준으로 할 때, 좌우방향으로 벤딩이 일어나느 것으로 이해할 수 있다.
상기되는 인입관 및 인출관의 배치에 따르면, 벤딩부에서 인입관과 인출관이 서로 같은 곡률반경으로 유지되므로, 벤딩 중에 각각의 관로 및 관로의 접합부에서의 파손이 방지될 수 있다.
그러나, 벤딩부 C에 이르러서 도 17의 관로배치가 유지되면, 인입관 및 인출과의 곡률반경은 서로 달라진다. 다시 말하면, 벤딩부의 곡률중심에서 볼 때 먼 쪽에 있는 어느 관로는 큰 곡률반경으로 벤딩되고, 벤딩부의 곡률중심에서 볼 때 가까운 쪽에 있는 어느 관로는 작은 곡률반경으로 벤딩되는 것이다. 이에 따르면, 관로 그 자체 또는 관로의 접합부에서 파손이 발생할 수 있다.
도 18을 참조하면, 인입관 및 인출관이 서로 좌우방향으로 배치되는 것을 볼 수 있다. 이와 같은 관로배치는 상기 벤딩부 C에 이르기 전에 이미 완결된 것으로 이해할 수 있다. 다시 말하면, 벤딩부 B에서 벤딩부 C에 이르기 전까지 관로의 배치가 90도 회전될 수 있는 것이다. 예를 들어, 도 18과 같이 상기 인입관(171)이 시계방향으로 90도 회전되도록 배치할 수 있다.
도 18과 같이 관로가 좌우방향으로 배치되면, 상기 열교환관로(171)가 상기 제 3 방향(233)에서 상기 제 4 방향(241)으로 벤딩되더라도, 상기 인입관(171) 및 상기 인출관(172)의 곡률반경은 서로 동일하게 유지될 수 있다. 이에 따르면, 곡률반경이 동일함으로써, 벤딩부가 있더라도 관로의 파손 및 관로접합부의 파손을 방지할 수 있다.
도 19는 열교환관로가 제 2 플레이트 부재를 통과하는 곳의 단면도이다.
도 19를 참조하면, 상기 밀봉부재(173)의 내부에 인입관(171) 및 인출관(172)이 놓이고, 내부에는 충전재(220)가 충전되어, 상기 인입관 및 상기 인출관이 상기 밀봉부재(173)의 내면에 접하지 않도록 할 수 있다. 물론, 충전재가 아니라 진공 및 공기라도 좋지만, 인입관 및 인출관 상호 간만의 열전달, 냉기누설방지, 및 관로를 타고 전파되는 진동 및 소음의 차단을 위하여 충전재가 개입되는 것이 더욱 바람직하다.
상기 관통부(201)에 대하여 설명한다.
상기 제 2 플레이트 부재(20) 및 상기 밀봉부재(173)는 서로 용접될 수 있다. 상세하게, 상기 제 2 플레이트 부재(20)의 관통된 부분의 내면과, 상기 제 2 플레이트 부재(20)를 관통하여 고외 측으로 인출되는 밀봉부재(173)의 외면이 서로 용접될 수 있다. 이 경우에 상기 제 2 플레이트 부재(20)와 상기 밀봉부재(173)은 모두 스테인레스 스틸을 예시로 하는 동일재질이므로 동종용접방식으로서 용접이 용이하고, 용접 신뢰성 및 수명이 좋아지는 이점을 얻을 수 있다. 도면에서 210은 동종용접부를 나타낸다.
상기 동종용접부(210)에는 열이 발생하고 그 열은 밀봉부재(173)을 따라서 전도되고, 상기 충전재(220)을 태울 수 있다. 이 문제를 방지하기 위하여, 상기 충전재가 제공되는 단부와 상기 동종용접부(210)의 사이에는 소정의 폭(L1)이 제공되도록 하는 것이 바람직하다. 상기 폭은 5센티미터 정도의 길이로 제공될 수 있다. 이에 따르면, 용접시에 열전달에 따른 충전재(220)의 연소를 방지할 수 있다.
상기 동종용접부(210)에서 용접부의 접촉신뢰성을 향상시키기 위하여, 상기 제 2 플레이트 부재(20)에서 돌출되는 돌출단부(21)를 소정의 길이로 제공할 수도 있다. 상기 돌출단부를 제공하기 위하여 상기 제 2 플레이트 부재(20)의 형상은 그 폭이나 두께가 변형될 수 있다. 상기 관통부(201)를 제공하기 위하여 돌출단부(21)가 반드시 제공되어야만 하는 것은 아니지만, 작업의 편의와 용접부가 제 3 공간으로 드러나지 않도록 하여 진공성능향상을 위하여 돌출단부가 제공되는 것이 바람직할 것이다.
상기 동종용접이 수행된 다음에는, 마감부재(230)로 동종용접부(210)를 덮어씌울 수 있다. 상기 마감부재(230)는 진공유지 등의 기능은 가질 필요가 없이, 수분의 내부침입만을 막을 수 있으면 좋다. 따라서 수분에 강한 고무 또는 실란트 등을 그 재질로 할 수도 있다.
도 19에 제시되는 구조는 열교환관로가 제 1 플레이트 부재를 통과하는 곳에서도 마찬가지의 구성으로 제시될 수 있다.
이상의 다양한 실시예에서는 상기 열교환관로가 진공공간부의 내부에 놓이는 것을 보이고 있다. 이에 반하여 이하의 실시예에서는 상기 열교환관로가 진공공간부의 외부에 놓이는 것을 일 특징으로 한다. 좁은 상기 진공공간부의 내부에 열교환관로가 놓이지 않도록 함으로써, 열교환관로가 진공공간부에 미치는 많은 악영향을 없앨 수 있고, 좁은 진공공간부에 열교환관로를 설치하기 위한 많은 수고가 필요 없다.
이하의 실시예에서 열교환관로는 냉매관의 열교환을 위하여 집약적으로 인입관과 인출관이 접촉되는 관로영역을 지칭하는 것으로서, 공학적인 마진의 범위 내에서 추가적인 열교환을 위하여 다른 영역에서도 열교환이 수행될 수 있지만, 그 열교환량은 상대적으로 작은 것으로 이해할 수 있다. 경우에 따라서는, 다른 곳에 추가적으로 열교환관로를 제공할 수도 있지만, 실시예에서는 열교환관로라고 칭하는 영역에 열교환을 위한 관로가 놓이는 것을 말하는 것으로 이해할 수 있다.
이하에서는, 열교환관로, 전선, 및 파이프 등이 상기 진공단열체의 벽, 즉 상기 진공공간부(50)를 관통하는 실시예를 설명한다.
실시예에서는 열교환관로를 예시한다. 실시예가 열교환관로가 아닌 배선인 경우에는, 도면에서 열교환관로를 그대로 배선으로 간주해도 좋다.
상기 열교환관로를 이루는 인입관 및 인출관이 서로 접촉하는 것은 한 쌍 이상의 전선 및 한 쌍 이상의 파이프가 서로 접촉하는 것과 유사하게 생각할 수 있다. 마찬가지로 상기 열교환관로를 이루는 인출관 및 인입관이 서로 분리되어 상기 진공단열체를 통과하는 경우에는 한 쌍 이상의 전선 및 한 쌍 이상의 파이프가 서로 분리되어 상기 진공단열체를 통과하는 것과 마찬가지로 이해할 수 있다.
상기 열교환관로를 이루는 인입관이 인출관의 내부에 있는 경우는, 어느 한 전선이 다른 한 전선의 내부에 놓이는 동축케이블과 유사한 구성으로 제공될 수 있다.
도 20은 다른 실시예에 따른 열교환관로 설치부의 구성을 보이는 도면이다.
도 20을 참조하면, 상기 제 1 플레이트 부재(10)와 상기 제 2 플레이트 부재(20)가 제공되고, 상기 플레이트 부재(10)(20)의 사이에는 진공공간부(50)가 제공된다. 상기 제 1 플레이트 부재(10)는 냉장고의 경우에 저온측의 벽으로 사용될 수 있고, 상기 제 2 플레이트 부재(20)는 냉장고의 경우에 고온측의 벽으로 사용될 수 있다.
상기 열교환관로(117)는 상기 진공단열체의 벽을 관통하여 통과한다. 다시 말하면, 상기 열교환관로(117)는, 상기 제 1 플레이트 부재(10), 상기 진공공간부(50), 및 상기 제 2 플레이트 부재(20)를 모두 직선으로 관통하여, 진공단열체를 경계로 하는 어느 일 공간으로부터 다른 일 공간으로 인출된다. 상기 열교환관로가 통과하는 상기 플레이트 부재(10)(20)는 상기 진공단열체를 기준으로 할 때, 동일한 지점일 수 있다. 상기 열교환관로(117)는 상기 진공공간부(50)의 내부에 놓이지 않는다. 바람직하게, 상기 진공단열체가 냉장고에 적용되는 경우에는 고내로부터 고외로 인출될 수 있다.
상기 열교환관로(117)가 상기 진공단열체의 벽을 관통하는 곳은 관통실링부(300)에 의해서 실링이 될 수 있다. 상기 관통실링부(300)에 의해서 상기 진공공간부(50)의 진공파괴가 없고 단열손실이 없이 상기 열교환관로(117)가 진공단열체를 관통될 수 있다. 상기 관통실링부(300)는 상기 진공단열체의 벽체에 형성되는 관통부의 하나로서, 상기 관통부가 실링되는 경우를 지칭한다. 상기 관통실링부(300)의 위치는 상기 진공단열체가 관통되기 위하여 제거되는 부분을 지칭할 수 있다. 상기 관통실링부(300)는 이후에 다른 도면을 통하여 더 상세하게 설명할 것이다.
외부로 인출된 상기 열교환관로(117)는, 관로단열케이스(302)에 의해서 외부와 구획되는 소정의 공간 내부에서, 상기 인입관(171) 및 상기 인출관(172)과의 열교환작용이 수행된다. 상기 관로단열케이스(302)의 내부에서 상기 열교환관로(117)가 집약적으로 열교환이 수행될 수 있도록, 상기 열교환관로는 벤딩되거나 말리거나 절곡되는 양상을 가질 수 있다.
상기 관로단열케이스(302)의 내부는 관로단열부(301)로 제공되어, 상기 열교환관로(117)를 이루는 인입관(171) 및 인출관(172) 서로 간의 열교환이 일어나서, 외부와의 열교환에 의한 단열손실이 발생하지 않도록 할 수 있다. 상기 관로단열부(301)는 진공, 단열폼, 및 외부와 차단된 공기에 의해서 수행될 수 있을 것이다. 물론 상기 관로단열케이스(302)는 그 자체에 의해서 안과 밖이 서로 구획되어 있기 때문에, 차폐에 의한 단열작용이 수행될 수 있는 것도 물론이다.
상기 관로단열케이스(302)는 상기 제 2 플레이트 부재(20)에 설치되고, 상기 관로단열부(301)는 상기 제 2 플레이트 부재(20)의 외면을 어느 일 벽으로 하는 것으로 도시되지만, 이에 제한되지 않는다. 상기 관로단열케이스(302)가 상기 제 1 플레이트 부재(10) 측에 설치되고, 상기 관로단열부(301)도 상기 제 1 플레이트 부재(10)의 내면을 어느 일 벽으로 할 수도 있다. 그러나, 이 경우에는 고내 공간이 좁아지는 문제가 있으므로 바람직하지 않다.
상기 관로단열부(301) 및 상기 관로단열케이스(302)는 적어도 상기 관통실링부(300)를 안쪽에 두는 것이 바람직하다. 다시 말하면, 상기 관통실링부(300)가 외부로 드러나지 않고, 상기 관로단열부(301) 및 상기 관로단열케이스(302)에 의해서 차폐되도록 하는 것이 바람직하다.
상기 열교환관로(117)를 따라서 전파되는 열이 단열손실을 일으킬 수 있다. 예를 들어, 상기 관통실링부(300)에 의해서 상기 진공공간부(50)의 진공파괴가 없고, 고내외로의 공기흐름을 차단하여 단열손실을 줄일 수 있다. 다만, 상기 열교환관로(117)를 타고 제 1 플레이트 부재를 경계로 하는 고내로 전도되는 열을 충분히 차단할 수 없는 경우가, 냉동 시스템의 설계시에 발생할 수 있다. 이 경우에는 상기 제 1 플레이트 부재(10) 측에도 상기 관로단열부(301) 및 상기 관로단열케이스(302)를 더 설치할 수도 있을 것이다. 경우에 따라서는 상기 관로단열부(301) 및 상기 관로단열케이스(302)에 이르는 대규모의 구성이 아니라 소규모의 단열부재를 마련할 수도 있다. 양 플레이트 부재(10)(20) 측에 단열부재를 제공할 수 있는 것은 이하의 다른 실시에에서도 마찬가지로 이해할 수 있다.
다만, 충분한 냉동시스템의 검토를 통하여, 상기 제 2 플레이트 부재(20) 측에 마련되는 관로단열부(301) 및 관로단열케이스(302)만에 의해서 고내에 미치는 단열손실을 줄일 수 있도록 하는 것이 바람직할 것이다.
본 실시예에 따르면, 상기 열교환관로(117)가 진공공간부(50)에 미치는 영향을 애초에 없앨 수 있고, 진공단열체의 밀폐에 의해서 이후에 수리가 불가능한 등의 문제를 해소할 수 있다.
이하에서는 실시예에 따른 상기 관통실링부(300)를 설명한다.
상기 관통실링부(300)는 상기 열교환관로(117)가 진공단열체를 통과하는 지점에 설치되는 구성으로서, 진공단열체에 의해서 구획되는 안과 밖의 열전달을 차단하기 위하여 제공되는 것이다.
도 21은 관통실링부의 일 실시예를 보이는 단면도이다.
도 21을 참조하면, 도 19에 설명된 바가 있는, 밀봉부재(173), 인입관(171), 인출관(172), 충전재(220), 관통부(201), 동종용접부(210), 돌출단부(21), 및 마감부재(230)가 마찬가지 작용을 수행하도록 마련된다. 따라서 개별적인 설명이 없는 부분은 도 19의 설명 및 그 외에 본 상세한 설명의 다른 부분의 설명이 마찬가지로 적용될 수 있다.
상기 밀봉부재(173)와 상기 제 1 플레이트 부재(10)와의 체결작용 및 상기 밀봉부재(173)와 상기 제 2 플레이트 부재(20)와의 체결작용이 서로 미러구조를 가질 수 있다. 자세하게, 상기 관통부(2011)(2012), 상기 동종용접부(2101)(2102), 상기 돌출단부(211)(212), 및 상기 마감부재(2301)(2302)는, 각 플레이트 부재(10)(20) 별로 한 개씩이 마련될 수 있고, 각 부재의 작용은 마찬가지이다.
상기 밀봉부재(173)는 하나의 단일 부재가 함께, 상기 관통부(2011)(2012), 상기 동종용접부(2101)(2102), 상기 돌출단부(211)(212), 및 상기 마감부재(2301)(2302)에 체결될 수 있다.
상기 제 1 플레이트 부재(10) 및 상기 제 2 플레이트 부재(20)의 단열부하가 서로 다른 경우에는, 쌍을 이루는, 상기 관통부(2011)(2012), 상기 동종용접부(2101)(2102), 상기 돌출단부(211)(212), 및 상기 마감부재(2301)(2302)의 크기와 종류와 개수 등이 달라질 수도 있지만, 이 또한 상기 미러구조에 포함되는 것으로 해석할 수 있다. 에를 들어, 냉장고의 고내 측에 벽을 제공하는 상기 제 1 플레이트 부재(10) 측에 놓이는 상기 제 1 마감부재(2301)은, 상기 제 2 마감부재(2302)에 비하여 단열부하가 더 클 수 있다. 이 경우에는 상기 제 1 마감부재(2301)의 크기를 더 크게 할 수도 있고, 상기 제 1 마감부재(2301)는 두 개가 서로 덮는 구조로 제공될 수도 있다.
상기 마감부재는 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재를 연결하는 밀봉부재에 의해서 제 1 공간과 제 2 공간 간의 열전달을 차단할 수 있다. 이에 따르면, 제 1 공간과 제 2 공간 간의 단열성능을 높일 수 있다. 이를 위하여 상기 마감부재(2301)(2302)는 상기 관통부(2011)(2012)와 밀봉부재(173)와, 플레이트 부재(10)(20)의 인접부위를 함께 덮도록 하는 것이 바람직하다.
상기 충전재(220)는 인입관 및 인출관 간의 열교환을 촉진하고, 외부와의 열교환을 차단할 수 있다. 상기 충전재(220)는 도면에서는 제 1 플레이트 부재(10) 측에 치우치는 것으로 도시되어 있지만, 상기 마감부재(2301)(2302)의 사이 간격부에 놓여서 제공될 수도 있다. 도면상으로는 중간 진공공간부(50)와 나란한 위치에 놓일 수 있다.
상기 관통실링부의 구성 및 작용을 설명하면, 상기 밀봉부재(173)의 안에 인입관 및 인출관이 놓인 상태에서, 인입관(171)과 인출관(172)이 한번에 진공단열체의 벽을 통과할 수 있다.
상기 관통실링부에 따르면, 냉매관이 상기 밀봉부재(173)의 안에 밀봉된 상태로 한 쌍의 상기 플레이트 부재(10)(20)를 통과하여, 냉장고의 고내와 고외를 연결할 수 있다. 따라서, 상기 진공단열체의 용접개소를 줄여서 진공누설의 우려가 줄어든다. 또한, 상기 밀봉부재(173)와 상기 플레이트 부재(10)(20)가 동종재질로 용접됨으로써, 용접불량으로 인한 진공파괴의 우려가 더욱 줄어들 수 있다.
상기 관통실링부에 따르면, 냉매관과 상기 플레이트 부재가 서로 직접 접촉되지 않기 때문에, 인입관 및 인출관 간에만 열전달이 이루어질 수 있다. 따라서, 냉매관과 상기 플레이트 부재와의 열교환으로 인한 비가역손실을 줄일 수 있다.
도 22와 도 23은 다른 실시예에 따른 관통실링부를 나타내는 도면으로서, 도 22는 인출관이 통과하는 관통실링부의 도면이고, 도 23은 인입관이 통과하는 관통실링부의 도면이다.
도 22 및 도 23을 함께 참조하면, 상기 인입관(171)과 상기 인출관(172)은, 각각 도 22 및 도 23에 제시되는 개별적인 관통실링부를 이용하여 상기 진공단열체를 관통하고, 냉장고의 고내와 고외를 서로 연결할 수 있다. 상기 인입관(171)과 상기 인출관(172)은 고내의 증발기와 고외의 응축기를 서로 연결하는 것은 물론이다.
상기 인입관을 위한 관통실링부(도 23)와 상기 인출관을 위한 관통실링부(도 22)는 그 위치가 인접하는 것이 바람직할 것이다. 왜냐하면, 소정의 공간 내부에서 상기 열교환관로(117)를 이루는 인입관(171) 및 인출관(172)이 서로 원활히 열교환이 일어나고, 외부와의 열교환에 의한 비가역손실이 발생하지 않도록 하는 것이 바람직하기 때문이다.
본 실시예의 경우에도, 상기 관통부(2011)(2012), 상기 동종용접부(2101)(2102), 상기 돌출단부(211)(212), 상기 마감부재(2301)(2302), 및 상기 충전재(220)의 구성 및 작용에 대한 설명은 도 22의 설명이 마찬가지로 적용될 수 있다.
본 실시예의 경우에도 도 21에 제시되는 실시예의 장점이 그대로 적용될 수 있다. 구체적으로는, 상기 밀봉부재(173)의 안에 인입관 및 인출관이 놓인 상태에서, 인입관(171)과 인출관(172)이 한번에 진공단열체의 벽을 통과할 수 있다. 상기 밀봉부재(173)와 상기 플레이트 부재(10)(20)가 동종재질로 용접됨으로써, 용접불량으로 인한 진공파괴의 우려가 더욱 줄어들 수 있다. 냉매관과 상기 플레이트 부재가 서로 직접 접촉되지 않기 때문에, 냉매관과 상기 플레이트 부재와의 열교환으로 인한 비가역손실을 줄일 수 있다.
본 실시예는 냉동성능설계 및 냉장고의 구조설계 등의 측면에서 인입관과 인출관이 함께 인출되지 못하는 경우에 바람직하게 적용될 수 있다.
이하의 도 24에서 도 32에서는 상기 관통실링부(300)의 다른 실시예를 설명한다. 상기 관통실링부(300)는 상기 열교환관로(117)가 진공단열체를 통과하는 지점에 설치되는 구성으로서, 진공단열체에 의해서 구획되는 안과 밖의 열전달을 차단하기 위하여 제공되는 것이다.
본 다른 실시예는, 열교환관로, 전선, 및 파이프 등과 같이 진공단열체의 내외부를 통과하는 부재가 상기 관통실링부(300)를 통과하는 실시예이다. 실시예는 열교환관로를 예시한다. 실시예가 열교환관로가 아닌 배선인 경우에는, 도면에서 열교환관로를 그대로 배선으로 간주해도 좋다.
본 다른 실시예에서는 상기 전선이 플랙시블 재질로 제공되는 경우에는 전선이 별도의 파이프에 수용된 상태에서 관통실링부에 포함될 수 있을 것이다. 이러써 고내와 고외의 밀폐를 더 완벽하게 수행할 수 있다.
도 24는 상기 관통실링부의 구성을 보이는 단면도이다.
도 24를 참조하면, 상기 플레이트 부재(10)(20)의 사이 간격부에 상기 진공공간부(50)가 제공된다. 상기 플레이트 부재(10)(20)가 관통되는 부분에는 상기 도 4c에 도시되는 주름형 전도저항쉬트(63)가 제공될 수 있다. 상기 주름형 전도저항쉬트(63)는 플레이트 부재 간의 열전도에 저항할 수 있고, 상기 진공공간부(50)의 진공압과 대기압 간의 압력차에 의한 부재의 파손을 막을 수 있는 것은 이미 설명한 바와 같다. 상기 주름형 전도저항쉬트(63)는 양 단이 플레이트 부재(10)(20)에 용접될 수 있고, 주름에 의해서 열전도는 더 차단될 수 있다.
상기 주름형 전도저항쉬트(63)의 안쪽 공간에는 상기 열교환관로(117)가 통과하여 지나간다. 상기 열교환관로(117)의 상하단에는 블럭(310)(320)이 마련되어 개구된 곳을 막을 수 있다. 상기 블럭(310)(320)의 안에는 기밀부재(330)가 마련되어 혹시 발생할 수 있는 작은 통기구가 차단되도록 할 수 있다.
상기 블럭은 고무와 같은 연질의 열전도계수가 낮은 물질이 바람직하게 적용될 수 있다. 상기 블럭은 상기 플레이트 부재(10)(20)에 비하여 낮은 열전도도를 가지는 재질을 사용함으로써 플레이트 부재 간의 열전도에 저항할 수 있도록 하는 것이 바람직하다.
작은 크기의 주름이 많이 형성되는 상기 주름형 전도저항쉬트(63)를 대신하는 다른 부재가 적용될 수도 있다. 예를 들어, 편평한 얇은 판상부재 또는 원호형상의 플레이트로 제공될 수도 있다. 상기 제 1 플레이트 부재(10) 및 상기 제 2 플레이트 부재(20)의 관통부를 서로 연결하여, 진공공간인 상기 제 3 공간의 진공누설을 차단하는 부재를 통칭하여 제 3 플레이트 부재라고 할 수 있다.
상기 제 3 플레이트 부재는, 상기 블럭 및 상기 기밀부재에 의해서 일면이 지지되고, 블럭 및 기밀부재에 의해서 연전달이 차단될 수 있다.
상기 블럭에 대하여 상세하게 설명한다.
상기 블럭은 동일한 기능을 수행하는 한 쌍의 부재라 마련되는 것이므로, 어느 하나의 부재에 대하여 설명하지만, 다른 부재 및 다른 실시예에 대하여도 마찬가지로 적용되는 것으로 한다.
상기 제 1 플레이트 부재(10) 쪽, 바람직하게 고내 쪽에 마련되는 제 1 블럭(310)에는, 상기 제 1 플레이트 부재(10)의 외면에 접하여 부재 간의 간격을 밀폐시키는 외측서포터(311)가 마련된다. 상기 외측서포터(311)의 안쪽에 형성되는 제 1 면에는 상기 냉매관이 지지될 수 있고, 상기 외측서포터(311)의 바닥면에 형성되는 제 2 면에는 상기 관통부가 지지될 수 있다. 상기 외측서포터(311)는 상기 냉매관을 지지하는 작용과, 블럭이 관통부에 지지되는 작용을 함께 수행할 수 있다.
상기 외측서포터(311)의 안쪽에는 상기 주름형 전도저항쉬트(63)의 단면크기와 대응되는 크기로 내측푸셔(312)가 더 마련된다.
상기 내측푸셔(312)는 기밀부재(330)를 압착하여 주름형 전도저항쉬트(63)의 내부 공간이 채워지도록 한다. 상기 기밀부재(330)는 액상 실리콘 등과 같이 유동체로서 소정의 시간이 경과한 다음에 경화되는 물질이 적용될 수 있다. 상기 기밀부재(330)에 따르면, 상기 주름형 전도저항쉬트(63)의 내부 공간 중에서, 내부푸셔(312)(322)와 열교환관로(117)을 제외하는 간격 전체가 밀폐될 수 있다. 상기 기밀부재도 상기 플레이트 부재보다 낮은 열전도도의 재질이 적용되는 것이 바람직하다.
상기 외측서포터(311)의 설명은 제 2 블럭(320)의 외측서포터(321)에 대하여도 마찬가지로 적용되고, 상기 내측푸셔(312)의 설명은 제 2 블럭(320)의 내측푸셔(322)에 대하여도 마찬가지이다.
상기되는 구성을 가지는 관통실링부(300)에 의해서, 상기 열교환관로(117)가 진공단열체를 관통하더라도 진공단열체의 내부와 외부를 통과하는 기체의 유동 및 열전달은 차폐될 수 있다.
상기 블럭이, 상기 냉매관과 상기 제 3 플레이트 부재의 사이를, 열전도의 차단 뿐만 아니라 공기가 통하지 않도록 완벽하게 밀봉할 수 이는 경우에는, 상기 기밀부재는 적용되지 아니할 수 있다. 이 경우에 상기 블럭만을 밀봉부재라고 할 수 있다. 이때, 상기 블럭은 적어도 적용초기에는 소성이 있는 합성수지를 적용할 수 있을 것이다.
상기 블럭만으로 상기 제 1 공간의 냉기누설을 차단하지 못하는 경우에는, 상기 기밀부재를 적용할 수 있다. 이 경우에는 상기 블럭 및 상기 기밀부재를 함께 밀봉부재라고 이름할 수도 있다. 이때 상기 블럭은 열전도의 차단을 주기능으로 하고, 상기 기밀부재는 냉기누설차단을 주기능으로 할 수 있다.
상기 블럭 및 상기 기밀부재의 설명은 상기 관통실링부에 대한 다른 실시예에도 마찬가지로 적용될 수 있다.
도 25 및 도 26은 상기 관통실링부의 제작공정을 보이는 도면이다.
먼저, 도 25를 참조하면, 상기 블럭(310)(320)은 일측 블럭(3101)(3201)과 블럭(3102)(3202)으로 나뉘어 질 수 있다. 상기 제 1 블럭(310)을 예로 들어 설명하고, 동일한 설명이 제 2 블럭(320)에 대하여도 마찬가지로 적용되는 것으로 한다.
상기 제 1 블럭(310)이 상기 열교환관로(117)을 에워싸기 위하여 일측블럭(3101) 및 타측블럭(3102)으로 분리되어야 한다. 상기 제 1 블럭(310)이 단일체로 제공되는 경우에는, 상기 열교환관로(117)의 끝단에서 삽입되어 바른 위치로 안내될 수 있지만, 작업의 어려움을 야기하기 때문에 바람직하지 않다. 도 21에서 화살표는 일측 블럭(3101) 및 타측 블럭(3102)가 상기 열교환관로(117)를 향하여 에워싸도록 접근하는 것을 나타낸다. 상기 일측 블럭 및 상기 타측 블럭이 열교환관로(117)를 에워쌀 수 있도록 블럭의 내부에는 소정의 홈(3103)(3104)이 형성될 수 있다.
도면의 하측에서 점선은 수직단면 및 수평단면의 대응되는 위치를 나타내는 것으로서, 상기 열교환관로(117)와 상기 블럭(310)(320)의 상대적인 위치를 함께 이해할 수 있을 것이다.
상기 주름형 전도저항쉬트(63)의 내부 간격부에는 유동체로서 기밀부재(330)가 삽입되어 있을 수 있다. 상기 기밀부재(330)는 상기 열교환관로(117)의 외면을 둘러싸서 제공될 수 있다. 상기 기밀부재(330)는 상기 열교환관로(117)와 상기 주름형 전도저항쉬트(63)의 접촉을 차단하여 전도저항쉬트에 의한 열전도저항의 역할이 충실히 수행되도록 할 수 있다. 이후에는 블럭(310)(320)이 상기 주름형 전도저항쉬트(63)의 안쪽으로 밀려들어 간다. 도면을 바꾸어서 설명한다.
도 26을 참조하면, 상기 제 1, 2 블럭(310)(320)은 상기 주름형 전도저항쉬트(63)의 안쪽으로 삽입된다. 화살표는 블럭의 이동방향을 설명한다.
상기 제 1, 2 블럭(310)(320)이 상기 주름형 전도저항쉬트(63)의 안쪽으로 삽입되면서, 상기 기밀부재(330)는 변형되고, 각 부재 간의 간격부로 이동하여 체워질 수 있다. 이때 상기 내측푸셔(312)(322)는 상기 기밀부재(330)를 밀어서 압착하는 플런저의 역할을 수행할 수 있을 것이다.
상기 블럭(310)(320)이 상기 주름형 전도저항쉬트(63)의 안으로 충분히 삽입되면, 상기 블럭의 홈(3103)(3104)과 상기 열교환관로(117)의 사이 간격부에 상기 기밀부재(330)가 채워질 수 있을 것이다. 상기 열교환관로(117)는 한 쌍의 관(171)(172)으로 이루어지기 때문에, 그 외형에 맞추어서 상기 홈(3013)(3104)를 제공하는 것이 어렵다. 이 문제로 인하여, 상기 홈과 상기 열교환관로의 사이 간격이 발생하는 것을 기밀부재(330)를 적용하여 막는 것이 생산의 차원에 있어서는 편리하다고 할 수 있다. 상기 기밀부재(330)는 접착제의 역할을 수행하여 상기 블럭(310)(320)이 서로 체결되도록 할 수도 있다.
도 26에서 화살표는 상기 내측푸텨(312)(322)가 기밀부재(330)를 밀면서 상기 주름형 전도저항쉬트(63)의 내부가 기밀되는 것을 보여주고 있다.
상기 관통실링부(300)에 따르면, 상기 열교환관로(117)가 진공단열체를 관통하여 지나가는 부분의 안과 밖에 대한 밀폐작용을 수행할 수 있고, 진공단열체의 안과 밖에 대한 열전달을 축소할 수도 있다.
상기 관통실링부(300)는 상기 관로단열부(301)와 함께, 상기 진공단열체의 관통부를 통하여 전달되는 열을 차단하는 역할을 수행할 수 있다. 상기 관통실링부(300)와 상기 관로단열부(301)의 상호관계에 대하여 도면을 바꾸어서 설명한다.
도 27 내지 도 30은 상기 관통실링부와 상기 관로단열부의 상호관계를 보이는 도면이다.
먼저 도 27을 참조하면, 상기 관로단열부(301)는 상기 관통실링부(300)를 중앙에 가지고, 플레이트 부재의 평면을 따르는 전방향에 대하여 확장되어 전방향 관로단열부(341)를 제공할 수 있다.
상기 전방향 관로단열부(341)는 상기 제 2 블럭(320) 및/또는 제 2 플레이트 부재(20) 및/또는 열교환관로(117)에 부착되거나 소정의 케이스의 내부공간에 발포될 수 있을 것이다.
도 28을 참조하면, 상기 관로단열부(301)는 상기 관통실링부(300)의 일방향으로 연장되는 일방향 관로단열부(342)를 제공할 수 있다.
상기 일방향 관로단열부(341)는 상기 제 2 블럭(320) 및/또는 제 2 플레이트 부재(20) 및/또는 열교환관로(117)에 부착되거나 소정의 케이스의 내부공간에 발포될 수 있을 것이다.
도 29를 참조하면, 상기 관로단열부(301)는 상기 관통실링부(300)와는 별대로 상기 열교환관로(117)를 따라서 일측에 제공되는 일측단열부(344)를 제공할 수 있다. 상기 일측단열부(344)는 상기 블럭(320) 및/또는 상기 열교환관로(117) 및/또는 제 2 플레이트 부재에 고정될 수 있을 것이다.
상기 열교환관로(117)가 통과하는 다른 공간은 개방단열부(343)을 제공하여 진공공간 및 타 공간과는 관로단열케이스(302)에 의해서 분리되어 단열작용을 수행할 수도 있을 것이다.
도 30을 참조하면, 도 29의 경우와는 다르게 상기 일측단열부(344)는 상기 블럭(320)과는 분리되는 형태로 제공되어 있다. 본 경우는 상기 열교환관로(117)의 열교환작용이 부족할 때 인입과과 인출관의 추가적인 열교환이 필요한 경우에 적용될 수 있을 것이다.
도 29와 도 30의 경우는, 상기 제 1 플레이트 부재 측에 대한 단열이 필요한 경우에 간단한 구성으로서 단열효과를 얻기 위하여 바람직하게 적용될 수 있을 것이다.
도 31 및 도 32는 관통실링부의 다른 실시예를 보이는 도면이다.
도 31을 참조하면, 본 실시에는 도 24의 실시예와 달리 블럭이 암수관계의 치합을 하고, 상기 기밀부재(330)가 오링 등과 같은 실러로 바뀌는 것이 특징적으로 다르다. 구체적인 설명이 없는 부분은 도 24와 관련되는 설명이 그대로 적용될 수 있다.
상기 제 1 플레이트 부재(10) 측에는 제 1 블럭(360)이 놓이고, 상기 제 2 플레이트 부재(20) 측에는 제 2 블럭(370)이 놓일 수 있다. 상기 블럭(360)(370)은 서로 유사하므로 하나를 설명하고, 동일한 설명이 다른 블럭에 대해서도 마찬가지로 적용되는 것으로 한다.
상기 제 1 블럭(360)에는 외측 서포터(361)가 상기 제 1 플레이트 부재(10)에 걸려서 지지되고, 상기 외측 서포터(361)의 안쪽에는 내측 인서트부(362)가 더 마련되어 상기 주름형 전도저항쉬트(63)의 안쪽으로 삽입된다. 상기 내측 인서트부(362)의 안쪽 바깥쪽 중 적어도 한 곳에서는 제 1 체결부(363)가 마련된다.
상기 제 2 블럭(370)에는 외측 서포터(371) 및 내측 인서트부(372)가 더 마련된다. 상기 내측 인서트부(372)의 안쪽 바깥쪽 중 적어도 한 곳에서는 제 2 체결부(373)이 마련된다.
상기 외측 서포트(361)(371)는 상기 플레이트 부재(10)(20)의 외면에 걸려서 블럭과 플레이트 부재의 접촉면이 실링되도록 한다. 실링작용의 신뢰성을 위하여 블럭(360)(370) 및 플레이트 부재(10)(20)의 접촉면에는 외면실러(365)(375)가 개입할 수 있다. 상기 외측 서포터(361)(371)의 내면과 상기 열교환관로(117)의 외면과의 접촉면에는 내면실러(364)(374)가 개입되어, 고내외로 유체가 유동하지 않도록 한다. 상기 내면실러(364)(374)는 상기 열교환관로(117)의 외면형상과 유사한 단면형상으로 제공되어 접촉면의 실링작용이 완벽하게 수행되도록 할 수 있다.
상기 실러는 고무로 예시되는 탄성재질의 물체가 블럭의 외면을 둘러싸는 방식으로 제공될 수 있다.
상기 체결부(363)(373)은 서로 대응되는 면에 제공되는 체결수단으로서 제공될 수 있다. 예시로서, 암나사와 숫나사가 제공되어 서로 회전작용에 의해서 체결될 수 있다. 상기 체결부(363)(373)의 체결작용에 의해서 상기 실러(364)(365)(374)(375)의 상호접촉면이 근접하여 밀폐될 수 있다.
상기 블럭(360)(370)은 고무 또는 플라스틱을 재질로 하여, 상기 주름형 전도저항쉬트(63)의 열전도저항의 작용을 해하지 않도록 할 수 있다. 상기 주름형 전도저항쉬트(63)와 상기 블럭(369)(370)의 사이 간격부는 비어 있거나 기밀부재(330)가 더 개입하여 전도열전달의 발생에 저항하고, 유체의 이동에 저항하도록 할 수 있다.
도 32를 참조하면, 상기 블럭(360)(370)은 각각 일체형으로도 가능하지만, 도 24의 실시예와 마찬가지로 두 개의 부재가 분리된 상태에서 서로 일체화되는 구성으로 제공될 수도 있다. 각각의 블럭이 일체화된 다음에는, 상기 열교환관로(117)의 외면에 체결된 상태에서 블럭(360)(370)이 서로 체결되도록 함으로써 상기 관통실링부(300)의 체결이 완료될 수 있다.
화살표의 방향은 상기 블럭(360)(370)의 이동방향 및 회전방향을 나타내고 있다.
이하에서는 냉장고의 고 내외를 연결하는 전선과 상기 전선의 동작과 상기 전선에 의한 냉장고의 제어에 대하여 설명한다.
도 33은 냉장고의 제어를 설명하는 구성도이다. 도 33에서 점선은 냉장고의 고내와 고외를 분리하는 선으로서 점선으로 제공되는 사각형의 내부는 냉장고의 고내를 지칭하는 것으로 이해할 수 있다.
도 33을 참조하면, 냉장고의 고외에는 메인 제어기(450)가 놓인다. 상기 메인 제어기(450)는 진공단열체가 적용되는 기기의 전체적인 제어를 담당하는 구성으로서, 상기 기기가 냉장고인 경우에는 냉장고의 전체적인 제어를 수행한다. 상기 메인 제어기(450)는 냉장고의 상면에 놓일 수 있다. 이하에서는 냉장고를 예시로 설명하지만, 냉장고에 제한되지 않는 것은 당연하다.
상기 메인 제어기(450)에서는 여섯 개의 선로가 냉장고의 고내로 인입될 수 있다. 상기 여섯 개의 선로 중의 두 개의 교류선로(515)(516)는, 고내에서 교류전원이 사용되는 발열부(601)에 에너지를 공급하는 선로이다. 상기 여섯 개의 선로 중의 두 개의 직류선로(513)(514)는, 고내에서 직류전원이 사용되는 다양한 구동부(600) 및 보조제어기(500)로 에너지를 공급하는 선로이다. 상기 여섯 개의 선로 중의 두 개의 신호선로(511)(512)는 고내에서 제어가 수행되는 다양한 구동부(600) 및 상기 보조제어기(500)에 제어신호를 공급하는 선로이다.
상기 보조제어기(500) 및 상기 메인제어기(450)는 접속선로에 의해서 연결된다. 상기 접속선로에는, 상기 두 개의 직류선로(513)(514) 및 상기 두 개의 신호선로(511)(512)가 포함될 수 있다.
상기 메인 제어기(450)는 냉장고의 고 외에 놓이는 제어기로서 제 1 제어기라고 할 수 있고, 상기 보조 제어기(500)는 냉장고의 고 내에 놓이고 상기 제 1 제어기의 제어를 적어도 일부는 받아서 동작하는 제어기로서 제 2 제어기라고 할 수 있다.
상기 직류선로(513)(514)에 의해서 공급되는 전류는, 상기 구동부의 각 부품 및 상기 보조제어기의 구동에 직접 적용이 가능하여, 추가 정류기 또는 변압기 등의 기기가 필요없는 형태의 에너지 공급형태 일 수 있다. 이에 따르면 고 내에서 정류기 또는 변압기와 같은 발열기기가 적어지므로 냉장고의 에너지소비효율이 높아지는 이점을 기대할 수 있다.
상기 메인 제어기(450) 및 상기 보조 제어기(500)는, 상기 신호선로(511)(512)의 제어신호가 상기 신호송수신부(501)를 통하여 디지털로 처리되는 과정에 의해서 서로 접속될 수 있다.
상기 교류선로(515)(516)와 상기 직류선로(513)(514)와 상기 신호선로(511)(512)는 원활한 전류흐름을 위하여 두선으로 제공될 수 있다. 이에 제한되지 아니하고, 기술사상에서 파악되는 범위 내에서 단일의 전선 또는 세가닥 이상의 전선으로 제공될 수도 있을 것이다. 예를 들어, 상기 신호선로(511)(512)는 경우에 따라서 단일의 선로가 수신 및 송신을 위하여 시분할방식 및 다른 방식을 위하여 적용될 수도 있다. 다만, 상용의 시리얼 통신을 적용하기 위하여 두선이 적용되는 것이 바람직하다. 상기 교류선로 및 상기 직류선로는 삼상의 에너지를 공급할 수도 있다.
선로의 개수와는 무관하게, 상기 발열부(601)의 구동을 위하여 상기 교류선로(515)(516)가 제공되고, 상기 구동부(600) 및 상기 보조 제어기(500)에 직접 사용되기 위한 직류선로(513)(514)가 제공되고, 상기 구동부(600) 및 상기 보조 제어기(500)에 제어신호의 송수신을 위한 신호선로(511)(512)가 제공되는 것은 명확하다.
가장 범용적이고 범용적인 적용이 바람직한 경우로서, 상기 교류선로, 상기 직류선로, 및 상기 신호선로 각각을 위하여 두 개의 선로가 제공될 수 있다. 여기서 각각의 선로는 전류의 벡터흐름 및 주파수를 기준으로 한 것으로서, 동일한 전류가 흐르는 다수의 전류선은 단일의 선로인 것으로 한다. 예를 들어 동축케이블은 외형은 단일이라도 두 개의 전선이 함께 수용된 것으로 볼 수 있다. 이로써 여섯개의 선로가, 고외의 메인 제어기(450)에서 고내로 삽입되도록 할 수 있다.
상기 여섯개의 선로(511~516)는 종래 40여개의 선로가 고내로 도입되는 경우에 비하여 획기적으로 그 수가 줄어드는 것을 알 수 있다. 이 경우에는 진공단열체를 관통하는 관통부의 크기가 줄고 관통부의 개수가 줄어드는 장점을 얻을 수 있고, 이에 따라서 냉장고의 에너지소비효율이 높아지고, 진공단열체의 단열효율을 높일 수 있는 이점이 있다.
이때, 단일의 관로(64)를 통하여 상기 여섯개의 선로가 모두 고내로 인입될 수 있기 때문에, 단열효율의 상승 및 제작의 편의가 더욱 증진되는 장점이 있다.
상기 여섯개의 선로는, 상기 배선(402)(403)이 지나는 경로를 통하여, 고내로 안내될 수 있다. 상세하게, 상기 진공단열체와 상기 실링 프레임(200)의 사이 간격을 통하여 냉장고의 고 내로 안내될 수 있다.
이 경우에, 상기 메인제어기와 상기 보조제어기를 접속시키는 접속선로로서 제공되는 상기 두 개의 직류선로(513)(514) 및 상기 두 개의 신호선로(511)(512)는, 기하하적인 위치로 볼 때 세 가지 경우로 분리할 수 있다. 구체적으로, 상기 제 1 공간에 놓이는 제 1 접속선로, 상기 제 2 공간에 놓이는 제 2 접속선로, 및 제 1 공간에서 제 2 공간으로 넘어가는 지점의 제 3 접속선로이다.
여기서, 상기 제 3 접속선로의 경우에는, 진공단열체를 관통하지 않으면서도 상기 제 1 공간과 상기 제 2 공간이 전기적으로 연결되도록 하기 위하여, 본체 측 진공단열체와 도어와의 사이 간격, 즉, 제 3 공간과 상기 도어의 사이를 지나가도록 배치될 수 있다.
이때, 단일의 경로를 통하여 상기 여섯개의 선로가 모두 고내로 인입될 수 있기 때문에, 단열효율의 상승 및 제작의 편의가 더욱 증진되는 장점이 있다.
다른 방안으로, 상기 여섯개의 선로는, 상기 관로(64)를 통하여 고내로 안내될 수도 있다. 물론 이 두 방법에 제한되지 아니하고, 다양한 다른 방법이 더 포함될 수도 있다.
상기 여섯개의 선로 중에서, 네 개를 차지하는 교류선로 및 직류선로는 전원선로라고 할 수 있다.
도 34는 상기 여섯개의 선로와 함께 냉장고의 전체 제어를 더 상세하게 설명하는 도면이다.
도 34는, 크게 구분하여 일점쇄선을 기준으로 하여, 왼쪽은 고외공간이고 오른쪽은 고내공간으로 이해할 수 있다. 고외에는 메인 제어기(450)가 놓이고, 고내에는 보조 제어기(500)가 놓인다. 상기 메인 제어기(450)는 냉장고의 전체 동작을제어하고, 상기 보조 제어기(500)는 고내에 있는 각종 기기, 예를 들어 부하와 센서를 제어할 수 있다.
상기 고외공간과 상기 고내공간을 통과하는 것은, 상기 진공단열체에 제공되는 관통부를 선로가 통과하는 것에 의해서 수행될 수 있다. 상기 관통부를 통과하는 것은 이미 설명된 바와 같은 다양한 실시예에 의해서 단열손실이 없이 수행될 수 있다.
이미 설명한 바와 같이, 고외에서 고내로는 두개의 교류선로(515)(516), 두개의 직류선로(513)(514), 및 두 개의 신호선로(511)(512)가 제공되고, 상기 진공단열체를 관통하거나, 상기 진공단열체의 외부를 돌아서 고내로 들어갈 수 있다.
굵은 화살표로 도시되는 전원연결을 중심으로 설명한다.
전원제어부(700) 외부에서 공급되는 전원을 제어하여 냉장고의 동작에 필요한 형태로 공급할 수 있다. 상기 전원공급부(700)에서 출력되는 교류전원은 제 1 아날로그 스위치(710)에서 제어되고, 교류선로(515)(516)을 통하여 고내의 발열부(601)로 공급될 수 있다. 상기 발열부(601)에는 제상히터(611)가 포함될 수 있다. 상기 제 1 아날로그 스위치(710)는 상기 메인 제어기(450)에 의해서 제어될 수 있다. 상기 제 1 아날로그 스위치(710)는 솔레노이드가 적용되는 릴레이 스위치가 적용될 수 있다. 상기 제 1 아날로그 스위치(710)는 대용량의 전기를 아날로그 방식으로 단속하는 기기로서, 다량의 열이 발생할 수 있기 때문에, 도시되는 바와 같이 고외에 놓이는 것이 바람직하다.
상기 전원제어부(700)에서 공급되는 전원은 AC-DC 컨버터(701)에서 직류로 변환되어 메인 제어기(450)로 공급될 수 있다. 직류전원은 DC 정류기(702)에 의해서 정류되어 상기 메인 제어기(450)로 공급될 수 있고, 상기 DC 정류기(702)에서 정류된 직류전원은 상기 메인 제어기(450)의 제어에 따라서 직류전원이 필요한 곳으로 공급될 수 있다. 상기 AC-DC 컨버터(701) 및 상기 DC 정류기(702)는 스위칭동작이 반복되는 발열부품으로서 고외에 놓이는 것이 바람직하다. 상기 메인제어기(450)는 냉장고의 외부에서 공급된 전원을 전체적으로 제어하는 부분이다.
상기 DC 정류기(702)에서 공급되는 전원은, 제 1 디지털 스위치(730)에 의해서 제어되어 고외의 외부부하(731)에 공급될 수 있다. 상기 외부부하(731)는 사용자 디스플레이 및 고외의 각종 제어장치가 해당할 수 있다.
상기 메인 제어기(450)는 상기 압축기 제어기(41)로 직류전원을 공급하고, 상기 압축기 제어기(41)는 DC-AC 인버터(703)을 이용하여 교류전원을 만들고, 제 2 아나로그 스위치(720)의 스위칭 작용을 이용하여 압축기(4)를 동작할 수 있다. 상기 제 2 아날로그 스위치(720)는 상기 제 1 아날로그 스위치(710)와 동작이 유사할 수 있다. 이는 압축기(4)와 발열부(601)는 많은 에너지가 공급되는 구성이기 때문이다.
상기 DC-AC 인버터(703) 및 상기 제 2 아날로그 스위치(720)는 스위칭 동작 및 물리적인 동작을 수반하는 발열부품으로서 고외에 놓이는 것이 바람직하다.
상기 DC 정류기(702)에서 공급되는 직류전원은, 직류선로(513)(514)를 통하여 상기 보조 제어기(500)로 공급된다. 상기 보조 제어기(500)는 제 2 디지털 스위치(740)를 이용하여 제어되는 상태로, 고내의 내부부하(610)로 직류전원을 공급할 수 있다. 상기 디지털 스위치(730)(740)는 칩을 이용한 소프트웨어를 이용하는 디지털 방식으로 동작되기 때문에, 열이 거의 발생하지 않는다. 따라서 상기 제 2 디지털 스위치(740)는 고내에 놓이더라도 단열효과를 저하하는 요인이 되지 않을 수 있다.
상기 내부부하(610) 중에서 발열부(601)의 일부는 이루는 제상히터(611)는 이미 설명된 바와 같이, 고에너지가 필요한 부품으로서 교류선로(515)(516)를 통하여 에너지를 공급받을 수 있다.
얇은 선으로 제공되는 신호연결을 중심으로 설명한다.
상기 메인 제어기(450)는 제 1 디지털 스위치(730)를 이용하여 외부부하(731)로 공급되는 전원을 제어할 수 있다.
상기 메인 제어기(450)는 신호선로(511)(512)에 의해서 상기 보조 제어기(500)와 연결되어, 양자 간에 감지신호 및 제어신호의 송수신이 수행될 수 있다. 이때, 별도의 미리 규약된 신호방식이 두 개의 제어기 간에는 수행되기 때문에, 혼선이나 전송장애 등의 문제는 발생하지 않을 수 있다.
상기 메인 제어기(450)는 상기 외부 센서(732)로부터의 신호를 받아들여 냉장고의 동작에 필요한 정보로서 활용할 수 있다.
상기 메인 제어기(450)는 냉장고의 부하상태 및 사용자의 요청상황에 따라서 상기 압축기 제어기(41)를 이용하여 압축기의 운전 주파수를 조정할 수 있다. 이를 위하여 상기 메인 제어기(450)는 상기 압축기 제어기(41)로 제어신호를 송신하고 압축기 제어기(41)는 DC-AC 인버터를 이용하여 주파수를 조정할 뿐만 아니라, 상기 제 2 아날로그 스위치(720)를 이용하여 압축기 구동신호를 단속할 수 있다.
상기 메인 제어기(450)가 상기 보조 제어기(500)로 보낸 제어신호는, 보조 제어기(500)가 상기 제 2 디지털 스위치(740)를 제어하는 것에 의해서, 내부부하(610)의 동작제어로 사용될 수 있다.
상기 제 2 디지털 스위치(740)는 단일의 스위치가 다수의 부하를 제어할 수도 있고, 독립되는 단일의 부하를 제어할 수도 있을 것이다. 상기 제 2 디지털 스위치(740)는 도면에서 하나로 도시되지만, 다수가 부하별로 제공될 수 있을 것이다.
상기 보조 제어기(500)는 내부센서(620)에 의해서 측정된 다양한 정보를 수신하고, 스스로 판단할 수 있는 것은 판단하여 동작을 행하고, 메인 제어기(450)의 도움이 필요한 경우에는 이를 송신할 수 있다.
상기 내부부하(610)에는 냉장고의 동작에 필요한 다수의 구성이 포함될 수 있다. 예를 들어, 내부조명(612), 디스플레이(613), 고내 팬(614), 및 유로댐퍼(615) 등과 같은 부품이 포함될 수 있다.
상기 내부센서(620)에는 냉장고의 제어상태를 파악하기 위한 다수의 구성이 포함될 수 있다. 예를 들어, 냉장실 온도센서(621), 냉동실 온도센서(622), 및 제상센서(623) 등이 포함될 수 있다.
도 33 및 도 34의 설명과 같이, 본 발명에 따르면, 고 내외를 연결하는 전선의 수가 교류선로, 직류선로, 및 신호선로로 최적화되어, 진공단열체의 관통부의 크기 및 관통부의 수를 줄이면서도 냉장고의 안정적인 동작을 이끌어 낼 수 있다.
냉장고의 동작 시에 열을 발생시키는, 정류기, 스위칭 부재 등은, 냉장고의 고외에 놓이게 함으로써, 냉장고의 고내 공간에는 발열원이 없어진다. 따라서, 냉장고의 에너지소비효율을 높일 수 있다.
냉장고의 제어에 필요한 선로는, 메인 제어기(450) 및 보조 제어기(500) 간의 직접 연결에 의해서 고내외가 서로 연결될 수 있다. 상기 보조 제어기(500)와 부하 및 센서도 직접 연결될 수 있다. 이에 따르면, 제어기 간 또는 제어기와 부하 간의 신호 송수신의 안정성을 담보할 수 있어서 냉장고가 안정적으로 동작할 수 있다.
직류전원을 구동원으로 사용하거나, 직류신호를 제어신호로 사용하는 상용의부하 및 센서를 진공단열체가 적용되는 냉장고에도 그대로 적용할 수 있기 때문에, 진공단열체가 적용되는 냉장고의 제조비를 낮출 수 있다.
도 35는 상기 메인 제어기와 상기 보조 제어기의 설치위치를 보이는 도면이다. 이 경우에 냉장고는 진공단열체를 사용하는 경우에 바람직하게 적용될 수 있다.
도 35를 참조하면, 상기 메인 제어기(450)는 냉장고의 외부에 놓일 수 있다. 바람직하게 냉장고의 상면 외측에 놓일 수 있다. 상기 메인 제어기(450)와 일체로 또는 인접되거나 또는 이격되는 곳에는 상기 전원제어부(700) 등의 구성이 놓일 수 있다.
상기 보조 제어기(500)는 냉장고의 멀리언(300)에 놓일 수 있다. 상기 멀리언(300)은 이미 설명하는 바와 같이 냉장실과 냉동실을 단열구획하는 부재로서, 소정의 단열재로 제공될 수 있다.
상기 보조 제어기(500)는 멀리언(300)의 내부에서 냉장고의 고내와는 서로 단열 상태를 유지하여, 상기 보조 제어기(500)의 동작 중에 발생하는 열은 상기 냉장고의 내부에는 영향을 주지 않을 수 있다.
상기 메인 제어기(450)에서 상기 보조 제어기(500)와 접속되는 선로(511~516)의 경로를 간단하게 설명한다.
먼저, 상기 배선(402)(403)이 지나는 경로를 통하여, 상기 선로가 안내될 수 있다. 상세하게, 상기 선로는 상기 진공단열체와 상기 실링 프레임(200)의 사이 간격을 통하여 상기 냉장고의 고내와 고외를 연결할 수 있다. 이 경우에, 상기 배선(402)(403)으로는 두 개를 예시하였지만, 여섯 개의 선로(511~516)가 상세하게 설명한 경로를 통과하여 안내될 수 있을 것이다.
다른 경우로서, 상기 관로(64)를 통하여, 상기 선로가 안내될 수도 있다. 상세하게, 상기 선로는 상기 진공단열체를 관통하는 관로(64)를 통과하여 상기 냉장고의 고내와 고외를 연결할 수 있다.
상기 선로(511~516)가 상기 진공단열체와 상기 실링 프레임(200)의 사이 간격을 통하여 안내되는 것은 다수의 도면을 통하여 상세하게 설명한 바가 있다. 상기 관로(64)가 제공되는 경우에, 상기 메인 제어기(450) 및 상기 보조 제어기(500)의 연결관계를 설명한다.
도 36은 관로를 이용하는 경우에 상기 메인 제어기와 상기 보조 제어기의 접속을 설명하는 도면이다.
도 36을 참조하면, 상기 본체(2)의 진공단열체는 제 1 관로(641)가 제공된다. 상기 제 1 관로(641)는 진공단열체의 내외를 관통하는 부재로서, 상기 주름형 전도저항쉬트(63)의 안쪽에 놓일 수 있다. 경우에 따라서 상기 관로(64)가 마련되지 않고 주름형 전도저항쉬트(63)가 관로(64)의 역할을 병행할 수도 있을 것이지만, 열전달 감소의 측면에서 단열재로 예시되는 별도의 부재를 관로(64)로 적용하는 것이 더욱 바람직할 것이다.
상기 제 1 관로(641)에는 여섯개의 선로(511~516)가 통과하고, 상기 선로는 상기 메인 제어기(450)과 상기 보조 제어기(500)를 연결할 수 있다. 상기 제 1 관로(641)를 통과하여 고내로 인입된 선로는, 진공단열체의 내벽을 따라서 멀리언(300)의 내부까지 연장되고, 상기 보조 제어기(500)에 접속될 수 있다.
상기 보조 제어기(500)는 고내의 다수의 부하 및 센서와 접속되어 냉장고의 동작을 제어할 수 있다. 이때 선로는 상기 진공단열체의 내면을 따라서 연장될 수 있다.
상기 멀리언(300)에 상기 보조 제어기(500)가 놓이는 것이, 냉장고의 고내공간을 넓게 하고, 발열의 영향을 줄이고, 제어기의 정상동작을 위한 정격온도의 유지 측면에서 바람직하다. 다만, 멀리언의 설치에 제한이 있는 경우에는 고내의 다른 별도 공간에 상기 보조 제어기(500)를 위치시키고, 상기 멀리언(300)은 선로가 통과하는 역할만을 수행하도록 할 수도 있다.
상기 기계실(8)과 인접되는 진공단열체의 어느 일측에는 제 2 관로(643)이 제공될 수 있다. 상기 제 2 관로(643)은 제상수가 고외로 제거되는 관로로 사용될 수 있다.
도 37 내지 도 39는 냉장고 제어의 구성을 비교하여 설명하는 도면으로서, 도 37은 종래와 같이 메인 제어기에서 40여개에 이르는 다수의 선로가 고내로 인입되는 경우를 보이는 도면이고, 도 38은 여섯개의 선로가 상기 관로를 통과하는 경우를 보이고, 도 39는 여섯개의 선로가 상기 실링 프레임과 본체의 외면 사이 간격부를 통과하는 경우를 보이는 도면이다.
먼저, 도 37을 참조하면, 도면에는 10여 개의 선로가 제공되는 것으로 도시하였지만, 이는 도시의 어려움에 기인한 것으로서, 실제로는 훨씬 더 많은 선로가 진공단열체를 통과하여야 한다. 상기 관로(64)에 많은 전선이 통과하기 위해서는 관로(64)의 크기를 크게 하거나 관로(64)의 개수를 늘려야 하는데, 이는 단열손실의 저하, 냉장고 설계의 제약, 및 설치의 어려움으로 작용하기 때문에 바람직하지 않다. 다른 방법으로 상기 실링 프레임(300)과 진공단열체의 사이 간격부를 이용하더라도 더 넓게 간격을 마련하여야 하기 때문에, 단열의 어려움 및 설계의 제약이 발생하여서 바람직하지 않다.
이와 같은 문제를 개선하는 본 발명에서는 이미 자세하게 설명된 바와 같이, 여섯개의 선로 만이 냉장고의 고내외를 연결하도록 제안하고 있다.
도 38을 참조하면, 상기 여섯개의 선로(511~516)가 상기 관로(64)를 통과한다. 이에 따르면, 관로(64)를 크게 할 필요가 없을 뿐만아니라, 관로의 개수를 많이 할 필요도 없다. 따라서 단열손실이 줄고, 설계제약도 없어지는 장점을 얻을 수 있다.
도 39를 참조하면, 여섯개의 선로(511~516)가 상기 실링 프레임(64)과 본체(2)의 외면 사이 간격부를 통과하여 고내로 안내되는 것을 볼 수 있다. 이에 따르면, 상기 간격부를 크게 할 필요가 없고, 상기 배선(402)(403)이 설치되는 경로를 그대로 이용하여 배선의 수를 늘리는 것과 마찬가지로, 상기 여섯개의 선로(511~516)를 설치할 수 있다.
이 경우에, 상기 발열부(601)를 연결하는 교류선로(515)(516)가 물리적으로 지름이 크고, 다른 선로는 작은 선로를 이용할 수 있기 때문에, 상기 상기 배선(402)(403)을 이용하는 구조를 충분히 이용할 수 있다.
본 발명을 적용하면, 진공단열체가 적용되는 냉장고의 안정된 제어를 수행하면서도, 냉장고의 단열성능저하를 방지하고, 제품설계를 편리하게 할 수 있다. 결과적으로 진공단열체가 적용되는 냉장고의 제품화를 촉진할 수 있다.
110: 제 2 보강부재
112: 돌기부
115: 제 1 슬릿
116: 제 2 슬릿
450: 메인제어기
500: 보조제어기

Claims (21)

  1. 제 1 공간을 위한 벽의 적어도 일부를 정의하는 제 1 플레이트 부재;
    상기 제 1 공간과 온도가 다른 제 2 공간을 위한 벽의 적어도 일부를 정의하는 제 2 플레이트 부재;
    상기 제 1 공간의 온도와 상기 제 2 공간의 온도의 사이 온도이며 진공 상태의 공간인 제 3 공간을 제공할 수 있도록 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재를 밀봉하는 밀봉부;
    상기 제 3 공간을 유지하는 서포팅유닛;
    상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재 간의 열전달량을 감소시키기 위한 열저항유닛;
    상기 제 3 공간의 기체를 배출하는 배기포트;
    상기 제 1 플레이트 부재의 제 1 관통부 및 상기 제 2 플레이트 부재의 제 2 관통부를 통과하여, 상기 제 1 공간 및 상기 제 2 공간 간에 전류가 흐르도록 하는 전선; 및
    상기 전선을 안에 수용하고, 상기 제 3 공간의 진공누설이 방지되도록 상기 제 1,2 관통부를 실링하는 관통실링부를 포함하고,
    상기 관통실링부는 상기 제 1 관통부를 통과하여 연장하는 부분 및 상기 제 2 관통부를 통과하여 연장하는 부분을 포함하는 진공단열체.
  2. 제 1 항에 있어서,
    상기 관통실링부에는,
    상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재에 지지되어 위치가 고정되고, 상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재에 비하여 열전도도가 낮은 재질로 제공되는 블럭이 포함되는 진공단열체.
  3. 제 1 항에 있어서,
    상기 제 1,2 관통부는 서로 직근하는 진공단열체.
  4. 제 1 항에 있어서,
    상기 관통실링부에는,
    상기 제 3 공간을 밀봉하는 제 3 플레이트 부재;
    상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재 중의 적어도 하나에 지지되고, 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재와 상기 제 3 플레이트 부재보다 열전도도가 낮은 재질의 블럭이 포함되는 진공단열체.
  5. 제 1 항에 있어서,
    상기 제 1,2 관통부의 사이에 제공되어, 상기 제 1 공간의 냉기가 상기 제 2 공간으로 누설되는 것을 방지하는 기밀부재가 더 포함되는 진공단열체.
  6. 제 1 공간을 위한 벽의 적어도 일부를 정의하는 제 1 플레이트 부재;
    제 2 공간을 위한 벽의 적어도 일부를 정의하는 제 2 플레이트 부재;
    상기 제 1 공간의 온도와 상기 제 2 공간의 온도의 사이 온도이며 진공 상태의 공간인 진공공간부를 제공할 수 있도록 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재를 밀봉하는 밀봉부;
    상기 진공공간부를 유지하는 서포팅유닛;
    상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재 간의 열전달량을 감소시키는 열저항유닛;및
    상기 진공공간부의 기체를 배출하는 배기포트가 포함되고,
    상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재에 의해서 제공되는 캐비티의 개구의 적어도 일부를 닫을 수 있는 도어;
    상기 제 1 공간에 위치하며 상기 제 1 공간에 위치하는 전기소자 중 적어도 하나와 전기적 신호를 송수신할 수 있는 제 1 제어기;
    상기 제 2 공간에 위치하며 상기 제 2 공간에 위치하는 전기소자 중 적어도 하나와 전기적 신호를 송수신할 수 있는 제 2 제어기;
    상기 제 1 제어기 및 상기 제 2 제어기를 전기적으로 연결하는 제 1 선로;
    상기 제 1 공간에 위치하는 전기소자와 상기 제 2 공간에 위치하는 제2제어기를 연결하는 제 2 선로; 및
    상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재 중의 적어도 하나에 제공되는 관통부를 포함하고,
    상기 관통부는 상기 제 1,2 선로가 함께 통과할 수 있도록 단일의 개구된 공간을 형성하는 냉장고.
  7. 제 6 항에 있어서,
    상기 제 1 공간에 위치하는 전기소자는 상기 제 1 공간 내부에 열을 제공하는 발열부를 포함하는 냉장고.
  8. 제 7 항에 있어서,
    상기 발열부에는 제상히터가 포함되는 냉장고.
  9. 제 7 항에 있어서,
    상기 제 2 선로는 교류선로인 냉장고.
  10. 제 6 항에 있어서,
    상기 제 1 선로는 모두 합해서 네 개의 선로인 냉장고.
  11. 제 6 항에 있어서,
    상기 제 2 제어기는 메인제어기이고, 상기 제 1 제어기는 상기 메인제어기의 제어에 따라 동작되는 보조제어기이고,
    상기 제 1 선로에는,
    상기 메인 제어기가 상기 보조제어기로 전원을 공급하는 직류선로; 및
    상기 메인 제어기가 상기 보조제어기를 제어하는 제어신호가 흐르는 신호선로가 포함되는 냉장고.
  12. 삭제
  13. 저장물을 저장할 수 있는 내부공간을 제공하는 본체;
    외부공간이 상기 내부공간과 선택적으로 연통되도록 개방되는 도어;
    상기 내부공간에 놓이는 발열부;
    상기 외부공간에 놓이는 전원제어부; 및
    상기 발열부와 상기 전원제어부를 연결하여 전기가 흐르는 교류선로가 포함되고,
    상기 내부공간으로 냉매를 공급할 수 있도록 하기 위하여,
    냉매를 압축하는 압축기;
    압축된 냉매를 응축하는 응축기;
    응축된 냉매를 팽창시키는 팽창기; 및
    팽창된 냉매를 증발시켜 열을 빼앗는 증발기가 포함되고,
    상기 본체는 진공단열체를 포함하고,
    상기 진공단열체에는,
    상기 내부공간을 위한 벽의 적어도 일부를 정의하는 제 1 플레이트 부재;
    상기 외부공간을 위한 벽의 적어도 일부를 정의하는 제 2 플레이트 부재;
    상기 내부공간의 온도와 상기 외부공간의 온도의 사이 온도이며 진공 상태의 공간인 진공공간부를 제공할 수 있도록 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재를 밀봉하는 밀봉부;
    상기 진공공간부를 유지하는 서포팅유닛;
    상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재 간의 열전달량을 감소시키는 열저항유닛;
    상기 진공공간부의 기체를 배출하는 배기포트;
    상기 제 1 플레이트 부재의 제 1 관통부 및 상기 제 2 플레이트 부재의 제 2 관통부를 포함하고, 상기 교류선로가 통과하는 관통부; 및
    상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재 중의 적어도 하나에 체결되는 밀봉부재를 포함하고,
    상기 밀봉부재가 상기 제 1 플레이트 부재의 제 1 관통부와 제 2 플레이트 부재의 제 2 관통부를 함께 실링할 수 있도록, 상기 밀봉부재의 일부는 상기 제 1 공간에 배치되고 다른 일부는 상기 제 2 공간에 배치되는 냉장고.
  14. 제 13 항에 있어서,
    상기 외부공간에 놓이는 제 2 제어기;
    상기 내부공간에 놓이는 제 1 제어기; 및
    상기 제 1 제어기와 상기 제 2 제어기를 연결하는 접속선로가 더 포함되고,
    상기 접속선로는 상기 관통부를 통과하는 냉장고.
  15. 제 14 항에 있어서,
    상기 교류선로와 상기 접속선로가 함께 통과할 수 있도록, 상기 관통부는 단일의 개구된 공간을 형성하는 냉장고.
  16. 제 14 항에 있어서,
    상기 교류선로와 상기 접속선로는, 전류의 흐름이 기준으로 할 때 여섯개의 선로가 포함되는 냉장고.
  17. 제 13 항에 있어서,
    상기 밀봉부재는 상기 제 1 플레이트 부재 및 상기 제 2 플레이트 부재와 동종의 재질을 가지는 냉장고.
  18. 제 13 항에 있어서,
    상기 밀봉부재는 상기 제 1 플레이트 부재의 제 1 관통부와 상기 제 2 플레이트의 제 2 관통부가 서로 가장 근접하는 위치에 각각 체결되는 냉장고.
  19. 제 13 항에 있어서,
    상기 밀봉부재의 내부에는, 상기 교류선로와 상기 제 1,2 플레이트 부재 중 적어도 하나와의 접촉을 방지하는 충전재가 포함되는 냉장고.
  20. 제 13 항에 있어서,
    상기 제 1 공간 및 상기 제 2 공간 중의 적어도 하나로 상기 관통부가 드러나지 않도록, 상기 관통부를 덮어 싸는 마감부재가 더 포함되는 냉장고.
  21. 제 1 공간을 위한 벽의 적어도 일부를 정의하는 제 1 플레이트 부재;
    상기 제 1 공간과 온도가 다른 제 2 공간을 위한 벽의 적어도 일부를 정의하는 제 2 플레이트 부재;
    상기 제 1 공간의 온도와 상기 제 2 공간의 온도의 사이 온도이며 진공 상태의 공간인 제 3 공간을 제공할 수 있도록 상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재를 밀봉하는 밀봉부;
    상기 제 3 공간을 유지하는 서포팅유닛;
    상기 제 1 플레이트 부재와 상기 제 2 플레이트 부재 간의 열전달량을 감소시키기 위한 열저항유닛;
    상기 제 3 공간의 기체를 배출하는 배기포트;
    상기 제 1 플레이트 부재의 관통부 및 상기 제 2 플레이트 부재의 관통부를 통과하여, 상기 제 1 공간 및 상기 제 2 공간 간에 전류가 흐르도록 하는 전선; 및
    상기 전선을 안에 수용하고, 한 쌍의 상기 관통부를 실링하여 상기 제 1 공간과 상기 제 2 공간의 냉기전도를 차단하는 관통실링부를 포함하고,
    상기 관통실링부는, 상기 제 1,2 플레이트 부재에 지지되어 위치가 고정되고, 상기 제 1,2 플레이트 부재에 비하여 열전도도가 낮은 재질로 제공되는 블럭을 포함하는 진공단열체.
KR1020180074307A 2018-06-27 2018-06-27 진공단열체, 및 냉장고 KR102547859B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020180074307A KR102547859B1 (ko) 2018-06-27 2018-06-27 진공단열체, 및 냉장고
PCT/KR2019/007765 WO2020004957A1 (en) 2018-06-27 2019-06-26 Vacuum adiabatic body and refrigerator
CN201980024385.6A CN111936812B (zh) 2018-06-27 2019-06-26 真空绝热体和冰箱
AU2019292299A AU2019292299B2 (en) 2018-06-27 2019-06-26 Vacuum adiabatic body and refrigerator
EP19825425.2A EP3814702A4 (en) 2018-06-27 2019-06-26 ADIABATIC VACUUM BODY AND REFRIGERATOR
US16/981,138 US11598571B2 (en) 2018-06-27 2019-06-26 Vacuum adiabatic body and refrigerator
US18/106,644 US20230251015A1 (en) 2018-06-27 2023-02-07 Vacuum adiabatic body and refrigerator
KR1020230079713A KR20230098754A (ko) 2018-06-27 2023-06-21 진공단열체 및 냉장고

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180074307A KR102547859B1 (ko) 2018-06-27 2018-06-27 진공단열체, 및 냉장고

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230079713A Division KR20230098754A (ko) 2018-06-27 2023-06-21 진공단열체 및 냉장고

Publications (2)

Publication Number Publication Date
KR20200001396A KR20200001396A (ko) 2020-01-06
KR102547859B1 true KR102547859B1 (ko) 2023-06-27

Family

ID=68985571

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020180074307A KR102547859B1 (ko) 2018-06-27 2018-06-27 진공단열체, 및 냉장고
KR1020230079713A KR20230098754A (ko) 2018-06-27 2023-06-21 진공단열체 및 냉장고

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230079713A KR20230098754A (ko) 2018-06-27 2023-06-21 진공단열체 및 냉장고

Country Status (6)

Country Link
US (2) US11598571B2 (ko)
EP (1) EP3814702A4 (ko)
KR (2) KR102547859B1 (ko)
CN (1) CN111936812B (ko)
AU (1) AU2019292299B2 (ko)
WO (1) WO2020004957A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230146918A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146917A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146916A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체 및 진공단열체의 제조방법
KR20230146912A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146913A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146914A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146924A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146919A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146915A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146922A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146909A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체
KR20230146907A (ko) 2022-04-13 2023-10-20 엘지전자 주식회사 진공단열체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200158720Y1 (ko) * 1996-10-17 1999-10-15 윤종용 복수개의 증발기를 채용하는 냉장고
KR101143975B1 (ko) * 2008-12-16 2012-05-09 엘지전자 주식회사 냉장고
CN102452522A (zh) 2010-10-20 2012-05-16 株式会社东芝 隔热箱体
WO2017023095A1 (en) * 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2018111235A1 (en) 2016-12-13 2018-06-21 Whirlpool Corporation Pass-through solutions for vacuum insulated structures

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000882A (en) 1928-09-07 1935-05-07 Stator Refrigeration Inc Insulating housing
US4180297A (en) 1977-09-22 1979-12-25 General Electric Company Sealing grommet in a refrigerator cabinet
US4638644A (en) * 1978-04-07 1987-01-27 Edward Gidseg Circulating air refrigerator with removable divider shelf
US4805293A (en) * 1981-09-03 1989-02-21 Whirlpool Corporation Insulated cabinet manufacture
KR0125480Y1 (ko) * 1994-12-12 1998-11-02 김광호 냉장고의 배선용 콘넥터 취부장치
JPH08261634A (ja) * 1995-03-24 1996-10-11 Matsushita Refrig Co Ltd 冷蔵庫
US20050120715A1 (en) * 1997-12-23 2005-06-09 Christion School Of Technology Charitable Foundation Trust Heat energy recapture and recycle and its new applications
JP2001056284A (ja) 1999-08-20 2001-02-27 Fukushima Industries Corp 測定孔キャップ
KR100343719B1 (ko) 2000-01-14 2002-07-20 엘지전자주식회사 진공 단열재 패널을 구비한 냉장고 도어
JP2004190880A (ja) 2002-12-09 2004-07-08 Daiwa Industries Ltd 試験用冷蔵庫のリード線ブッシング
US20040226956A1 (en) 2003-05-14 2004-11-18 Jeff Brooks Cryogenic freezer
KR101316023B1 (ko) 2007-08-20 2013-10-07 엘지전자 주식회사 배선 통합 모듈 및 그 모듈을 이용한 배선 구조를 갖는냉장고
US9095167B2 (en) 2009-01-08 2015-08-04 Lg Electronics Inc. Supercooling system for supercooling a stored liquid
JP2013512766A (ja) 2009-11-23 2013-04-18 グラコ ミネソタ インコーポレーテッド バルブアクチュエータ
KR101147779B1 (ko) * 2010-10-28 2012-05-25 엘지전자 주식회사 진공공간부를 구비하는 냉장고
WO2013103214A1 (ko) 2012-01-06 2013-07-11 (주)엘지하우시스 3차원 입체 형상을 갖는 냉장고용 단열 도어
US10531597B1 (en) * 2012-06-15 2020-01-07 Amazon Technologies, Inc. Negative pressure air handling system
US20140109386A1 (en) * 2012-10-20 2014-04-24 Robert Richard Matthews Non ionic/electrolyte, liquid/gaseous, mechanically refined/nanoparticle dispersion Building Materials/High Wear-Heat Resistant Part Brushes, Windings, Battery Cells, Brake Pads, Die Cast Molding, Refrigeration, Polarized/Integrated Optical, Spectrometric Processors, Central Processor Unit Processors, Electronic Storage Media, Analogous Series/Parallel Circuit Generators/Transceivers, Particulate Matter PM Carbonaceous-Polyamide, Crystalline Silica, and Cellulosic Filament Extraction/Miners Suit
US20140178513A1 (en) * 2012-12-23 2014-06-26 Robert Richard Matthews Non ionic/electrolyte, liquid/gaseous, mechanically refined/nanoparticle dispersion Building Materials/High Wear-Heat Resistant Part Brushes, Windings, Battery Cells, Brake Pads, Die Cast Molding, Refrigeration, Polarized/Integrated Optical, Spectrometric Processors, Central Processor Unit Processors, Electronic Storage Media, Analogous Series/Parallel Circuit Generators/Transceivers, Particulate Matter PM Carbonaceous-Polyamide, Crystalline Silica, and Cellulosic Filament Extraction/Miners Suit
KR102163292B1 (ko) 2013-07-26 2020-10-08 삼성전자주식회사 진공단열재 및 이를 포함하는 냉장고
KR20170016188A (ko) 2015-08-03 2017-02-13 엘지전자 주식회사 진공단열체 및 냉장고
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200158720Y1 (ko) * 1996-10-17 1999-10-15 윤종용 복수개의 증발기를 채용하는 냉장고
KR101143975B1 (ko) * 2008-12-16 2012-05-09 엘지전자 주식회사 냉장고
CN102452522A (zh) 2010-10-20 2012-05-16 株式会社东芝 隔热箱体
WO2017023095A1 (en) * 2015-08-03 2017-02-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2018111235A1 (en) 2016-12-13 2018-06-21 Whirlpool Corporation Pass-through solutions for vacuum insulated structures

Also Published As

Publication number Publication date
US20230251015A1 (en) 2023-08-10
AU2019292299B2 (en) 2022-07-21
KR20200001396A (ko) 2020-01-06
CN111936812A (zh) 2020-11-13
WO2020004957A1 (en) 2020-01-02
KR20230098754A (ko) 2023-07-04
CN111936812B (zh) 2023-06-06
US11598571B2 (en) 2023-03-07
EP3814702A4 (en) 2022-03-23
AU2019292299A1 (en) 2020-10-22
US20210088268A1 (en) 2021-03-25
EP3814702A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
KR102547859B1 (ko) 진공단열체, 및 냉장고
KR102576435B1 (ko) 진공단열체 및 냉장고
KR102569213B1 (ko) 진공단열체 및 냉장고
KR102511095B1 (ko) 진공단열체 및 냉장고
KR102498210B1 (ko) 진공단열체 및 냉장고
KR102466469B1 (ko) 진공단열체 및 냉장고
KR20220153561A (ko) 진공단열체 및 냉장고
KR20230070181A (ko) 진공단열체 및 냉장고
KR20230058039A (ko) 진공단열체 및 냉장고
KR20220146398A (ko) 진공단열체 및 냉장고
KR20240004138A (ko) 진공단열체 및 냉장고
CN111480044A (zh) 真空绝热体和冰箱
KR20230124527A (ko) 진공단열체 및 냉장고
KR20230093208A (ko) 진공단열체
CN108474610A (zh) 真空隔热材料,真空隔热材料制造方法,以及包括真空隔热材料的冰箱
KR20240004145A (ko) 진공단열체 및 냉장고
KR20230087432A (ko) 진공단열체
KR20230042451A (ko) 진공단열체 및 냉장고
KR20210015080A (ko) 진공단열모듈, 냉장고, 냉장고의 제조방법
KR102539478B1 (ko) 진공단열체 및 냉장고
US20220235997A1 (en) Vacuum adiabatic module and refrigerator
CN111936809B (zh) 真空绝热本体和冰箱
KR20230146917A (ko) 진공단열체
KR102566886B1 (ko) 진공단열체
KR20230146909A (ko) 진공단열체

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right