KR102515722B1 - Cmp slurry composition for polishing a copper barrier layer - Google Patents

Cmp slurry composition for polishing a copper barrier layer Download PDF

Info

Publication number
KR102515722B1
KR102515722B1 KR1020220083295A KR20220083295A KR102515722B1 KR 102515722 B1 KR102515722 B1 KR 102515722B1 KR 1020220083295 A KR1020220083295 A KR 1020220083295A KR 20220083295 A KR20220083295 A KR 20220083295A KR 102515722 B1 KR102515722 B1 KR 102515722B1
Authority
KR
South Korea
Prior art keywords
polishing
weight
copper
delete delete
film
Prior art date
Application number
KR1020220083295A
Other languages
Korean (ko)
Inventor
이승훈
이승현
김승환
박경일
Original Assignee
영창케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영창케미칼 주식회사 filed Critical 영창케미칼 주식회사
Priority to KR1020220083295A priority Critical patent/KR102515722B1/en
Application granted granted Critical
Publication of KR102515722B1 publication Critical patent/KR102515722B1/en
Priority to TW112119206A priority patent/TW202402985A/en
Priority to PCT/KR2023/008568 priority patent/WO2024010249A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention relates to a slurry composition for polishing a copper barrier layer for chemical mechanical planarizing (CMP) of tantalum nitride or tantalum with a diffusion barrier in the presence of interconnect structures in an integrated circuit device. The slurry composition, according to the present invention, comprises: abrasive particles; heterocyclic compounds; organic acids; a surface protectant; nitrides; a pH adjuster, and the remaining amount of deionized water. The effect of providing an excellent slurry composition with a high polishing selectivity rate and low dishing and defects can be presented.

Description

구리 배리어층 연마용 CMP 슬러리 조성물{CMP SLURRY COMPOSITION FOR POLISHING A COPPER BARRIER LAYER}CMP slurry composition for polishing copper barrier layer {CMP SLURRY COMPOSITION FOR POLISHING A COPPER BARRIER LAYER}

본 발명은 집적 회로 디바이스(integrated circuit device)에서 상호접속 구조재의 존재하에 확산 방지막으로 질화탄탈 또는 탄탈의 화학적 기계적 연마(chemical mechanical planarizing, CMP)를 위한 구리 배리어층 연마용 CMP 슬러리 조성물에 관한 것이다. 본 발명에 의한 CMP 슬러리 조성물은 연마입자, 헤테로고리화합물, 유기산, 표면보호제, 질소화물, pH 조정제 및 잔량의 탈이온수를 포함하는 유용한 조성물로서 종래기술에 따른 CMP 슬러리 조성물에 비하여 연마 입자의 분산성과 안정성이 우수하고 연마 선택비가 크며 디싱(dishing) 및 결함수(defect)가 적은 우수한 CMP 슬러리 조성물을 제공할 수 있다.The present invention relates to a CMP slurry composition for polishing a copper barrier layer for chemical mechanical planarizing (CMP) of tantalum nitride or tantalum as a diffusion barrier in the presence of an interconnect structure in an integrated circuit device. The CMP slurry composition according to the present invention is a useful composition containing abrasive particles, a heterocyclic compound, an organic acid, a surface protecting agent, a nitride, a pH adjuster, and a residual amount of deionized water, and compared to the CMP slurry composition according to the prior art, the dispersibility of the abrasive particles and An excellent CMP slurry composition having excellent stability, high polishing selectivity, and low dishing and defect counts can be provided.

최근 반도체 제조 공정기술의 발전으로 인하여 반도체 산업에서는 집적 회로를 형성하는데 구리 전기 상호접속재(interconnect)에 의존하는 일이 증가하고 있다. 이들 구리 상호접속재는 전기 저항율이 낮고 우수한 전자이동(electromigration) 특성을 갖는다.Due to recent advances in semiconductor manufacturing process technology, the semiconductor industry has increasingly relied on copper electrical interconnects to form integrated circuits. These copper interconnects have low electrical resistivity and excellent electromigration properties.

구리는 우수한 전자이동(electromigration) 특성 및 낮은 전기 저항성 등의 효율성 측면에서 많은 장점을 가지고 있기 때문에 미세화 및 고집적화된 ULSI와 같은 반도체 집적 회로의 유한 전기적 접속 재료로 주되어 왔다.Since copper has many advantages in terms of efficiency, such as excellent electromigration characteristics and low electrical resistance, it has been used as a finite electrical connection material for miniaturized and highly integrated semiconductor integrated circuits such as ULSI.

그러나 드라이 에칭(etching)에 의한 패턴화가 어려워 구리를 집적 회로로 사용하지 못하는 한계가 있었기 때문에 이를 극복하기 위해 이중 상감(dual damascene) 공정에 따른 CMP 공정으로 구리 인터커넥트를 형성하는 방법이 제안되었다. 구리는 CMP 공정 시 구리 산화물 이온인 Cu+ 혹은 Cu2+를 포함하는 CuO, CuO₂, Cu(OH)₃ 등으로 구성된 다공성 산화막 층을 형성한다.However, since copper cannot be used as an integrated circuit due to difficulty in patterning by dry etching, a method of forming copper interconnects using a CMP process based on a dual damascene process has been proposed to overcome this limitation. During the CMP process, copper forms a porous oxide layer composed of CuO, CuO₂, Cu(OH)₃, etc. containing copper oxide ions Cu+ or Cu2+.

그런데, 구리는 실리콘 재질의 테트라에톡시실란(tetraethoxysilane, TEOS) 또는 텅스텐 등의 다른 재질에 비하여 상대 적으로 연약하고 전기화학적으로도 텅스텐에 비하여 부식(corrosion)에 민감하기 때문에, 연마속도는 높을 수 있으나 대신 과연마(over-polishing) 및 스크래치로 인한 디싱(dishing)이나 침식(erosion) 등이 쉽게 발생하고, 특히 다공성막질의 구멍을 통하여 연마 슬러리의 성분과 연마공정 중에 발생한 산화물 등의 이물질이 구리 산화막 층을 침투하는 현상이 일어난다. 이러한 현상은 다음 공정인 포토리소그래피(photolithography) 공정 등에서 문제를 일으킬 수 있으며, 특히 배선의 설계에 따라 6-7개 이상의 층(layer)으로 구성되는 고집적 회로의 경우 각 층의 평탄화도에 따라서 회로의 성능이 좌우됨을 감안할 때 치명적인 불량의 원인이 될 수 있다.However, since copper is relatively weak compared to other materials such as silicon-based tetraethoxysilane (TEOS) or tungsten, and is electrochemically more sensitive to corrosion than tungsten, the polishing rate can be high. However, instead, dishing or erosion due to over-polishing and scratching easily occurs, and in particular, foreign substances such as oxides generated during the polishing process and components of the polishing slurry through the pores of the porous film The phenomenon of penetration through the oxide film layer occurs. This phenomenon can cause problems in the next process, such as the photolithography process. Considering that performance is dependent on it, it can cause fatal defects.

구리는 많은 유전체 물질, 이를테면 이산화규소 및 저-K 또는 도핑된 버전(doped version)의 이산화규소에서 가성이 매우 크므로, 확산 배리어 층이 하층 유전체 물질로 구리의 확산을 방지하는데 필요하다.Copper is very caustic in many dielectric materials, such as silicon dioxide and low-K or doped versions of silicon dioxide, so a diffusion barrier layer is necessary to prevent diffusion of copper into the underlying dielectric material.

전형적인 배리어 물질은 탄탈룸, 탄탈룸 니트리드, 탄탈룸실리콘 니트리드, 티타늄, 티타늄 니트리드, 티타늄-실리콘 니트리드, 티타늄-티타늄 니트리드, 티타늄-텅스텐, 텅스텐, 텅스텐 니트리드 및 텅스텐-실리콘 니트리드를 포함한다.Typical barrier materials include tantalum, tantalum nitride, tantalum silicon nitride, titanium, titanium nitride, titanium-silicon nitride, titanium-titanium nitride, titanium-tungsten, tungsten, tungsten nitride and tungsten-silicon nitride. do.

고밀도 집적 회로의 요구 증가에 부응하여, 제조업자들은 현재 금속 상호접속 구조재의 복수 오버라잉(overlying) 층을 함유한 집적 회로를 조립하고 있다. 디바이스 조립 중에, 각 상호접속 층을 평탄화하면 패킹 밀도, 공정 균일성, 생산 품질을 개선하며, 가장 중요하게는, 칩 제조업자가 복수 층 집적 회로를 조립하는 것을 가능하게 한다. 칩 제조업자들은 평판 표면을 제조하는데 비교적 효율이 좋은 수단으로서 화학적-기계적-평탄화 처리(CMP)에 의존하고 있다.In response to the growing demand for high-density integrated circuits, manufacturers are now fabricating integrated circuits that contain multiple overlying layers of metal interconnect structures. During device assembly, planarization of each interconnect layer improves packing density, process uniformity, production quality, and most importantly, enables chip manufacturers to assemble multi-layer integrated circuits. Chip manufacturers rely on chemical-mechanical-planarization (CMP) as a relatively efficient means of producing flat surfaces.

CMP 공정은 전형적으로는 2 단계로 수행된다. 처음에, 폴리싱 공정은 특히 구리를 신속하게 제거하도록 설계된 "제 1 단계" 슬러리를 사용한다.The CMP process is typically performed in two stages. Initially, the polishing process uses a "first pass" slurry specifically designed to rapidly remove copper.

초기 구리 제거 후에, "제 2 단계" 슬러리는 배리어 물질을 제거한다. 전형적으로, 제 2 단계 슬러리는 상호접속 구조재의 물리적 구조 또는 전기 특성에 악영향이 없이 배리어 물질을 제거하는 우수한 선택성을 요구한다. 전통적으로 알칼리 폴리싱 슬러리가 산성 슬러리 보다 훨씬 높은 Ta/TaN 제거 속도(removal rate)를 가지고 있으므로, 상업적인 제 2 단계 슬러리는 전형적으로 염기성 내지 중성의 pH를 가지고 있다. 중성 내지 염기성 pH 배리어 금속 폴리싱 슬러리의 장점을 강조하는 다른 요인은 제 2 단계 폴리싱 중에 배리어 금속을 오버라잉하는 금속을 보존할 필요성에 관한 것이다. 금속 제거 속도는 금속 상호접속재의 디싱(dishing)을 감소시키도록 매우 낮아야 한다.After initial copper removal, a "second stage" slurry removes the barrier material. Typically, the second stage slurry requires good selectivity to remove the barrier material without adversely affecting the physical structure or electrical properties of the interconnect structure. Commercial second stage slurries typically have a basic to neutral pH, as traditionally alkaline polishing slurries have much higher Ta/TaN removal rates than acidic slurries. Another factor highlighting the advantages of neutral to basic pH barrier metal polishing slurries relates to the need to preserve the metal overlying the barrier metal during second stage polishing. The metal removal rate should be very low to reduce dishing of the metal interconnect.

따라서 화학적 기계적 연마방법에 있어서, 이러한 배리어 슬러리 조성물은 높은 배리어 제거 속도, 아주 낮은 연마 후 토포그래피(topography), 부식 결함 없음 및 매우 낮은 스크래치 또는 부식이 필요하며 어떠한 종류의 연마제, 산화제 또는 첨가제를 선택하는가에 따라, 연마된 표면의 불완전성, 표면거침성, 표면결함, 침식 및 부식 등의 반도체 공정에 있어서 중요한 변수들의 변동폭을 최소화하면서 목적하는 연마비율로 금속 절연막이나 확산벽 또는 금속층을 효과적으로 연마할 수 있다.Therefore, in the chemical mechanical polishing method, this barrier slurry composition requires a high barrier removal rate, very low topography after polishing, no corrosion defects and very low scratches or corrosion, and any kind of abrasive, oxidizing agent or additive is selected Depending on the polished surface, it is possible to effectively polish the metal insulating film, diffusion wall or metal layer at the desired polishing ratio while minimizing the fluctuation range of important variables in the semiconductor process, such as imperfection of the polished surface, surface roughness, surface defect, erosion and corrosion. can

종래기술에 따른 CMP 슬러리 조성물을 이용하여 실험을 수행한 결과, 구리와 탄탈화물의 연마량 불량으로 인한 CMP 작업 처리량의 문제, 구리 물질의 부식으로 인한 장치 성능과 생산수율 감소의 문제, 층 평탄화 문제 및 연마시 발생되는 디싱 현상 등의 문제가 있다. 또한 구리 막질을 연마하는 공정의 경우 적절한 연마 속도와 함께 낮은 표면 결함 수준을 달성하여야 하는데, 종래기술에 따른 CMP 슬러리 조성물의 경우에는 연마 공정 시간이 길어지거나 표면 결함이 나타나는 문제가 있다.As a result of experiments using the CMP slurry composition according to the prior art, the problem of CMP work throughput due to the poor polishing amount of copper and tantalide, the problem of reducing device performance and production yield due to corrosion of copper material, and the problem of layer planarization and a dishing phenomenon that occurs during polishing. In addition, in the case of a process of polishing a copper film, it is necessary to achieve a low surface defect level with an appropriate polishing rate, but in the case of the CMP slurry composition according to the prior art, there is a problem in that the polishing process time is prolonged or surface defects appear.

대한민국등록특허공보 제10-1465604호Republic of Korea Patent Registration No. 10-1465604 대한민국등록특허공보 제10-1548715호Republic of Korea Patent Registration No. 10-1548715 대한민국등록특허공보 제10-1698490호Republic of Korea Patent Registration No. 10-1698490 대한민국공개특허공보 제10-2021-0095548호Korean Patent Publication No. 10-2021-0095548

본 발명은 종래기술에 따른 CMP 슬러리 조성물이 구리와 탄탈화물의 연마량 불량으로 인한 CMP 작업 처리량의 문제, 구리 물질의 부식으로 인한 장치 성능과 생산수율 감소의 문제, 층 평탄화 문제 및 연마 시 발생되는 디싱 현상 등의 문제를 해결하기 위한 목적을 갖는 것이다.The CMP slurry composition according to the prior art solves the problem of CMP work throughput due to the poor polishing amount of copper and tantalum, the problem of reducing device performance and production yield due to corrosion of copper material, the problem of flattening the layer, and the problem of polishing. It has the purpose of solving problems such as dishing phenomenon.

또한, 본 발명은 구리 막질을 연마하는 공정에서 적절한 연마 속도를 가지면서도 디싱, 부식, 결함수(defect)를 기존 슬러리 대비 현저히 감소시키는 구리 배리어층 연마용 CMP 슬러리 조성물을 제공하기 위한 목적을 갖는 것이다.In addition, an object of the present invention is to provide a CMP slurry composition for polishing a copper barrier layer that significantly reduces dishing, corrosion, and defects compared to conventional slurries while having an appropriate polishing rate in a copper film polishing process. .

또한, 본 발명은 상기에서 언급한 구리 CMP 공정상 발생하는 문제중 실리콘산화막과 구리막에 대한 단차 제거율이 종래의 슬러리 보다 큰 구리 배리어층 연마용 CMP 슬러리 조성물을 제공하기 위한 목적을 갖는 것이다.In addition, the present invention has an object to provide a CMP slurry composition for polishing a copper barrier layer having a higher step removal rate for a silicon oxide film and a copper film than conventional slurries among the above-mentioned problems occurring in the copper CMP process.

상기 목적을 달성하기 위하여, 본 발명은 콜로이달 실리카로 이루어진 연마입자, 헤테로고리화합물, 유기산, 표면보호제, 질소화물, pH 조정제 및 잔량의 탈이온수로 구성되고, 상기 첨가제 및 용매의 함량을 조절하고, 콜로이달 실리카의 입경을 조절함으로써 실리콘산화막, 탄탈막 및 구리막에 대한 연마 선택비와 연마율을 조절하여 연마하는 것을 특징으로 하는 구리 배리어층 연마용 CMP 슬러리 조성물을 제공한다.In order to achieve the above object, the present invention consists of abrasive particles made of colloidal silica, a heterocyclic compound, an organic acid, a surface protecting agent, a nitrogen compound, a pH adjuster and a residual amount of deionized water, adjusting the content of the additive and the solvent, Provided is a CMP slurry composition for polishing a copper barrier layer, characterized in that the polishing is performed by adjusting the polishing selectivity and polishing rate for a silicon oxide film, a tantalum film, and a copper film by adjusting the particle diameter of colloidal silica.

본 발명의 바람직한 일 구현예에서, 상기 콜로이달 실리카는 입자 크기가 75 내지 95nm인 것을 특징으로 한다.In a preferred embodiment of the present invention, the colloidal silica has a particle size of 75 to 95 nm.

본 발명의 바람직한 일 구현예에서, 상기 헤테로고리화합물은 질소원자가 2개 이상인 것으로서, 1,2,4H-트리아졸, 5-메틸벤조트리아졸, 테트라졸, 이미다졸, 1,2-디메틸이미다졸 , 벤조트리아졸(BTA) , 1 H-벤조트리아졸아세톤니트릴 및 피페라진으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.In a preferred embodiment of the present invention, the heterocyclic compound is one having two or more nitrogen atoms, 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, imidazole, 1,2-dimethylimida sol, benzotriazole (BTA), 1 H-benzotriazole is characterized in that at least one selected from the group consisting of acetonitrile and piperazine.

본 발명의 바람직한 일 구현예에서, 표면보호제는 비이온성 타입으로서 폴리비닐알콜(PVA), 에틸렌글리콜(EG), 글리세린, 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 또는 폴리비닐피롤리돈(PVP) 등을 선택할 수 있고, 그리고 음이온성 타입으로서는 암모늄 도데실 벤젠 설폰에이트(ammonium dodecyl benzene sulfonate), 암모늄 폴리옥시에틸렌 알킬 설폰에이트(ammonium polyoxyethylene alkyl sulfonate), 암모늄 폴리옥시에틸렌 알킬 아릴 설폰에이트(ammonium polyoxyethylene alkyl aryl sulfonate) 등을 선택할 수 있으며, 이들 중에서 선택된 2종 이상을 혼합하여 사용할 수 있다. 가장 바람직하게는, 비이온성 타입으로서 폴리비닐피롤리돈(PVP) 및 음이온성 타입으로서 암모늄 도데실 벤젠 설폰에이트(ammonium dodecyl benzene sulfonate)를 혼합하여 사용하는 것이다.In a preferred embodiment of the present invention, the surface protecting agent is a nonionic type and is polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG) or polyvinylpyrrolidone ( PVP) and the like, and as the anionic type, ammonium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl sulfonate, ammonium polyoxyethylene alkyl aryl sulfonate (ammonium polyoxyethylene alkyl aryl sulfonate), etc., and two or more selected from among them may be mixed and used. Most preferably, a mixture of polyvinylpyrrolidone (PVP) as the nonionic type and ammonium dodecyl benzene sulfonate as the anionic type is used.

본 발명의 바람직한 일 구현예에서, 상기 유기산은 시트르산(citric acid), 글루타르산(glutaric acid), 말산(malic acid), 말레산(maleic acid), 옥살산(oxalic acid), 프탈산(phthalic acid), 숙신산(succinic acid) 및 타르타르산(tartaric acid), 아세트산(acetic acid) 으로 이루어 진 카르복실산군 에서 선택되는 어느 하나가 될 수 있다. 또한 니트릴로트리아세트산(Nitrilotriacetic acid, NTA), 이미노디아세트산(Iminodiacetic acid, IDA), 메틸 이미노디아세트산(Methyl iminodiacetic acid, MIDA), 히드록시에틸이미노디아세트산(Hydroxyethyl iminodiacetic acid, HIDA), 디에틸렌트리아민 펜타아세트산(Diethylenetriamine pentaacetic acid, DPTA), 에틸렌디아민 테트라아세트산(Ethylenediamine tetraacetic acid, EDTA), N-히드록시에틸 에틸렌디아민 테트라아세트산(N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), 메틸 에틸렌디아민 테트라아세트산(Methyl ethylenediamine tetraacetic acid, MEDTA), 트리에틸렌 테트라아민 헥사아세트산(Triethylene tetraamine hexaacetic acid, TTHA) 등으로 이루어진 아미노산 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.In a preferred embodiment of the present invention, the organic acid is citric acid, glutaric acid, malic acid, maleic acid, oxalic acid, phthalic acid , succinic acid, tartaric acid, and acetic acid. In addition, nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), methyl iminodiacetic acid (MIDA), hydroxyethyl iminodiacetic acid (HIDA), diethylenetri Diethylenetriamine pentaacetic acid (DPTA), Ethylenediamine tetraacetic acid (EDTA), N-hydroxyethyl ethylenediamine tetraacetic acid (HEDTA), Methyl ethylenediamine tetraacetic acid (EDTA) Characterized in that it is at least one selected from the group of amino acids consisting of ethylenediamine tetraacetic acid (MEDTA), triethylene tetraamine hexaacetic acid (TTHA), and the like.

본 발명의 바람직한 일 구현예에서 상기 산화방지제는 아스코빅산(ascorbic acid), 엘(+)-아스코빅산(L(+)-ascorbic acid), 이소아스코빅산(isoascorbic acid), 아스코빅산 유도체(ascorbic acid derivatives), 갈릭산(gallic acid), 포름아미딘설폰산(formamidinesulfinic acid), 유릿산(uric acid), 타르타르산(tartaric acid), 시스테인(cysteine) 등으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.In a preferred embodiment of the present invention, the antioxidant is ascorbic acid, L (+) -ascorbic acid, isoascorbic acid, ascorbic acid derivatives (ascorbic acid) derivatives), gallic acid, formamidinesulfinic acid, uric acid, tartaric acid, cysteine, etc. .

본 발명의 바람직한 일 구현에서 상기 pH 조정제는 pH 범위가 염기성이 되도록 조절하기 위하여 KOH, NH4OH, NaOH, TMAH, TBAH, KNO3, NH4NO3, HNO3 등을 단독 또는 혼합하여 사용할 수 있다. pH는 슬러리의 입자 안정성 및 연마 속도와 밀접하게 관련되어있기 때문에 정밀하게 조절해야 한다.In a preferred embodiment of the present invention, the pH adjusting agent may be used alone or in combination with KOH, NH4OH, NaOH, TMAH, TBAH, KNO3, NH4NO3, HNO3, etc. to adjust the pH range to be basic. Since pH is closely related to particle stability and polishing rate of the slurry, it must be precisely controlled.

본 발명의 바람직한 일 구현예에서, 상기 CMP 슬러리 조성물은 조성물 총 중량에 대하여, 콜로이달 실리카로 이루어진 연마입자 13 내지 15 중량%, 연마입자, 헤테로고리화합물, 유기산, 표면보호제, 질소화물, pH 조정제 및 잔량의 탈이온수를 포함하는 것을 특징으로 한다.In a preferred embodiment of the present invention, the CMP slurry composition comprises 13 to 15% by weight of colloidal silica abrasive particles, abrasive particles, heterocyclic compounds, organic acids, surface protecting agents, nitrides, pH adjusting agents, based on the total weight of the composition and a residual amount of deionized water.

발명의 바람직한 일 구현예에서, 상기 CMP 슬러리 조성물은 pH가 9 내지 12인 것을 특징으로 한다.In a preferred embodiment of the invention, the CMP slurry composition is characterized in that the pH is 9 to 12.

본 발명의 바람직한 일 구현예에서, 상기 CMP 슬러리 조성물은 실리콘산화막, 탄탈막 및 구리막 중에서 선택되는 2종 이상으로 형성되는 피연마막을 동시에 연마하는 것을 특징으로 한다.In a preferred embodiment of the present invention, the CMP slurry composition is characterized by simultaneously polishing a film to be polished formed of two or more types selected from a silicon oxide film, a tantalum film, and a copper film.

본 발명의 바람직한 일 구현예에서, 상기 연마는 질화탄탈륨막(TaN), 실리콘산화막(Silicon oxide) 및 구리막(Cu)의 연마 선택비가 1 : 1~4 : 0.5~1 인 것을 특징으로 한다.In a preferred embodiment of the present invention, the polishing is characterized in that the polishing selectivity of the tantalum nitride film (TaN), the silicon oxide film (Silicon oxide), and the copper film (Cu) is 1: 1 to 4: 0.5 to 1.

본 발명에 따른 구리 배리어층 연마용 CMP 슬러리 조성물은 실리콘산화막과 구리막층간에 대하여 단차 제거 효율이 높아 생산성이 향상되는 효과를 나타내는 것이다.The CMP slurry composition for polishing a copper barrier layer according to the present invention exhibits an effect of improving productivity due to high step removal efficiency between a silicon oxide film and a copper film layer.

또한 본 발명에 따른 구리 배리어층 연마용 CMP 슬러리 조성물은 구리막층에 대한 디싱, 부식, 결함(defect) 등을 최소화하면서 연마할 수 있게 되어 신뢰성 및 특성이 우수한 반도체 디바이스층의 구리 배선층 등을 효율적으로 형성 할 수 있으므로 고성능의 반도체 디바이스를 얻는데 크게 기여하는 효과를 나타내는 것이다.In addition, the CMP slurry composition for polishing a copper barrier layer according to the present invention can polish the copper film layer while minimizing dishing, corrosion, defects, etc. Since it can be formed, it shows an effect that greatly contributes to obtaining a high-performance semiconductor device.

일반적으로, 본 명세서에서 사용된 명명법 은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. In general, the nomenclatures used herein are those well known and commonly used in the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the present specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.

일반적으로 단계 1에서는 오버 버든 구리(overburden copper)의 제거 후에, 연마된 웨이퍼 표면은 다양한 위치에서의 단차(step height) 차이로 인해서 불균일한 국소 및 전체 평탄도를 지닌다. 저밀도 피처는 구리 단차가 높은 반면 고밀도 피처는 낮은 단차를 가지는 경향이다. In general, after removal of overburden copper in step 1, the polished wafer surface has non-uniform local and global flatness due to differences in step heights at various locations. Low-density features tend to have high copper steps, while high-density features have low steps.

단계 1 후의 단차로 인해서 구리 대 옥사이드 제거 속도에 상대적인 선택적인 연마를 가지는 단계 2 CMP 슬러리가 매우 필요하게 된다. The step difference after step 1 makes a step 2 CMP slurry with selective abrasion relative to the copper to oxide removal rate highly desirable.

본 발명에서 ‘선택비(Selectivity ratio)’라 함은 동일 연마 조건에서 서로 다른 물질에 대한 다른 제거율을 의미한다.In the present invention, 'selectivity ratio' means different removal rates for different materials under the same polishing conditions.

배리어 슬러리는 패턴 형성된 웨이퍼의 CMP 공정 2 단계에서 바람직하게는 다음 중 하나 이상을 제공한다. 다양한 유형의 필름에 대해 바람직한 제거 속도를 제공, 낮은 수준의 연마 웨이퍼 불균일도(within wafer non-uniformity: WIW NU)제공, CMP 공정 후의 연마 웨이퍼상에 낮은 잔류물들이 존재, 다양한 연마층에 대해 연마 선택비를 제공하는 것이다.The barrier slurry preferably provides one or more of the following in step 2 of the patterned wafer CMP process. Provides desirable removal rates for many types of films, provides low levels of polishing within wafer non-uniformity (WIW NU), low residues on polished wafers after CMP processing, polishes on a variety of polished layers It is to provide choice.

반도체 제조에 적합하지 않는 특이적 특성의 왜곡(specific featured distortion)은 CMP 공정에서 구리 비아 또는 금속 라인과 상호 작용하는 화학적 성분과 추가 부식에 의해서 야기된 구리 비아 또는 금속 라인에 대한 손상이다. 따라서 배리어 CMP 슬러리에 부식억제제를 사용하여 CMP 공정 동안에 구리 비아 또는 트렌치의 추가 부식을 감소시키고 또한 결함을 감소 시키는 것이 매우 중요하다.A specific featured distortion that is not suitable for semiconductor manufacturing is damage to the copper vias or metal lines caused by additional corrosion and chemical components interacting with the copper vias or metal lines in the CMP process. Therefore, it is very important to use a corrosion inhibitor in the barrier CMP slurry to reduce further corrosion of copper vias or trenches during the CMP process and also to reduce defects.

단계 2 CMP 공정에서 배리어 CMP 조성물의 화학 반응은 CMP 슬러리내에 사용되는 산화제, 예를 들어, H2O2에 의해 유도된 산화 반응을 포함한다. 금속 예를 들어, 구리, 라인, 비아, 또는 트렌치, 배리어 물질, 에컨대, Ta의 표면은 각각의 금속옥사이드 필름으로 산화된다.The chemical reaction of the barrier CMP composition in the step 2 CMP process includes an oxidation reaction induced by an oxidizing agent used in the CMP slurry, for example H 2 O 2 . The surface of the metal, eg copper, lines, vias, or trenches, barrier materials, such as Ta, is oxidized to the respective metal oxide film.

전형적으로 구리는 산화제일구리 또는 산화제이구리 혼합물로 산화되고, Ta는 Ta2O5로 산화된다. 구리 양이온 및 탄탈럼 양이온에 화학적으로 결합될 수 있는 킬레이트, 리간드 또는 다른 화학적 첨가제가 배리어 슬러리에 사용되어 구리 옥사이드 및 탄탈럼 옥사이드 용해를 촉진시켜 구리, 라인, 비아, 또는 트렌치 및 배리어 층 또는 배리어 필름의 제거 속도를 향상시킬 수 있다.Typically copper is oxidized to cuprous oxide or cupric oxide mixtures, and Ta to Ta 2 O 5 . Chelates, ligands, or other chemical additives that can be chemically bonded to copper cations and tantalum cations are used in the barrier slurry to promote copper oxide and tantalum oxide dissolution to form copper, lines, vias, or trenches and barrier layers or barrier films. can improve the removal rate.

따라서 본 발명에서 개발하고자 하는 슬러리는 구리 CMP 공정에서 발생하는 부식 또는 결함을 현저히 감소시키고 실리콘산화막, 구리막 및 탄탈막에 대한 연마 제거율을 종래의 슬러리와 비교해 빠르게 연마할 수 있는 CMP 용 슬러리 조성물을 제공하고자 하는데 목적이 있다.Therefore, the slurry to be developed in the present invention is a CMP slurry composition that can significantly reduce corrosion or defects occurring in the copper CMP process and polish the silicon oxide film, copper film, and tantalum film quickly compared to conventional slurries. The purpose is to provide.

본 발명에 따른 구리 배리어층 연마용 슬러리는 콜로이달 실리카로 이루어진 연마입자, 헤테로고리화합물, 유기산, 표면보호제, 질소화물, pH 조정제 및 잔량의 탈이온수로 구성된다.The slurry for polishing a copper barrier layer according to the present invention is composed of abrasive particles made of colloidal silica, a heterocyclic compound, an organic acid, a surface protecting agent, a nitrogen compound, a pH adjuster, and a residual amount of deionized water.

상기 콜로이달 실리카는 나노 입경의 실리카 입자가 침강이 일어나지 않고 용매에 안정적으로 분산된 콜로이드 용액을 의미한다. 상기 콜로이달 실리카는 입자 크기가 75 내지 95nm인 것이 스크래치(Scratch) 및 제거율(Removal rate)을 적절하게 유지하기 위한 측면에서 바람직하고, 입자 크기가 80 내지 90nm일 경우 더욱 바람직하다. The colloidal silica refers to a colloidal solution in which nano-sized silica particles are stably dispersed in a solvent without sedimentation. The colloidal silica preferably has a particle size of 75 to 95 nm in terms of properly maintaining scratch and removal rates, and is more preferably 80 to 90 nm.

만일, 콜로이달 실리카의 입자크기가 75nm 미만일 경우에는 막질에 대한 제거율(Removal rate)이 감소하여 공정 진행시간이 오래 걸리게 되고, 95nm을 초과할 경우에는 스크래치(Scratch)에 취약하기 때문에 바람직하지 않다.If the particle size of the colloidal silica is less than 75 nm, the removal rate for the film quality decreases and the process takes a long time, and if the particle size exceeds 95 nm, it is not preferable because it is vulnerable to scratches.

상기 콜로이달 실리카는 조성물 총 중량에 대하여, 13중량% 내지 15중량%를 포함하는 것이 바람직하다. The colloidal silica preferably contains 13% to 15% by weight based on the total weight of the composition.

만일 콜로이달 실리카를 13중량% 미만으로 사용할 경우에는 Solid 함량이 부족하여 제거율(Removal rate)이 감소하고, 15중량%를 초과하여 사용할 경우에는 과도한 함량으로 인한 응집 현상이 일어나기 때문에 바람직하지 않다.If colloidal silica is used at less than 13% by weight, the removal rate is reduced due to insufficient solid content, and when used in excess of 15% by weight, aggregation occurs due to excessive content, which is undesirable.

본 발명의 일 실시예에 따른 CMP 슬러리 조성물에 있어서 헤테로고리화합물은 질소원자가 2개 이상인 것으로서, 1,2,4H-트리아졸, 5-메틸벤조트리아졸, 테트라졸, 이미다졸, 1,2-디메틸이미다졸, 벤조트리아졸(BTA), 1 H-벤조트리아졸아세톤니트릴 또는 피페라진으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다. 상기 부식 방지제는 부식 억제 효과, 연마 속도 및 슬러리 조성물의 안정성 측면에서 상기 슬러리 조성물 중 0.005중량% 내지 0.5중량%인 것일 수 있다.In the CMP slurry composition according to an embodiment of the present invention, the heterocyclic compound is one having two or more nitrogen atoms, 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, imidazole, 1,2- It is characterized in that at least one selected from the group consisting of dimethylimidazole, benzotriazole (BTA), 1 H-benzotriazole acetonitrile or piperazine. The corrosion inhibitor may be 0.005% by weight to 0.5% by weight of the slurry composition in terms of corrosion inhibitory effect, polishing rate and stability of the slurry composition.

상기 부식방지제가 0.005중량% 미만인 경우 구리막의 연마 제어가 불가능하여 디싱 문제가 발생될 수 있고, 상기 부식억제제가 0.5 중량% 초과인 경우 구리막의 연마율이 낮아지고 잔류물(residue)이 남는 문제가 발생될 수 있다.If the corrosion inhibitor is less than 0.005% by weight, polishing control of the copper film is impossible, and a dishing problem may occur. may occur.

본 발명의 CMP 슬러리에 사용될 수 있는 탄탈화물에 대한 연마율 향상제는 pH 조절제로 사용하는 질소화물이다. 질소화물은 탄탈이나 티타늄화물에 대한 에칭액으로 이용되는 물질로서, CMP 연마 시 탄탈의 제거에 효과적이다.An agent for improving the removal rate of tantalumide that can be used in the CMP slurry of the present invention is nitride used as a pH adjusting agent. Nitride is a material used as an etchant for tantalum or titanide, and is effective in removing tantalum during CMP polishing.

본 발명에 사용되는 질소화물로는 질산칼륨(KNO3), 질산(HNO3), 질산암모늄(NH4NO3 ), 질산철(Fe(NO3)2 ) 및 질산구리(Cu(NO3)2) 등을 사용할 수 있으며, 이들을 혼합 조성하여 사용할 수도 있다. 일반적으로 티타늄이나 탄탈화물은 상대적으로 안정한 물질로서 플루오로화 수소산과 질산 혼합물에 에칭되기 쉬우며, 염기성과 왕수(aqua regia)에 대하여 느리게 반응하는 성질을 가지고 있다. 일반적으로 슬러리에 사용되는 질소화물의 양은 약 0.05 ~ 10 중량%의 범위에서 존재하는 것이 바람직하며, 약 0.1 ~ 1 중량%로 존재하는 것이 더욱 바람직하다.Potassium nitrate (KNO3), nitric acid (HNO3), ammonium nitrate (NH4NO3), iron nitrate (Fe(NO3)2) and copper nitrate (Cu(NO3)2) may be used as the nitrogen oxide used in the present invention. , These may be mixed and used. In general, titanium or tantalumide is a relatively stable material that is easily etched by a mixture of hydrofluoric acid and nitric acid, and has a property of reacting slowly to alkalinity and aqua regia. In general, the amount of nitride used in the slurry is preferably in the range of about 0.05 to 10% by weight, more preferably in the range of about 0.1 to 1% by weight.

본 발명에 사용되는 표면보호제는 비이온성 타입으로서 폴리비닐알콜(PVA), 에틸렌글리콜(EG), 글리세린, 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 또는 폴리비닐피롤리돈(PVP) 등을 선택할 수 있고, 그리고 음이온성 타입으로서는 암모늄 도데실 벤젠 설폰에이트(ammonium dodecyl benzene sulfonate), 암모늄 폴리옥시에틸렌 알킬 설폰에이트(ammonium polyoxyethylene alkyl sulfonate), 암모늄 폴리옥시에틸렌 알킬 아릴 설폰에이트(ammonium polyoxyethylene alkyl aryl sulfonate) 등을 선택할 수 있으며, 이들 중에서 선택된 2종 이상을 혼합하여 사용할 수 있다. 가장 바람직하게는, 비이온성 타입으로서 폴리비닐피롤리돈(PVP) 및 음이온성 타입으로서 암모늄 도데실 벤젠 설폰에이트(ammonium dodecyl benzene sulfonate)를 혼합하여 사용하는 것이다.The surface protecting agent used in the present invention is a nonionic type and includes polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG) or polyvinylpyrrolidone (PVP). Can be selected, and as an anionic type, ammonium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl sulfonate, ammonium polyoxyethylene alkyl aryl sulfonate (ammonium polyoxyethylene alkyl aryl sulfonate ) and the like, and two or more selected from among them may be mixed and used. Most preferably, a mixture of polyvinylpyrrolidone (PVP) as the nonionic type and ammonium dodecyl benzene sulfonate as the anionic type is used.

상기 비이온성 보호제는 용액 상에서 입자 표면에 흡착되는데, 입자와 친화력을 갖는 관능기를 한 개 이상 포함하고 있어서 입자 표면에 강하고 지속적으로 흡착하여 입자의 크기를 증가시키는 역할을 한다. 따라서 실리콘 산화막에 대해서도 적절한 연마율을 향상 시킬 수 있는 역할을 한다. 또한 입체적 반발력에 의하여 분산 안정성이 유지된다. 따라서 보호제의 함량이 조성물 전체 중량에 대하여 0.15중량% 미만인 경우에는 분산력이 낮아 침전이 빨리 진행되므로 연마액의 이송 시 침전이 발생되어 연마재의 공급이 균일하지 못할 수 있다. 이에 반하여, 분산제의 함량이 조성물 전체 중량에 대하여 1.0중량%를 초과하는 경우에는 연마재 입자 주변에 일종의 쿠션 역할을 하는 보호제층이 두껍게 형성되어, 연마제 표면이 연마면에 접촉되기가 어려워져서 연마속도가 낮아질 수 있다.The nonionic protecting agent is adsorbed on the surface of particles in a solution, and since it contains one or more functional groups having an affinity for the particles, it is strongly and continuously adsorbed on the surface of the particles to increase the size of the particles. Therefore, it plays a role in improving the appropriate polishing rate for the silicon oxide film. In addition, dispersion stability is maintained by the steric repulsive force. Therefore, when the content of the protective agent is less than 0.15% by weight based on the total weight of the composition, the dispersion force is low and the precipitation proceeds quickly, so the supply of the abrasive may not be uniform due to precipitation during transport of the polishing liquid. On the other hand, when the content of the dispersant exceeds 1.0% by weight based on the total weight of the composition, a thick protective agent layer serving as a kind of cushion is formed around the abrasive particles, making it difficult for the abrasive surface to contact the polishing surface, thereby increasing the polishing rate. can be lowered

표면보호제는 연마하는 동안 연마패드의 잔류물 또는 금속 잔류물, 유기성 잔류물로부터 웨이퍼 표면을 보호하는 역할로 웨이퍼 결함수가 감소하고 특히 음이온성 암모늄 설폰에이트 유도체를 혼합 사용할 경우 여러 가지 잔류믈을 웨이퍼 표면으로부터 세정하는 역할을 하여 결함수가 더욱 개선된다. 일반적으로 슬러리에 사용되는 표면보호제의 양은 약 0.15 ~ 1.0중량%의 범위에서 존재하는 것이 바람직하며, 약 0.3 ~ 0.8중량%로 존재하는 것이 가장 바람직하다.The surface protecting agent protects the wafer surface from residues of the polishing pad, metal residues, and organic residues during polishing, reducing the number of wafer defects. The number of defects is further improved by playing a role of cleaning from In general, the amount of the surface protecting agent used in the slurry is preferably in the range of about 0.15 to 1.0% by weight, and most preferably in the range of about 0.3 to 0.8% by weight.

본 발명의 CMP 슬러리에는 배리어 금속 제거 속도에 대해 구리 제거 속도를 조절하기 위하여 유기산이 이용된다. An organic acid is used in the CMP slurry of the present invention to control the rate of copper removal relative to the rate of barrier metal removal.

유기산은 구리 산화물과의 킬레이트 반응으로 산화된 구리 산화물이 피연마층인 구리층에 재흡착되는 것을 억제하여, 구리에 대한 연마 속도를 증가시키고 표면 결함을 감소시키는 것이다. 목적하는 금속 성분에 대해 선택적으로 유기산을 슬러리에 부가함으로써 유전체/금속 복합물 구조의 CMP 평탄화를 더욱 개선시킬 수 있다. The organic acid suppresses re-adsorption of copper oxide oxidized by a chelation reaction with copper oxide to the copper layer, which is a layer to be polished, to increase the copper polishing rate and reduce surface defects. CMP planarization of the dielectric/metal composite structure can be further improved by adding an organic acid to the slurry that is selective to the desired metal component.

이것은 금속 상의 침식 속도를 증가시키고, 유전체상 제거에 대한 금속의 연마 선택비를 증가시켜서 평탄화 공정이 더욱 효율적이 되도록 한다. This increases the erosion rate of the metal phase and increases the polishing selectivity of the metal to dielectric phase removal, making the planarization process more efficient.

본 발명에서 사용될 수 있는 유기산은 카르복실산계 및 아미노산계가 있는데, 먼저, 카르복실산계 유기산은 시트르산(citric acid), 글루타르산(glutaric acid), 말산(malic acid), 말레산(maleic acid), 옥살산(oxalic acid), 프탈산(phthalic acid), 숙신산(succinic acid) 및 타르타르산(tartaric acid), 아세트산(acetic acid)으로 이루어진 카르복실산군으로부터 선택되는 1종 이상인 것을 특징으로 한다.Organic acids that can be used in the present invention include carboxylic acids and amino acids. First, carboxylic acid-based organic acids include citric acid, glutaric acid, malic acid, maleic acid, It is characterized in that at least one selected from the carboxylic acid group consisting of oxalic acid, phthalic acid, succinic acid, tartaric acid, and acetic acid.

둘째, 아미노산계 유기산은 니트릴로트리아세틱 에시드(Nitrilotriacetic acid, NTA), 이미노디아세틱 에시드(Iminodiacetic acid, IDA), 메틸 이미노디아세틱 에시드(Methyl iminodiacetic acid, MIDA), 히드록시에틸 이미노디아세틱 에시드(Hydroxyethyl iminodiacetic acid, HIDA), 디에틸렌트리아민 펜타아세틱 에시드(Diethylenetriamine pentaacetic acid, DPTA), 에틸렌디아민 테트라아세틱 에시드(Ethylenediamine tetraacetic acid, EDTA), N-히드록시에틸 에틸렌디아민 테트라아세틱 에시드(N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), 메틸 에틸렌디아민 테트라아세틱 에시드(Methyl ethylenediamine tetraacetic acid, MEDTA), 트리에틸렌 테트라아민 헥사아세틱 에시드(Triethylene tetraamine hexaacetic acid, TTHA) 등으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.Second, amino acid-based organic acids include nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), methyl iminodiacetic acid (MIDA), and hydroxyethyl iminodiace. Hydroxyethyl iminodiacetic acid (HIDA), Diethylenetriamine pentaacetic acid (DPTA), Ethylenediamine tetraacetic acid (EDTA), N-hydroxyethyl ethylenediamine tetraacetic Selected from the group consisting of acid (N-hydroxyethyl ethylenediamine tetraacetic acid (HEDTA)), methyl ethylenediamine tetraacetic acid (MEDTA), triethylene tetraamine hexaacetic acid (TTHA), etc. It is characterized in that it is one or more species.

유기산은 슬러리 조성물의 중량에 기초하여 0.05 내지 5중량%의 양으로 부가한다. 바람직하게는 농도가 0.1 내지 3중량%이다. 가장 바람직하게는 농도가 0.1 내지 1중량%이다. 과소량으로는 킬레이트제가 본 발명이 목적하는 효과를 나타내지 않고, 과대량으로는 킬레이트제가 부가적인 효과 없이 소모되어 버린다.The organic acid is added in an amount of 0.05 to 5% by weight based on the weight of the slurry composition. Preferably the concentration is 0.1 to 3% by weight. Most preferably the concentration is 0.1 to 1% by weight. In an excessive amount, the chelating agent does not exhibit the desired effect of the present invention, and in an excessive amount, the chelating agent is consumed without additional effects.

본 발명의 바람직한 일 구현예에서 상기 산화방지제는 아스코빅산(ascorbic acid), 엘(+)-아스코빅산(L(+)-ascorbic acid), 이소아스코빅산(isoascorbic acid), 아스코빅산 유도체(ascorbic acid derivatives), 갈릭산(gallic acid), 포름아미딘설폰산(formamidinesulfinic acid), 유릿산(uric acid), 타르타르산(tartaric acid), 시스테인(cysteine) 등으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다. 산화방지제는 슬러리 조성물의 중량에 기초하여 0.05 내지 1중량%의 양으로 부가한다. 바람직하게는 농도가 0.1 내지 0.5중량%이다. 가장 바람직하게는 농도가 0.2 내지 0.3중량%이다. 과소량으로는 금속의 산화방지 효과가 나타내지 않고, 과대량으로는 부가적인 효과없이 소모되거나 웨이퍼 표면에 잔류하여 결함의 원인이 된다.In a preferred embodiment of the present invention, the antioxidant is ascorbic acid, L (+) -ascorbic acid, isoascorbic acid, ascorbic acid derivatives (ascorbic acid) derivatives), gallic acid, formamidinesulfinic acid, uric acid, tartaric acid, cysteine, etc. . The antioxidant is added in an amount of 0.05 to 1% by weight based on the weight of the slurry composition. Preferably the concentration is 0.1 to 0.5% by weight. Most preferably the concentration is 0.2 to 0.3% by weight. In an excessive amount, the effect of preventing oxidation of metal is not shown, and in an excessive amount, it is consumed without additional effect or remains on the wafer surface, causing defects.

본 발명의 일 실시예에 따른 CMP 슬러리 조성물은 pH가 9 내지 12인 것이 조성물의 안정성 측면에서 바람직하다. 만일, pH 범위가 9 미만일 경우에는 콜로이달 실리카 입자의 응집 현상 및 제거율(Removal rate)이 불안정하고 pH 범위가 12 를 초과할 경우는 제거율(Removal rate)이 불안정하기 때문에 바람직하지 않다.The CMP slurry composition according to an embodiment of the present invention preferably has a pH of 9 to 12 in terms of stability of the composition. If the pH range is less than 9, the aggregation and removal rate of colloidal silica particles are unstable, and if the pH range exceeds 12, the removal rate is unstable, which is not preferable.

상기 pH 범위가 되도록 조절하기 위하여 염기성 물질로는 KOH, NH4OH, NaOH, TMAH, TBAH, KNO3, NH4NO3 등을 단독 또는 혼합하여 사용할 수 있으며 pH는 슬러리 조성물의 입자 안정성과 연마 속도와 밀접하게 관련되어 있기 때문에 정밀하게 조절해야 한다.In order to adjust the pH range, KOH, NH4OH, NaOH, TMAH, TBAH, KNO3, NH4NO3, etc. may be used alone or in combination as basic materials, and pH is closely related to particle stability and polishing rate of the slurry composition. Therefore, it must be precisely controlled.

본 발명의 일 실시예에 따른 CMP 슬러리 조성물에 있어서, 상기 용매는 조성물의 농도를 조절하여 막질의 제거율을 조절하기 위하여 사용되는 것으로서, 용매는 탈이온수, 물 등을 사용할 수 있으나, 탈이온수를 사용하는 것이 바람직하다.In the CMP slurry composition according to an embodiment of the present invention, the solvent is used to adjust the film removal rate by adjusting the concentration of the composition, and the solvent may be deionized water, water, etc., but deionized water is used It is desirable to do

상기 슬러리 조성물의 연마 대상막은 구리 함유막을 포함하는 것일 수도 있다.The film to be polished of the slurry composition may include a copper-containing film.

또한, 상기 슬러리의 조성물은 구리 함유막과 배리어막으로 사용되는 티타늄(Ti), 탄탈륨(Ta), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 또는 금(Au)으로 이루어진 군에서 선택되는 어느 하나를 포함하는 박막 또는 반도체 절연막에 사용되는 산화막에 대해 원하는 연마율을 조정할 수 있다. 이에 따라 상기 슬러리 조성물은 연마 대상막과 다른 박막 간의 우수한 연마 선택비도 나타낼 수 있다.In addition, the composition of the slurry is selected from the group consisting of titanium (Ti), tantalum (Ta), ruthenium (Ru), molybdenum (Mo), cobalt (Co), or gold (Au) used as a copper-containing film and a barrier film It is possible to adjust a desired polishing rate for an oxide film used for a thin film or semiconductor insulating film including any one of. Accordingly, the slurry composition may exhibit excellent polishing selectivity between the polishing target film and other thin films.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 그러나 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

[실시예 1 내지 7 및 비교예 1 내지 2][Examples 1 to 7 and Comparative Examples 1 to 2]

하기 표 1에 기재된 함량에 따라 실시예 1 내지 실시예 7 및 비교예 1 내지 비교예 2의 구리 배리어층 연마용 슬러리 조성물을 제조하였다.Slurry compositions for polishing a copper barrier layer of Examples 1 to 7 and Comparative Examples 1 to 2 were prepared according to the contents shown in Table 1 below.

여기서, 콜로이달 실리카(colloidal silica)의 함량은 모두 13중량%로 하였고, 사용한 콜로이달 실리카의 입경은 90nm 이다. pH 조정제는 모두 KOH를 사용하였고, 질소화물은 모두 KNO3를 사용하였으며 각각 0.5중량%로 하였다. 산화방지제는 아스코빅산(ascorbic acid)을 사용하여 0.2중량%로 하였다.Here, the content of colloidal silica was 13% by weight, and the particle diameter of the colloidal silica used was 90 nm. KOH was used as the pH adjuster, and KNO3 was used as the nitride, and each was 0.5% by weight. Antioxidant was 0.2% by weight using ascorbic acid.

실리카 입자 크기silica particle size 헤테로고리
화합물
heterocycle
compound
유기산organic acid 표면보호제surface protectant
(nm) (nm) 성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
실시예 1Example 1 9090 BTABTA 0.10.1 AAAA 0.060.06 PVPPVP 0.150.15 실시예 2Example 2 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.10.1 PVPPVP 0.20.2 실시예 3Example 3 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.30.3 PVPPVP 0.20.2 실시예 4Example 4 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.20.2 실시예 5Example 5 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 실시예 6Example 6 9090 BTABTA 0.10.1 IDAIDA 0.50.5 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 실시예 7Example 7 9090 BTABTA 0.10.1 IDAIDA 1.01.0 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 비교예 1Comparative Example 1 9090 BTABTA 0.10.1 비교예 2Comparative Example 2 9090 BTABTA 0.020.02

BTA : BenzotriazoleBTA: Benzotriazole

IDA : Iminodiacetic acid IDA: Iminodiacetic acid

AA : Acetic acidAA: Acetic acid

ADBS : Ammonium dodecyl benzene sulfonateADBS: Ammonium dodecyl benzene sulfonate

PVP : PolyvinylpyrrolidonePVP: Polyvinylpyrrolidone

[실험예 1 내지 7 및 비교실험예 1 내지 2][Experimental Examples 1 to 7 and Comparative Experimental Examples 1 to 2]

실시예 1 내지 실시예 7과 비교예 1 및 비교예 2와 같은 슬러리 조성물에 의한 연마율(Removal Rate) 및 디싱(dishing)을 각각 측정하여 실험예 1 내지 실험예 7 및 비교실험예 1 및 비교실험예 2로 표시하여 아래 표 2에 기재하였다.Experimental Examples 1 to 7 and Comparative Experimental Example 1 and Comparison by measuring the removal rate and dishing by the slurry compositions such as Examples 1 to 7 and Comparative Example 1 and Comparative Example 2, respectively It is indicated as Experimental Example 2 and is described in Table 2 below.

[연마 조건][Polishing conditions]

1. 연마 장비: 12 인치용(300 mm) CMP 장비 - AP-300 (CTS 社) 1. Polishing equipment: 12 inch (300 mm) CMP equipment - AP-300 (CTS Co.)

2. 연마 패드: IC1010 (Dow 社) 2. Polishing pad: IC1010 (Dow Company)

3. 플레이튼 스피드 (Platen speed): 103 rpm 3. Platen speed: 103 rpm

4. 헤드 스피드 (Head speed) : 97 rpm 4. Head speed: 97 rpm

5. 유량 (Flow rate): 300 cc/min 5. Flow rate: 300 cc/min

5. 압력: 2.2 psi 5. Pressure: 2.2 psi

연마율 측정은 12 인치용(300 mm) CMP 장비를 이용하여 연마한 경우, Cu, Ta의 연마율은 4-포인트 프로브(CMT-SR 5000, AIT Co., Ltd)를 이용하여 계산하였으며 When the polishing rate was measured using a 12-inch (300 mm) CMP equipment, the removal rate of Cu and Ta was calculated using a 4-point probe (CMT-SR 5000, AIT Co., Ltd)

OXIDE인 PTEOS는 나노메트릭스 社의 Atlas 장비를 이용하여 CMP 전후 두께 변화를 측정하여 연마율을 계산하였다.For PTEOS, an OXIDE, the removal rate was calculated by measuring the thickness change before and after CMP using Atlas equipment from Nanometrics.

연마 선택비는 다음과 같이 각 막질의 연마율에 의하여 계산하였다.The polishing selectivity was calculated by the polishing rate of each film quality as follows.

- 질화탄탈륨막(TaN)에 대한 실리콘산화막(Silicon oxide)의 연마 선택비 = 실리콘산화막 연마율 / 질화탄탈륨막(TaN) 연마율- Polishing selectivity of silicon oxide to tantalum nitride (TaN) = silicon oxide polishing rate / tantalum nitride (TaN) polishing rate

- 질화탄탈륨막(TaN)에 대한 구리막(Cu)의 연마 선택비 = 구리막(Cu) 연마율 / 질화탄탈륨막(TaN) 연마율- Polishing selectivity of copper film (Cu) to tantalum nitride film (TaN) = copper film (Cu) polishing rate / tantalum nitride film (TaN) polishing rate

디싱(dishing) 측정은 투과 전자현미경(JEM-2000, JEOL)으로 각 막질의 두께를 다음과 같이 측정하여 계산하였다.The dishing measurement was calculated by measuring the thickness of each layer with a transmission electron microscope (JEM-2000, JEOL) as follows.

- Cu dishing = (Cu edge thickness - Cu center thickness)- Cu dishing = (Cu edge thickness - Cu center thickness)

- Ox dishing = (Ox edge thickness - Ox center thickness)- Ox dishing = (Ox edge thickness - Ox center thickness)

연마율(Å/min)Abrasive rate (Å/min) 선택비selectivity 디싱(Å)Dishing (Å) CuCu TaNTaN 실리콘산화막silicon oxide film 실리콘산화막/TaN Silicon oxide/TaN Cu/TaNCu/TaN 1-1㎛1-1㎛ 실험예 1Experimental Example 1 157157 215215 750750 3.493.49 0.730.73 3737 실험예 2Experimental Example 2 162162 320320 815815 2.552.55 0.510.51 3030 실험예 3Experimental Example 3 182182 320320 830830 2.592.59 0.570.57 2020 실험예 4Experimental Example 4 200200 325325 820820 2.522.52 0.620.62 1717 실험예 5Experimental Example 5 205205 323323 970970 3.003.00 0.630.63 1616 실험예 6Experimental Example 6 214214 310310 915915 2.952.95 0.690.69 1717 실험예 7Experimental Example 7 215215 320320 961961 3.003.00 0.670.67 1919 비교실험예 1Comparative Experimental Example 1 107107 260260 498498 1.921.92 0.410.41 6969 비교실험예 2Comparative Experimental Example 2 127127 295295 578578 1.961.96 0.430.43 118118

표 2에 기재된 실험예 1 내지 실험예 7 및 비교실험예 1 및 비교실험예 2의 연마율, 선택비 및 디싱(dishing) 값을 평가하면, 아래와 같다.Evaluating the polishing rate, selectivity, and dishing value of Experimental Examples 1 to 7 and Comparative Experimental Example 1 and Comparative Experimental Example 2 described in Table 2 are as follows.

첫째, 착화제(Complexing Agents)를 사용한 실험예 1내지 실험예 7은 기존의 비교예 1 및 비교예 2에 비해 구리막의 연마율이 크게 증가하는 것을 알 수 있다First, in Experimental Examples 1 to 7 using complexing agents, it can be seen that the polishing rate of the copper film is greatly increased compared to the existing Comparative Examples 1 and 2.

둘째, 표면보호제인 폴리비닐피롤리돈(PVP)을 사용한 실험예 1 내지 실험예 7은 기존의 비교예 1 및 비교예 2에 비해 실리콘 산화막의 연마율이 현저하게 증가하는 것을 알 수 있다Second, in Experimental Examples 1 to 7 using polyvinylpyrrolidone (PVP) as a surface protecting agent, it can be seen that the polishing rate of the silicon oxide film significantly increases compared to the conventional Comparative Examples 1 and 2.

셋째, 실험예 1 내지 실험예 7에서 착화제인 이미노디아세틱 에시드(IDA)함량이 증가할수록 구리막의 연마율이 증가하고 표면보호제인 암모늄 도데실 벤젠 설폰에이트(ADBS)의 함량이 증가할수록 구리막층의 디싱이 감소함을 알 수 있다.Third, in Experimental Examples 1 to 7, as the content of iminodiacetic acid (IDA), a complexing agent, increases, the removal rate of the copper film increases, and as the content of ammonium dodecyl benzene sulfonate (ADBS), a surface protecting agent, increases, the copper film layer It can be seen that the dishing of is reduced.

이러한 이유로 실험예 1 내지 실험예 7은 기존의 비교실험예 1 및 비교실험예 2에 비하여 선택비가 우수하였다.For this reason, Experimental Examples 1 to 7 had excellent selectivity compared to Comparative Experimental Example 1 and Comparative Experimental Example 2.

비교실험예 2의 경우 부식방식제 벤조트리아졸(BTA)의 함량이 적음으로 인해 구리막층의 연마율은 향상되지만 디싱이 증가되는 문제점이 나타난다In the case of Comparative Experimental Example 2, due to the small content of the corrosion inhibitor, benzotriazole (BTA), the polishing rate of the copper film layer is improved, but there is a problem that dishing is increased.

[실시예 8 내지 11 및 비교예 3 내지 5][Examples 8 to 11 and Comparative Examples 3 to 5]

하기 표 3에 기재된 함량에 따라 실시예 8 내지 11 및 비교예 3 내지 5의 구리 배리어층 연마용 슬러리 조성물을 제조하였다. 콜로이달 실리카의 입경과 표면보호제 ADBS 함량에 따른 구리 배리어층 연마용 슬러리 조성물을 제조하였다.Slurry compositions for polishing a copper barrier layer of Examples 8 to 11 and Comparative Examples 3 to 5 were prepared according to the contents shown in Table 3 below. A slurry composition for polishing a copper barrier layer was prepared according to the particle diameter of colloidal silica and the content of the surface protecting agent ADBS.

여기서, 콜로이달 실리카(colloidal silica)의 함량은 모두 15중량%로 하였다. 헤테로고리화합물은 BTA 0.05중량%, 유기산은 AA를 0.1중량%, 표면보호제는 PVP는 0.2중량%, pH 조정제는 KOH를 이용하여 0.2중량%로 하였으며, 질소화물은 KNO3를 이용하여 1.0중량%로 하였다.Here, the content of colloidal silica was set to 15% by weight. The heterocyclic compound was 0.05% by weight of BTA, 0.1% by weight of AA as organic acid, 0.2% by weight of PVP as surface protecting agent, 0.2% by weight of pH adjuster using KOH, and 1.0% by weight of nitride using KNO3. did

실리카 입자 크기silica particle size 헤테로고리화합물 heterocyclic compound 유기산organic acid 표면보호제surface protectant (nm) (nm) 성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
비교예 3Comparative Example 3 3535 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 비교예 4Comparative Example 4 6060 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 8Example 8 8080 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 9Example 9 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 비교예 5Comparative Example 5 100100 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 10Example 10 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.10.1 PVPPVP 0.20.2 실시예 11Example 11 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.30.3 PVPPVP 0.20.2

[실험예 8 내지 11 및 비교실험예 3 내지 5][Experimental Examples 8 to 11 and Comparative Experimental Examples 3 to 5]

실시예 8 내지 실시예 11 및 비교예 3 내지 비교예 5와 같은 슬러리 조성물에 의한 연마율(Removal Rate) 선택비 및 defect(결함수)를 각각 측정하여 실험예 8 내지 실험예 11 및 비교실험예 3 내지 비교실험예 5로 표시하여 아래 표 4에 기재하였다.Experimental Examples 8 to 11 and Comparative Experimental Examples by measuring the removal rate selectivity and defect (number of defects) by the slurry compositions such as Examples 8 to 11 and Comparative Examples 3 to 5, respectively 3 to Comparative Experimental Example 5 are shown in Table 4 below.

Defect(결함수) 측정은 케이엘에이 텐코르사제 상품명 [AIT-XP+] 장비의 10 ㎛ spot size 광원을 사용하여 측정하였다.Defect (number of defects) was measured using a 10 μm spot size light source of [AIT-XP+] equipment manufactured by KLA Tencor Co., Ltd.

연마율(Å/min)Abrasive rate (Å/min) 선택비selectivity 결함수 (n)number of defects (n) CuCu TaNTaN 실리콘산화막silicon oxide film 실리콘산화막/TaNSilicon oxide/TaN Cu/TaNCu/TaN 비교실험예 3Comparative Experimental Example 3 9797 260260 296296 1.141.14 0.370.37 2424 비교실험예 4Comparative Experimental Example 4 105105 287287 430430 1.501.50 0.370.37 3838 실험예 8Experimental Example 8 146146 290290 720720 2.482.48 0.500.50 3535 실험예 9Experimental Example 9 150150 300300 711711 2.372.37 0.500.50 3737 비교실험예 5Comparative Experimental Example 5 175175 382382 757757 1.981.98 0.460.46 119119 실험예 10Experimental Example 10 161161 318318 842842 2.652.65 0.510.51 2727 실험예 11Experimental Example 11 163163 337337 852852 2.532.53 0.480.48 2323

상기 [표 4]에서 입자경이 증가할수록 연마율은 증가하지만 결함수가 증가하는 문제가 있으며 입자경 70nm 이하의 비교실험예 3과 4의 경우 두 막질 모두 연마율이 현저하게 저하되어 공정 시간이 지연되어 생산성에 문제가 된다.In [Table 4], as the particle diameter increases, the polishing rate increases, but there is a problem in that the number of defects increases. In the case of Comparative Experimental Examples 3 and 4 with a particle diameter of 70 nm or less, the polishing rate of both films is significantly reduced, resulting in a delay in the process time and productivity have a problem with

또한 표면보호제 암모늄 도데실 벤젠 설폰에이트 (ADBS)의 함량이 증가할수록 결함수가 감소함을 알 수 있다.In addition, it can be seen that the number of defects decreases as the content of the surface protecting agent ammonium dodecyl benzene sulfonate (ADBS) increases.

[실시예 12 내지 18 및 비교예 6 내지 7][Examples 12 to 18 and Comparative Examples 6 to 7]

하기 표 5에 기재된 함량에 따라 실시예 12 내지 실시예 18 및 비교예 6 내지 비교예 7의 구리 배리어층 연마용 슬러리 조성물을 제조하였다.Slurry compositions for polishing a copper barrier layer of Examples 12 to 18 and Comparative Examples 6 to 7 were prepared according to the contents shown in Table 5 below.

여기서, 콜로이달 실리카(colloidal silica)의 함량은 모두 15중량%로 하였고, 사용한 콜로이달 실리카의 입경은 90nm 이다. pH 조정제는 모두 KOH를 사용하였고, 질소화물은 모두 KNO3를 사용하였으며 각각 0.5중량%로 하였다. 산화방지제는 아스코빅산(ascorbic acid)을 사용하여 0.2중량%로 하였다.Here, the content of colloidal silica was 15% by weight, and the particle diameter of the colloidal silica used was 90 nm. KOH was used as the pH adjuster, and KNO3 was used as the nitride, and each was 0.5% by weight. Antioxidant was 0.2% by weight using ascorbic acid.

실리카 입자 크기silica particle size 헤테로고리
화합물
heterocycle
compound
유기산organic acid 표면보호제surface protectant
(nm) (nm) 성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
실시예 12Example 12 9090 BTABTA 0.10.1 AAAA 0.060.06 PVPPVP 0.150.15 실시예 13Example 13 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.10.1 PVPPVP 0.20.2 실시예 14Example 14 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.30.3 PVPPVP 0.20.2 실시예 15Example 15 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.20.2 실시예 16Example 16 9090 BTABTA 0.10.1 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 실시예 17Example 17 9090 BTABTA 0.10.1 IDAIDA 0.50.5 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 실시예 18Example 18 9090 BTABTA 0.10.1 IDAIDA 1.01.0 AAAA 0.060.06 ADBSADBS 0.50.5 PVPPVP 0.30.3 비교예 6Comparative Example 6 9090 BTABTA 0.10.1 비교예 7Comparative Example 7 9090 BTABTA 0.020.02

BTA : BenzotriazoleBTA: Benzotriazole

IDA : Iminodiacetic acid IDA: Iminodiacetic acid

AA : Acetic acidAA: Acetic acid

ADBS : Ammonium dodecyl benzene sulfonateADBS: Ammonium dodecyl benzene sulfonate

PVP : PolyvinylpyrrolidonePVP: Polyvinylpyrrolidone

[실험예 12 내지 18 및 비교실험예 6 내지 7][Experimental Examples 12 to 18 and Comparative Experimental Examples 6 to 7]

실시예 12 내지 실시예 18과 비교예 6 및 비교예 7과 같은 슬러리 조성물에 의한 연마율(Removal Rate), 선택비 및 디싱(dishing)을 각각 측정하여 실험예 12 내지 실험예 18과 비교실험예 6 및 비교실험예 7로 표시하여 아래 표 6에 기재하였다. Experimental Examples 12 to 18 and Comparative Experimental Examples by measuring the removal rate, selectivity, and dishing by the slurry compositions such as Examples 12 to 18 and Comparative Examples 6 and 7, respectively 6 and Comparative Experimental Example 7 are shown in Table 6 below.

연마율(Å/min)Abrasive rate (Å/min) 선택비selectivity 선택비selectivity 디싱(Å)Dishing (Å) CuCu TaNTaN OxOx Ox/TaN Ox/TaN Cu/TaNCu/TaN 1-1㎛1-1㎛ 실험예 12Experimental Example 12 185185 370370 887887 2.402.40 0.500.50 3939 실험예 13Experimental Example 13 191191 376376 960960 2.552.55 0.510.51 3131 실험예 14Experimental Example 14 215215 378378 972972 2.572.57 0.570.57 2323 실험예 15Experimental Example 15 233233 382382 968968 2.532.53 0.610.61 1919 실험예 16Experimental Example 16 240240 380380 11401140 3.003.00 0.630.63 1919 실시예 17Example 17 252252 368368 10801080 2.932.93 0.680.68 1818 실험예 18Experimental Example 18 254254 379379 11301130 2.982.98 0.670.67 2121 비교실험예 6Comparative Experimental Example 6 127127 309309 586586 1.901.90 0.410.41 7575 비교실험예 7Comparative Experimental Example 7 149149 347347 680680 1.961.96 0.430.43 128128

표 6에 기재된 실험예 12 내지 실험예 18 및 비교실험예 6 및 비교실험예 7의 연마율, 선택비 및 디싱(dishing) 값을 평가하면, 아래와 같다.Evaluating the polishing rate, selectivity, and dishing value of Experimental Examples 12 to 18 and Comparative Experimental Examples 6 and 7 described in Table 6 are as follows.

첫째, 착화제(Complexing Agents)를 사용한 실험예 12내지 실험예 18은 기존의 비교실험예 6 및 비교실험예 7에 비해 구리막의 연마율이 크게 증가하는 것을 알 수 있다.First, in Experimental Examples 12 to 18 using complexing agents, it can be seen that the polishing rate of the copper film increases significantly compared to Comparative Experimental Example 6 and Comparative Experimental Example 7.

둘째, 표면보호제인 폴리비닐피롤리돈(PVP)을 사용한 실험예 12내지 실험예 18은 기존의 비교실험예 6 및 비교실험예 7에 비해 실리콘 산화막의 연마율이 현저하게 증가하는 것을 알 수 있다.Second, in Experimental Examples 12 to 18 using polyvinylpyrrolidone (PVP) as a surface protecting agent, it can be seen that the polishing rate of the silicon oxide film is significantly increased compared to the conventional Comparative Experimental Example 6 and Comparative Experimental Example 7. .

셋째, 실험예 12 내지 실험예 18에서 착화제인 이미노디아세틱 에시드(IDA)함량이 증가할수록 구리막의 연마율이 증가하고 표면보호제인 암모늄 도데실 벤젠 설폰에이트 (ADBS)의 함량이 증가할수록 구리막층의 디싱이 감소함을 알 수 있다.Third, in Experimental Examples 12 to 18, as the content of iminodiacetic acid (IDA), a complexing agent, increases, the removal rate of the copper film increases, and as the content of ammonium dodecyl benzene sulfonate (ADBS), a surface protecting agent, increases, the copper film layer It can be seen that the dishing of is reduced.

이러한 이유로 실험예 12내지 실험예 18은 기존의 비교실험예 6 및 비교실험예 7에 비하여 선택비가 우수하였다.For this reason, Experimental Examples 12 to 18 had excellent selectivity compared to Comparative Experimental Example 6 and Comparative Experimental Example 7.

비교실험예 7의 경우 부식방식제 벤조트리아졸(BTA)의 함량이 적음으로 인해 구리막층의 연마율은 향상되지만 디싱이 증가되는 문제점이 나타난다.In the case of Comparative Experimental Example 7, due to the small content of the corrosion inhibitor, benzotriazole (BTA), the polishing rate of the copper film layer is improved, but there is a problem that dishing is increased.

[실시예 19 내지 22 및 비교예 8 내지 10][Examples 19 to 22 and Comparative Examples 8 to 10]

하기 표 7에 기재된 함량에 따라 실시예 19 내지 실시예 22 및 비교예 8 내지 비교예 10의 구리 배리어층 연마용 슬러리 조성물을 제조하였다.Slurry compositions for polishing a copper barrier layer of Examples 19 to 22 and Comparative Examples 8 to 10 were prepared according to the contents shown in Table 7 below.

하기 표7은 사용된 콜로이달 실리카의 입경과 표면보호제 ADBS 함량에 따른 구리 배리어층 연마용 슬러리 조성물을 제조하였다. Table 7 below shows slurry compositions for polishing a copper barrier layer according to the particle size of the colloidal silica used and the content of the surface protecting agent ADBS.

여기서, 콜로이달 실리카(colloidal silica)의 함량은 모두 15중량%로 하였고, 헤테로고리화합물은 BTA 0.05중량%, 유기산은 AA를 0.1중량%, 표면보호제는 PVP는 0.2중량%, pH 조정제는 KOH를 이용하여 0.2중량%로 하였으며, 질소화물은 KNO3를 이용하여 1.0중량%로 하였다.Here, the content of colloidal silica was 15% by weight, the heterocyclic compound was 0.05% by weight of BTA, the organic acid was 0.1% by weight of AA, the surface protecting agent was 0.2% by weight of PVP, and the pH adjusting agent was KOH. 0.2% by weight was used, and nitride was 1.0% by weight using KNO3.

실리카 입자 크기silica particle size 헤테로고리화합물 heterocyclic compound 유기산organic acid 표면보호제surface protectant (nm) (nm) 성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
성분ingredient 함량
(wt%)
content
(wt%)
비교예 8Comparative Example 8 3535 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 비교예 9Comparative Example 9 6060 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 19Example 19 8080 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 20Example 20 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 비교예 10Comparative Example 10 100100 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.050.05 PVPPVP 0.20.2 실시예 21Example 21 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.10.1 PVPPVP 0.20.2 실시예 22Example 22 9090 BTABTA 0.050.05 IDAIDA 0.10.1 AAAA 0.060.06 ADBSADBS 0.30.3 PVPPVP 0.20.2

[실험예 19 내지 22 및 비교실험예 8 내지 10][Experimental Examples 19 to 22 and Comparative Experimental Examples 8 to 10]

실시예 19 내지 실시예 22와 비교예 8 내지 비교예 10과 같은 슬러리 조성물에 의한 연마율(Removal Rate)과 defect(결함수)를 각각 측정하여 실험예 19 내지 실험예 22와 비교실험예 8 내지 비교실험예 10으로 표시하여 아래 표 8에 기재하였다.Example 19 to Example 22 and Comparative Example 8 to Comparative Example 8 to Comparative Example 8 to Experimental Example 22 and Comparative Example 8 to Example 22 and Comparative Example 8 to Example 22 and Comparative Example 8 to Indicated as Comparative Experimental Example 10 and shown in Table 8 below.

Defect(결함수) 측정은 케이엘에이 텐코르사제 상품명 [AIT-XP+] 장비의 10 ㎛ spot size 광원을 사용하여 측정하였다.Defect (number of defects) was measured using a 10 μm spot size light source of [AIT-XP+] equipment manufactured by KLA Tencor Co., Ltd.

연마율(Å/min)Abrasive rate (Å/min) 선택비selectivity 결함수 (n)number of defects (n) CuCu TaNTaN OxOx Ox/TaNOx/TaN Cu/TaNCu/TaN 비교실험예 8Comparative Experimental Example 8 115115 310310 348348 1.12 1.12 0.37 0.37 2727 비교실험예 9Comparative Experimental Example 9 125125 338338 510510 1.51 1.51 0.37 0.37 4141 실험예 19Experimental Example 19 172172 341341 846846 2.48 2.48 0.50 0.50 4747 실험예 20Experimental Example 20 178178 354354 956956 2.70 2.70 0.50 0.50 4646 비교실험예 10Comparative Experimental Example 10 209209 452452 891891 1.97 1.97 0.46 0.46 135135 실험예 21Experimental Example 21 187187 376376 994994 2.64 2.64 0.50 0.50 3939 실험예 22Experimental Example 22 194194 397397 10071007 2.54 2.54 0.49 0.49 2828

상기 표 8에 기재된 실험예 19 내지 실험예 22 및 비교실험예 8 내지 비교실험예 10의 연마율, 선택비 및 결함수 값을 평가하면, 아래와 같다.Evaluation of the polishing rate, selectivity, and number of defects of Experimental Examples 19 to 22 and Comparative Experimental Examples 8 to 10 described in Table 8 is as follows.

즉, 콜로이달 실리카의 입경이 증가할수록 연마율은 증가하지만 결함수가 증가하는 문제가 있으며 입경 70nm 이하의 비교실험예 8과 9의 경우 두 막질 모두 연마율이 현저하게 저하되어 공정 시간이 지연되어 생산성에 문제가 된다.That is, as the particle diameter of colloidal silica increases, the polishing rate increases, but there is a problem in that the number of defects increases. In the case of Comparative Experimental Examples 8 and 9 with a particle diameter of 70 nm or less, the polishing rate of both films is significantly reduced, resulting in a delay in the process time and productivity. have a problem with

또한 표면보호제 암모늄 도데실 벤젠 설폰에이트 (ADBS)의 함량이 증가할수록 결함수가 감소함을 알 수 있다.In addition, it can be seen that the number of defects decreases as the content of the surface protecting agent ammonium dodecyl benzene sulfonate (ADBS) increases.

상기의 결과는 콜로이달 실리카 13%와 15%에서 동일한 경향을 보여 재현성을 확보하였다.The above results showed the same tendency at 13% and 15% colloidal silica, ensuring reproducibility.

이상과 같이 본 발명은 한정된 실시예로 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 제한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.As described above, the present invention has been described as a limited embodiment, but the present invention is not limited to the above embodiment, and various modifications and variations can be made from these descriptions by those skilled in the art in the field to which the present invention belongs. Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, and should be defined by not only the claims to be described later, but also those equivalent to these claims.

Claims (17)

입경이 75 내지 95 nm이고 침강이 일어나지 않고 용매에 안정적으로 분산된 콜로이달 실리카인 연마입자 13 내지 15 중량%,
벤조트리아졸(BTA)인 헤테로고리화합물 0.05 내지 0.1 중량%,
질산칼륨(KNO3)인 질소화물 0.5 내지 1 중량%,
아세트산(acetic acid) 0.06 중량% 및 이미노디아세틱 에시드(Iminodiacetic acid, IDA) 0.1 내지 1.0 중량%로 구성되는 유기산 0.16 내지 1.06 중량%,
암모늄 도데실 벤젠 설폰에이트(ammonium dodecyl benzene sulfonate) 0.05 내지 0.5 중량% 및 폴리비닐알콜(PVA) 0.15 내지 0.3 중량%로 구성되는 표면보호제 0.2 내지 0.8 중량%,
아스코빅산(ascorbic acid)인 산화방지제 0.1 내지 0.5 중량%,
슬러리 조성물의 pH를 9 내지 12로 유지시키는 KOH인 pH 조정제, 및
잔량의 탈이온수로 이루어지는 구리 배리어층 연마용 CMP 슬러리 조성물.
13 to 15% by weight of colloidal silica particles having a particle size of 75 to 95 nm and stably dispersed in a solvent without sedimentation;
0.05 to 0.1% by weight of a benzotriazole (BTA) heterocyclic compound;
0.5 to 1% by weight of a nitride of potassium nitrate (KNO3);
0.16 to 1.06% by weight of an organic acid composed of 0.06% by weight of acetic acid and 0.1 to 1.0% by weight of iminodiacetic acid (IDA);
0.2 to 0.8% by weight of a surface protecting agent composed of 0.05 to 0.5% by weight of ammonium dodecyl benzene sulfonate and 0.15 to 0.3% by weight of polyvinyl alcohol (PVA);
0.1 to 0.5% by weight of an antioxidant that is ascorbic acid;
a pH adjuster that is KOH to maintain the pH of the slurry composition between 9 and 12; and
A CMP slurry composition for polishing a copper barrier layer comprising a residual amount of deionized water.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 연마 대상막은 구리 함유막과 배리어막으로 사용되는 티타늄(Ti), 탄탈륨(Ta), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 금(Au) 이루어진 군에서 선택되는 어느 하나를 포함하는 박막 또는 반도체 절연막으로 사용되는 산화막을 포함하는 것을 특징으로 하는 구리 배리어층 연마용 CMP 슬러리 조성물.
The method of claim 1, wherein the film to be polished is from the group consisting of titanium (Ti), tantalum (Ta), ruthenium (Ru), molybdenum (Mo), cobalt (Co), and gold (Au) used as a copper-containing film and a barrier film. A CMP slurry composition for polishing a copper barrier layer, characterized in that it comprises an oxide film used as a thin film or semiconductor insulating film containing any one selected from the group consisting of:
제16항에 있어서, 상기 CMP 슬러리 조성물은 질화탄탈륨막(TaN), 실리콘산화막(Silicon oxide) 및 구리막(Cu)의 연마 선택비가 1 : 1~4 : 0.5~1 인 것을 특징으로 하는 구리 배리어층 연마용 CMP 슬러리 조성물.The copper barrier according to claim 16, wherein the CMP slurry composition has a polishing selectivity of a tantalum nitride film (TaN), a silicon oxide film, and a copper film (Cu) in a range of 1:1 to 4:0.5 to 1 A CMP slurry composition for layer polishing.
KR1020220083295A 2022-07-06 2022-07-06 Cmp slurry composition for polishing a copper barrier layer KR102515722B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020220083295A KR102515722B1 (en) 2022-07-06 2022-07-06 Cmp slurry composition for polishing a copper barrier layer
TW112119206A TW202402985A (en) 2022-07-06 2023-05-23 Cmp slurry composition for polishing a copper barrier layer
PCT/KR2023/008568 WO2024010249A1 (en) 2022-07-06 2023-06-21 Cmp slurry composition for polishing copper barrier layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220083295A KR102515722B1 (en) 2022-07-06 2022-07-06 Cmp slurry composition for polishing a copper barrier layer

Publications (1)

Publication Number Publication Date
KR102515722B1 true KR102515722B1 (en) 2023-03-30

Family

ID=85985873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220083295A KR102515722B1 (en) 2022-07-06 2022-07-06 Cmp slurry composition for polishing a copper barrier layer

Country Status (3)

Country Link
KR (1) KR102515722B1 (en)
TW (1) TW202402985A (en)
WO (1) WO2024010249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010249A1 (en) * 2022-07-06 2024-01-11 와이씨켐 주식회사 Cmp slurry composition for polishing copper barrier layer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050002200A (en) * 2003-06-30 2005-01-07 동우 화인켐 주식회사 Slurry compositions for chemical mechanical polishing of copper
KR20090093805A (en) * 2008-02-29 2009-09-02 주식회사 엘지화학 Aqueous slurry composition for chemical mechanical polishing and chemical mechanical polishing method
KR20100118246A (en) * 2009-04-28 2010-11-05 테크노세미켐 주식회사 Cmp slurry composition for copper damascene process
KR20120067701A (en) * 2010-12-16 2012-06-26 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR20130053226A (en) * 2011-11-15 2013-05-23 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR101465604B1 (en) 2012-12-18 2014-11-27 주식회사 케이씨텍 Cmp slurry composition for polishing copper barrier layer and polishing method using the same
KR101548715B1 (en) 2013-12-30 2015-09-01 주식회사 케이씨텍 Slurry composition for polishing copper barrier layer
KR101698490B1 (en) 2013-10-11 2017-01-20 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Barrier chemical mechanical planarization composition and method of use thereof
KR20210095548A (en) 2020-01-23 2021-08-02 영창케미칼 주식회사 Slurry composition for polishing a copper barrier layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515722B1 (en) * 2022-07-06 2023-03-30 영창케미칼 주식회사 Cmp slurry composition for polishing a copper barrier layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050002200A (en) * 2003-06-30 2005-01-07 동우 화인켐 주식회사 Slurry compositions for chemical mechanical polishing of copper
KR20090093805A (en) * 2008-02-29 2009-09-02 주식회사 엘지화학 Aqueous slurry composition for chemical mechanical polishing and chemical mechanical polishing method
KR20100118246A (en) * 2009-04-28 2010-11-05 테크노세미켐 주식회사 Cmp slurry composition for copper damascene process
KR20120067701A (en) * 2010-12-16 2012-06-26 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR20130053226A (en) * 2011-11-15 2013-05-23 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR101465604B1 (en) 2012-12-18 2014-11-27 주식회사 케이씨텍 Cmp slurry composition for polishing copper barrier layer and polishing method using the same
KR101698490B1 (en) 2013-10-11 2017-01-20 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Barrier chemical mechanical planarization composition and method of use thereof
KR101548715B1 (en) 2013-12-30 2015-09-01 주식회사 케이씨텍 Slurry composition for polishing copper barrier layer
KR20210095548A (en) 2020-01-23 2021-08-02 영창케미칼 주식회사 Slurry composition for polishing a copper barrier layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010249A1 (en) * 2022-07-06 2024-01-11 와이씨켐 주식회사 Cmp slurry composition for polishing copper barrier layer

Also Published As

Publication number Publication date
WO2024010249A1 (en) 2024-01-11
TW202402985A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US7981316B2 (en) Selective barrier metal polishing method
EP1490897B1 (en) Tantalum barrier removal solution
EP2539411B1 (en) Chemical-mechanical planarization of substrates containing copper, ruthenium, and tantalum layers
KR20140117622A (en) Slurry for cobalt applications
TW201823396A (en) A chemical mechanical polishing slurry for the planarization of the barrier layer
EP1544901B1 (en) Polishing compound composition and polishing method
WO2009056491A1 (en) Cmp slurry composition and process for planarizing copper containing surfaces provided with a diffusion barrier layer
KR102515722B1 (en) Cmp slurry composition for polishing a copper barrier layer
WO2018120808A1 (en) Chem-mechanical polishing liquid for barrier layer
KR102421467B1 (en) Cmp slurry composition for polishing tungsten pattern wafer and method for polishing tungsten pattern wafer using the same
US20050009714A1 (en) Process and slurry for chemical mechanical polishing
TWI701323B (en) Slurry composition for polishing a copper barrier layer
KR20210095548A (en) Slurry composition for polishing a copper barrier layer
US20100009540A1 (en) Polishing compound, its production process and polishing method
KR101526006B1 (en) Cmp slurry composition for copper and polishing method using the same
KR100970094B1 (en) CMP slurry composition for polishing copper line and polishing method using the same
KR102544643B1 (en) Polishing slurry composition and polishing method using the same
CN115058712B (en) Copper barrier layer chemical mechanical polishing composition and application thereof
KR102253708B1 (en) Cmp slurry composition for polishing copper barrier layer and method for polishing using the same
KR100552381B1 (en) Slurry Composition for Chemical Mechanical Polishing of Metal
JP2003197572A (en) Composition for polishing

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant