KR102534126B1 - 프리폼 왜곡 교정 - Google Patents

프리폼 왜곡 교정 Download PDF

Info

Publication number
KR102534126B1
KR102534126B1 KR1020227018842A KR20227018842A KR102534126B1 KR 102534126 B1 KR102534126 B1 KR 102534126B1 KR 1020227018842 A KR1020227018842 A KR 1020227018842A KR 20227018842 A KR20227018842 A KR 20227018842A KR 102534126 B1 KR102534126 B1 KR 102534126B1
Authority
KR
South Korea
Prior art keywords
layer
substrate
distortion
printing
lithography process
Prior art date
Application number
KR1020227018842A
Other languages
English (en)
Other versions
KR20220082105A (ko
Inventor
테이머 코스쿤
토마스 엘. 레이딕
장 펑 첸
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20220082105A publication Critical patent/KR20220082105A/ko
Application granted granted Critical
Publication of KR102534126B1 publication Critical patent/KR102534126B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Printing Methods (AREA)
  • Electroluminescent Light Sources (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

일부 실시예들에서, 층을 인쇄 및 프로세싱하는 방법들 및 시스템들이 제공된다. 층은 웨이퍼 또는 애플리케이션 패널 상에 있을 수 있다. 그 후에, 실제로 인쇄 및 프로세싱된 피쳐들의 위치들이 측정된다. 그러한 피쳐들에 대한 설계된 위치들과 측정된 위치들 사이의 차이들에 기초하여, 적어도 하나의 왜곡 모델이 생성된다. 각각의 왜곡 모델은 반전되어 대응하는 교정 모델을 생성한다. 다수의 섹션들이 존재하는 경우, 각 섹션에 대해 왜곡 모델 및 교정 모델이 생성될 수 있다. 다수의 교정 모델들이 조합되어 전체 교정 모델을 생성할 수 있다.

Description

프리폼 왜곡 교정{FREEFORM DISTORTION CORRECTION}
[0001] 본원의 실시예들은 일반적으로 리소그래피(lithography)에 관한 것이며, 보다 구체적으로는 애플리케이션 패널(application panel)들 및 웨이퍼(wafer)들의 리소그래피에서 왜곡 에러(distortion error)들을 감소시키는 것에 관한 것이다.
[0002] 포토리소그래피(photolithography)는 액정 디스플레이(liquid crystal display; LCD)들과 같은 디스플레이 디바이스들 및 반도체 디바이스들의 제조에 널리 사용된다. 그러나, 프로세싱 동안에, 웨이퍼들 및 애플리케이션 패널들이 왜곡될 수 있다. 왜곡은 상이한 프로세스 단계들에서 나올 수 있다. 왜곡의 크기 및 형상은 층마다 변할 수 있다. 하나의 층에서의 에러들은 후속 층들에서의 왜곡을 부가할 수 있다. 또한, 환경으로 인한 열 또는 유리 상의 열은 응력 관련 왜곡을 유발할 수 있다.
[0003] 따라서, 리소그래피 프로세스 동안의 왜곡 에러들을 감소시킬 필요성이 존재한다.
[0004] 본 개시내용의 실시예들은 일반적으로 리소그래피에 관한 것이며, 보다 구체적으로는 애플리케이션 패널들 및 웨이퍼들의 리소그래피에서 왜곡 에러들을 감소시키는 것에 관한 것이다. 일 실시예에서, 현재 층을 인쇄 및 프로세싱하는 방법이 제공된다. 현재 층은 웨이퍼 또는 애플리케이션 패널 상에 있을 수 있다. 그 후에, 실제로 인쇄 및 프로세싱된 피쳐(feature)들의 위치들이 측정된다. 그러한 피쳐들에 대한 설계된 위치들과 측정된 위치들 사이의 차이들에 기초하여, 적어도 하나의 왜곡 모델(distortion model)이 생성된다. 각각의 왜곡 모델은 반전되어 대응하는 교정 모델(correction model)을 생성한다. 다수의 섹션들이 존재하는 경우, 각 섹션에 대해 왜곡 모델 및 교정 모델이 생성될 수 있다. 다수의 교정 모델들이 조합되어 전체 교정 모델을 생성할 수 있다.
[0005] 다른 실시예에서, 패턴 배치 에러(pattern placement error)를 측정하는 방법이 제공된다. 시스템은 제1 층을 인쇄 및 프로세싱한다. 제1 층은 웨이퍼 또는 애플리케이션 패널 상에 있을 수 있다. 그 후에, 제2 층이 제1 층과 정렬된다. 이 정렬은 플레이트 시프트(plate shift) 및 회전을 보상하기 위한 것이다. 2 개의 층들 사이의 간격(즉, 피쳐 위치들 사이의 차이)을 측정하기 위한 측정들이 행해진다. 제1 층 및 교정된 제2 층(이전의 간격 측정들을 사용함)이 새로운 웨이퍼 또는 새로운 애플리케이션 패널 상에 인쇄된다. 제3 층은 (다시 플레이트 시프트 및 회전을 처리하기 위해) 제2 층과 정렬되고, 제2 층의 상부 상에 인쇄 및 프로세싱될 수 있다. 다음에, 제2 층과 제3 층 사이의 간격 측정들이 행해진다. 제1 층, 교정된 제2 층 및 교정된 제3 층의 인쇄 및 프로세싱이 또 다른 웨이퍼 또는 애플리케이션 패널 상에 일어난다.
[0006] 일 실시예에서, 제1 층과 제2 층 사이에 적어도 하나의 중간 층이 존재한다. 이러한 실시예에서, 제2 층이 제1 층과 정렬된다. 제2 층의 인쇄 및 프로세싱 후에, 제1 층과 제2 층 사이의 간격 측정들이 행해진다. 제1 층은 다른 웨이퍼 또는 애플리케이션 패널 상에 교정된 층을 재인쇄 및 프로세싱하지 않고 모든 후속 층들에 대한 기준으로서 사용될 수 있다. 예를 들어, 제1 층과 제2 층 사이의 간격 측정들을 획득한 후에, 후속 층은 제1 층과 정렬되고 제2 층의 상부 상에 인쇄 및 프로세싱될 수 있다.
[0007] 본 개시내용의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 자료의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 단지 전형적인 실시예들을 예시하는 것이므로 본 개시내용의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 자료가 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0008] 도 1은 본원에 개시된 실시예들로부터 이익을 얻을 수 있는 시스템의 사시도이다.
[0009] 도 2는 본원에 개시된 자료에 따른, 왜곡 교정을 제공하기 위한 프로세싱 유닛의 고수준 블록도의 일 실시예를 도시한다.
[0010] 도 3a는 기판에 대한 변형의 일 예의 3-차원 도면을 도시한다.
[0011] 도 3b는 도 3a에 도시된 변형의 벡터 표현을 도시한다.
[0012] 도 4a는 기판에 대한 변형의 다른 예의 3-차원 도면을 도시한다.
[0013] 도 4b는 도 4a에 도시된 변형의 벡터 표현을 도시한다.
[0014] 도 5는 본원에 개시된 실시예들에 따른, 왜곡을 교정하기 위한 방법을 도시한다.
[0015] 도 6은 본원에 개시된 실시예들에 따른, 섹션들로 분할된 기판의 일 실시예를 도시한다.
[0016] 도 7은 기판의 예시적인 왜곡의 벡터 표현을 도시한다.
[0017] 도 8은 본원에 개시된 실시예들에 따른 패턴 배치 에러로 인한 왜곡을 교정하는 방법을 도시한다.
[0018] 도 9는 섹션들로 분할된 기판의 일 예를 도시하고, 섹션들 각각에서의 왜곡의 벡터 표현들을 포함한다.
[0019] 도 10은 피쳐 위치 측정 지점들을 포함하는 도 9에 도시된 기판을 도시한다.
[0020] 도 11a는 본원에 개시된 실시예들에 따라 교정될 수 있는 다른 유형의 왜곡의 일 예의 벡터 표현을 도시한다.
[0021] 도 11b는 본원에 개시된 실시예들에 따른, 왜곡을 교정하는 방법을 도시한다.
[0022] 도 12는 선형 왜곡에 대한 교정이 도 11a에 도시된 왜곡에 적용된 후의 왜곡 감소의 벡터 표현을 도시한다.
[0023] 도 13은 본원에 개시된 실시예들에 따른, 비선형 왜곡에 대한 교정이 도 12에 도시된 잔류 왜곡에 적용된 후의 왜곡 감소의 벡터 표현을 도시한다.
[0024] 도 14는 예시적인 왜곡의 벡터 표현 및 왜곡에 대한 교정의 벡터 표현을 갖는 기판을 도시한다.
[0025] 도 15는 예시적인 왜곡의 벡터 표현 및 왜곡에 대한 교정의 벡터 표현을 갖는 기판을 도시한다.
[0026] 도 16은 예시적인 왜곡의 벡터 표현 및 왜곡에 대한 교정의 벡터 표현을 갖는 기판을 도시한다.
[0027] 이해를 용이하게 하기 위해, 도면들에 대해 공통인 동일한 엘리먼트들을 지정하기 위해 가능한 경우 동일한 참조 번호들이 사용되었다.
[0028] 하기의 설명에서, 본 개시내용의 보다 철저한 이해를 제공하기 위해 다수의 특정 세부사항들이 기술되어 있다. 그러나, 당업자에게 명백한 바와 같이, 상이한 구성들을 사용하는 다양한 변경들이 본 자료의 범위로부터 벗어남이 없이 이루어질 수 있다. 다른 경우들에서, 본 자료를 모호하게 하는 것을 회피하기 위해 잘 알려진 특징들은 설명되지 않았다. 따라서, 본 개시내용은 본 명세서에 도시된 특정 예시적인 실시예들에 제한되는 것으로 간주되지 않으며, 그러한 모든 대안 실시예들은 첨부된 청구범위의 범위에 포함되는 것으로 의도된다.
[0029] 애플리케이션 패널들 및 웨이퍼들은 본 명세서에서 상호 교환 가능하게 설명된다. 본원에 개시된 실시예들은 선형 왜곡(linear distortion), 비선형 왜곡(non-linear distortion) 및 패턴 배치 에러들을 포함하지만 이에 제한되지 않는 다양한 왜곡들을 교정하기 위해 프리폼 왜곡 교정(freeform distortion correction)을 이용한다. 본원에 개시된 프리폼 왜곡 교정들은 또한 선형 왜곡들만을 교정하는 양상들의 결점들을 보상하도록 적용될 수 있다. "프리폼(freeform)"은 본원에서 불규칙하고, 임의의 특정 패턴 또는 형태를 요구하지 않는 것으로 정의된다.
[0030] 요컨대, 본원에 설명된 실시예들은 일반적으로 층 내의 다수의 지점들의 실제 인쇄된 피쳐 위치들과 대응하는 설계된 피쳐 위치들 사이의 차이들을 구하는 것에 관한 것이다. 이 차이들은 어떤 교정 모델들이 왜곡(들)을 감소시키기에 가장 적합한지를 결정하는 데 사용될 수 있는 왜곡의 일 형태를 나타낸다. 일부 실시예들에서, 각 차이의 역(inverse)은 측정된 지점들 각각에 대한 교정으로서 적용된다.
[0031] 적절한 왜곡 교정들이 선택된 후에, 광이 디지털 마이크로-미러 디바이스들(digital mirco-mirror devices)("DMDs")(도시되지 않음)로 반사된다. DMD들 각각은 개별적으로 제어될 수 있는 복수의 미러들(도시되지 않음)을 포함한다. 복수의 미러들에서의 각 미러는 본원에 제공된 마스크 데이터 및 왜곡 교정들에 기초하여 "ON" 포지션 또는 "OFF" 포지션에 있을 수 있다. 광이 미러들에 도달할 때, "ON" 포지션에 있는 미러들은 복수의 기록 빔들을 투영 렌즈(projection lens)(도시되지 않음)로 반사시킨다. 다음에, 투영 렌즈는 기록 빔들을 기판(140)에 투영한다. "OFF" 포지션에 있는 미러들은 기판(140) 대신에 광 덤프(light dump)(도시되지 않음)로 광을 반사시킨다. 본원에 개시된 왜곡 교정 해결책들을 적용하는 것이 일부 경우들에서 변경되고, 미러들은 웨이퍼/애플리케이션 패널 상의, 층별로, 교정된 포지션들에 대응하도록 "ON" 및 "OFF" 한다.
[0032] 다른 실시예들에서, 패널들/웨이퍼들은 섹션들로 분할될 수 있다. 각 섹션에서의 적어도 하나의 지점이 각 섹션에 대한 최상의 교정 모델을 결정하도록 분석될 수 있다. 하나의 섹션에 적용된 교정 모델이 다른 섹션에 적용된 교정 모델과 동일할 필요는 없다. 분석된 지점들의 수의 증가는 또한 왜곡 교정의 정확도를 증가시킬 수 있다.
[0033] 일부 실시예들에서, 교정 모델들은 측정 피드백(measurement feedback) 또는 모델 기반 변동들에 기초하여 변화들을 프로세싱하도록 동적으로 적합화될 수 있다. 예를 들어, 하나의 변동은 모델이 온도의 함수로서 왜곡을 결정하고 왜곡을 보상하는 데 사용될 수 있는 온도 의존성 팽창들의 교정일 수 있다.
[0034] 도 1은 본원에 개시된 실시예들로부터 이익을 얻을 수 있는 시스템(100)의 사시도이다. 시스템(100)은 베이스 프레임(base frame)(110), 슬래브(slab)(120), 2 개 이상의 스테이지들(130) 및 프로세싱 장치(160)를 포함한다. 베이스 프레임(110)은 제조 설비의 바닥 상에 안착될 수 있고, 슬래브(120)를 지지할 수 있다. 패시브 에어 아이솔레이터(passive air isolator)들(112)이 베이스 프레임(110)과 슬래브(120) 사이에 위치결정될 수 있다. 슬래브(120)는 화강암의 모놀리식 피스(monolithic piece)일 수 있고, 2 개 이상의 스테이지들(130)이 슬래브(120) 상에 배치될 수 있다. 기판(140)은 2 개 이상의 스테이지들(130) 각각에 의해 지지될 수 있다. 스테이지(130)에는, 복수의 리프트 핀들(도시되지 않음)이 관통 연장될 수 있게 하도록 복수의 구멍들(도시되지 않음)이 형성될 수 있다. 리프트 핀들은, 예컨대 하나 이상의 이송 로봇들(도시되지 않음)로부터 기판(140)을 수용하기 위해 연장된 포지션으로 상승할 수 있다. 하나 이상의 이송 로봇들은 2 개 이상의 스테이지들(130)로부터 기판(140)을 로딩(loading) 및 언로딩(unloading)하는 데 사용될 수 있다.
[0035] 기판(140)은, 예를 들어 석영으로 제조되고, 평판 디스플레이(flat panel display)의 일부로서 사용될 수 있다. 다른 실시예들에서, 기판(140)은 다른 재료들로 제조될 수 있다. 일부 실시예들에서, 기판(140)은 기판(140) 상에 형성된 포토레지스트 층(photoresist layer)을 가질 수 있다. 포토레지스트는 방사선에 민감하고, 포지티브 포토레지스트(positive photoresist) 또는 네거티브 포토레지스트(negative photoresist)일 수 있으며, 이는 패턴이 포토레지스트 내에 기록된 후에 방사선에 노광된 포토레지스트의 부분들이 포토레지스트에 도포된 포토레지스트 현상제(photoresist developer)에 각각 가용성 또는 불용성이라는 것을 의미한다. 포토레지스트의 화학적 조성은 포토레지스트가 포지티브 포토레지스트인지 네거티브 포토레지스트인지를 결정한다. 예를 들어, 포토레지스트는 디아조나프토퀴논(diazonaphthoquinone), 페놀 포름알데히드 수지, 폴리(메틸 메타크릴레이트), 폴리(메틸 글루타리미드) 및 SU-8 중 적어도 하나를 포함할 수 있다. 이러한 방식으로, 기판(140)의 표면 상에 패턴이 생성되어 전자 회로를 형성할 수 있다.
[0036] 시스템(100)은 한 쌍의 지지체들(122) 및 한 쌍의 트랙들(124)을 더 포함할 수 있다. 한 쌍의 지지체들(122)은 슬래브(120) 상에 배치될 수 있다. 슬래브(120) 및 한 쌍의 지지체들(122)은 단일 피스의 재료일 수 있다. 한 쌍의 트랙들(124)은 한 쌍의 지지체들(122)에 의해 지지될 수 있다. 2 개 이상의 스테이지들(130)은 트랙들(124)을 따라 X-방향으로 이동할 수 있다. 일 실시예에서, 한 쌍의 트랙들(124)은 한 쌍의 평행한 자기 채널들이다. 도시된 바와 같이, 한 쌍의 트랙들(124) 중 각 트랙(124)은 선형이다. 다른 실시예들에서, 트랙(124)은 비선형 형상을 가질 수 있다. 위치 정보를 제어기(도시되지 않음)에 제공하기 위해 인코더(encoder)(126)가 각각의 스테이지(130)에 결합될 수 있다.
[0037] 프로세싱 장치(160)는 지지체(162) 및 프로세싱 유닛(164)을 포함할 수 있다. 지지체(162)는 슬래브(120) 상에 배치될 수 있고, 2 개 이상의 스테이지들(130)이 프로세싱 유닛(164) 아래로 통과하게 하기 위한 개구(166)를 포함할 수 있다. 프로세싱 유닛(164)은 지지체(162)에 의해 지지될 수 있다. 일 실시예에서, 프로세싱 유닛(164)은 포토리소그래피 프로세스에서 포토레지스트를 노광시키도록 구성된 패턴 생성기(pattern generator)이다.
[0038] 일부 실시예들에서, 패턴 생성기는 마스크리스 리소그래피 프로세스(maskless lithography process)를 수행하도록 구성될 수 있다. 프로세싱 유닛(164)은 복수의 이미지 투영 장치들(도시되지 않음)을 포함할 수 있다. 일 실시예에서, 프로세싱 유닛(164)은 84 개의 이미지 투영 장치들을 포함할 수 있다. 각각의 이미지 투영 장치는 케이스(case)(165) 내에 배치된다. 프로세싱 장치(160)는 마스크리스 직접 패터닝(maskless direct patterning)을 수행하는 데 이용될 수 있다.
[0039] 작동 동안에, 2 개 이상의 스테이지들(130) 중 하나는 도 1에 도시된 바와 같은 로딩 포지션으로부터 프로세싱 포지션으로 X-방향으로 이동한다. 프로세싱 포지션은 스테이지(130)가 프로세싱 유닛(164) 아래를 통과할 때 스테이지(130)의 하나 이상의 포지션들을 지칭할 수 있다. 작동 동안에, 2 개 이상의 스테이지들(130)은 복수의 에어 베어링(air bearing)들(도시되지 않음)에 의해 리프팅될 수 있고, 한 쌍의 트랙들(124)을 따라 로딩 포지션으로부터 프로세싱 포지션으로 이동할 수 있다. 복수의 수직 가이드 에어 베어링들(도시되지 않음)은 각각의 스테이지(130)에 결합되고, 각각의 지지체(122)의 내벽(128)에 인접하게 위치결정되어 스테이지(130)의 이동을 안정화시킬 수 있다. 2 개 이상의 스테이지들(130) 각각은 또한, 기판(140)을 프로세싱 및/또는 인덱싱(indexing)하기 위해 트랙(150)을 따라 이동함으로써 Y-방향으로 이동할 수 있다. 2 개 이상의 스테이지들(130) 각각은 독립적으로 작동할 수 있고, 하나의 방향으로는 기판(140)을 스캐닝하고, 다른 방향으로는 스텝(step) 이동할 수 있다. 일부 실시예들에서, 2 개 이상의 스테이지들(130) 중 하나가 기판(140)을 스캐닝하고 있을 때, 2 개 이상의 스테이지들(130) 중 다른 하나는 노광된 기판을 언로딩하고, 노광될 다음 기판을 로딩한다.
[0040] 계측 시스템(metrology system)은 복수의 이미지 투영 장치들 각각이 포토레지스트로 덮인 기판에 기록되는 패턴들을 정확하게 위치시킬 수 있도록 2 개 이상의 스테이지들(130) 각각의 X 및 Y 측방향 포지션 좌표들을 실시간으로 측정한다. 계측 시스템은 또한 수직 축 또는 Z-축에 대한 2 개 이상의 스테이지들(130) 각각의 각도 포지션의 실시간 측정을 제공한다. 각도 포지션 측정은 서보 메커니즘(servo mechanism)에 의한 스캐닝 동안에 각도 포지션을 일정하게 유지하는 데 사용될 수 있거나, 기판(140) 상에 기록되는 패턴들의 포지션들에 교정들을 적용하는 데 사용될 수 있다.
[0041] 도 2는 본원에 개시된 실시예들에 따른, 왜곡 모델들, 왜곡 교정 모델들 및 패턴 배치 에러들의 교정을 생성하기 위한 프로세싱 유닛(164)의 고수준 블록도의 일 실시예를 도시하고 있다. 예를 들어, 프로세싱 유닛(164)은 도 5, 도 8 및 도 11b의 방법들을 수행하는 데 사용하기에 적합하다. 도 2의 프로세싱 유닛(164)은 제어 프로그램들 등을 저장하기 위한 메모리(memory)(204)뿐만 아니라 프로세서(processor)(210)를 포함한다.
[0042] 다양한 실시예들에서, 메모리(204)는 또한 본원에 설명된 실시예들을 수행함으로써 왜곡 모델(들)을 생성하고, 교정 모델(들)을 생성하며, 패턴 배치 에러들을 교정하기 위한 프로그램들(예를 들어, "교정 모델 모듈"(212)로서 도시됨)을 포함한다. 메모리(204)는 마스크 설계들을 위한 프로그램들(도시되지 않음)을 포함한다. 일 실시예에서, 마스크 설계에 관한 파일들은 그래픽 데이터 시스템 파일들(예를 들어, "GDS")에 저장된다. 그러나, 파일들은 그래픽 데이터를 제공하는 임의의 포맷(format)일 수 있다. 지시를 받았을 때, 이들 프로그램들은 어떤 미러들이 미사용 광을 광 덤프로 투과시키는지, 및 어떤 미러들이 교정 모델(들)에 기초하여 기판을 조명하는지를 결정한다.
[0043] 프로세서(210)는 전력 공급부들, 클록 회로들, 캐시 메모리 등과 같은 통상의 지원 회로(208)뿐만 아니라, 메모리(204)에 저장된 소프트웨어 루틴들(206)을 실행하는 것을 돕는 회로들과 협력한다. 이와 같이, 소프트웨어 프로세스들로서 본원에서 논의된 프로세스 단계들 중 일부는 저장 디바이스(예를 들어, 광 드라이브(optical drive), 플로피 드라이브(floppy drive), 디스크 드라이브(disk drive) 등)로부터 로딩되고, 메모리(204) 내에서 구현되며, 프로세서(210)에 의해 작동될 수 있는 것으로 고려된다. 따라서, 본 자료의 다양한 단계들 및 방법들은 컴퓨터 판독 가능 매체 상에 저장될 수 있다. 프로세싱 유닛(164)은 또한 프로세싱 유닛(164)과 통신하는 다양한 기능 요소들 사이의 인터페이스(interface)를 형성하는 입출력 회로(202)를 포함한다.
[0044] 도 2는 본 개시내용에 따라 다양한 제어 기능들을 수행하도록 프로그래밍된 프로세싱 유닛(164)을 도시하고 있지만, 용어 컴퓨터는 당업계에서 컴퓨터들로서 지칭되는 그러한 집적 회로들에만 제한되지 않고, 광범위하게 컴퓨터들, 프로세서들, 마이크로컨트롤러들, 마이크로컴퓨터들, 프로그래머블 로직 컨트롤러들, 주문형 집적 회로(application specific integrated circuit)들 및 다른 프로그래머블 회로들을 지칭하며, 이들 용어들은 본원에서 상호 교환 가능하게 사용된다. 또한, 하나의 범용 컴퓨터(1000)가 도시되어 있지만, 해당 도시는 간결화를 위한 것이다. 본원에 설명된 방법들 각각은 별도의 컴퓨터들에서 이용될 수 있는 것으로 이해된다.
[0045] 일반적으로, 왜곡은 기판/유리 상의 위치의 함수로서, 원래 설계 (x,y)로부터의 (Δx,Δy)의 변동으로서 모델링될 수 있다. 이것은 하기와 같이 식 (1) 및 (2)로서 표현될 수 있다:
[0046]
Figure 112022058403390-pat00001
[0047]
Figure 112022058403390-pat00002
[0048] 여기서, f(x,y)는 포지션의 함수로서 x의 왜곡의 양을 나타내고; g(x,y)는 포지션의 함수로서 y의 왜곡의 양을 나타낸다. f 및 g 함수들은 다항식 계수들이 측정 데이터에 기초하여 교정될 수 있는 다항식 형태를 취할 수 있다.
[0049] 도 3a는 기판에 대한 변형(300)의 일 예의 3-차원 도면을 도시하고 있다. 예를 들어, 다수의 층들이 기판 상에서 프로세싱될 때, 층들은 왜곡되어 변형(300)으로 나타낸 바와 같은 "험프(hump)"를 형성할 수 있다. "X" 및 "Y" 좌표들의 측정 단위는 미크론이다. "Z" 축에 대한 측정 단위는 없다. 도 3a에 도시된 도면에서, 중심은 거의 0인 한편, 코너들 및 에지들은 가장 큰 왜곡이 일어나는 곳이다. 도 3b는 도 3a에 도시된 변형(300)의 벡터 표현(302)을 도시하고 있다.
[0050] 도 4a는 기판에 대한 변형(400)의 다른 예의 3-차원 도면을 도시하고 있다. 예를 들어, 기판이 "척(chuck)"의 상부 상에 배치될 때, 진공 압력이 기판 상에 가해져서 기판을 평탄화하고 왜곡을 감소시킨다. 그러나, 흡입이 에지들 및 코너들 근처에서 크지 않을 수 있기 때문에, 에지들 및 코너들 근처에 왜곡이 여전히 존재할 수 있다. 진공의 구성에 따라, 왜곡은 도 4에 도시된 왜곡과 상이한 형상을 가질 수 있다. 도 4b는 도 4a에 도시된 변형(400)의 벡터 표현(402)을 도시하고 있다.
[0051] 도 5는 본원에 개시된 실시예들에 따른, 왜곡을 교정하기 위한 방법(500)을 도시하고 있다. 방법(500)은 층이 웨이퍼 또는 애플리케이션 패널 상에 인쇄 및 프로세싱될 때에 시작된다. 본 명세서에 사용된 바와 같은 "인쇄 및 프로세싱"은, 예를 들어 증착, 세정, 현상, 에칭 및 노광과 같은 전형적인 단계들을 포함한다. 따라서, 인쇄 및 프로세싱은 보다 상세하게 설명되지 않을 것이다. 블록(502)에서의 인쇄 및 프로세싱은 임의의 층을 위한 것일 수 있다.
[0052] 블록(502) 이후에, 방법(500)은 블록(506)으로 진행된다. 블록(506)에서, 피쳐들의 위치 지점들이 기판 상에서 측정되어 이들 피쳐들의 실제 위치들이 획득된다. 측정들은 프로세싱 유닛(164)을 향해 전송된다. 일 실시예에서, 측정들은 직교 좌표들의 형태이다. 다른 실시예에서, 측정들은 벡터들의 형태이다. 또 다른 실시예에서, 측정들은 기준점으로부터의 거리 및 각도의 형태이다.
[0053] 블록(508)에서, 블록(506)에서 획득된 측정들과 메모리(206)에 저장된 설계 피쳐 위치들 사이의 차이들이 계산된다. 일 실시예에서, 계산된 차이들은 원하는 경우 설계 측정들을 업데이트하는 데 사용될 수 있다.
[0054] 일 실시예에서, 전체 설계를 작은 셀들/섹션들로 분할하고 해당 섹션의 중심에 기초하여 교정량(Δxcorr,Δycorr)을 계산하고, 그에 맞춰 해당 섹션 내에서 픽셀화된 설계를 이동시킴으로써, 교정의 일 형태가 이산(discrete) 방식으로 적용될 수 있다. 방법(500)은 또한 기판을 섹션들로 분할하는 선택적인 블록(504)을 포함할 수 있다. 블록(504)은 블록(510) 이전의 임의의 시간에 일어날 수 있다. 예시적으로, 블록(504)은 블록(506) 이전에 일어나는 것으로 도시되어 있다. 도 6은 섹션들로 분할된 기판(600)의 일 실시예를 도시하고 있다. 단지 예시의 목적으로, 기판(600)은 9 개의 섹션들(6021, 6022, 6023, 6024, 6025, 6026, 6027, 6028 및 6029)(통칭하여 "섹션들(602)")로 분할된다. 섹션들 각각은 또한 측정될 수 있는 복수의 피쳐 위치 지점들을 포함한다. 예를 들어, 섹션(6024)은 8 개의 피쳐 위치 지점들을 포함한다.
[0055] 섹션 경계들의 "평활화(smoothing)"가 또한 수행되어 하나의 섹션으로부터 다른 섹션으로 마스크 피쳐들의 불연속부의 가능성을 감소시킬 수 있다. 예를 들어, 섹션 경계들을 통과할 필요가 있는 라인이 존재하는 경우, 해당 라인에 불연속부를 가질 수 있다. 일 실시예에서, 저역 필터(low-pass filter)(예를 들어, 가우시안 필터(Gaussian Filter))가 불연속부들을 평활화하기 위해 섹션 경계들 및 에지들에서 교정에 적용된다.
[0056] 기판이 섹션들로 분할되는 경우, 피쳐 위치 지점들은 각 섹션에 대해 측정될 수 있고, 각각의 섹션에 대해 별도의 왜곡 모델이 생성될 수 있다. 임의의 주어진 섹션의 모든 피쳐 위치 지점들이 측정될 필요는 없다. 임의의 섹션에서 측정된 피쳐 위치 지점들의 수가 증가함에 따라, 해당 섹션에서의 왜곡의 매핑(mapping)의 정확도도 증가할 수 있다. 선택적인 블록(504)이 수행되지 않는 경우, 기판은 하나의 섹션으로서 분석될 수 있다.
[0057] 도 5로 돌아오면, 블록(510)에서, 실제 인쇄된 피쳐 위치들과 설계된 피쳐 위치들 사이의 차이들(즉, 왜곡의 유형)에 기초하여, 왜곡 모델(들)이 생성된다. 예를 들어, 일 실시예에서, "핀쿠션(pincushion) 왜곡"이 특정 마스크 또는 마스크 내의 섹션과 연관되면, 핀쿠션 왜곡과 연관된 왜곡 모델이 적용될 수 있다. 다양한 식들이 왜곡 모델들을 생성하는 데 사용될 수 있다. 일 실시예에서, 각각의 다각형 지점 (x,y)을 하기에 의해 정의된 새로운 위치
Figure 112022058403390-pat00003
로 이동시킴으로써 다각형들을 설계하기 위해 교정의 일 형태가 적용될 수 있다:
[0058]
Figure 112022058403390-pat00004
[0059] 여기서,
Figure 112022058403390-pat00005
는 새로운 위치이며; x 및 y는 설계 위치를 나타내고; f(x,y)는 포지션의 함수로서 x의 왜곡의 양을 나타내고; g(x,y)는 포지션의 함수로서 y의 왜곡의 양을 나타낸다.
[0060] 다양한 식들이 본원에 설명되어 있지만, 이들 식들 또는 다른 식들은 선형 왜곡을 교정하는 데 사용될 수 있다. 일부 식들은 다항식의 형태일 수 있다. 예를 들어,
[0061]
Figure 112022058403390-pat00006
[0062] 여기서, Δx는 주어진 (x,y) 포지션에 대한 x의 왜곡이며; sN은 위치 피쳐/지점을 포함하는 섹션을 나타내고; M1, M2, ..., MN은 각 섹션에 대한 다항식 항들의 수를 나타내고; N은 섹션들의 수를 나타내고; Pl(x,y)는 하기 식 (6), (7), (8), (9), (10) 및 (11)에 의해 제공된 다항식 항들이고; p1,x0; p1,x1은 측정들을 피팅(fitting)함으로써 구해진 P0, P1 등에 대한 계수들이다:
[0063]
Figure 112022058403390-pat00007
[0064] 여기서, Δy는 주어진 (x,y) 포지션에 대한 y의 왜곡이며; sN은 위치 피쳐/지점을 포함하는 섹션을 나타내고; M1, M2, ..., MN은 각 섹션에 대한 다항식 항들의 수를 나타내고; N은 섹션들의 수를 나타내고; Pl(x,y)는 하기 식 (6), (7), (8), (9), (10) 및 (11)에 의해 제공된 다항식 항들이고; p1,x0; p1,x1은 측정들을 피팅(fitting)함으로써 구해진 P0, P1 등에 대한 계수들이다:
[0065]
Figure 112022058403390-pat00008
[0066]
Figure 112022058403390-pat00009
[0067]
Figure 112022058403390-pat00010
[0068]
Figure 112022058403390-pat00011
[0069]
Figure 112022058403390-pat00012
[0070]
Figure 112022058403390-pat00013
[0071] 일 실시예에서, 다수의 왜곡 모델들이 존재하는 경우, 왜곡 모델들은 식 (4) 및 (5)로 나타낸 바와 같이, 하나의 왜곡 모델을 생성하도록 조합될 수 있다. 그러나, 다른 실시예에서, 각각의 왜곡 모델이 반전되고, 교정 모델들은 하나의 교정 모델을 생성하도록 조합된다. 다른 실시예에서, 교정 모델은 다수의 프로세스들에 기초한 왜곡의 평균에 기초한다. 예를 들어, 샘플 간에 왜곡 측정들의 변동이 존재하는 경우, 다수의 샘플들에 대해 왜곡 측정들이 행해질 수 있다. 이들 샘플들의 평균 왜곡이 교정 모델을 생성하는 데 사용될 수 있다.
[0072] 다른 실시예에서, 방법(500)은 최종에서 두 번째 층이 인쇄 및 프로세싱될 때까지 블록들(502, 506, 508 및 510)을 반복적으로 수행한다. 그 후에, 적어도 하나의 교정 모델을 사용하여 최종 층이 최종에서 두 번째 층 상의 실제 피쳐 위치들 및 최종에서 두 번째 층에 대한 설계 피쳐 위치들로부터 생성된다.
[0073] 도 7은 기판(702)에 대한 예시적인 왜곡(704)의 벡터 표현(700)을 도시하고 있다. 벡터들(708)은 각각의 측정 지점에서 예시적인 왜곡(704)의 크기 및 방향을 나타낸다. 각각의 벡터(706)는 해당 측정 지점에서 왜곡을 교정하는 데 사용될 수 있는 각 측정 지점에서의 왜곡의 역을 나타낸다.
[0074] 도 8은 본원에 개시된 실시예들에 따른, 패턴 배치 에러들로 인한 왜곡을 교정하는 방법(800)을 도시하고 있다. 방법(800)은 블록(802)에서 제1 층을 인쇄 및 프로세싱함으로써 시작된다. 블록(804)에서, 제2 층과 같은 "다른" 층이 제1 층과 정렬된다. 방법(800)에 사용된 바와 같은 "정렬(aligning)"은 플레이트 시프트 및 회전을 위한 정렬을 지칭한다. 정렬 후에, 제2 층이 인쇄 및 프로세싱된다. 블록(806)에서, 제1 층과 제2 층 사이의 간격(즉, (Δx,Δy))이 측정된다. 본원에 사용된 바와 같은 "간격(separation)"은 하나의 층의 피쳐들의 인쇄된 위치들과 다른 층의 피쳐들의 인쇄된 위치들 사이의 차이이다. 측정된 간격은 추후 사용을 위해 메모리(204)에 저장될 수 있다.
[0075] 방법(800)의 다른 실시예들은 몇 개의 선택적인 블록들을 포함한다. 예를 들어, 일 실시예에서, 블록(806) 이후에, 방법(800)은 선택적인 블록(808)으로 진행된다.
[0076] 블록(808)에서, 블록(806)에서 획득된 측정들은 상이한 기판 상에서, 제1 층을 재인쇄하고 교정된 제2 층을 재인쇄하는 데 사용된다. 제2 층은 블록(806)에서 획득된 간격 측정들의 역을 사용하여 제1 층과 정렬되도록 재인쇄되었다. 그 후에, 방법(800)은 선택적인 블록(810)으로 진행된다. 블록(810)에서, 제3 층과 같은 후속 층이 제1 층 및 교정된 제2 층의 상부 상에 정렬, 인쇄 및 프로세싱된다. 선택적인 블록(812)에서, 제2 층과 제3 층 사이의 간격 (Δx,Δy)가 측정된다. 측정된 간격은 메모리에 저장될 수 있고, 측정된 간격의 역은 교정된 제3 층을 재인쇄 및 프로세싱하는 데 사용될 수 있다. 블록(812) 이후에, 방법(800)은 블록(808)으로 진행되고, 여기서 다른 기판 상에서, 제1 층, 교정된 제2 층 및 교정된 제3 층이 인쇄 및 프로세싱된다. 그 후에, 방법(800)은 전술한 바와 같이 블록들(810 및 812)로 진행된다. 이러한 실시예에서, 선택적인 블록들(808, 810 및 812)은 원하는 층들이 인쇄, 정렬, 프로세싱 및 측정될 때까지 작동하는 반복 루프(iterative loop)를 형성한다.
[0077] 다른 실시예에서, 제1 층은 각각의 후속 층에 대한 기준으로서 작용할 수 있다. 예를 들어, 방법(800)의 실시예에 있어서, 블록(810)에서, 제3 층이 제1 층과 정렬되고, 제2 층의 상부 상에 인쇄되었다. 제2 층은 제1 층과 제3 층 사이의 중간 층이다. 제1 층이 기준 층으로서 사용되기 때문에, 제3 층을 인쇄하기 전에 별도의 기판 상에 제1 층 및 제2 층을 인쇄할 필요가 없다. 각각의 층은 제1 층과 정렬될 수 있고, 동일한 기판 상에 인쇄 및 프로세싱될 수 있다. 블록(810) 이후에, 방법(800)은 선택적인 블록(812)으로 진행된다. 블록(812)에서, 제1 층과 제3 층 사이의 간격이 측정되고 추후 사용을 위해 메모리(204)에 저장된다. 제1 층과 각 후속 층 사이의 간격이 측정되고 추후 사용을 위해 메모리(204)에 저장된다. 블록들(810 및 812)은 원하는 층들이 인쇄, 정렬, 프로세싱 및 측정될 때까지 반복 루프로서 작동한다.
[0078] 도 9는 섹션들(9021, 9022, 9023 및 9024)(통칭하여 "섹션들(902)")로 분할되고 섹션들 각각에서의 왜곡의 벡터 표현들을 포함하는 기판(900)을 도시하고 있다. 섹션들(902) 각각은 섹션의 상이한 영역에서 왜곡을 포함한다.
[0079] 도 10은 복수의 설계 피쳐 측정 부위들(예를 들어, 설계 피쳐 측정 부위들(10021, 10022 및 10023)(통칭하여 "설계 피쳐 측정 부위들(1002)"))을 포함하는 기판(900)을 도시하고 있다. 임의의 섹션(902)에서의 임의의 또는 모든 설계 피쳐 측정 부위들(1002)은 설계 피쳐 측정 부위(1002)를 갖는 섹션에서의 왜곡을 측정하는 데 사용될 수 있다. 예를 들어, 섹션들(9022 및 9024) 각각에서는, 하나의 측정 지점(1000)만이 선택되었다. 섹션(9021)에서는, 왜곡 교정(예를 들어, 비선형 스케일링 교정(nonlinear scaling correction))을 적용하기 위해 대응하는 실제 피쳐 지점들(1004)과의 분석을 위해 4 개의 선택된 측정 지점들(1000)로부터 측정들이 행해진다. 일반적으로, 섹션에서의 측정들의 수의 증가는 보다 높은 차수의 교정을 허용한다. 예를 들어, 섹션(9023)에서, 다른 섹션들에 제공된 왜곡 교정의 차수보다 높은 차수의 왜곡 교정을 적용하기 위해 8 개의 측정 지점들(1000)이 선택된다.
[0080] 도 11a는 다른 유형의 왜곡(1100)의 벡터 표현을 도시하고 있다. 도 11a는 또한 약 100 미크론의 왜곡(1104)을 갖는 섹션(1102)을 포함한다. 일 실시예에서, 왜곡(1104)은 비선형 교정(1106)을 직접 적용함으로써 교정될 수 있다.
[0081] 다른 실시예에서, 섹션(1102)에서 왜곡의 양을 감소시키기 위해 선형 교정이 왜곡(1104)에 적용될 수 있다. "선형 왜곡"은 일부 유형의 스케일링 에러(scaling error)일 수 있다. 일부 유형의 스케일링 회전 및/또는 시프트를 사용함으로써 선형 왜곡이 교정될 수 있다. 예를 들어, 도 12는 선형 왜곡의 교정이 도 11에 도시된 왜곡(1104)에 적용된 후에, 부분(1102)에서의 약 45 미크론까지의 왜곡(1204)의 감소의 벡터 표현(1200)을 도시하고 있다. 선형 왜곡의 교정이 이루어진 후에, 왜곡의 양을 더욱 감소시키기 위해 비선형 왜곡의 교정이 적용될 수 있다. 예를 들어, 도 13은 비선형 왜곡에 대한 교정이 도 12에 도시된 왜곡(1204)에 적용된 후에, 왜곡(1304)의 감소(예를 들어, 약 9e-14 미크론까지)의 벡터 표현(1300)을 도시하고 있다.
[0082] 도 11b는 본원에 개시된 실시예들에 따른, 왜곡을 교정하는 방법(1101)을 도시하고 있다. 블록(1103)에서, 2 개의 층들(예를 들어, 제1 층 및 제2 층)이 인쇄 및 프로세싱된다. 블록(1105)에서, 제1 층 상의 피쳐들의 위치들과 제2 층 상의 동일한 피쳐들의 위치들 사이의 차이들이 측정된다. 일 실시예에서, 블록(1105) 이후에, 방법(1101)은 선택적인 블록(1107)으로 진행된다. 블록(1107)에서, 선형 왜곡(예를 들어, 스케일링, 회전 및 시프트로 인한 에러들)은 단계(1105)로부터의 측정들을 사용하여 계산된다. 그 후에, 방법(1101)은 선택적인 블록(1109)으로 진행된다. 블록(1109)에서, 선형 왜곡에 대한 교정이 제2 층에 적용된다. 선형 왜곡에 대한 교정이 적용된 후에, 방법은 블록(1111)으로 진행된다. 블록(1111)에서, 왜곡 모델(들)이 블록(1105)에서의 측정들에 기초하여 생성되고, 왜곡 모델(들)이 반전되어 교정 모델(들)을 생성하고, (다수의 섹션들 및 교정 모델들이 존재하는 경우) 교정 모델들이 조합된다. 블록(1113)에서, 비선형 교정이 왜곡에 적용된다.
[0083] 방법(1101)의 다른 실시예에서, 블록(1105) 이후에, 방법(1101)은 선택적인 블록들(1107 및 1109)을 수행하지 않고 비선형 왜곡을 계산하도록 블록(1111)으로 진행된다. 블록(1111) 이후에, 블록(1113)이 전술한 바와 같이 수행된다.
[0084] 식 (6) 내지 (11)이 방법(1101)에서 비선형 왜곡을 교정하는 데 사용될 수 있지만, 다른 식들이 사용될 수 있다. 예를 들어, 섹션(1102)에서의 왜곡이 일부 유형의 "핀쿠션" 왜곡인 경우, 핀쿠션 왜곡 모델의 실시예는 하기와 같을 수 있다:
[0085]
Figure 112022058403390-pat00014
[0086] 여기서,
Figure 112022058403390-pat00015
은 기판의 중심으로부터의 주어진 거리(r)에 대한 기판 상의 새로운 지점을 정의하고, Δr은 r과 해당 피쳐의 인쇄된 위치 사이의 차이이다.
[0087]
Figure 112022058403390-pat00016
[0088] 여기서, Δr은 r과 해당 피쳐의 인쇄된 위치 사이의 차이이고, r은 좌표계의 중심으로부터의 거리이며, K는 최대 왜곡이다. 예를 들어, K가 100 미크론인 경우, 최대 왜곡은 100 미크론일 수 있다.
[0089] 블록(1107)에서, 선형 왜곡의 교정을 위한 스케일링 식들의 예들은 식 (14) 및 (15)에 의해 제공된다. 예를 들어,
[0090]
Figure 112022058403390-pat00017
[0091] 여기서, Δx는 x의 왜곡의 양이고, αx는 x 계수의 스케일링이며, x는 포지션이다.
[0092]
Figure 112022058403390-pat00018
[0093] 여기서, Δy는 y의 왜곡의 양이고, αy는 y 계수의 스케일링이며, y는 포지션이다.
[0094] 비선형 왜곡을 교정하는 데 사용될 수 있는 다른 식들의 예들은 식(16) 및 식 (17)에 의해 제공된다. 예를 들어,
[0095]
Figure 112022058403390-pat00019
[0096] 여기서, Δx는 주어진 (x,y) 포지션에 대한 x의 왜곡이며; l은 다항식 항의 지수를 나타내고; L은 다항식 항들의 수를 나타내고; Pl(x,y)는 식 (6), (7), (8), (9), (10) 및 (11)에 의해 제공된 다항식 항들이다.
[0097]
Figure 112022058403390-pat00020
[0098] 여기서, Δy는 주어진 (x,y) 포지션에 대한 y의 왜곡이며; l은 다항식 항의 지수를 나타내고; L은 다항식 항들의 수를 나타내고; Pl(x,y)는 식 (6), (7), (8), (9), (10) 및 (11)에 의해 제공된 다항식 항들이다.
[0099] 모델 파라미터들(αx, αy뿐만 아니라 pxl 및 pyl)을 결정하기 위해 교정 알고리즘이 적용될 수 있다. 본원에 개시된 자료에 따라 사용될 수 있는 교정 알고리즘의 예는 촐레스키 알고리즘(Cholesky algorithm)("촐레스키 분해(Cholesky Decomposition)"로도 알려짐)이다.
[00100] 도 14는 기판(1400)에 대한 비선형 왜곡(1404)의 일 예의 벡터 표현 및 왜곡(1404)에 대한 교정(1402)의 벡터 표현을 도시하고 있다. 도 15는 기판(1500)에 대한 비선형 왜곡(1504)의 일 예의 벡터 표현 및 왜곡(1504)에 대한 교정(1502)의 벡터 표현을 도시하고 있다. 도 16은 기판(1600)에 대한 비선형 왜곡(1604)의 일 예의 벡터 표현 및 왜곡(1604)에 대한 교정(1602)의 벡터 표현을 도시하고 있다.
[00101] 본원에 사용된 바와 같이, 용어들 "갖는", "함유하는", "구비하는", "포함하는" 등은 언급된 요소들 또는 특징들의 존재를 나타내지만, 추가 요소들 또는 특징들을 배제하지 않는 개방형 용어들이다. 단수 표현들은, 문맥상 명백하게 다르게 지시되지 않는 한, 단수뿐만 아니라 복수를 포함하도록 의도된다.
[00102] 전술한 바가 본 개시내용에서의 실시예들에 관한 것이지만, 다른 및 추가 실시예들이 본 개시내용의 기본적인 범위로부터 벗어나지 않으면서 고안될 수 있고, 본 개시내용의 범위는 다음의 청구항들에 의해 결정된다.

Claims (15)

  1. 리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법으로서,
    제1 기판 상에 제1 층을 인쇄 및 프로세싱하는 단계;
    플레이트 시프트(plate shift) 및 회전을 위해, 제2 층을 상기 제1 층과 정렬시키는 단계;
    상기 제1 기판 상에 정렬된 상기 제2 층을 인쇄 및 프로세싱하는 단계;
    상기 제1 층 상의 제 1 인쇄 피쳐들과 상기 제2 층 상의 제 2 인쇄 피쳐들 사이의 간격(separation)을 측정하는 단계;
    플레이트 시프트 및 회전을 위해, 상기 제1 층과 제3 층을 정렬시키는 단계;
    상기 제1 기판 상에 정렬된 상기 제3 층을 인쇄 및 프로세싱하는 단계; 및
    상기 제1 기판과 상이한 제2 기판 상에 제1 층, 교정된 제2 층 및 교정된 제3 층을 인쇄 및 프로세싱하기 위해, 상기 제3 층 상의 인쇄 피쳐들과 상기 제1 층 상의 인쇄 피쳐들 사이의 간격을 측정하는 단계;를 포함하는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  2. 리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법으로서,
    제1 기판 상에 제1 층을 인쇄 및 프로세싱하는 단계;
    플레이트 시프트(plate shift) 및 회전을 위해, 제2 층을 상기 제1 층과 정렬시키는 단계;
    상기 제1 기판 상에 정렬된 상기 제2 층을 인쇄 및 프로세싱하는 단계;
    상기 제1 층 상의 제 1 인쇄 피쳐들과 상기 제2 층 상의 제 2 인쇄 피쳐들 사이의 간격(separation)을 측정하는 단계;
    플레이트 시프트 및 회전을 위해, 상기 제1 층과 제3 층을 정렬시키는 단계;
    상기 제1 기판 상에 정렬된 상기 제3 층을 인쇄 및 프로세싱하는 단계; 및
    상기 제3 층 상의 인쇄 피쳐들과 상기 제1 층 상의 인쇄 피쳐들 사이의 간격을 측정하는 단계;를 포함하고,
    상기 제1 층과 상기 제3 층 사이에는 적어도 하나의 중간 층이 있고, 상기 적어도 하나의 중간 층에서의 각각의 개개 층은
    플레이트 시프트 및 회전을 위해, 제1 층과 정렬되고,
    상기 제1 기판 상에 인쇄 및 프로세싱되고, 그리고
    상기 제 1 층과의 간격에 대해 측정된,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  3. 제1 항에 있어서,
    상기 제1 층은 제1 인쇄 피쳐들을 포함하고, 상기 제1 인쇄 피쳐들 각각은 제 1 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  4. 제3 항에 있어서,
    상기 제2 층은 상기 제1 층에 걸쳐 인쇄되고 상기 제2 인쇄 피쳐들을 포함하고, 상기 제2 인쇄 피쳐들 각각은 제2 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  5. 제4 항에 있어서,
    상기 간격은 상기 제1 인쇄 위치들과 상기 제2 인쇄 위치들 사이의 차이에 대응하는 간격 측정들을 획득함으로써 측정되는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  6. 제5 항에 있어서,
    상기 제1 층을 상기 제2 기판 상에 재인쇄하는 단계 및 상기 제1 층에 걸쳐 상기 교정된 제2 층을 인쇄하는 단계를 더 포함하고,
    상기 교정된 제2 층은 상기 간격 측정들의 반전(inverse)을 통해 제1 층의 제1 인쇄 위치들과 정렬된 제2 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  7. 리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법으로서,
    제1 기판 상에 제1 층을 인쇄 및 프로세싱하는 단계;
    플레이트 시프트 및 회전을 위해, 상기 제1 층과 제2 층을 정렬시키는 단계;
    상기 제1 기판 상에 상기 제2 층을 인쇄 및 프로세싱하는 단계;
    상기 제1 층과 상기 제2 층 사이의 간격을 측정하는 단계;
    상기 제1 층을 제2 기판 상에 재인쇄하는 단계 및 상기 제1 층과 상기 제2 층 사이의 제1 간격 측정들의 반전을 통해 상기 제1 층에 걸쳐 교정된 제2 층을 인쇄하는 단계;
    플레이트 시프트 및 회전을 위해, 제3 층을 상기 제1 층과 정렬시키는 단계;
    상기 제1 기판 상에 상기 제2 층에 걸쳐 인쇄되는 제3 층을 인쇄 및 프로세싱하는 단계; 및
    상기 제2 기판 상에 제1 층, 교정된 제2 층, 및 교정된 제3 층을 인쇄 및 프로세싱하기 위해, 상기 제3 층과 상기 제1 층 사이의 제2 간격 측정들을 획득함으로써 상기 제3 층과 상기 제1 층 사이의 간격을 측정하는 단계;를 포함하는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  8. 제7 항에 있어서,
    상기 제1 층은 복수의 제1 인쇄 피쳐들을 포함하고, 제1 인쇄 피쳐들 각각은 제1 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  9. 제8 항에 있어서,
    상기 제2 층은 상기 제1 층에 걸쳐 인쇄되며 복수의 제2 인쇄 피쳐들을 포함하고, 제2 인쇄 피쳐들 각각은 제2 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  10. 제9 항에 있어서,
    상기 제1 간격 측정들은 상기 제1 인쇄 위치들과 상기 제2 인쇄 위치들 사이의 차이에 대응하는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  11. 제10 항에 있어서,
    상기 제1 층을 재인쇄하는 단계는 상기 제1 층의 제1 인쇄 위치들과 정렬된 제2 인쇄 위치들을 갖는 교정된 제2 층을 포함하는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  12. 제8 항에 있어서,
    제3 층은 복수의 제3 인쇄 피쳐들을 포함하고, 상기 제3 인쇄 피쳐들 각각은 제3 인쇄 위치들을 갖는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  13. 제12 항에 있어서,
    상기 제2 간격 측정들은 상기 제1 인쇄 위치들과 상기 제3 인쇄 위치들 사이의 차이에 대응하는,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  14. 리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법으로서,
    제1 기판 상에 제1 층을 인쇄 및 프로세싱하는 단계;
    플레이트 시프트 및 회전을 위해, 상기 제1 층과 제2 층을 정렬시키는 단계;
    상기 제1 기판 상에 상기 제2 층을 인쇄 및 프로세싱하는 단계;
    상기 제1 층과 상기 제2 층 사이의 간격을 측정하는 단계;
    상기 제1 층을 제2 기판 상에 재인쇄하는 단계 및 제1 간격 측정들의 반전을 통해 상기 제1 층에 걸쳐 교정된 제2 층을 인쇄하는 단계,
    플레이트 시프트 및 회전을 위해, 제3 층을 상기 제1 층과 정렬시키는 단계;
    상기 제1 기판 상에 상기 제2 층에 걸쳐 인쇄되는 제3 층을 인쇄 및 프로세싱하는 단계; 및
    제2 간격 측정들을 획득함으로써 상기 제3 층과 상기 제1 층 사이의 간격을 측정하는 단계;를 포함하고,
    상기 제1 층과 상기 제3 층 사이에 적어도 하나의 중간 층을 더 포함하며,
    상기 적어도 하나의 중간 층에서의 각각의 개개 층은,
    플레이트 시프트 및 회전을 위해, 상기 제1 층과 정렬되고,
    상기 제1 기판 상에 인쇄 및 프로세싱된,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
  15. 제14 항에 있어서,
    상기 적어도 하나의 중간 층에서의 각각의 개개 층은,
    상기 제1 층과의 간격에 대해 측정된,
    리소그래피 프로세스에서 왜곡 에러들을 감소시키기 위한 방법.
KR1020227018842A 2017-05-15 2018-05-14 프리폼 왜곡 교정 KR102534126B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/595,497 US10935892B2 (en) 2017-05-15 2017-05-15 Freeform distortion correction
US15/595,497 2017-05-15
KR1020207037690A KR102407622B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정
PCT/US2018/032521 WO2018213168A1 (en) 2017-05-15 2018-05-14 Freeform distortion correcton

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207037690A Division KR102407622B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정

Publications (2)

Publication Number Publication Date
KR20220082105A KR20220082105A (ko) 2022-06-16
KR102534126B1 true KR102534126B1 (ko) 2023-05-17

Family

ID=64096823

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020197036823A KR102260316B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정
KR1020227018842A KR102534126B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정
KR1020207037690A KR102407622B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020197036823A KR102260316B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207037690A KR102407622B1 (ko) 2017-05-15 2018-05-14 프리폼 왜곡 교정

Country Status (5)

Country Link
US (1) US10935892B2 (ko)
JP (2) JP7066747B2 (ko)
KR (3) KR102260316B1 (ko)
CN (3) CN110651227B (ko)
WO (1) WO2018213168A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10678150B1 (en) * 2018-11-15 2020-06-09 Applied Materials, Inc. Dynamic generation of layout adaptive packaging
US11840023B2 (en) * 2019-08-30 2023-12-12 Carbon, Inc. Mutliphysics model for inverse warping of data file in preparation for additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150347A (ja) * 1998-11-11 2000-05-30 Hitachi Ltd 半導体集積回路装置の製造方法
WO2006073155A1 (ja) 2005-01-05 2006-07-13 Nec Corporation パターン欠陥検査のための装置、その方法及びそのプログラムを記録したコンピュータ読取り可能な記録媒体
US20070021860A1 (en) 2005-07-12 2007-01-25 Asml Netherlands B.V. Method of selecting a grid model for correcting a process recipe for grid deformations in a lithographic apparatus and lithographic assembly using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311600A (en) * 1992-09-29 1994-05-10 The Board Of Trustees Of The Leland Stanford Junior University Method of edge detection in optical images using neural network classifier
JPH11204393A (ja) 1998-01-07 1999-07-30 Hitachi Ltd パターン形成方法
JP2003500847A (ja) 1999-05-20 2003-01-07 マイクロニック レーザー システムズ アクチボラゲット リソグラフィに於ける誤差低減方法
US7328425B2 (en) 1999-05-20 2008-02-05 Micronic Laser Systems Ab Method and device for correcting SLM stamp image imperfections
JP2002064046A (ja) * 2000-08-21 2002-02-28 Hitachi Ltd 露光方法およびそのシステム
US6847433B2 (en) * 2001-06-01 2005-01-25 Agere Systems, Inc. Holder, system, and process for improving overlay in lithography
DE10137398C1 (de) 2001-07-31 2003-02-06 Infineon Technologies Ag Verfahren zum Herstellen einer Lochmaske für Teilchenstrahlung
JP4563170B2 (ja) 2002-05-02 2010-10-13 オーボテック リミテッド 電気回路パターンの製造方法及びシステム
US6881592B2 (en) * 2002-10-11 2005-04-19 Infineon Technologies Richmond, Lp Method and device for minimizing multi-layer microscopic and macroscopic alignment errors
US7160654B2 (en) 2003-12-02 2007-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method of the adjustable matching map system in lithography
GB0517929D0 (en) 2005-09-02 2005-10-12 Xaar Technology Ltd Method of printing
US7679069B2 (en) * 2006-03-16 2010-03-16 Kla-Tencor Technologies Corporation Method and system for optimizing alignment performance in a fleet of exposure tools
US7685840B2 (en) * 2006-03-24 2010-03-30 Corning Incorporated Method of minimizing distortion in a sheet of glass
GB0612805D0 (en) 2006-06-28 2006-08-09 Xact Pcb Ltd Registration system and method
IT1392991B1 (it) 2009-02-23 2012-04-02 Applied Materials Inc Procedimento di stampa serigrafica autoregolantesi
JP5430335B2 (ja) * 2009-10-08 2014-02-26 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2012004564A (ja) 2010-06-11 2012-01-05 Nikon Corp 露光方法、露光装置、デバイス製造方法
CN105684126A (zh) 2013-10-22 2016-06-15 应用材料公司 具有主动对准的卷对卷无掩模光刻
WO2015195272A1 (en) 2014-06-20 2015-12-23 Applied Materials, Inc. Methods for reducing semiconductor substrate strain variation
KR102109059B1 (ko) * 2014-11-26 2020-05-12 에이에스엠엘 네델란즈 비.브이. 계측 방법, 컴퓨터 제품 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150347A (ja) * 1998-11-11 2000-05-30 Hitachi Ltd 半導体集積回路装置の製造方法
WO2006073155A1 (ja) 2005-01-05 2006-07-13 Nec Corporation パターン欠陥検査のための装置、その方法及びそのプログラムを記録したコンピュータ読取り可能な記録媒体
US20070021860A1 (en) 2005-07-12 2007-01-25 Asml Netherlands B.V. Method of selecting a grid model for correcting a process recipe for grid deformations in a lithographic apparatus and lithographic assembly using the same

Also Published As

Publication number Publication date
WO2018213168A1 (en) 2018-11-22
JP2022115887A (ja) 2022-08-09
KR20220082105A (ko) 2022-06-16
KR102407622B1 (ko) 2022-06-10
CN110651227A (zh) 2020-01-03
US20180329310A1 (en) 2018-11-15
KR20190140116A (ko) 2019-12-18
CN110651227B (zh) 2023-07-18
CN116880129A (zh) 2023-10-13
JP7066747B2 (ja) 2022-05-13
JP2020520474A (ja) 2020-07-09
KR102260316B1 (ko) 2021-06-02
KR20210000764A (ko) 2021-01-05
CN116224724A (zh) 2023-06-06
US10935892B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
TWI470715B (zh) 操作圖案化器件之方法及微影裝置
US10379450B2 (en) Apparatus and methods for on-the-fly digital exposure image data modification
TWI590351B (zh) 製造晶圓的方法及裝置
CN108369382A (zh) 控制光刻设备的方法和器件制造方法、用于光刻设备的控制系统及光刻设备
JP2022115887A (ja) 自由形状歪み補正
US8137875B2 (en) Method and apparatus for overlay compensation between subsequently patterned layers on workpiece
JP2022078075A (ja) 露光システムアライメントおよび較正方法
CN112255887A (zh) 分段对准建模方法
JP2023126759A (ja) デジタルリソグラフィツールのためのモデルベース動的位置補正
NL2021272A (en) Methods of determining a mechanical property of a layer applied to a substrate, control system for a lithographic apparatus and lithographic apparatus
KR20190041146A (ko) 포토마스크의 레이아웃 설계 방법 및 포토마스크의 제조 방법
US20220382171A1 (en) Universal metrology file, protocol, and process for maskless lithography systems
WO2024141236A1 (en) Methods and systems for determining reticle deformation
CN118159912A (zh) 用于校准掩模版热效应的方法和系统

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
GRNT Written decision to grant