KR102526545B1 - Cmp 위치 특정 연마(lsp)를 위해 설계된 나선형 및 동심 이동 - Google Patents

Cmp 위치 특정 연마(lsp)를 위해 설계된 나선형 및 동심 이동 Download PDF

Info

Publication number
KR102526545B1
KR102526545B1 KR1020197029276A KR20197029276A KR102526545B1 KR 102526545 B1 KR102526545 B1 KR 102526545B1 KR 1020197029276 A KR1020197029276 A KR 1020197029276A KR 20197029276 A KR20197029276 A KR 20197029276A KR 102526545 B1 KR102526545 B1 KR 102526545B1
Authority
KR
South Korea
Prior art keywords
polishing
substrate
motion
support arm
polishing pad
Prior art date
Application number
KR1020197029276A
Other languages
English (en)
Other versions
KR20190117795A (ko
Inventor
에릭 라우
치 충 초
찰스 씨. 가렛슨
정훈 오
킹 이 흥
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20190117795A publication Critical patent/KR20190117795A/ko
Application granted granted Critical
Publication of KR102526545B1 publication Critical patent/KR102526545B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/005Blocking means, chucks or the like; Alignment devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Abstract

위치 특정 연마 모듈을 사용하여 기판, 예컨대, 반도체 웨이퍼의 국부 영역을 연마할 때 기판 상의 보정 위치들 간의 이동 거리 및 시간을 최소화하기 위한 방법이 제공된다. 보정 프로파일이 결정되고, 보정 프로파일에 기초한 레시피가 기판을 연마하는 데에 사용된다. 연마 패드 조립체의 제1 단부에서 연마 패드 조립체에 결합된 지지 암 및 기판 지지 척의 조합된 운동을 사용하여, 제1 보정 위치와 제2 보정 위치 사이에서 연마 패드 조립체가 횡단한다. 척은 척의 중심 축을 중심으로 회전한다. 위치설정 암은 지지 암의 제2 단부를 통해 배치된 수직 축에 대해 스위핑할 수 있다. 척 및 위치설정 암의 조합된 운동은 연마 패드 조립체가 기판 상에 나선 형상 연마 경로를 형성하게 한다.

Description

CMP 위치 특정 연마(LSP)를 위해 설계된 나선형 및 동심 이동
본 개시내용의 실시예들은 일반적으로, 기판, 예컨대, 반도체 웨이퍼를 연마하기 위한 방법들에 관한 것이고, 더 구체적으로, 전자 디바이스 제조 프로세스에서 기판의 특정 위치들 또는 영역들을 연마하기 위한 방법들에 관한 것이다.
화학적 기계적 연마(CMP)는, 연마 유체, 예컨대, 슬러리가 존재할 때, 평탄화될 물질 층을 연마 패드와 접촉시키고 기판을, 따라서 물질 층 표면을 연마 패드에 대해 이동시킴으로써, 기판 상에 증착된 물질의 층을 평탄화하거나 연마하기 위해 고밀도 집적 회로들의 제조에 통상적으로 사용되는 프로세스이다. 전형적인 연마 프로세스에서, 기판은 기판의 후면을 연마 패드 쪽으로 가압하는 캐리어 헤드에 유지된다. 물질은, 화학적 및 기계적 활동의 조합을 통해, 연마 패드와 접촉하는 물질 층 표면에 걸쳐 제거된다. 캐리어 헤드는, 기판의 상이한 환형 영역들에 차압(differential pressure)을 가하는 다수의 개별적으로 제어되는 압력 영역들을 포함할 수 있다. 예를 들어, 기판의 중심에서의 원하는 물질 제거와 비교하여 기판의 주변 영역에서 더 많은 물질 제거가 요구되는 경우, 캐리어 헤드는 기판의 주변 영역에 더 많은 압력을 가할 것이다. 그러나, 기판의 강성은, 기판에 가해지는 압력이 전체 기판에 걸쳐 전반적으로 확산되거나 평활화될 수 있도록, 캐리어 헤드에 의해 기판의 국부 영역들에 가해지는 압력을 재분배하려는 경향이 있다. 평활화 효과는 국부 물질 제거를 위한 국부적인 압력 적용을 불가능까지는 아니더라도 어렵게 만든다.
CMP의 2개의 일반적인 응용들은, 아래놓인 피쳐들이 층 표면에 함몰부들 및 돌출부들을 생성하는 벌크 막의 평탄화, 예를 들어, 금속전 유전체 층(PMD) 또는 층간 유전체 층(ILD) 연마, 및 피쳐를 갖는 층의 노출된 표면(필드)으로부터 비아, 접촉부 또는 트렌치 충전 물질의 일부를 제거하는 데에 연마가 사용되는, 얕은 트렌치 격리(STI) 및 층간 금속 인터커넥트 연마이다. 예를 들어, 층간 금속 인터커넥트 연마에서, 유전체 막 층의 개구부들에 증착된 전도체, 예컨대, 텅스텐(W)이 또한, 유전체 막 층의 필드 표면 상에 증착되고, 필드 상의 텅스텐은 금속 또는 유전체 물질의 다음 층이 그 위에 형성될 수 있기 전에 필드로부터 제거되어야 한다.
CMP 이후에, 한 묶음의 또는 많은 기판들로부터 전형적으로 하나 이상의 기판이, 프로세스 목표들 및 디바이스 사양들에 적합하도록 측정되거나 검사된다. 기판 막이 일부 CMP 작동들(즉, PMD 또는 ILD) 후에 너무 두껍거나, 기판의 필드 표면 상에 남아 있는 바람직하지 않은 잔류 막을 갖는 경우(CMP 작동, 예컨대, 포스트 금속 인터커넥트 또는 STI 연마 이후의 부적절한 제거로 알려짐), 기판은 전형적으로, 추가의 연마를 위해 종래의 CMP 연마기로 복귀될 것이다. 그러나, CMP 이후에, 기판의 막 두께 및 막 제거율은 기판에 걸쳐 불균일할 수 있는데, 이는 기판에 걸친 어느 정도의 불균일한 물질 제거가 대부분의 종래의 CMP 프로세스들에 내재되어 있기 때문이다. 따라서, 연마된 층이 너무 두껍거나 바람직하지 않은 잔류 막을 기판 상에 갖는 기판의 재작업은, 일부 위치들 또는 재작업 작동 동안 과연마된 위치들에서 너무 얇은 막을 초래할 수 있다.
과연마가, 너무 얇은 막 두께를 초래하는 것 이외에도, 과연마는 함몰된 피쳐들, 예컨대, 비아들, 접촉부들 및 라인들에서의 막 물질의 상부 표면의 바람직하지 않은 디싱, 및/또는 높은 피쳐 밀도를 갖는 영역들에서의 평면 표면의 침식을 초래할 수 있다. 추가적으로, 금속 CMP 슬러리에 대한 금속, 예컨대, 텅스텐(W)의 과노출은 슬러리에 의한 금속의 화학적 전환, 그리고 그에 따른 코어링(coring)을 초래할 수 있으며, 이 경우 금속 충전 물질은 금속 충전 물질이 충전하는 개구부의 측벽 및 베이스에 더 이상 부착되지 않고, 연마 동안 이탈한다.
그러므로, 종래의 CMP의 프로세스 성능과 비슷하거나 우수한 프로세스 성능을 갖는, 기판의 특정 위치들로부터의 물질들의 제거를 용이하게 하는 방법이 필요하다.
본원의 실시예들은 일반적으로, 기판, 예컨대, 반도체 웨이퍼 상의 원하는 특정 위치들을 연마함으로써, 홀 또는 트렌치를 충전하는 물질의 디싱 없이 표토층 물질이 필드 표면으로부터 완전히 제거된 기판, 또는 평탄화된 기판 표면을 제공하기 위한 방법들에 관한 것이다.
일 실시예에서, 기판을 연마하는 방법은 연마 패드를 기판 상에 기판의 제1 반경에 위치시키는 단계 ― 연마 패드는 지지 암에 의해 지지되고, 기판의 표면적 미만인 접촉부 표면적을 가짐 ―, 및 기판을 제1 연마 레시피를 사용하여 제1 반경에서 연마하는 단계를 포함한다. 제1 연마 레시피는 제1 연마 체류 시간, 제1 연마 하방력, 및 제1 연마 속도를 포함한다. 방법은, 연마 패드가 기판 상의 제1 반경으로부터 제2 반경까지 횡단하도록 위치설정 운동을 사용하여 지지 암을 이동시키는 단계, 및 기판을 제2 연마 레시피를 사용하여 제2 반경에서 연마하는 단계를 더 포함한다. 제2 연마 레시피는 제2 연마 체류 시간, 제2 연마 하방력, 및 제2 연마 속도를 포함한다.
다른 실시예에서, 기판을 연마하는 방법은, 지지 암의 제1 단부에 의해 지지된 연마 패드를 기판의 표면에 대해 압박하는 단계 ― 연마 패드는 기판의 표면적 미만인 접촉부 표면적을 가짐 ―, 및 기판의 표면보다 더 작은, 기판의 제1 영역 표면을 제1 연마 레시피를 사용하여 연마하는 단계를 포함한다. 제1 연마 레시피는 제1 연마 체류 시간, 제1 연마 하방력, 및 제1 연마 속도를 포함한다. 방법은, 기판의 제1 영역 표면으로부터, 기판의 표면보다 더 작은, 기판의 제2 영역 표면까지 연마 패드가 횡단하도록 기판 및 지지 암을 동시에 이동시키는 단계, 및 기판의 제2 영역 표면을 제2 연마 레시피를 사용하여 연마하는 단계를 더 포함한다. 제2 연마 레시피는 제2 연마 체류 시간, 제2 연마 하방력, 및 제2 연마 속도를 포함한다.
다른 실시예에서, 기판을 연마하는 방법은, 지지 암에 의해 지지된 연마 패드를 기판의 표면에 대해 압박하는 단계 ― 연마 패드는 기판의 표면적 미만인 접촉부 표면적을 가짐 ―, 연마 패드가 기판의 표면의 복수의 반경들 중 각각의 반경까지 횡단하도록, 기판이 상부에 고정된 척을 회전시키면서 동시에 지지 암을 이동시키는 단계, 및 기판의 표면을 복수의 연마 레시피들을 사용하여 연마하는 단계 ― 복수의 연마 레시피들 중 각각의 레시피는 복수의 반경들 중 각각의 반경에 대응함 ― 를 포함한다. 복수의 연마 레시피들 중 각각의 연마 레시피는 연마 체류 시간, 연마 하방력, 및 연마 속도를 포함한다.
다른 실시예에서, 잔류 막 두께 프로파일은 수동 또는 자동화된 검사 기법들에 기초하여 결정되고, 연마 레시피들은 잔류 막 두께 프로파일에 기초하여 생성된다.
본 개시내용의 위에서 언급된 특징들이 상세히 이해될 수 있도록, 위에 간략히 요약된 본 개시내용의 더 구체적인 설명이 실시예들을 참조하여 이루어질 수 있으며, 이들 중 일부는 첨부 도면들에 예시되어 있다. 그러나, 본 개시내용은 동등한 효과의 다른 실시예들을 허용할 수 있기 때문에, 첨부 도면들은 본 개시내용의 전형적인 실시예들만을 예시하고 그러므로 본 개시내용의 범위를 제한하는 것으로 간주되어서는 안 된다는 점에 주목해야 한다.
도 1a는 일 실시예에 따른 LSP 모듈의 상면 사시도이다.
도 1b는 도 1a의 LSP 모듈의 개략적인 단면도이다.
도 2는 일 실시예에 따른 연마 헤드의 개략적인 단면도이다.
도 3은 일 실시예에 따른 연마 패드 조립체의 개략적인 단면도이다.
도 4a는 일 실시예에 따른 연마 헤드에 배치된 편심 부재의 개략적인 단면도이다.
도 4b는 도 4a에 도시된 연마 헤드의 실시예에 따른 연마 운동을 도시한다.
도 5a는 다른 실시예에 따른 연마 헤드에 배치된 다른 편심 부재의 개략적인 단면도이다.
도 5b는 도 5a에 도시된 연마 헤드의 실시예에 따른 연마 운동을 도시한다.
도 6은 다른 실시예에 따른 LSP 모듈의 개략적인 등각 단면도이다.
도 7은 일 실시예에 따른, 기판 상에서의 연마 패드 조립체의 다양한 운동 모드들을 보여주는, LSP 모듈의 개략적인 평면도이다.
도 8은 연마 패드 조립체의 다양한 운동 모드들의 다른 실시예를 보여주는, LSP 모듈의 개략적인 평면도이다.
도 9a-9c는 일부 실시예들에 따른, 기판 상에 생성된 연마 경로들을 보여주는 예시들이다.
도 10은 일 실시예에 따른, 기판을 연마하기 위한 방법의 흐름도이다.
이해를 용이하게 하기 위해, 가능한 경우, 도면들에 공통된 동일한 요소들을 지시하는 데에 동일한 참조 번호들이 사용되었다. 일 실시예에 개시된 요소들이, 다른 실시예(들)에 관한 요소들의 구체적인 언급 없이 다른 실시예들에서 유익하게 활용될 수 있다는 점이 고려된다.
본 개시내용은, 기판 상의 위치 특정 연마(LSP)에 특히 적합한 모듈을 사용하여 제조 프로세스 동안 기판 상의 막 층을 연마하는 방법을 제공한다. 방법은, 두께 보정 프로파일에 기초한, 기판 상의 막 층에 대한 두께 보정 프로파일의 생성 및 연마 레시피 또는 일련의 연마 레시피들의 생성을 포함한다. 일부 실시예들에서, 방법은 종래의 CMP 작동 이전 또는 이후에 채용될 수 있다. 방법이 종래의 CMP 작동 전에 사용될 때, 일 양상에서, 방법은, 종래의 CMP 동안 막 층 물질의 부분들의 불균일한 제거를 예상하여, 노출된 막 층의 부분들을 연마함으로써, 기존의 불균일한 막 두께를 보정하고/거나 막 층 물질을 선택적으로 제거하기 위해, 노출된 막 층의 부분들을 연마함으로써 막 층 물질을 선택적으로 제거하는 데에 사용된다. 방법이 종래의 CMP 작동 이후에 사용될 때, 방법은 막 층 표면, 또는 표면의 부분들의 과소연마를 보정하는 데에, 즉, 부적절한 물질 제거("재작업"으로 알려짐)에 사용된다. 마찬가지로, 본원의 장비 및 방법들은, 기판, 예컨대, 반도체 웨이퍼로 집적 회로를 형성하기 위해 기판의 처리 이전에 기판의 평탄성을 보정하는 데에 사용될 수 있다.
CMP 이후의 물질 층의 불균일한 막 두께 또는 필드 상의 잔류 막의 존재는, CMP 동안 불균일한 물질 제거 및/또는 연마 이전의 막 층의 막 두께 불균일성의 함수일 수 있다. 물질 제거 불균일성은, 다수의 인자들, 예컨대, 기판 속성들, 연마 프로세스 파라미터들, 연마 슬러리, 패드 컨디셔너들, 기판 유지 링들, 패드 표면, 및 연마 패드 구조를 포함하는 CMP 소모품들의 변동들에 의해 영향을 받는다. 소모품들의 속성들은 소모성 부품마다, 로트마다, 그리고 제조업체마다 다르다. 추가적으로, 연마에 대한 소모품의 영향은 소모품의 수명에 따라 변한다. 결과적인 막 두께 균일성 및 기판 상의 바람직하지 않은 잔류 막의 존재(부적절한 제거)에 영향을 미치는 프로세스 파라미터들의 변동들은, 기판에 대한 하방력, 플래튼 및 캐리어 속도들, 컨디셔닝 힘들, 플래튼 온도, 및 유체 유량들의 편차들을 포함한다. 연마 성능에 영향을 주는, 기판들에서의 변화들은, 막 층 물질 속성들, 다중 레벨 인터커넥트 구조 상의 막 층 레벨, 및/또는 디바이스 크기 및 피쳐 밀도를 포함한다.
종래의 품질 제어 및 인-프로세스 모니터링 방법들은 유입 소모품 및 프로세스 파라미터 변동을 감소시키는 데에 사용된다. 소모품 수명에 걸치고/거나 기판 속성들에 기인한 물질 제거 불균일성 프로파일들의 변화들은 불가피하지만 일반적으로 예측가능하다. 원형 기판들을 연마하도록 구성된 종래의 CMP 시스템들의 경우에, 물질 제거 프로파일들은 종종, 기판의 중심으로부터의 방사상 거리에 관하여 설명될 수 있다. 일반적으로, 기판의 직경에 따른 물질 제거 프로파일은 기판의 중심에서 분할된다면 프로파일 자체가 거울대칭일 것이다. 이는, 기판 상의 특정 위치에서의 잔류 막의 존재, 또는 남아있는 막 두께는, 기판의 중심으로부터의 위치의 반경에 크게 의존하고, 그 동일한 반경에서의 기판 상의 원주 위치들에서 측정될 때 일반적으로 유사할 것이라는 것을 의미한다.
생산 기판들 상의 잔류 막들의 존재 또는 막 두께의 모니터링은, 독립형, 인-라인, 및 인-시튜 계측 시스템들뿐만 아니라 CMP 이후 광학 검사(수동 또는 자동화)를 사용하여 이루어질 수 있다. 측정들 및/또는 검사들은 종래의 CMP 이전에, 이후에, 또는 동안에, 또는 이의 조합으로 이루어질 수 있다. 일부 유전체 막 층들, 예컨대, 금속전 유전체 층들(PMD) 및 층간 유전체 층들(ILD)의 경우, CMP 이후 막 두께 및 막 두께 균일성은, 통계적 프로세스 제어(SPC) 목적들을 위해서 뿐만 아니라 디바이스 설계 사양들에 대한 준수를 보장하기 위해서 생산 기판들에 대해 모니터링될 수 있다.
PMD 및 ILD의 CMP 이후 막 두께는 통상적으로, 인-라인 또는 독립형 광학 계측 시스템들을 사용하여 모니터링된다. 일반적으로, 기판 로트(동일한 디바이스의 기판들의 묶음) 내의 기판들의 샘플 개수에 대해, 또는 각각의 기판에 대해 특정 횟수의 측정들이 취해진다. 각각의 막 두께 측정은 통상적으로, 다이 내에서 또는 다이들 사이의 스크라이브 라인의 전용 측정 부위에서 취해진다. 측정들의 횟수, 및 대응하는 위치들은 일반적으로, 스크라이브 라인들에 또한 위치된 시험 구조들의 전기적 측정들을 취하는, 생산 라인의 단부에서의 전기적 시험 작동을 포함하는 반도체 제조 설비의 대부분 또는 모든 작동들에 걸쳐 표준화된다. 생산 동안 인라인으로 취해진 측정들과, 전기적 시험에서 취해진 측정들의 매칭은, 생산 라인의 문제 해결 및 SPC를 용이하게 하지만, 이러한 표준화된 측정 부위들은 LSP와 함께 사용하기 위한 보정 프로파일을 결정하는 데에 이상적이지 않을 수 있다. 보정 프로파일을 결정하기 위한 하나의 선택사항은, 위에서 설명된 표준화된 측정들 이후에 생산 기판에 걸쳐 추가적인 측정들을 취하는 것이다.
계측 처리량 및 용량 문제들은, 얼마나 많은 추가적인 측정들이 취해지는지 및 측정들이 스크라이브 라인들 내의 전용 측정 부위들에서 또는 다이 내에서 취해지는지의 여부에 관한 인자이다. 계측 툴은, 두께 측정 결과가, 오직 관심 있는 막 층, 즉, 방금 연마된 층에 대한 두께만 통상적으로 결정하고, 아래놓인 층들의 두께들을 포함하지 않도록, 디바이스 패턴 인식 능력들을 가질 수 있다. 디바이스 제품들의 변하는 범위를 갖는 디바이스 제조업자들, 예컨대, 파운드리들은 자동화된 계측 레시피 생성을 용이하게 하기 위해 스크라이브 라인들의 전용 측정 부위들을 통상적으로 사용한다. 그러나, 다이에 존재하는 것보다 기판 상에 더 적은 전용 측정 부위들이 존재하므로, 이러한 측정 부위들에 기초한 보정 프로파일은 측정 부위들 간의 막 두께의 편차들을 반영하지 않을 수 있다. 측정 부위들 간의 막 두께의 편차들은, 취해진 측정들 및 프로세스 조건들 ― 이 프로세스 조건들 하에서 종래의 CMP를 사용하여 기판이 연마됨 ― 에 기초하여 예측될 수 있다.
금속 또는 STI 막들이 기판의 표면으로부터 제거되지만 기판의 표면의 함몰된 피쳐들, 예컨대, 라인들, 비아들, 트렌치들, 또는 다른 함몰부들에 남는 것을 보장하기 위해, 금속 및/또는 STI 속성들의 CMP 이후 모니터링이 행해진다. 잔류 막의 존재는 전형적으로, 과소 연마의 결과이다. 이 막의 불완전한 제거는 단락(금속 CMP) 또는 불완전한 트랜지스터 형성(STI)으로 인한 디바이스 고장을 초래할 수 있다. 모니터링은 잔류 막의 CMP 이후 두께 측정들(즉, 와전류 시험, 또는 금속에 대한 광학 계측 및 STI에 대한 광학 계측) 또는 다른 광학 검사 기법들을 포함한다. 수동 광학 검사는 잔류 막들에 대한 모든 기판들의 1X 시각적 검사 및/또는 확대 수동 검사를 포함할 수 있다. 자동화된 광학 검사는 인라인 또는 독립형 검사 시스템들, 예컨대, 명시야 및/또는 암시야 검사 시스템들을 사용하여 통상적으로 수행된다.
일부 실시예들에서, 막 두께 측정들 및/또는 잔류 막 검사 결과들은 막 층 보정 프로파일들의 결정들이 이루어질 수 있는 설비 자동화 시스템에 업로드될 수 있다. 설비 자동화 시스템은 보정 프로파일에 기초하여 연마 레시피를 생성할 것이거나, 연마된 막 층에 관련된 알려진 막 두께 프로파일에 기초하여 연마 레시피를 선택할 수 있고, 그 다음, 보정 연마 레시피를 LSP 모듈에 다운로드할 것이다.
다른 실시예들에서, 기판의 특정 위치들을 연마하기에 적합한 시스템들은 특정 기판에 대한 보정 프로파일을 생성하기 위해 두께 측정들 및/또는 광학 검사들로부터의 정보를 사용할 수 있다. 보정 프로파일은 막 두께 보정 프로파일 및 잔류 막 두께 프로파일 중 하나이다. 종래의 CMP 프로세스 및 툴의 방사상 물질 제거 프로파일뿐만 아니라, 소모품 수명 및/또는 기판 속성들에 기초한 예측된 CMP 이후 막 층 프로파일들은 또한, 보정 프로파일의 정확도를 개선하는 데에 유용하다. 그 다음, 보정 프로파일에 기초한 연마 레시피들이, 본원에 개시된 LSP 모듈들, 또는 기판의 개별 부분들을 선택적으로 연마하기에 적합한 임의의 장치에서의 사용을 위해 생성될 수 있다. 연마 레시피들은 LSP 모듈에 의해, 설비 자동화 시스템에 의해, 또는 일부 다른 시스템에 의해 생성될 수 있다. 연마 레시피들은 LSP 모듈의 회전 및 방사상 운동들을 사용하여 총 보정 시간을 감소시키기 위해 최적화될 수 있다.
관련 기술분야의 통상의 기술자에 의해 이해될 바와 같이, 본 개시내용의 양상들은 시스템, 방법, 컴퓨터 프로그램 제품, 또는 그의 조합으로서 구현될 수 있다. 이에 따라, 본 개시내용의 양상들은, 전적으로 하드웨어 실시예, 전적으로 소프트웨어 실시예(펌웨어, 상주 소프트웨어, 마이크로코드 등을 포함함), 또는 본원에서 "회로", " 모듈" 또는 "시스템"으로 지칭될 수 있는, 소프트웨어 및 하드웨어 양상들을 결합하는 실시예의 형태를 취할 수 있다. 게다가, 본 개시내용의 양상들은 컴퓨터 판독가능한 프로그램 코드가 구현된 하나 이상의 컴퓨터 판독가능한 매체(들)에 구현된 컴퓨터 프로그램 제품의 형태를 취할 수 있다.
하나 이상의 컴퓨터 판독가능한 매체(들)의 임의의 조합이, 실행될 때, 기판을 연마하기 위한 방법을 수행하도록 구성된 프로그램 제품을 저장하는 데에 활용될 수 있다. 컴퓨터 판독가능한 매체는 컴퓨터 판독가능한 신호 매체 또는 컴퓨터 판독가능한 저장 매체일 수 있다. 컴퓨터 판독가능한 저장 매체는, 예를 들어, 전자, 자기, 광학, 전자기, 적외선, 또는 반도체 시스템, 장치, 또는 디바이스, 또는 전술한 것들의 임의의 적합한 조합일 수 있지만, 이에 제한되는 것은 아니다. 컴퓨터 판독가능한 저장 매체의 더 구체적인 예들(비포괄적 목록)은 다음: 휴대용 컴퓨터 디스켓, 하드 디스크, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 소거가능 프로그램가능한 판독 전용 메모리(EPROM 또는 플래시 메모리), 광섬유, 휴대용 콤팩트 디스크 판독 전용 메모리(CD-ROM), 광학 저장 디바이스, 자기 저장 디바이스, 또는 전술한 것들의 임의의 적합한 조합을 포함할 것이다. 본 문서의 맥락에서, 컴퓨터 판독가능한 저장 매체는 명령어 실행 시스템, 장치, 또는 디바이스에 의해 또는 그와 관련하여 사용하기 위한 프로그램을 포함하거나 저장할 수 있는 임의의 유형 매체일 수 있다.
컴퓨터 판독가능한 신호 매체는, 예를 들어, 기저대역에서 또는 반송파의 일부로서 컴퓨터 판독가능한 프로그램 코드가 내부에 구현된 전파된 데이터 신호를 포함할 수 있다. 그러한 전파된 신호는 전자기, 광학, 무선, 또는 이들의 임의의 적합한 조합을 포함하지만 이에 제한되지 않는 임의의 다양한 형태들을 취할 수 있다. 컴퓨터 판독가능한 신호 매체는, 컴퓨터 판독가능한 저장 매체가 아니며 명령어 실행 시스템, 장치 또는 디바이스에 의해 또는 그와 관련하여 사용하기 위한 프로그램을 통신, 전파 또는 전송할 수 있는 임의의 컴퓨터 판독가능한 매체일 수 있다.
컴퓨터 판독가능한 매체 상에 구현되는 프로그램 코드는, 무선, 유선, 광섬유 케이블, RF 등 또는 전술한 것들의 임의의 적합한 조합을 포함하지만 이에 제한되지 않는 임의의 적절한 매체를 사용하여 송신될 수 있다. 컴퓨터 프로그램 코드는 임의의 하나 이상의 프로그래밍 언어로 작성될 수 있다. 프로그램 코드는, 전적으로 사용자의 컴퓨터 상에서, 부분적으로 사용자의 컴퓨터 상에서, 독립형 소프트웨어 패키지로서, 부분적으로는 사용자의 컴퓨터 상에서 그리고 부분적으로는 원격 컴퓨터 상에서 또는 전적으로 원격 컴퓨터 또는 서버 상에서 실행될 수 있다. 후자의 시나리오에서, 원격 컴퓨터는 근거리 네트워크(LAN) 또는 광역 네트워크(WAN)를 포함하는 임의의 유형의 네트워크를 통해 사용자의 컴퓨터에 접속될 수 있거나, 접속이 (예를 들어, 인터넷 서비스 공급자를 사용하여 인터넷을 통해) 외부 컴퓨터에 대해 이루어질 수 있다.
컴퓨터 프로그램 명령어들은 또한, 컴퓨터 또는 다른 프로그램가능한 장치 상에서 실행되는 명령어들이, 흐름도 및/또는 블록도 블록 또는 블록들에 명시된 기능들/작동들을 구현하기 위한 프로세스들을 제공하도록, 컴퓨터 구현된 프로세스를 생성하기 위해 일련의 작동 활동들이 컴퓨터, 다른 프로그램가능한 장치 또는 다른 디바이스들 상에서 수행되게 하기 위해 컴퓨터, 다른 프로그램가능한 데이터 처리 장치 또는 다른 디바이스들 상에 로딩될 수 있다.
도 1a는, 본원에 설명된 방법들을 실시하는 데에 사용되는 LSP 모듈(100)의 개략적인 사시도이다. 도 1b는 도 1a에 도시된 LSP 모듈(100)의 개략적인 단면도이다. LSP 모듈(100)은 척(110)을 지지하는 베이스(105)를 포함하고, 척(110)은 기판(115)을 척 상에 회전가능하게 지지한다. 도시된 실시예에서, 척(110)은 진공 척으로서 구성되지만, 다른 기판 고정 디바이스들, 예컨대, 정전기, 접착제 또는 클램프 기반 척들이 채용될 수 있다. 척(110)은 구동 디바이스(120), 예컨대, 모터 또는 회전 액추에이터에 결합되어, 적어도, 축(A)(Z 방향으로 배향됨)을 중심으로 한 척(110)의 회전 이동을 제공한다. 척의 회전 속도는 바람직하게 약 0.1 rpm 내지 약 100 rpm, 예컨대, 약 3 rpm 내지 90 rpm이다.
기판(115)은, 기판(115)의 피처(디바이스) 측이, 기판 위에 위치된 연마 패드 조립체(125)를 향하도록, "상향" 배향으로 척(110) 상에 배치된다. 연마 패드 조립체(125)는, 종래의 CMP 시스템에서 기판의 연마 이전 또는 이후에, 기판(115)의 특정 위치로부터 물질을 제거하거나 연마하는 데에 사용된다.
연마 패드 조립체(125)는 연마 헤드(145)에 결합되고, 연마 헤드는 차례로, 지지 암(130)에 결합되며, 지지 암은 연마 패드 조립체(125)를 기판(115)의 표면 층에 대해 이동시킨다. 지지 암(130)은 액추에이터 시스템(135)에 결합된다. 본원의 액추에이터 시스템(135)은, 지지 암 샤프트(133)에 결합된 모터(137)를 포함하고, 모터는 지지 암(130)에 축(B)을 중심으로 한 회전 운동을 제공한다. 도시되지 않은 다른 실시예들은 하나 초과의 연마 패드 조립체(125), 지지 암(130), 및 액추에이터 시스템(135)을 사용할 수 있다.
일 실시예에서, 유체 도포기(155)가 베이스(105)에 회전가능하게 결합된다. 유체 도포기(155)는 유체들을 유체 공급원(140)으로부터 기판(115)의 표면 층까지 전달하기 위해 하나 이상의 노즐(143)을 포함한다. 하나 이상의 노즐(143)은, 유체 도포기(155)의 노즐들(143)을 수직 축(C)에 대해 스윙함으로써 기판(115)의 표면 위에 선택적으로 위치가능하다. 노즐들(143)을 통해 전달되는 유체들은 기판(115)의 연마 및/또는 세정을 용이하게 하고, 연마 유체, 예컨대, 슬러리, 버핑 유체, 탈이온수, 세정 용액, 이들의 조합, 또는 다른 유체들을 포함한다. 베이스(105)는 기판(115)의 에지들로부터 유동된 연마 유체 및/또는 DIW를 수집하기 위한 수조로서 구성된다. 다른 실시예에서, 유체 공급원(140)으로부터의 유체가 연마 헤드를 통해 기판에 도포된다. 유체 공급원(140)은 또한, 가스들, 예컨대, 청정 건조 공기(CDA) 또는 질소를 연마 헤드에 제공할 수 있다.
일반적으로, LSP 모듈(100)은 LSP 모듈(100)의 자동화된 양상들을 제어하도록 구성된 시스템 제어기(190)를 포함한다. 시스템 제어기(190)는 전체 LSP 모듈(100)의 제어 및 자동화를 용이하게 하고, 중앙 처리 유닛(CPU)(도시되지 않음), 메모리(도시되지 않음), 및 지원 회로들(또는 I/O)(도시되지 않음)을 포함한다. CPU는, 다양한 프로세스들 및 하드웨어(예를 들어, 액추에이터들, 유체 전달 하드웨어 등)를 제어하고 시스템 프로세스들(예를 들어, 기판 위치, 프로세스 시간, 검출기 신호 등)을 모니터링하기 위해 산업 현장들에서 사용되는 임의의 형태의 컴퓨터 프로세서들 중 하나일 수 있다. 메모리는 CPU에 연결되고, 쉽게 입수가능한 메모리, 예컨대, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 플로피 디스크, 하드 디스크, 또는 임의의 다른 형태의 로컬 또는 원격 디지털 저장소 중 하나 이상이다. 소프트웨어 명령어들 및 데이터는 활동들과 연관된 하나 이상의 연마 프로세스를 수행하도록 CPU에 명령하기 위해 메모리 내에 코딩되고 저장된다. 지원 회로들은 또한, 종래의 방식으로 프로세서를 지원하기 위해 CPU에 연결된다. 지원 회로들은 캐시, 전력 공급부, 클럭 회로들, 입력/출력 회로망, 하위시스템들 등을 포함한다. 시스템 제어기(190)에 의해 판독가능한 프로그램(또는 컴퓨터 명령어들)은 LSP 모듈(100)의 다양한 구성요소들에 의해 어느 작업들이 수행가능한지를 결정한다. 바람직하게, 프로그램은, 적어도 기판 위치 정보, 다양한 제어된 구성요소들의 일련의 이동, LSP 모듈(100)의 다양한 구성요소들(예를 들어, 지지 암(130), 연마 패드 조립체(125), 및 기판(115)의 이동)의 이동 좌표 및 이들의 임의의 조합을 생성하고 저장하기 위한 코드를 포함하는, 시스템 제어기(190)에 의해 판독가능한 소프트웨어이다. 대안적으로, 연마 장치의 제어는 원격 제어기, 컴퓨터, 또는 다른 제어 시스템, 예컨대, 반도체 생산 공장 전체 제어 시스템에서 구현될 수 있다.
일부 실시예들에서, 시스템 제어기(190)는 계측 스테이션, 팩토리 인터페이스, FAB 호스트 제어기들 또는 다른 디바이스들로부터 기판(115)에 관한 측정 데이터 또는 다른 정보를 획득하고, 기판(115)에 대한 잔류 막 프로파일 또는 보정 프로파일을 결정하기 위해 데이터를 저장한다. 일부 실시예들에서, 시스템 제어기(190)는 연마 레시피 파라미터들, 예컨대, 기판(115)의 각각의 반경에 요구되는 연마 속도, 연마 하방력, 및 연마 체류 시간을 결정하기 위해 프로그램들을 저장 및 실행한다. 데이터는 공식들, 그래프들, 표들, 이산 지점들로서, 또는 다른 적합한 방법에 의해 저장된다.
일부 실시예들에서, 계측 디바이스(165)(도 1a에 도시됨)가 베이스(105)에 결합된다. 계측 디바이스(165)는, 연마 동안 기판(115) 상의 금속 또는 유전체 막 두께를 측정하거나, 광학 검사 기법들, 예컨대, 명시야/암시야 기법들을 사용하여 필드 표면 상의 잔류 막을 검출함으로써, 연마 진행의 인-시튜 척도를 제공하는 데에 사용된다. 계측 디바이스(165)는, 금속 또는 유전체 막 두께, 또는 필드 표면 상의 잔류 막의 존재를 결정하는 데에 유용한 와전류 센서, 광학 센서, 또는 다른 감지 디바이스 중 하나이다. 다른 실시예들에서, 연마 이후 막 층 파라미터들, 예컨대, 웨이퍼 상의 증착 또는 잔류 막들의 두꺼운/얇은 영역들의 위치를, 그리고 따라서 척(110), 지지 암(130) 및 연마 패드 조립체(125)에 대한 운동 레시피, 연마 체류 시간 뿐만 아니라, LSP의 하방력 또는 압력을 결정하는 데에 엑스-시튜 계측 피드백이 사용된다. 엑스-시튜 피드백은 또한, 연마된 막의 최종 프로파일을 결정하는 데에 사용될 수 있다. 인-시튜 계측은, 엑스-시튜 계측에 의해 결정된 파라미터들의 진행을 모니터링함으로써 연마를 최적화하는 데에 사용될 수 있다.
도 2는 본원에 설명된 방법들을 실시하는 데에 사용되는 연마 헤드(200)의 일 버전의 개략적인 단면도이다. 여기서, 연마 헤드(200)는, 도 1a-1b에 도시된 연마 헤드(145)로 사용된다. 연마 헤드(200)는 하나 이상의 기둥(220) 및 하나 이상의 기둥 결합(223)에 의해 지지부(215)에 이동가능하게 결합된 연마 헤드 하우징(205)을 포함한다. 기둥들(220) 및 기둥 결합들(223)은 지지부(215)와 연마 헤드 하우징(205) 사이의 평행 관계를 유지하고, 연마 헤드 하우징(205)이 지지부(215)에 대해 회전하는 것을 방지하면서, 지지부(215)에 대한 연마 헤드 하우징(205)의 제한된 측방향 운동, 예컨대, 궤도 운동 또는 진동 운동을 허용한다. 일부 실시예들에서, 기둥들(220)은 플라스틱 물질, 예컨대, 나일론으로 만들어진다. 연마 헤드 하우징(205)은 상부 하우징(203) 및 하부 하우징(207)을 포함한다. 하부 하우징(207)은 중합체 물질, 예컨대, 폴리우레탄, PET(폴리에틸렌 테레프탈레이트), 또는 충분한 경도 및/또는 강도를 갖는 다른 적합한 중합체들, 예컨대, 폴리에테르 케톤(PEEK) 또는 폴리페닐렌 술파이드(PPS)로 만들어진다. 이러한 물질들은 전형적인 CMP 프로세스 조건들 하에서 그들의 형상을 유지하기에 충분한 구조적 강도를 가지며, 알려진 CMP 유체들 및 연마재들에 화학적으로 그리고 물리적으로 내성이 있다.
가요성 멤브레인(235)이 상부 하우징(203)과 하부 하우징(207) 사이에 이동가능하게 배치된다. 가요성 멤브레인(235) 및 상부 하우징(203)은 하우징 체적(225)을 한정한다. 유체 공급원(140)은 상부 하우징(203)을 통해 배치된 가스 유입구(280)에 유체 결합된다. 유체 공급원(140)은, 가압된 가스, 예컨대, CDA 또는 질소를 하우징 체적(225) 내에 제공한다. 연마 패드 조립체(125)는, 연마 패드 조립체(125)가 하부 하우징(207)의 개구부로부터 돌출되도록, 가요성 멤브레인(235)에 결합된다. 작동 시에, 가압된 가스는 가스 유입구(280)를 통해 하우징 체적(225)에 도입된다. 가압된 가스는 연마 패드 조립체(125)를 아래놓인 기판(도시되지 않음)의 최상부 층 표면에 대해 연마 하방력으로 압박한다. 기판의 표면에 대한 연마 패드 조립체(125)의 연마 하방력은 하우징 내의 가스의 압력을 변경함으로써 조정된다. 압력 제어기(도시되지 않음)는, 연마 패드 조립체에 대한 연마 하방력이, 본원에 개시된 일부 실시예들에서 초래되는 지지부(215)에 대한 연마 헤드 하우징(205)의 축방향 회전을 통해 일정하게 유지되도록, 하우징 체적(225) 내의 가스 압력을 조절한다.
이 실시예에서, 지지부(215)에 대한 연마 헤드 하우징(205)의 측방향 이동은, 샤프트(250)를 수직 축(E)을 중심으로 회전시키는 연마 헤드 모터(240)에 결합된 샤프트(250)에 의해 제공된다. 샤프트(250)는 편심 부재(255)에 결합되고, 편심 부재(255)는 베어링(245)에 회전가능하게 결합된다. 베어링(245)은 베어링 캡(230)에 의해 상부 하우징(203)에 결합된다. 편심 부재 하우징 체적(288)은 베어링 캡(230) 및 내측 벽(260)에 의해 한정되고, 베어링 캡 내에서 베어링(245)이 조종되며, 내측 벽(260)은 샤프트 축(E)을 둘러싸지만 그로부터 오프셋된다. 연마 작동 동안, 샤프트(250)는 편심 부재(255)를 회전시키고, 편심 부재(255)는 편심 부재 하우징 체적(288) 내에서 내측 벽(260)과 접촉한다. 내측 벽(260)과 편심 부재(255)의 접촉은, 연마 헤드 하우징(205)이, 연마 운동 시에 지지부(215)에 대해 축(E) 주위에서 측방향으로 그리고 궤도식으로 이동하게 한다. 기둥들(220)은 지지부(215) 아래의 연마 헤드 하우징(205)을 지지하고 하우징의 운동을 따르면서, 연마 헤드 하우징(205)의 측방향 이동을 제한한다. 연마 운동은 수직 축(E)으로부터 약 0.5 mm 내지 약 5 mm, 예컨대, 약 +/- 1 mm의 연마 운동 반경(R)을 갖는다. 여기서, 연마 속도는 샤프트(250)의 회전 속도에 의해 제어된다. 샤프트(250)의 회전 속도는 바람직하게 약 1,000 rpm 내지 약 5,000 rpm으로 유지된다.
다른 실시예에서, 샤프트(250)가 연마 헤드 하우징(205)에 직접 결합되고 기둥들(220)이 제거된다. 여기서, 샤프트(250)는 연마 헤드 하우징(205)을 지지 암(130)에 대해 회전시킨다. 이 실시예는, 연마 패드 조립체의 수직 축이 수직 축(E)인 경우에 기판에 대한 연마 패드 조립체의 회전 연마 운동을 생성하는 데에 사용될 수 있다. 다른 실시예에서, 샤프트(250)가 연마 헤드 하우징(205)에 직접 결합되고 기둥들(220)이 제거되며, 연마 패드 조립체(125)의 중심 축(F)은, 샤프트(250)의 회전이, 수직 축(E)으로부터 반경(R)에서의 연마 패드 조립체(125)의 궤도 운동(궤도 연마 운동)을 생성하도록 수직 축(E)으로부터 오프셋된다.
도 3은 본원에 설명된 방법들을 실시하는 데에 유용한 연마 패드 조립체(125) 및 가요성 멤브레인(235)의 개략적인 단면도이다. 연마 패드 조립체(125)는 접촉 부분(300) 및 지지부(305)를 포함한다. 접촉 부분(300)은 종래의 연마 패드 물질, 예컨대, 상업적으로 이용가능한 연마 패드 물질, 예를 들어, CMP 프로세스들에서 전형적으로 활용되는 중합체 기재의 패드 물질들일 수 있다. 중합체 물질은 폴리우레탄, 폴리카보네이트, 플루오로중합체, 폴리테트라플루오로에틸렌(PTFE), 폴리페닐렌 술파이드(PPS), 또는 이들의 조합들을 포함한다. 일부 실시예들에서, 접촉 부분(300)은, CMP 처리 화학물질들과 양립가능한, 연속 또는 독립 기포 발포 중합체들, 엘라스토머들, 펠트, 함침 펠트, 플라스틱들, 및 유사 물질들을 포함한다. 일부 실시예들에서, 접촉 부분(300)은, 상표명 IC1010™으로 판매되는, DOW®로부터 입수가능한 연마 패드 물질을 포함한다.
지지부(305)는 중합체 물질, 예컨대, 고밀도 폴리우레탄, 폴리에틸렌, 상표명 DELRIN®으로 판매되는 물질, PEEK, 또는 충분한 경도를 갖는 다른 적합한 중합체이다. 접촉 부분(300)은 접착제(325), 예컨대, 감압성 접착제, 에폭시, 또는 다른 적합한 접착제에 의해 지지부(305)에 결합된다.
연마 패드 조립체는 접착제(325)에 의해 가요성 멤브레인(235)에 접착된다. 일부 실시예들에서, 연마 패드 조립체(125)의 지지부(305)는 가요성 멤브레인(235)에 형성된 함몰부(310)에 배치된다. 일부 실시예들에서, 가요성 멤브레인(235)에 사용되는 물질은 약 55 쇼어 A 내지 약 65 쇼어 A의 경도를 갖는다. 가요성 멤브레인은 약 1.45 mm 내지 약 1.55 mm의 두께(T) 및 약 4.2 mm 내지 약 4.5 mm의 높이(H)를 갖는다. 연마 패드 조립체(125)의 접촉 표면(327)은 기판의 최상부 층의 표면적보다 더 작은 표면적을 갖는데, 예컨대, 기판의 최상부 층의 표면적의 약 5% 미만, 약 1% 미만, 또는 약 0.1% 미만의 면적을 갖는다. 예를 들어, 원형 형상의 접촉 표면(327)의 경우, 연마 패드 조립체(125)의 직경(D)은 약 5 mm이고, 이는 300 mm 직경 기판의 최상부 층 표면적의 약 0.03%의 면적이다. 그러나, 다른 실시예들에서, 접촉 표면(327)은 상이한 형상 및/또는 상이한 크기를 가질 수 있다.
도 4a는 편심 부재 하우징 체적(288)에 배치된 편심 부재(255)의 일 실시예의 개략적인 단면도이다. 도 4b는 도 4a에 도시된 실시예에 의해 제공되는 접촉 표면(327)의 궤도 연마 운동의 경로를 예시한다. 이 실시예에서, 내측 벽(260)은 축(F) 주위에 원을 형성하고, 여기서 축(F)은 또한, 접촉 표면(327)의 중심이고 축(E)으로부터 오프셋된다. 여기서, 내측 벽(260)은 원의 형상이고, 수직 축(E)을 중심으로 회전할 때 편심 부재(255)에 의해 형성된 반경 미만인 반경을 갖는다. 샤프트(250)가 편심 부재(255)를 회전시킬 때, 편심 부재(255)는 내측 벽(260)에 대해 밀어내어 접촉 표면(327)이 수직 축(E)에 대해 궤도 연마 운동으로 이동하게 한다. 여기서, 연마 패드 조립체(125)의 접촉 표면(327)은 원형이고 중심 축(F)을 중심으로 하지만, 다른 실시예들에서는 상이한 형상일 수 있다. 도 4b는 편심 부재(255)가 수직 축(E)을 중심으로 일 회전할 때 중심 축(F) 및 접촉 표면(327)의 4개의 상이한 위치들을 도시한다. 수직 축(E)과 중심 축(F) 사이의 거리는 접촉 표면(327)의 연마 운동 반경(R)을 결정한다. 다른 실시예들에서, 연마 운동 반경(R)은 수직 축(E)과 접촉 표면(327)의 중심 사이의 거리를 증가시킴으로써 증가될 수 있다.
도 5a는 편심 부재 하우징 체적(288)에 배치된 편심 부재(255)의 다른 실시예의 개략적인 단면도이다. 도 5b는 도 5a에 도시된 실시예에 의한, 접촉 표면(327)에 제공된, 진동 연마 운동을 예시한다. 이 실시예에서, 편심 부재(255)에 의해 형성된 반경보다 더 작은 반경을 갖는 2개의 대향 위치들에서 편심 부재(255)가 내측 벽(260)에 대해 밀어낼 때, 내측 벽(260)이 불규칙적으로 성형되고, 이는 접촉 표면(327)이 진동 연마 운동으로 이동하게 한다. 도 5b는 편심 부재(255)가 수직 축(E)을 중심으로 일 회전할 때 중심 축(F) 및 접촉 표면(327)의 2개의 상이한 위치들을 도시한다.
도 6은 본원에 설명된 방법들을 실시하는 데에 사용되는 LSP 모듈(600)의 실시예의 개략적인 측단면도이다. LSP 모듈(600)은 진공 공급원에 결합된 척(110)을 포함한다. 척(110)은 기판(도시되지 않음)을 고정하기 위해 진공 공급원과 유체 연통하는 복수의 개구부들(도시되지 않음)을 갖는 기판 수용 표면(605)을 포함한다. 구동 디바이스(120)는 중심 수직 축을 중심으로 척(110)을 회전시킨다. 연마 헤드(145)는 지지 암(130)에 결합된다. 연마 헤드(145)는 도 1에 관하여 도시되고 설명된 연마 헤드의 구조를 갖고, 도 2 내지 5b에 대하여 설명된 작동들을 갖는다.
지지 암(130)은 액추에이터 조립체(660)를 통해 베이스(105) 상에 이동가능하게 장착된다. 액추에이터 조립체(660)는 제1 액추에이터(625A) 및 제2 액추에이터(625B)를 포함한다. 액추에이터 조립체(660)는 지지 암(130)을 수직으로(Z 방향) 그리고 측방향으로(X 방향, 그리고 따라서 기판의 방사상 방향을 따라) 이동시킨다. 제1 액추에이터(625A)는 (각각의 연마 헤드(145)를 갖는) 지지 암(130)을 수직(Z 방향)으로 이동시키는 데에 사용되고, 제2 액추에이터(625B)는 (각각의 연마 헤드(145)를 갖는) 지지 암(130)을 측방향(X 방향)으로 이동시키는 데에 사용되며, 제3 액추에이터(625C)는 (각각의 연마 헤드(145)를 갖는) 지지 암(130)을 스위프 방향(세타 방향)으로 이동시키는 데에 사용된다. 제1 액추에이터(625A)는 또한, 연마 헤드를 기판 수용 표면(605)을 향해 압박하는 제어가능한 하방력을 제공하는 데에 사용될 수 있다. 도시되지 않은 다른 실시예들은 하나 초과의 연마 패드 조립체(125), 지지 암(130), 액추에이터 조립체(660), 및 제3 액추에이터(625C)를 사용할 수 있다.
액추에이터 조립체(660)는 선형 이동 메커니즘(627), 예컨대, 리드 스크류 메커니즘, 위치가 액추에이터에 의해 제어되는 슬라이드 메커니즘, 또는 제2 액추에이터(625B)에 결합된 볼 스크류를 포함한다. 마찬가지로, 제1 액추에이터(625A)는 선형 이동 디바이스, 예컨대, 리드 스크류 메커니즘, 위치가 액추에이터에 의해 제어되는 슬라이드 메커니즘, 지지 샤프트(642)에 결합된 볼 스크류, 또는 지지 암(130)을 수직으로 이동시키는 실린더 슬라이드 메커니즘을 포함한다. 액추에이터 조립체(660)는 또한, 액추에이터 지지 암(635), 제1 액추에이터(625A) 및 선형 이동 메커니즘(627)을 포함한다. 동적 시일(640)은 제1 액추에이터(625A)의 일부일 수 있는 지지 샤프트(642) 주위에 배치될 수 있다. 동적 시일(640)은 지지 샤프트(642)와 베이스(105) 사이에 결합된 래버린스 시일일 수 있다. 제3 액추에이터(625C)는 지지 암(130)에 결합된 모터를 포함하고, 모터는 지지 암(130)에 축(G)을 중심으로 한 회전 운동을 제공한다.
지지 샤프트(642)는 베이스(105)에 형성된 개구부(644)에 배치되고, 지지 샤프트(642)는 액추에이터 조립체(660)의 축방향 이동의 결과로서 지지 암(130)이 측방향으로 이동하는 것을 허용한다. 개구부(644)는, 지지 암(130) 및 지지 암 상에 장착된 연마 헤드(145)가 기판 수용 표면(605)의 둘레(646)로부터 기판 수용 표면(605)의 중심까지 이동할 수 있도록, 지지 샤프트(642)의 충분한 측방향 이동을 허용하도록 크기가 정해진다. 추가적으로, 개구부(644)는, 지지 암(130)의 단부(648)가, 척(110)의 척 둘레(650)의 외측으로 위치될 수 있게, 지지 샤프트(642)의 충분한 측방향 이동을 허용하도록 크기가 정해진다. 따라서, 연마 헤드(145)가 척 둘레(650)를 제거하기 위해 외측으로 이동될 때, 기판은 연마 헤드(145)로부터의 간섭 없이 기판 수용 표면(605) 상으로 또는 기판 수용 표면(605)으로부터 이송될 수 있다. 기판은, 종래의 전역 CMP 프로세스 이전에 또는 이후에, 종래의 연마 스테이션으로 또는 종래의 연마 스테이션으로부터 로봇 암 또는 엔드 이펙터에 의해 이송될 수 있다.
도 7은, 본원에 설명된 바와 같이, 회전 기판(115)에 대한 연마 패드 조립체(125)의 위치설정을 보여주는, LSP 모듈(700)에서의 연마 패드 조립체(125) 및 기판의 운동의 전형적인 예의 개략적인 평면도이다. LSP 모듈(700)은 도 1 및 6에 도시된 LSP 모듈들(100 및 600)과 유사할 수 있다.
연마 패드 조립체(125)는 도 6의 지지 암(130)에 의해 지지된다. 도 7에 도시된 바와 같이, 지지 암(130)은 연마 패드 조립체(125)를 방사상 방향(705) 및 스위프 방향(715)(세타 방향) 중 하나 또는 그 조합으로 이동시킨다. 기판(115)의 회전 방향(720)(세타 방향)의 회전 운동은, 연마 패드 조립체(125) 아래의 기판(115)의 개별 부분들을 스위핑한다. 연마 패드 조립체(125)의 운동의 다수의 자유도들 및 기판(115)의 조합된 운동들은 기판(115)을 연마하기 위한 더 큰 제어 및 정확도를 용이하게 한다. 예를 들어, 조합된 운동들은 방향(705) 및 원형 연마 경로를 따라 진동 모드를 생성할 수 있다. 연마 경로(715)를 따라, 기판의 최상부 층의 연마 동안 연마 패드 조립체의 측방향 또는 무작위 진동이 제공된다.
도 8은, 연마 동안 기판(115)의 회전 및 연마 패드 조립체 양쪽 모두의 이동에 의해 야기되는, 기판(115)의 최상부 층 표면에 대한 연마 패드 조립체(125)의 다양한 이동들을 보여주는, LSP 모듈(800)의 운동의 전형적인 예의 개략적인 평면도이다. 도 8에 도시된 LSP 모듈(800)은 도 1 및 6에 도시된 LSP 모듈(100 및 600)과 유사할 수 있다.
일 실시예에서, 기판(115)(척(110)(도 1a-b 및 6에 도시됨) 상에 장착됨)은 회전 방향(720)으로 이동한다. 회전 방향(720)은 앞뒤 운동(예를 들어, 시계 방향 및 반시계 방향, 또는 그 반대), 또는 시계 방향 또는 반시계 방향의 동일한 방향으로의 연속적인 운동일 수 있다. 연마 패드 조립체(125)는 지지 암(130) 상에 장착되고, 축(B)을 중심으로 이동하는 지지 암(130)에 의해 용이해진 스위프 방향(710)으로 이동할 수 있다. 지지 암(130)이 연마 패드 조립체(125)를 스위프 방향(710)으로 이동시키기 위해 축(B)을 중심으로 이동하는 동안, 연마 패드 조립체(125)는 연마 경로(715)를 생성하기 위해 원하는 방식으로 이동된다. 추가적으로, 지지 암(130)이 축(B)을 중심으로 이동하고 연마 패드 조립체(125)가 방향(715)으로 이동되는 동안, 기판(115)은 회전 방향(720)으로 이동된다. 일부 실시예들에서, 시스템 제어기(190)는 각각에 결합된 액추에이터들을 제어함으로써 지지 암(130) 및 기판(115)의 운동을 조정하도록 구성된다. 회전 방향(720)은 원호 또는 원 형상 경로를 형성할 수 있다.
일부 실시예들에서, 기판(115)의 회전 방향(720)의 이동은, 약 0.1 분당 회전수(rpm) 내지 약 100 rpm 사이의 평균 회전 속도와 등가인 각속도를 갖는다. 일부 실시예들에서, 지지 암(130)의 스위프 방향(710)의 이동은, 약 0.1 rpm 내지 약 100 rpm 사이의 평균 회전 속도와 등가인 각속도를 갖는다. 일부 실시예들에서, 원형 연마 운동(715)에서의 연마 패드 조립체(125)의 이동은 약 100 rpm 내지 약 5000 rpm의 회전 속도를 갖는 반면, 패드의 중심은 회전 중심으로부터 약 0.5 mm 내지 약 30 mm의 거리만큼의 오프셋 위치에 있다. 일부 실시예들에서, 연마 패드 조립체(125)에 대한 연마 하방력은 연마 헤드(200)의 하우징 체적(225)에 제공되는 가압된 가스에 의해 제공된다. 연마 패드 조립체(125)에 제공되는 연마 하방력은 약 0.1 psig 내지 약 50 psig의 바람직한 압력과 등가이다.
도 9a는, 도 7 및 8에 도시된 운동 모드들을 사용하여 기판(115) 상에 생성될 수 있는, 본원에 개시된 일 실시예에 따른 연마 패드 조립체(125)의 연마 경로를 보여주는 예시이다. 이 실시예에서, 연마 경로(905)는 기판 상의 시작 위치(910)에서 연마 패드 조립체(125)가 기판(115)에 대해 압박되는 곳에서 시작하여 기판 상의 종료 위치(915)에서 종료되는 나선형 경로이다. 연마 패드 조립체(125)는 제1 연마 레시피를 사용하여 시작 위치(910)에서 기판에 대해 압박되고, 제1 연마 레시피는 연마 체류 시간, 연마 하방력 및 연마 속도를 포함한다. 연마 패드 조립체가 시작 위치(910)로부터 종료 위치(915)까지 횡단할 때, 연마 패드 조립체는, 중간 위치들 각각에 대응하는 복수의 연마 레시피들 중 하나를 사용하여 복수의 중간 위치들을 연마한다. 연마 패드 조립체(125)에 대한 연마 하방력은, 연마 패드 조립체가 기판의 표면으로부터 위로 당겨지도록, 중간 위치들 사이에서 완화된다. 다른 실시예들에서, 시작 위치는, 연마 패드 조립체가 기판의 중심을 향해 방사상 내측으로 이동하도록, 종료 위치로부터 방사상 외측에 있을 수 있다. 연마 경로(905)의 폭은 연마 패드의 접촉 표면적의 폭 및 궤도 연마 운동의 반경에 의해 결정된다. 연마 경로(905)는 시작 위치(910)로부터 종료 위치(915)까지 횡단할 때 자신과 중첩되거나 중첩되지 않을 수 있다. 도 9b는 다른 실시예에 따른, 환형 링을 포함하는 시작 위치(910)와 종료 위치(915) 사이에서 기판 상의 연마된 영역을 보여주는 예시이다. 도 9c는 다른 실시예에 따른 하나 이상의 연마 경로(905)를 도시한다. 이 실시예에서, 연마 경로들(905)은 환형 링들과 유사하고, 연마 경로의 시작 및 종료는 동일한 시작 정지 위치(930)에 있을 수 있다. 연마 경로(905)는 연마된 영역(920)이 환형 링과 유사하도록 기판(115)의 중심으로부터 상이한 반경들에서 반복될 수 있다. 연마 경로들(905)은 방사상 외측으로 연장될 때 중첩되거나 중첩되지 않을 수 있다.
도 10은, 본원에 설명된 실시예들에 따른, 기판을 연마하기 위한 방법의 흐름도이다. 방법은, 기판 상의 각각의 보정 위치 사이의 이동 거리 및 이동 시간을 최소화함으로써 더 짧은 보정 연마 시간들을 제공한다. 예를 들어, 약 20 Å 내지 200 Å 또는 약 80 Å의 물질 두께 보정을 요구하는 기판은 약 10 분 미만으로 처리될 수 있다. 또한, 본원에 설명된 방법들은 다이 범위 내(WIDR) 균일성을 개선하고, 종래의 CMP와 비교가능한 개선된 단 높이 연마 성능을 초래한다고 여겨진다.
일 실시예에서, 방법(1000)은 기판의 막 두께의 측정이 있는 활동(1010)에서 시작한다. 측정들은 기판 상의 특정 위치들에서 취해질 수 있다. 일부 실시예들에서, 특정된 위치들은, SPC 목적들을 위해 디바이스 제조 설비 전체에 걸쳐 사용되는 위치들, 예를 들어, 300 mm 기판에 대한 표준화된 17개의 지점 맵에 대응하는 위치들에 대응할 수 있다. 각각의 막 측정은 디바이스 다이 내에서 취해질 수 있거나 다이 사이의 스크라이브 라인의 전용 측정 부위에서 취해질 수 있다.
방법은, 기판에 대한 막 두께 보정 프로파일의 결정이 있는 활동(1020)에서 계속된다. 막 두께 보정 프로파일을 결정하는 단계는, 활동(1010)에서 취해진 측정들 및/또는 본원에 개시된 방법 이전 또는 이후의 기판의 종래의 CMP 연마에 기초한 기판의 물질 제거 프로파일에 기초한다. 물질 제거 프로파일은 활동(1010)의 측정 부위들 사이의 보정 프로파일을 결정하는 데에 사용된다. 물질 제거 프로파일은 예측 모델링으로부터 계산되거나 경험적 데이터를 사용하여 결정된다.
방법은, 기판에 대한 복수의 연마 레시피들을 결정하는 활동(1030)에서 계속된다. 복수의 레시피들 각각은, 기판의 특정 영역, 예컨대, 기판의 중심으로부터 특정된 반경에 있는 환형 링에 대응한다. 복수의 레시피들 각각은 연마 하방력, 연마 체류 시간, 및 연마 운동 속도 중 적어도 하나를 포함한다. 연마 하방력은 지지 암에 의해, 연마 헤드에 의해, 또는 다른 방법에 의해 제공된다. 연마 체류 시간은 연마 패드 또는 연마 패드 조립체가 얼마나 오랫동안 위치에 유지되는지 그리고 얼마나 빨리 일 위치로부터 다른 위치까지 횡단하는지를 결정한다. 연마 체류 시간은, 회전 기판 지지 척의 상대 속도, 지지 척 상에 고정된 기판, 및 연마 헤드에 결합된 지지 암의 위치설정 운동을 포함한다. 연마 체류 시간은, 척의 회전 속도를 감소시킴으로써, 암의 회전 속도를 감소시킴으로써, 또는 둘 모두의 조합에 의해 증가될 수 있다. 연마 속도는 연마 헤드 내에 배치된 샤프트의 회전 속도를 포함한다. 연마 레시피를 결정하는 것은 통상적으로, 막 두께 보정 프로파일에 의해 결정된 바와 같이 막의 원하는 두께를 제거하기 위해 연마 하방력, 연마 체류 시간 및 연마 속도를 결정하는 것을 포함한다.
방법은, 연마 패드 또는 연마 패드 조립체를 기판 상의 제1 반경에 위치시키는 활동(1040)에서 계속된다. 제1 반경은 막 두께 보정 프로파일로부터 결정된다. 연마 패드 조립체는 위치설정 운동을 사용하여 지지 암을 이동시킴으로써, 기판을 이동시킴으로써, 또는 이들의 조합에 의해 위치된다. 위치설정 운동은, 지지 암을, 지지 암의 제2 단부를 통해 수직으로 배치된 축을 중심으로 회전시키거나, 지지 암을 X 방향, Y 방향, 또는 이들의 조합으로 측방향으로 이동시킴으로써 제공된다. 기판은 기판 지지 척을 회전시키거나 척을 X 방향, Y 방향, 또는 이들의 조합으로 측방향으로 이동시킴으로써 이동된다.
방법은, 제1 반경에 대한 연마 레시피를 사용하여 기판의 제1 반경에서 연마하는 활동(1050)에서 계속된다. 일부 실시예들에서, 기판을 연마하는 단계는, 연마 패드 또는 연마 패드 조립체의 연마 운동, 예컨대, 궤도 운동, 아치형 운동, 원형 운동, 진동 운동, 연마 헤드의 회전 운동, 또는 이들의 조합을 포함한다. 다른 실시예들에서, 연마 운동은 지지 암에 의해 제공된다.
방법은, 기판이 상부에 고정된 척을 이동시키는 활동(1060), 및 연마 패드 조립체가 기판 상의 제1 반경으로부터 기판 상의 제2 반경까지 횡단하도록 위치설정 운동을 사용하여 지지 암을 이동시키는 활동(1070)에서 계속된다. 일부 실시예들에서, 연마 패드가 제1 위치로부터 제2 위치까지 횡단할 때 기판의 에지를 향해 이동하도록, 제1 반경은 제2 반경 미만이다. 다른 실시예들에서, 연마 패드 조립체가 제1 위치로부터 제2 위치까지 횡단할 때 기판의 중심을 향해 이동하도록, 제1 반경은 제2 반경 초과이다.
방법은, 제2 반경에 대한 연마 레시피를 사용하여 제2 반경에서 기판을 연마하는 활동(1080)에서 계속된다.
일부 실시예들에서, 연마 패드 조립체로 하여금 제1 반경과 제2 반경 사이의 기판의 표면에 걸친 나선 형상 연마 경로를 횡단하게 하기 위해, 척의 상대 운동 및 지지 암의 위치설정 운동이 조합된다. 일부 실시예들에서, 나선 형상 경로가 기판의 중심에 도달하고, 따라서 기판의 중심 주위에 환형 링을 형성한다.
다른 실시예들에서, 방법은, 기판의 상부 표면 층을 연마하고 잔류 막을 선택적으로 제거하기 위해, 기판을 잔류 막에 대해 검사하고 잔류 막 두께 프로파일을 결정하며, 뒤이어 도 10의 활동들을 수행하는 것으로 시작한다. 잔류 금속 막을 검사하기 위해 광학 검사 기법만을 사용하는 실시예들에서는, 두께 측정들이 이용가능하지 않다. 그러한 실시예들에서, 잔류 금속 막의 방사상 위치 및 표면 피복률로부터 잔류 막 두께 프로파일을 결정하기 위해 물질 제거 프로파일이 사용된다.
위에서 설명된 방법은 종래의 CMP 이전 또는 이후에 사용될 수 있다. 방법의 이점들은, 기판에 대한 필요한 측정들의 횟수를 증가시키지 않고, 매우 정확한 보정 프로파일들, 및 대응하는 연마 레시피들을 개발하는 것을 포함한다. 기판의 중심으로부터의 방사상 거리에 기초한 연마 레시피들은 총 처리 시간을 최소화하고 기판 처리량을 최대화한다.
전술한 내용은 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 다른 그리고 추가적인 실시예들은 그의 기본 범위로부터 벗어나지 않고 안출될 수 있으며, 그의 범위는 후속하는 청구항들에 의해 결정된다.

Claims (20)

  1. 기판을 연마하는 방법으로서,
    상기 기판을 연마 시스템의 회전가능 척 상에 위치시키는 단계 - 상기 연마 시스템은 상기 회전가능 척, 지지 암, 및 상기 지지 암에 결합된 연마 헤드를 포함하고, 상기 연마 헤드는,
    지지 부재;
    상기 지지 부재에 결합된 연마 헤드 하우징 - 상기 연마 헤드 하우징은 상기 지지 부재와 상기 연마 헤드 하우징 사이의 상대 회전 운동을 방지하는 반면에 상대 측방향 운동을 허용함 -;
    상기 지지 부재와 상기 연마 헤드 하우징 사이의 상기 상대 측방향 운동을 제공하는 샤프트; 및
    상기 기판의 표면적 미만인 접촉 부분 표면적을 갖는 연마 패드 조립체를 포함하고,
    상기 연마 헤드 하우징은 상부 하우징 및 상기 상부 하우징에 결합되는 하부 하우징을 포함하고, 가요성 멤브레인은 상기 상부 하우징과 상기 하부 하우징 사이에 배치되고, 상기 연마 패드 조립체는 상기 하부 하우징 내의 개구로부터 돌출되도록 상기 가요성 멤브레인에 결합됨 -;
    상기 기판의 제1 반경에 상기 기판 상에 상기 연마 패드 조립체를 위치시키는 단계;
    제1 연마 체류 시간, 제1 연마 하방력 및 제1 연마 속도를 포함하는 제1 연마 레시피를 사용하여 상기 제1 반경에서 상기 기판을 연마하는 단계;
    연마 패드가 상기 제1 반경으로부터 상기 기판 상의 제2 반경으로 횡단하도록 위치지정 운동을 사용하여 상기 지지 암을 이동시키는 단계; 및
    제2 연마 체류 시간, 제2 연마 하방력 및 제2 연마 속도를 포함하는 제2 연마 레시피를 사용하여 상기 제2 반경에서 상기 기판을 연마하는 단계
    를 포함하는, 기판을 연마하는 방법.
  2. 제1항에 있어서, 상기 제1 연마 속도는 상기 연마 헤드 내에 배치된 상기 샤프트의 회전 속도를 포함하는, 기판을 연마하는 방법.
  3. 제1항에 있어서, 상기 위치지정 운동은 상기 지지 암의 단부를 통하여 위치되는 수직 축을 중심으로 상기 지지 암을 회전시키는 것을 포함하는, 기판을 연마하는 방법.
  4. 제2항에 있어서, 상기 연마 패드에 연마 운동을 제공하는 단계를 더 포함하고, 상기 연마 운동은 궤도 운동, 아치형 운동, 원형 운동, 진동 운동, 회전 운동, 또는 이들의 조합을 포함하는, 기판을 연마하는 방법.
  5. 제3항에 있어서, 상기 척의 상대 운동 및 상기 지지 암의 위치설정 운동이 상기 기판 상에 나선 형상 연마 경로를 형성하도록 상기 척을 상기 척의 중심 축을 중심으로 회전시키는 단계를 더 포함하는, 기판을 연마하는 방법.
  6. 제1항에 있어서, 상기 제1 및 제2 연마 레시피 중 적어도 하나에 대한 상기 샤프트의 회전 속도는 1000 rpm 내지 5000 rpm인, 기판을 연마하는 방법.
  7. 제1항에 있어서, 상기 접촉 부분의 표면적은 상기 기판의 표면적의 1% 미만인, 기판을 연마하는 방법.
  8. 기판을 연마하는 방법으로서,
    상기 기판을 연마 시스템의 회전가능 척 상에 위치시키는 단계 - 상기 연마 시스템은 상기 회전가능 척, 지지 암, 및 상기 지지 암에 결합된 연마 헤드를 포함하고, 상기 연마 헤드는,
    지지 부재;
    상기 지지 부재에 결합된 연마 헤드 하우징 - 상기 연마 헤드 하우징은 상기 연마 헤드 하우징이 상기 지지 부재에 대해 회전하는 것을 방지하는 반면에 상기 지지 부재와 상기 연마 헤드 하우징 사이의 상대 궤도 또는 진동 운동을 허용함 -;
    상기 지지 부재와 상기 연마 헤드 하우징 사이에 상기 상대 궤도 또는 진동 운동을 제공하는 샤프트;
    상기 기판의 표면적 미만인 표면적을 갖는 접촉 부분 및 지지 부분을 포함하는 연마 패드 조립체를 포함하고,
    상기 연마 헤드 하우징은 상부 하우징 및 상기 상부 하우징에 결합되는 하부 하우징을 포함하고, 가요성 멤브레인은 상기 상부 하우징과 상기 하부 하우징 사이에 배치되고, 상기 연마 패드 조립체는 상기 하부 하우징 내의 개구로부터 돌출되도록 상기 가요성 멤브레인에 결합됨 -;
    상기 기판에 대해 상기 연마 패드 조립체의 상기 접촉 부분을 가압하는 단계;
    제1 연마 체류 시간, 제1 연마 하방력 및 제1 연마 속도를 포함하는 제1 연마 레시피를 사용하여 상기 기판의 표면보다 작은 상기 기판의 제1 영역 표면을 연마하는 단계;
    연마 패드가 상기 기판의 상기 제1 영역 표면으로부터 상기 기판의 표면보다 작은 상기 기판의 제2 영역 표면으로 횡단하도록 상기 기판과 상기 지지 암을 동시에 이동시키는 단계; 및
    제2 연마 체류 시간, 제2 연마 하방력 및 제2 연마 속도를 포함하는 제2 연마 레시피를 사용하여 상기 기판의 제2 영역 표면을 연마하는 단계
    를 포함하는, 기판을 연마하는 방법.
  9. 제8항에 있어서, 상기 기판의 상기 제1 영역 표면 및 상기 기판의 상기 제2 영역 표면을 연마하는 단계는 연마 운동을 사용하는 단계를 포함하는, 기판을 연마하는 방법.
  10. 제8항에 있어서, 상기 지지 암을 이동시키는 단계는 상기 지지 암의 단부를 통해 배치된 수직축을 중심으로 상기 지지 암을 회전시키는 단계를 포함하는, 기판을 연마하는 방법.
  11. 제8항에 있어서, 상기 기판을 이동시키는 단계는 상기 연마 패드가 상기 기판 상의 나선 형상 경로를 횡단하도록 상기 기판을 상기 기판의 중심 주위로 회전시키는 단계를 포함하는, 기판을 연마하는 방법.
  12. 제9항에 있어서, 상기 연마 운동은 상기 연마 헤드 내에 배치되는 액추에이터 조립체에 의하여 제공되는, 기판을 연마하는 방법.
  13. 제9항에 있어서, 상기 연마 운동은 궤도 운동, 아치형 운동, 원형 운동, 진동 운동, 회전 운동, 또는 이들의 조합을 포함하는, 기판을 연마하는 방법.
  14. 기판을 연마하는 방법으로서,
    지지 암에 의해 지지된 연마 패드를 기판의 표면에 대해 가압하는 단계 - 상기 연마 패드는 상기 기판의 표면적 미만인 접촉 부분 표면적을 가지며, 상기 연마 패드와 상기 기판의 표면 사이의 상대 운동은 연마 헤드 조립체에 의해 제공되고, 상기 연마 헤드 조립체는,
    지지 부재;
    상기 지지 부재에 결합된 연마 헤드 하우징 - 상기 연마 헤드 하우징은 상기 연마 헤드 하우징이 상기 지지 부재에 대해 회전하는 것을 방지하고, 상기 연마 헤드 하우징은 상부 하우징 및 상기 상부 하우징에 결합되는 하부 하우징을 포함하고, 가요성 멤브레인은 상기 상부 하우징과 상기 하부 하우징 사이에 배치됨 -;
    상기 연마 헤드 하우징과 상기 지지 부재 사이의 상대 측방향 운동을 제공하는 샤프트; 및
    상기 하부 하우징 내의 개구로부터 돌출되도록 상기 가요성 멤브레인에 결합되는 연마 패드 조립체를 포함함 -;
    상기 기판이 고정된 척을 동시에 회전시키고, 상기 연마 패드가 상기 기판의 표면의 복수의 반경의 각각의 반경까지 횡단하도록 상기 지지 암을 이동시키는 단계; 및
    복수의 반경 각각에 대응하는 복수의 연마 레시피를 사용하여 상기 기판의 표면을 연마하는 단계를 포함하고, 상기 복수의 연마 레시피 각각은,
    연마 체류 시간;
    연마 하방력; 및
    회전 속도를 포함하는, 기판을 연마하는 방법.
  15. 제14항에 있어서, 상기 기판의 표면을 연마하는 단계는 상기 연마 패드에 연마 운동을 제공하는 단계를 포함하고, 상기 연마 운동은 궤도 운동, 아치형 운동, 원형 운동, 진동 운동, 회전 운동, 또는 이들의 조합을 포함하는, 기판을 연마하는 방법.
  16. 제14항에 있어서, 상기 연마 패드는 상기 기판 상의 나선 형상 경로를 횡단하고, 상기 연마 패드는 연마 헤드에 결합되고, 연마 속도는 상기 연마 헤드 내에 배치되는 상기 샤프트의 회전 속도를 포함하고, 상기 샤프트의 회전 속도는 1000 rpm 내지 5000 rpm이고, 연마 하방력은 상기 연마 헤드에서 가압된 가스를 포함하는, 기판을 연마하는 방법.
  17. 제14항에 있어서, 상기 샤프트의 회전 속도는 상기 복수의 연마 레시피 중 적어도 하나에 대해 1000 rpm 내지 5000 rpm인, 기판을 연마하는 방법.
  18. 삭제
  19. 삭제
  20. 삭제
KR1020197029276A 2017-03-06 2018-02-08 Cmp 위치 특정 연마(lsp)를 위해 설계된 나선형 및 동심 이동 KR102526545B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762467672P 2017-03-06 2017-03-06
US62/467,672 2017-03-06
PCT/US2018/017358 WO2018164804A1 (en) 2017-03-06 2018-02-08 Spiral and concentric movement designed for cmp location specific polish (lsp)

Publications (2)

Publication Number Publication Date
KR20190117795A KR20190117795A (ko) 2019-10-16
KR102526545B1 true KR102526545B1 (ko) 2023-04-28

Family

ID=63356879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197029276A KR102526545B1 (ko) 2017-03-06 2018-02-08 Cmp 위치 특정 연마(lsp)를 위해 설계된 나선형 및 동심 이동

Country Status (6)

Country Link
US (2) US20180250788A1 (ko)
JP (1) JP7162000B2 (ko)
KR (1) KR102526545B1 (ko)
CN (1) CN110352115A (ko)
TW (1) TWI780114B (ko)
WO (1) WO2018164804A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3640972A1 (en) * 2018-10-18 2020-04-22 ASML Netherlands B.V. System and method for facilitating chemical mechanical polishing
WO2020139605A1 (en) 2018-12-26 2020-07-02 Applied Materials, Inc. Polishing system with platen for substrate edge control
TWI771668B (zh) 2019-04-18 2022-07-21 美商應用材料股份有限公司 Cmp期間基於溫度的原位邊緣不對稱校正
JP7374710B2 (ja) * 2019-10-25 2023-11-07 株式会社荏原製作所 研磨方法および研磨装置
TWI797501B (zh) * 2019-11-22 2023-04-01 美商應用材料股份有限公司 在拋光墊中使用溝槽的晶圓邊緣不對稱校正
CN113411486B (zh) * 2020-03-16 2022-05-17 浙江宇视科技有限公司 云台摄像机控制方法、装置、云台摄像机和存储介质
US11919120B2 (en) 2021-02-25 2024-03-05 Applied Materials, Inc. Polishing system with contactless platen edge control
WO2024015530A1 (en) * 2022-07-14 2024-01-18 Applied Materials, Inc. Monitoring thickness in face-up polishing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074314A (ja) * 2002-08-12 2004-03-11 Nikon Corp 研磨体、この研磨体を備えた研磨装置、この研磨装置を用いた半導体デバイス製造方法及びこの半導体デバイス製造方法により製造された半導体デバイス
JP2010130022A (ja) 2008-11-28 2010-06-10 Semes Co Ltd 基板研磨装置、及びそれを利用する基板研磨方法
WO2016010866A1 (en) * 2014-07-17 2016-01-21 Applied Materials, Inc. Method, system and polishing pad for chemical mechancal polishing
US20160016280A1 (en) 2014-07-17 2016-01-21 Applied Materials, Inc. Orbital polishing with small pad

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599423A (en) * 1995-06-30 1997-02-04 Applied Materials, Inc. Apparatus and method for simulating and optimizing a chemical mechanical polishing system
US6629874B1 (en) * 1999-10-27 2003-10-07 Strasbaugh Feature height measurement during CMP
US6976901B1 (en) * 1999-10-27 2005-12-20 Strasbaugh In situ feature height measurement
US6547651B1 (en) * 1999-11-10 2003-04-15 Strasbaugh Subaperture chemical mechanical planarization with polishing pad conditioning
US6705930B2 (en) * 2000-01-28 2004-03-16 Lam Research Corporation System and method for polishing and planarizing semiconductor wafers using reduced surface area polishing pads and variable partial pad-wafer overlapping techniques
US6340326B1 (en) * 2000-01-28 2002-01-22 Lam Research Corporation System and method for controlled polishing and planarization of semiconductor wafers
WO2001087541A2 (en) * 2000-05-12 2001-11-22 Multi-Planar Technologies, Inc. Pneumatic diaphragm head having an independent retaining ring and multi-region pressure control, and method to use the same
US6896583B2 (en) * 2001-02-06 2005-05-24 Agere Systems, Inc. Method and apparatus for conditioning a polishing pad
US6561881B2 (en) * 2001-03-15 2003-05-13 Oriol Inc. System and method for chemical mechanical polishing using multiple small polishing pads
JP3970561B2 (ja) * 2001-07-10 2007-09-05 株式会社荏原製作所 基板保持装置及び基板研磨装置
JP2003092274A (ja) * 2001-09-19 2003-03-28 Nikon Corp 加工装置および方法、この装置を用いた半導体デバイス製造方法およびこの方法により製造される半導体デバイス
DE10207379A1 (de) * 2002-02-21 2003-09-04 Asphericon Gmbh Verfahren zum Schleifen und Polieren von Freiformflächen, insbesondere von rotationssymmetrischen asphärischen optischen Linsen
US7011566B2 (en) * 2002-08-26 2006-03-14 Micron Technology, Inc. Methods and systems for conditioning planarizing pads used in planarizing substrates
US7018269B2 (en) * 2003-06-18 2006-03-28 Lam Research Corporation Pad conditioner control using feedback from a measured polishing pad roughness level
JP4597634B2 (ja) * 2004-11-01 2010-12-15 株式会社荏原製作所 トップリング、基板の研磨装置及び研磨方法
TWI368555B (en) * 2004-11-01 2012-07-21 Ebara Corp Polishing apparatus
US7312154B2 (en) * 2005-12-20 2007-12-25 Corning Incorporated Method of polishing a semiconductor-on-insulator structure
US7452264B2 (en) * 2006-06-27 2008-11-18 Applied Materials, Inc. Pad cleaning method
JP5037974B2 (ja) * 2007-03-14 2012-10-03 株式会社岡本工作機械製作所 研磨加工ステージにおける半導体基板の監視機器および監視方法
JP5390750B2 (ja) * 2007-03-30 2014-01-15 ラムバス・インコーポレーテッド 研磨装置、および研磨パッド再生処理方法
JP2009194134A (ja) * 2008-02-14 2009-08-27 Ebara Corp 研磨方法及び研磨装置
DE102009004787A1 (de) * 2009-01-13 2010-07-15 Schneider Gmbh & Co. Kg Vorrichtung und Verfahren zum Polieren von Linsen
US8148266B2 (en) * 2009-11-30 2012-04-03 Corning Incorporated Method and apparatus for conformable polishing
JP2013525126A (ja) * 2010-04-20 2013-06-20 アプライド マテリアルズ インコーポレイテッド 改善された研磨パッドプロファイルのための閉ループ制御
US9227293B2 (en) * 2012-11-21 2016-01-05 Applied Materials, Inc. Multi-platen multi-head polishing architecture
US9718164B2 (en) * 2012-12-06 2017-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing system and polishing method
JP2016058724A (ja) 2014-09-11 2016-04-21 株式会社荏原製作所 処理モジュール、処理装置、及び、処理方法
US10593554B2 (en) * 2015-04-14 2020-03-17 Jun Yang Method and apparatus for within-wafer profile localized tuning
DE102016006741A1 (de) * 2016-06-06 2017-12-07 Schneider Gmbh & Co. Kg Werkzeug, Vorrichtung und Verfahren zum Polieren von Linsen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074314A (ja) * 2002-08-12 2004-03-11 Nikon Corp 研磨体、この研磨体を備えた研磨装置、この研磨装置を用いた半導体デバイス製造方法及びこの半導体デバイス製造方法により製造された半導体デバイス
JP2010130022A (ja) 2008-11-28 2010-06-10 Semes Co Ltd 基板研磨装置、及びそれを利用する基板研磨方法
WO2016010866A1 (en) * 2014-07-17 2016-01-21 Applied Materials, Inc. Method, system and polishing pad for chemical mechancal polishing
US20160016280A1 (en) 2014-07-17 2016-01-21 Applied Materials, Inc. Orbital polishing with small pad

Also Published As

Publication number Publication date
TW201835998A (zh) 2018-10-01
JP2020511785A (ja) 2020-04-16
TWI780114B (zh) 2022-10-11
JP7162000B2 (ja) 2022-10-27
KR20190117795A (ko) 2019-10-16
US20200282506A1 (en) 2020-09-10
US20180250788A1 (en) 2018-09-06
CN110352115A (zh) 2019-10-18
WO2018164804A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
KR102526545B1 (ko) Cmp 위치 특정 연마(lsp)를 위해 설계된 나선형 및 동심 이동
US20120021671A1 (en) Real-time monitoring of retaining ring thickness and lifetime
KR102211533B1 (ko) 국소 영역 레이트 제어를 구비하는 폴리싱 시스템
JP2014161944A (ja) 研磨装置に使用される研磨部材のプロファイル調整方法、および研磨装置
WO2016117485A1 (ja) バフ研磨処理における研磨量のシミュレーション方法およびバフ研磨装置
KR20170029541A (ko) 연성 폴리싱 패드 및 폴리싱 모듈
US11396082B2 (en) Substrate holding device and substrate processing apparatus including the same
JP2017527107A (ja) 基板の厚さプロファイルの調節
US9573241B2 (en) Polishing apparatus and polishing method
CN109314050B (zh) 化学机械研磨的自动配方的产生
TWI826943B (zh) 用於對保持環評估拋光及優化拋光的方法以及包括執行該方法的電腦程式編碼的非瞬態電腦可讀媒體
US10610994B2 (en) Polishing system with local area rate control and oscillation mode
TW201543563A (zh) 修改基板厚度輪廓
US10434623B2 (en) Local area polishing system and polishing pad assemblies for a polishing system
CN117769478A (zh) 化学机械抛光设备及其控制方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant