TW202402985A - Cmp slurry composition for polishing a copper barrier layer - Google Patents

Cmp slurry composition for polishing a copper barrier layer Download PDF

Info

Publication number
TW202402985A
TW202402985A TW112119206A TW112119206A TW202402985A TW 202402985 A TW202402985 A TW 202402985A TW 112119206 A TW112119206 A TW 112119206A TW 112119206 A TW112119206 A TW 112119206A TW 202402985 A TW202402985 A TW 202402985A
Authority
TW
Taiwan
Prior art keywords
acid
slurry composition
polishing
barrier layer
copper
Prior art date
Application number
TW112119206A
Other languages
Chinese (zh)
Inventor
李昇勳
李昇炫
金勝煥
朴慶一
Original Assignee
南韓商Yc化工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Yc化工股份有限公司 filed Critical 南韓商Yc化工股份有限公司
Publication of TW202402985A publication Critical patent/TW202402985A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Abstract

The present invention relates to a slurry composition for polishing a copper barrier layer for chemical mechanical planarizing (CMP) of tantalum nitride or tantalum as a diffusion barrier in the presence of an interconnect structure in an integrated circuit device. The slurry composition according to the present invention comprises polishing particles, a heterocyclic compound, an organic acid, a surface-protecting agent, a nitride, a pH adjuster, and the remainder of deionized water, and there is the effect of providing a slurry composition exhibiting high polishing selectivity and less dishing and defects.

Description

用於研磨銅阻障層的CMP漿料組成物CMP slurry composition for grinding copper barrier layer

本發明涉及一種用於研磨銅阻障層的CMP漿料組成物,用於對積體電路設備(integrated circuit device)中於互連結構件的存在下之用作擴散阻障膜的氮化鉭或鉭進行化學機械研磨(chemical mechanical planarizing,CMP)。本發明提供的CMP漿料組成物是包括研磨顆粒、雜環化合物、有機酸、表面保護劑、氮化物、pH調節劑、以及餘量的去離子水的有效組成物,能夠提供一種優異的CMP漿料組成物,其與根據現有技術的CMP漿料組成物相比,研磨顆粒的分散性和穩定性優異、具有高研磨選擇比、且凹陷(dishing)及缺陷數(defect)少。The present invention relates to a CMP slurry composition for polishing copper barrier layers, which is used to treat tantalum nitride used as a diffusion barrier film in the presence of interconnection structural components in integrated circuit devices. Or tantalum is subjected to chemical mechanical planarizing (CMP). The CMP slurry composition provided by the present invention is an effective composition including abrasive particles, heterocyclic compounds, organic acids, surface protective agents, nitrides, pH regulators, and the balance of deionized water, and can provide an excellent CMP A slurry composition that has excellent dispersion and stability of abrasive particles, a high grinding selectivity, and fewer dishings and defects than the CMP slurry composition according to the related art.

最近,隨著半導體製造製程技術的發展,半導體產業中為了形成積體電路而依賴於銅電子互連件(interconnect)的情況正在增加。這些銅互連件的電阻率低,且具有優異的電遷移(electromigration)特性。Recently, with the development of semiconductor manufacturing process technology, the semiconductor industry's reliance on copper electronic interconnects for forming integrated circuits is increasing. These copper interconnects have low resistivity and excellent electromigration characteristics.

由於銅在效率性方面具有很多優點,例如優異的電遷移(electromigration)特性以及較低的電阻性等,因此一直以來主要作為如精細化以及高度積體化的ULSI的半導體積體電路的有限電連接材料。Since copper has many advantages in terms of efficiency, such as excellent electromigration characteristics and low resistance, it has been mainly used as a limited conductor for semiconductor integrated circuits such as refined and highly integrated ULSI. Connection materials.

但是,由於存在很難實現基於乾式蝕刻(etching)的圖案化而無法將銅用於積體電路的侷限,為了克服該問題,提出了透過根據雙鑲嵌(dual damascene)製程的CMP製程來形成銅互連的方法。在所述CMP製程中,銅形成由包含作為銅氧化物的離子的Cu +或者Cu 2+的CuO、CuO 2、Cu(OH) 3等構成的多孔氧化膜層。 However, there is a limitation that copper cannot be used in integrated circuits due to the difficulty in patterning by dry etching. In order to overcome this problem, it is proposed to form copper through a CMP process based on a dual damascene process. method of interconnection. In the CMP process, copper forms a porous oxide film layer composed of CuO, CuO 2 , Cu(OH) 3 , etc. containing Cu + or Cu 2+ as copper oxide ions.

但是,與矽材質的四乙氧基矽烷(tetraethoxysilane,TEOS)或者鎢等其他材質相比,銅相對軟,且在電化學方面也比鎢容易腐蝕(corrosion),因此雖然研磨速率高,但是取而代之的是容易產生由過度研磨(over-polishing)及刮痕引起的凹陷(dishing)或侵蝕(erosion)等,尤其產生研磨漿料的成分和在研磨製程中產生的氧化物等異物通過多孔膜質的孔滲入氧化銅膜層的現象。這樣的現象有可能在下一個製程,即,光刻(photolithography)製程等中引發問題,尤其是在根據佈線的設計由6至7個以上的層(layer)構成的高度積體化電路的情況下,鑒於電路的性能根據各層的平坦化程度而不同這一點,有可能成為致命缺陷的原因。However, compared with other materials such as silicon-based tetraethoxysilane (TEOS) or tungsten, copper is relatively soft and electrochemically corrodes more easily than tungsten. Therefore, although the polishing rate is high, it is replaced by It is easy to produce dishing or erosion caused by over-polishing and scratches, especially the components of the polishing slurry and foreign matter such as oxides generated during the polishing process pass through the porous membrane. The phenomenon of pores penetrating into the copper oxide film layer. Such a phenomenon may cause problems in the next process, that is, the photolithography process, especially in the case of highly integrated circuits composed of more than 6 to 7 layers depending on the wiring design. , since the performance of the circuit differs depending on the degree of planarization of each layer, it may become the cause of a fatal flaw.

銅在諸多電介質材料,例如二氧化矽以及低K或者摻雜版本(doped version)的二氧化矽中腐蝕性非常大,因此擴散阻障層是必要的,以防止銅擴散到底層電介質材料中。Copper is very corrosive in many dielectric materials, such as silicon dioxide and low-K or doped versions of silicon dioxide, so a diffusion barrier layer is necessary to prevent copper from diffusing into the underlying dielectric material.

典型的阻障材料包括鉭、氮化鉭、氮化鉭矽、鈦、氮化鈦、氮化鈦矽、鈦-氮化鈦、鈦-鎢、鎢、氮化鎢、以及氮化鎢矽。Typical barrier materials include tantalum, tantalum nitride, tantalum silicon nitride, titanium, titanium nitride, titanium silicon nitride, titanium-titanium nitride, titanium-tungsten, tungsten, tungsten nitride, and tungsten silicon nitride.

因應高密度積體電路的需求增加,製造商們目前正在組裝包括金屬互連結構件的多個上覆(overlying)層的積體電路。在組裝設備的過程中,只要將互連層平坦化,就能夠改善封裝密度、製程均勻性以及生產品質,最重要的是能夠允許晶片製造商組裝多層積體電路。作為製造平坦表面的比較有效的方法,晶片製造商們依賴於化學機械研磨製程處理(CMP)。In response to the increased demand for high-density integrated circuits, manufacturers are currently assembling integrated circuits that include multiple overlying layers of metal interconnect structures. In the process of assembling devices, as long as the interconnection layer is planarized, it can improve packaging density, process uniformity and production quality. Most importantly, it can allow chip manufacturers to assemble multi-layer integrated circuits. As a more efficient way to create flat surfaces, wafer manufacturers rely on chemical mechanical polishing (CMP).

CMP製程典型地透過2個階段來執行。首先,研磨製程使用以能夠迅速地去除銅的方式設計的「第1階段」漿料。The CMP process is typically performed in two stages. First, the grinding process uses a "stage 1" slurry designed to remove copper quickly.

在初期去除銅之後,「第2階段」漿料對阻障材料進行去除。典型地要求第2階段漿料具有如下優異的選擇性:在對互連結構件的物理結構或者電特性不會造成不良影響的情況下去除阻障物質。由於鹼性研磨漿料傳統上具有比酸性漿料快得多的Ta/TaN去除速率(removal rate),因此商業化的第2階段漿料典型地具有鹼性至中性的pH值。強調具有中性至鹼性的pH值的阻障金屬研磨漿料的優點的另一因素涉及在第2階段研磨過程中保存上覆於阻障金屬的金屬的必要性。為了減少金屬互連件的凹陷(dishing),金屬去除速率必須非常低。After the initial copper removal, the "stage 2" slurry removes the barrier material. Stage 2 slurries are typically required to have excellent selectivity for removing barrier materials without adversely affecting the physical structure or electrical properties of the interconnect structure. Since alkaline polishing slurries traditionally have much faster Ta/TaN removal rates than acidic slurries, commercial stage 2 slurries typically have an alkaline to neutral pH. Another factor that emphasizes the advantages of a barrier metal grinding slurry with a neutral to alkaline pH involves the need to preserve the metal overlying the barrier metal during the stage 2 grinding process. To reduce dishing of metal interconnects, metal removal rates must be very low.

因此,在化學機械研磨方法中,這樣的阻障漿料組成物需要較高的阻障去除速率、非常低的研磨後形貌(topography)、無腐蝕缺陷、以及非常低的刮痕或者腐蝕。根據選擇何種研磨劑、氧化劑或者添加劑,既能夠將研磨後表面的瑕疵、表面粗糙度、表面缺陷、侵蝕以及腐蝕等在半導體製程中重要的變數的變化幅度最小化,又能夠有效地利用目標研磨比對金屬絕緣膜或擴散壁或者金屬層進行研磨。Therefore, in chemical mechanical polishing methods, such barrier slurry compositions require high barrier removal rates, very low post-grinding topography, no corrosion defects, and very low scratches or corrosion. Depending on which abrasive, oxidant or additive is selected, the changes in the surface defects, surface roughness, surface defects, erosion and corrosion, which are important variables in the semiconductor process, can be minimized and the target can be effectively utilized. The polishing ratio is to polish the metal insulating film, diffusion wall or metal layer.

利用根據現有技術的CMP漿料組成物進行實驗,其結果是,存在由銅和鉭化物的研磨量不良引起的CMP工作處理量的問題、由銅物質的腐蝕引起的設備性能和產品良率降低的問題、層平坦化問題、以及研磨時產生的凹陷現象等問題。並且,在對銅膜質進行研磨的製程的情況下,需要以適當的研磨速率達到較低的表面缺陷等級,但根據現有技術的CMP漿料組成物存在研磨製程時間變長或者出現表面缺陷等的問題。 [現有技術文獻] Experiments were conducted using CMP slurry compositions based on the prior art. As a result, there were problems with CMP work throughput caused by poor grinding amounts of copper and tantalum compounds, and reduced equipment performance and product yields caused by corrosion of copper substances. problems, layer planarization problems, and dents produced during grinding. In addition, in the case of a process of polishing copper film, it is necessary to achieve a lower level of surface defects at an appropriate polishing rate. However, according to the CMP slurry composition of the prior art, the polishing process time becomes longer or surface defects appear, etc. problem. [Prior art documents]

[專利文獻] (專利文獻0001) 韓國專利註冊第10-1465604號; (專利文獻0002) 韓國專利註冊第10-1548715號; (專利文獻0003) 韓國專利註冊第10-1698490號; (專利文獻0004) 韓國專利公開第10-2021-0095548號。 [Patent Document] (Patent document 0001) Korean Patent Registration No. 10-1465604; (Patent document 0002) Korean Patent Registration No. 10-1548715; (Patent document 0003) Korean Patent Registration No. 10-1698490; (Patent Document 0004) Korean Patent Publication No. 10-2021-0095548.

[發明所欲解決之問題][The problem that the invention aims to solve]

本發明的目的在於,解決根據現有技術的CMP漿料組成物中存在的如下問題:由銅和鉭化物的研磨量不良引起的CMP工作處理量的問題、由銅物質的腐蝕引起的設備性能和產品良率降低的問題、層平坦化問題、以及研磨時產生的凹陷現象等問題。The purpose of the present invention is to solve the following problems existing in the CMP slurry composition according to the prior art: the CMP work throughput problem caused by poor grinding amount of copper and tantalum compounds, equipment performance and equipment performance caused by corrosion of copper substances, and Problems such as reduced product yield, layer planarization, and dents produced during grinding.

並且,本發明的目的在於,提供一種用於研磨銅阻障層的CMP漿料組成物,與現有漿料相比,在對銅膜質進行研磨的製程中既具有適當的研磨速率,又顯著地減少凹陷、腐蝕、及缺陷數(defect)。Furthermore, the object of the present invention is to provide a CMP slurry composition for polishing a copper barrier layer. Compared with the existing slurry, it not only has an appropriate polishing rate in the process of polishing the copper film quality, but also has a significantly higher polishing rate. Reduce dents, corrosion, and defects.

並且,本發明的目的在於,提供一種用於研磨銅阻障層的CMP漿料組成物,在關於上述所提及的銅CMP製程中產生的問題方面,相比於現有漿料具有更大的氧化矽膜和銅膜的臺階差去除速率。 [解決問題之技術手段] Furthermore, the object of the present invention is to provide a CMP slurry composition for polishing a copper barrier layer, which has greater resolution than existing slurries in terms of the above-mentioned problems arising in the copper CMP process. Step difference removal rate of silicon oxide film and copper film. [Technical means to solve problems]

為了實現所述目的,本發明提供一種用於研磨銅阻障層的CMP漿料組成物,包括:由膠態二氧化矽構成的研磨顆粒、雜環化合物、有機酸、表面保護劑、氮化物、pH調節劑、以及餘量的去離子水,透過調節所述添加劑及溶劑的含量,並調節膠態二氧化矽的粒徑,來調節相對於氧化矽膜、鉭膜以及銅膜的研磨選擇比和研磨速率以進行研磨。In order to achieve the above object, the present invention provides a CMP slurry composition for grinding a copper barrier layer, including: abrasive particles composed of colloidal silica, heterocyclic compounds, organic acids, surface protective agents, nitrides , pH adjuster, and the balance of deionized water, by adjusting the content of the additives and solvents, and adjusting the particle size of the colloidal silicon dioxide, the grinding selection relative to the silicon oxide film, tantalum film, and copper film is adjusted ratio and grinding rate for grinding.

在本發明的一較佳實施例中,所述膠態二氧化矽的粒徑為75至95 nm。In a preferred embodiment of the present invention, the particle size of the colloidal silica is 75 to 95 nm.

在本發明的一較佳實施例中,所述雜環化合物具有兩個以上的氮原子,並且選自由1,2,4H-三唑、5-甲基苯并三唑、四唑、咪唑、1,2-二甲基咪唑、苯并三唑(BTA)、1H-苯并三唑乙腈、以及哌𠯤所組成的群組中的一種以上。In a preferred embodiment of the present invention, the heterocyclic compound has more than two nitrogen atoms and is selected from the group consisting of 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, imidazole, One or more of the group consisting of 1,2-dimethylimidazole, benzotriazole (BTA), 1H-benzotriazoleacetonitrile, and piperazole.

在本發明的一較佳實施例中,所述表面保護劑,作為非離子型表面保護劑,能夠選自聚乙烯醇(PVA)、乙二醇(EG)、丙三醇、聚乙二醇(PEG)、聚丙二醇(PPG)、或聚乙烯吡咯烷酮(PVP)等;並且,作為陰離子型表面保護劑,能夠選自十二烷基苯磺酸銨(ammonium dodecyl benzene sulfonate)、聚氧乙烯烷基磺酸銨(ammonium polyoxyethylene alkyl sulfonate)、聚氧乙烯烷基芳基磺酸銨(ammonium polyoxyethylene alkyl aryl sulfonate)等;也能夠混合使用選自這些表面保護劑中的兩種以上。最佳地混合使用非離子型的聚乙烯吡咯烷酮(PVP)和陰離子型的十二烷基苯磺酸銨(ammonium dodecyl benzene sulfonate)。In a preferred embodiment of the present invention, the surface protective agent, as a nonionic surface protective agent, can be selected from the group consisting of polyvinyl alcohol (PVA), ethylene glycol (EG), glycerol, and polyethylene glycol. (PEG), polypropylene glycol (PPG), or polyvinylpyrrolidone (PVP), etc.; and, as the anionic surface protective agent, it can be selected from ammonium dodecyl benzene sulfonate (ammonium dodecyl benzene sulfonate), polyoxyethylene alkane Ammonium polyoxyethylene alkyl sulfonate, ammonium polyoxyethylene alkyl aryl sulfonate, etc.; two or more types selected from these surface protective agents can also be mixed and used. Optimally, nonionic polyvinylpyrrolidone (PVP) and anionic ammonium dodecyl benzene sulfonate are used in combination.

在本發明的一較佳實施例中,所述有機酸可以是選自由檸檬酸(citric acid)、戊二酸(glutaric acid)、蘋果酸(malic acid)、馬來酸(maleic acid)、草酸(oxalic acid)、鄰苯二甲酸(phthalic acid)、琥珀酸(succinic acid)、酒石酸(tartaric acid)、以及乙酸(acetic acid)所組成的羧酸群組中的任一種;還可以是選自由氮基三乙酸(Nitrilotriacetic acid,NTA)、亞胺基二乙酸(Iminodiacetic acid,IDA)、甲基亞胺基二乙酸(Methyl iminodiacetic acid,MIDA)、羥乙基亞胺基二乙酸(Hydroxyethyl iminodiacetic acid,HIDA)、二乙三胺五乙酸(Diethylenetriamine pentaacetic acid,DPTA)、乙二胺四乙酸(Ethylenediamine tetraacetic acid,EDTA)、N-羥乙基乙二胺四乙酸(N-hydroxyethyl ethylenediamine tetraacetic acid,HEDTA)、甲基乙二胺四乙酸(Methyl ethylenediamine tetraacetic acid,MEDTA)、以及三乙四胺六乙酸(Triethylene tetraamine hexaacetic acid,TTHA)等所組成的胺基酸群組中的一種以上。In a preferred embodiment of the present invention, the organic acid may be selected from the group consisting of citric acid, glutaric acid, malic acid, maleic acid, and oxalic acid. Any one of the carboxylic acid group consisting of (oxalic acid), phthalic acid, succinic acid, tartaric acid, and acetic acid; it can also be selected from Nitrilotriacetic acid (NTA), Iminodiacetic acid (IDA), Methyl iminodiacetic acid (MIDA), Hydroxyethyl iminodiacetic acid (Hydroxyethyl iminodiacetic acid) , HIDA), Diethylenetriamine pentaacetic acid (DPTA), Ethylenediamine tetraacetic acid (EDTA), N-hydroxyethyl ethylenediamine tetraacetic acid (HEDTA) ), methylethylenediamine tetraacetic acid (MEDTA), and triethylene tetraamine hexaacetic acid (TTHA).

在本發明的一較佳實施例中,所述抗氧化劑選自由抗壞血酸(ascorbic acid)、L(+)-抗壞血酸(L(+)-ascorbic acid)、異抗壞血酸(isoascorbic acid)、抗壞血酸衍生物(ascorbic acid derivatives)、沒食子酸(gallic acid)、甲脒亞磺酸(formamidinesulfinic acid)、尿酸(uric acid)、酒石酸(tartaric acid)、以及半胱氨酸(cysteine)等所組成的群組中的一種以上。In a preferred embodiment of the present invention, the antioxidant is selected from the group consisting of ascorbic acid, L(+)-ascorbic acid, isoascorbic acid, ascorbic acid derivatives ( ascorbic acid derivatives), gallic acid, formamidinesulfinic acid, uric acid, tartaric acid, and cysteine More than one of them.

在本發明的一較佳實施例中,為了將pH値範圍調節為鹼性,所述pH調節劑可以單獨或者混合使用KOH、NH 4OH、NaOH、TMAH、TBAH、KNO 3、NH 4NO 3、HNO 3等。由於pH値與漿料的顆粒穩定性及研磨速率密切相關,因此必須精密地調節。 In a preferred embodiment of the present invention, in order to adjust the pH value range to alkaline, the pH adjuster can be used alone or mixed with KOH, NH 4 OH, NaOH, TMAH, TBAH, KNO 3 , NH 4 NO 3 , HNO 3 , etc. Since the pH value is closely related to the particle stability and grinding rate of the slurry, it must be adjusted precisely.

在本發明的一較佳實施例中,所述CMP漿料組成物包括:相對於組成物總重量13至15重量%之由膠態二氧化矽構成的研磨顆粒、研磨顆粒、雜環化合物、有機酸、表面保護劑、氮化物、pH調節劑、以及餘量的去離子水。In a preferred embodiment of the present invention, the CMP slurry composition includes: 13 to 15% by weight of abrasive particles composed of colloidal silica, abrasive particles, heterocyclic compounds, Organic acids, surface protective agents, nitrogen compounds, pH adjusters, and the balance of deionized water.

在本發明的一較佳實施例中,所述CMP漿料組成物的pH値為9至12。In a preferred embodiment of the present invention, the pH value of the CMP slurry composition is 9 to 12.

在本發明的一較佳實施例中,所述CMP漿料組成物同時對由選自氧化矽膜、鉭膜及銅膜中的兩種以上構成的被研磨膜進行研磨。In a preferred embodiment of the present invention, the CMP slurry composition simultaneously polishes the polished film composed of two or more films selected from the group consisting of silicon oxide film, tantalum film and copper film.

在本發明的一較佳實施例中,在所述研磨中,氮化鉭膜(TaN)、氧化矽膜(Silicon oxide)、及銅膜(Cu)的研磨選擇比為1:1~4:0.5~1。 [對照先前技術之功效] In a preferred embodiment of the present invention, in the polishing, the polishing selectivity ratio of the tantalum nitride film (TaN), the silicon oxide film (Silicon oxide), and the copper film (Cu) is 1:1 to 4: 0.5~1. [Compare the effectiveness of previous technologies]

根據本發明的用於研磨銅阻障層的CMP漿料組成物,表現出在氧化矽膜與銅膜層之間具有較高的臺階差去除效率,從而提高生產率的效果。The CMP slurry composition for polishing the copper barrier layer according to the present invention exhibits a high step difference removal efficiency between the silicon oxide film and the copper film layer, thereby improving productivity.

並且,根據本發明的用於研磨銅阻障層的CMP漿料組成物表現出如下效果:能夠在對銅膜層進行研磨的同時最小化凹陷、腐蝕、缺陷(defect)等,從而能夠高效地形成具可靠性以及特性優異的半導體設備層的銅佈線層等,因此大大有助於獲得高性能的半導體設備。Furthermore, the CMP slurry composition for polishing the copper barrier layer according to the present invention exhibits the following effect: it can polish the copper film layer while minimizing dents, corrosion, defects, etc., thereby efficiently polishing the copper barrier layer. It forms copper wiring layers and other semiconductor device layers with excellent reliability and characteristics, thereby greatly contributing to the achievement of high-performance semiconductor devices.

通常,在本說明書中使用的命名法是在本發明所屬技術領域中公知且通常使用的。在沒有其他定義的前提下,本說明書中使用的所有技術用語以及科學用語具有與本發明所屬技術領域中具有通常知識者通常理解的含義相同的含義。Generally, the nomenclature used in this specification is well known and commonly used in the technical field to which the present invention belongs. Unless otherwise defined, all technical terms and scientific terms used in this specification have the same meanings as commonly understood by a person of ordinary skill in the technical field to which this invention belongs.

在本說明書全文中,當表述某一部分「包括」某一構成要素時,在沒有特別相反的記載的情況下,表示並不排除其他構成要素,而是還可以包括其他構成要素。Throughout this specification, when it is stated that a certain part "includes" a certain constituent element, it means that other constituent elements are not excluded but may also include other constituent elements, unless otherwise stated.

通常,在第1階段中,在去除過多的覆銅(overburden copper)之後,研磨之後的晶圓表面因不同位置處的臺階差(step height)的差異而具有不均勻的局部以及整體平坦度。對於低密度特徵,通常具有較高的銅臺階差;而對於高密度特徵,通常具有較低的臺階差。Typically, in the first stage, after excess copper is removed, the polished wafer surface has uneven local and overall flatness due to differences in step heights at different locations. Low-density features typically have higher copper step differences, while high-density features typically have lower step differences.

由於第1階段之後的臺階差,非常需要相比於銅對氧化物的去除速率具有選擇性研磨的第2階段CMP漿料。Due to the step difference after stage 1, there is a strong need for a stage 2 CMP slurry with selective milling of oxide removal rates compared to copper.

在本發明中,「選擇比(Selectivity ratio)」是指在相同的研磨條件下對互不相同的物質具有不同的去除速率。In the present invention, "selectivity ratio" refers to different removal rates for different substances under the same grinding conditions.

阻障漿料在圖案形成之後的晶圓的CMP製程第2階段較佳地提供以下中的一個以上:針對多種類型的薄膜的較佳的去除速率、低程度的晶圓內研磨不均勻性(within wafer non-uniformity:WIW NU)、在CMP製程之後的被研磨晶圓上的較少殘留物、針對多種研磨層的研磨選擇比。The barrier slurry in the CMP process stage 2 of the wafer after patterning preferably provides one or more of the following: better removal rates for multiple types of films, low degree of in-wafer polishing non-uniformity ( within wafer non-uniformity: WIW NU), less residue on the polished wafer after the CMP process, polishing selectivity for multiple polishing layers.

不適合於半導體製造的特殊特性的失真(specific featured distortion)是因在CMP製程中,化學成分與銅通孔或者金屬管道相互作用以及額外的腐蝕引起的對銅通孔或者金屬管道造成的損傷。因此,非常重要的一點是,在阻障CMP漿料中使用防腐蝕劑,以在CMP製程期間減少銅通孔或者溝槽的額外腐蝕,並減少缺陷。Specific featured distortion that is not suitable for semiconductor manufacturing is damage to copper vias or metal pipes caused by the interaction of chemical components with copper vias or metal pipes and additional corrosion during the CMP process. Therefore, it is very important to use corrosion inhibitors in the barrier CMP slurry to reduce additional corrosion of copper vias or trenches during the CMP process and reduce defects.

在第2階段CMP製程中,阻障CMP組成物的化學反應包括由CMP漿料中使用的氧化劑如H 2O 2引起的氧化反應。金屬例如銅、管道、通孔或者溝槽、阻障物質、諸如Ta的表面被氧化成對應的金屬氧化物薄膜。 In the second-stage CMP process, chemical reactions that block the CMP composition include oxidation reactions caused by oxidants such as H 2 O 2 used in the CMP slurry. Surfaces of metals such as copper, pipes, vias or trenches, barrier materials such as Ta are oxidized into corresponding metal oxide films.

一般來說,銅被氧化成氧化亞銅或者氧化銅混合物,Ta被氧化成Ta 2O 5。透過將能夠與銅陽離子及鉭陽離子化學鍵合的螯合物、配位基或者其他化學添加劑使用於阻障漿料中,能夠促進銅氧化物以及鉭氧化物溶解,從而提高銅、管道、通孔或者溝槽以及阻障層或者阻障薄膜的去除速率。 Generally speaking, copper is oxidized to cuprous oxide or a copper oxide mixture, and Ta is oxidized to Ta 2 O 5 . By using chelates, ligands or other chemical additives that can chemically bond with copper cations and tantalum cations in the barrier slurry, the dissolution of copper oxides and tantalum oxides can be promoted, thereby improving the quality of copper, pipes, and vias. Or the removal rate of trenches and barrier layers or barrier films.

因此,本發明所要開發的是一種CMP用漿料組成物,與現有漿料相比,其顯著地減少在銅CMP製程中產生的腐蝕或缺陷,並能夠對氧化矽膜、銅膜、及鉭膜進行快速研磨。Therefore, what the present invention aims to develop is a slurry composition for CMP, which, compared with existing slurries, can significantly reduce corrosion or defects produced in the copper CMP process, and can effectively treat silicon oxide films, copper films, and tantalum films. The membrane is quickly ground.

根據本發明的用於研磨銅阻障層的漿料包括:由膠態二氧化矽構成的研磨顆粒、雜環化合物、有機酸、表面保護劑、氮化物、pH調節劑、以及餘量的去離子水。The slurry for grinding the copper barrier layer according to the present invention includes: abrasive particles composed of colloidal silica, heterocyclic compounds, organic acids, surface protective agents, nitrides, pH adjusters, and the remaining amount of Ionized water.

所述膠態二氧化矽是指奈米粒徑的二氧化矽顆粒穩定地分散於溶劑中而不產生沉降的膠體溶液。從為了適當地保持刮痕(Scratch)以及去除速率(Removal rate)的觀點來看,較佳所述膠態二氧化矽的粒徑為75至95 nm,更佳為80至90 nm。The colloidal silica refers to a colloidal solution in which nanometer-sized silica particles are stably dispersed in a solvent without settling. From the viewpoint of maintaining scratches and removal rate appropriately, the particle size of the colloidal silica is preferably 75 to 95 nm, more preferably 80 to 90 nm.

若膠態二氧化矽的粒徑小於75 nm,則相對於膜質的去除速率(Removal rate)會減小,製程所需時間變長;若超過95 nm,則容易形成刮痕(Scratch),因此不佳。If the particle size of colloidal silica is less than 75 nm, the removal rate relative to the film quality will be reduced and the process will take longer; if it exceeds 95 nm, scratches will easily form, so Not good.

較佳地,相對於組成物總重量,所述膠態二氧化矽的用量為13重量%至15重量%。Preferably, the amount of colloidal silica is 13% to 15% by weight relative to the total weight of the composition.

若膠態二氧化矽的用量小於13重量%,則由於固體含量不足而導致去除速率(Removal rate)減小;若用量超過15重量%,則由於含量過多而產生聚集現象,因此不佳。If the amount of colloidal silica is less than 13% by weight, the removal rate (Removal rate) will be reduced due to insufficient solid content; if the amount exceeds 15% by weight, excessive content will cause aggregation, which is not good.

在根據本發明一實施例的CMP漿料組成物中,所述雜環化合物具有兩個以上的氮原子,並且選自由1,2,4H-三唑、5-甲基苯并三唑、四唑、咪唑、1,2-二甲基咪唑、苯并三唑(BTA)、1H-苯并三唑乙腈、或哌𠯤所組成的群組中的一種以上。從腐蝕抑制效果、研磨速率度以及漿料組成物的穩定性方面來看,所述防腐蝕劑也可以為所述漿料組成物的0.005重量%至0.5重量%。In the CMP slurry composition according to an embodiment of the present invention, the heterocyclic compound has more than two nitrogen atoms and is selected from the group consisting of 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, One or more of the group consisting of azole, imidazole, 1,2-dimethylimidazole, benzotriazole (BTA), 1H-benzotriazole acetonitrile, or piperazole. From the aspects of corrosion inhibition effect, grinding rate and stability of the slurry composition, the anti-corrosion agent may also be 0.005% to 0.5% by weight of the slurry composition.

若所述防腐蝕劑少於0.005重量%,則無法進行銅膜的研磨控制,有可能產生凹陷問題;若所述防腐蝕劑超過0.5重量%,則銅膜的研磨速率變低,有可能產生留下殘留物(residue)的問題。If the anti-corrosion agent is less than 0.005% by weight, the polishing control of the copper film cannot be performed, and denting may occur; if the anti-corrosion agent exceeds 0.5% by weight, the polishing rate of the copper film becomes low, and residues may occur. The problem of residue.

能夠在本發明的CMP漿料中使用的鉭化物的研磨速率增強劑是用作pH調節劑的氮化物。氮化物是針對鉭或鈦化物的蝕刻液使用的物質,在進行CMP研磨時能夠有效地去除鉭。Grinding rate enhancers of tantalum compounds that can be used in the CMP slurry of the present invention are nitride compounds that serve as pH adjusters. Nitride is a substance used in etching solutions for tantalum or titanium compounds, and can effectively remove tantalum during CMP polishing.

作為本發明中使用的氮化物,能夠使用硝酸鉀(KNO 3)、硝酸(HNO 3)、硝酸銨(NH 4NO 3)、硝酸鐵(Fe(NO 3) 2)、以及硝酸銅(Cu(NO 3) 2)等,還可以混合組成這些氮化物來使用。通常,鈦或鉭化物為相對穩定的物質,容易被氫氟酸和硝酸的混合物蝕刻,具有對鹼性和王水(aqua regia)反應緩慢的特性。通常,所述漿料中使用的氮化物的量較佳在約0.05至10重量%的範圍內,更佳在約0.1至1重量%的範圍內。 As the nitride used in the present invention, potassium nitrate (KNO 3 ), nitric acid (HNO 3 ), ammonium nitrate (NH 4 NO 3 ), iron nitrate (Fe(NO 3 ) 2 ), and copper nitrate (Cu( NO 3 ) 2 ), etc., these nitrides can also be mixed and used. Generally, titanium or tantalum compounds are relatively stable substances, easily etched by a mixture of hydrofluoric acid and nitric acid, and have the characteristic of slow reaction to alkaline and aqua regia. Generally, the amount of nitride used in the slurry is preferably in the range of about 0.05 to 10% by weight, more preferably in the range of about 0.1 to 1% by weight.

本發明中使用的表面保護劑,作為非離子型表面保護劑,能夠選自聚乙烯醇(PVA)、乙二醇(EG)、丙三醇、聚乙二醇(PEG)、聚丙二醇(PPG)、或聚乙烯吡咯烷酮(PVP)等;並且,作為陰離子型表面保護劑,能夠選自十二烷基苯磺酸銨(ammonium dodecyl benzene sulfonate)、聚氧乙烯烷基磺酸銨(ammonium polyoxyethylene alkyl sulfonate)、聚氧乙烯烷基芳基磺酸銨(ammonium polyoxyethylene alkyl aryl sulfonate)等;也可以混合使用選自這些表面保護劑中的兩種以上。最佳地混合使用非離子型的聚乙烯吡咯烷酮(PVP)及陰離子型的十二烷基苯磺酸銨(ammonium dodecyl benzene sulfonate)。The surface protective agent used in the present invention, as a non-ionic surface protective agent, can be selected from polyvinyl alcohol (PVA), ethylene glycol (EG), glycerol, polyethylene glycol (PEG), polypropylene glycol (PPG) ), or polyvinylpyrrolidone (PVP), etc.; and, as the anionic surface protective agent, it can be selected from ammonium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl sulfonate), polyoxyethylene alkyl aryl sulfonate (ammonium polyoxyethylene alkyl aryl sulfonate), etc.; two or more types selected from these surface protective agents may be mixed and used. It is best to use a mixture of nonionic polyvinylpyrrolidone (PVP) and anionic ammonium dodecyl benzene sulfonate.

所述非離子保護劑在溶液中吸附於顆粒表面,由於包含一個以上之與顆粒具有親和力的官能基,因此能夠強力且持續地吸附於顆粒表面,起到增加粒徑的作用。從而,對氧化矽膜也起到能夠適當提高研磨速率的作用。並且,透過立體排斥力保持分散穩定性。從而,若保護劑的含量相對於組成物總重量小於0.15重量%,則分散力低,且沉澱很快,因此當輸送研磨液時會產生沉澱,從而無法均勻地供給研磨材料。與此相對,若分散劑的含量相對於組成物總重量超過1.0重量%,則在研磨材料顆粒周邊厚厚地形成一種起到緩衝作用的保護劑層,使研磨劑表面很難與待研磨表面接觸,可能導致研磨速率變低。The non-ionic protective agent is adsorbed on the particle surface in the solution. Since it contains more than one functional group with affinity to the particles, it can be strongly and continuously adsorbed on the particle surface, thereby increasing the particle size. Therefore, the silicon oxide film also plays a role in appropriately increasing the polishing rate. Furthermore, dispersion stability is maintained through steric repulsion. Therefore, if the content of the protective agent is less than 0.15% by weight relative to the total weight of the composition, the dispersion force is low and sedimentation occurs quickly. Therefore, sedimentation occurs when the polishing liquid is transported, and the polishing material cannot be uniformly supplied. In contrast, if the content of the dispersant exceeds 1.0% by weight relative to the total weight of the composition, a protective layer of buffering agent will be thickly formed around the abrasive particles, making it difficult for the abrasive surface to contact the surface to be polished. , which may result in a lower grinding rate.

表面保護劑起到在研磨期間保護晶圓表面不受研磨墊的殘留物或者金屬殘留物、有機殘留物的影響的作用,以減少晶圓缺陷數,尤其在混合使用陰離子磺酸銨衍生物的情況下,起到清洗晶圓表面上的各種殘留物的作用,進一步改善缺陷數。通常,較佳地,漿料中使用的表面保護劑的量在約0.15至1.0重量%的範圍內,最佳地在約0.3至0.8重量%的範圍內。Surface protective agents play a role in protecting the wafer surface from the residues of the polishing pad or metal residues and organic residues during grinding to reduce the number of wafer defects, especially when anionic ammonium sulfonate derivatives are mixed. In this case, it plays the role of cleaning various residues on the wafer surface, further improving the number of defects. Generally, preferably, the amount of surface protective agent used in the slurry is in the range of about 0.15 to 1.0% by weight, and most preferably in the range of about 0.3 to 0.8% by weight.

為了調節相對於阻障金屬去除速率的銅去除速率,本發明的CMP漿料中使用有機酸。In order to adjust the copper removal rate relative to the barrier metal removal rate, organic acids are used in the CMP slurry of the present invention.

有機酸透過與銅氧化物之間的螯合反應抑制被氧化的銅氧化物再次吸附於作為被研磨層的銅層,以增加對銅的研磨速率,並減少表面缺陷。透過將對目標金屬成分具有選擇性的有機酸添加到漿料中,能夠進一步改善電介質/金屬複合結構的CMP平坦化。The organic acid inhibits the oxidized copper oxide from being adsorbed again on the copper layer as the polished layer through the chelation reaction with the copper oxide, thereby increasing the polishing rate of copper and reducing surface defects. CMP planarization of the dielectric/metal composite structure can be further improved by adding an organic acid selective to the target metal component into the slurry.

這會增加金屬相的侵蝕速率,並增加金屬對電介質相去除的研磨選擇比,從而使平坦化製程更加有效。This increases the erosion rate of the metallic phase and increases the grinding selectivity for metal to dielectric phase removal, making the planarization process more efficient.

能夠在本發明中使用的有機酸包含羧酸類有機酸和胺基酸類有機酸,首先,羧酸類有機酸選自由檸檬酸(citric acid)、戊二酸(glutaric acid)、蘋果酸(malic acid)、馬來酸(maleic acid)、草酸(oxalic acid)、鄰苯二甲酸(phthalic acid)、琥珀酸(succinic acid)、酒石酸(tartaric acid)、以及乙酸(acetic acid)所組成的羧酸群組中的一種以上。Organic acids that can be used in the present invention include carboxylic acid-based organic acids and amino acid-based organic acids. First, the carboxylic acid-based organic acids are selected from citric acid, glutaric acid, and malic acid. , maleic acid, oxalic acid, phthalic acid, succinic acid, tartaric acid, and acetic acid. More than one of them.

其次,胺基酸類有機酸選自由氮基三乙酸(Nitrilotriacetic acid,NTA)、亞胺基二乙酸(Iminodiacetic acid,IDA)、甲基亞胺基二乙酸(Methyl iminodiacetic acid,MIDA)、羥乙基亞胺基二乙酸(Hydroxyethyl iminodiacetic acid,HIDA)、二乙三胺五乙酸(Diethylenetriamine pentaacetic acid,DPTA)、乙二胺四乙酸(Ethylenediamine tetraacetic acid,EDTA)、N-羥乙基乙二胺四乙酸(N-hydroxyethyl ethylenediamine tetraacetic acid,HEDTA)、甲基乙二胺四乙酸(Methyl ethylenediamine tetraacetic acid,MEDTA)、以及三乙四胺六乙酸(Triethylene tetraamine hexaacetic acid,TTHA)等所組成的群組中的一種以上。Secondly, the amino acid organic acid is selected from Nitrilotriacetic acid (NTA), Iminodiacetic acid (IDA), Methyl iminodiacetic acid (MIDA), hydroxyethyl Hydroxyethyl iminodiacetic acid (HIDA), Diethylenetriamine pentaacetic acid (DPTA), Ethylenediamine tetraacetic acid (EDTA), N-hydroxyethylethylenediaminetetraacetic acid In the group consisting of (N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), methylethylenediamine tetraacetic acid (MEDTA), and triethylene tetraamine hexaacetic acid (TTHA), etc. More than one kind.

相對於漿料組成物的重量,有機酸的添加量為0.05至5重量%,較佳濃度為0.1至3重量%,最佳濃度為0.1至1重量%。若用量過小,則螯合劑不會表現出本發明所希望的效果;若用量過大,則螯合劑會被消耗掉而無進一步的效果。Relative to the weight of the slurry composition, the amount of organic acid added is 0.05 to 5% by weight, the preferred concentration is 0.1 to 3% by weight, and the optimum concentration is 0.1 to 1% by weight. If the dosage is too small, the chelating agent will not exhibit the desired effect of the present invention; if the dosage is too large, the chelating agent will be consumed without further effects.

在本發明的一較佳實施例中,所述抗氧化劑是選自由抗壞血酸(ascorbic acid)、L(+)-抗壞血酸(L(+)-ascorbic acid)、異抗壞血酸(isoascorbic acid)、抗壞血酸衍生物(ascorbic acid derivatives)、沒食子酸(gallic acid)、甲脒亞磺酸(formamidinesulfinic acid)、尿酸(uric acid)、酒石酸(tartaric acid)、以及半胱氨酸(cysteine)等所組成的群組中的一種以上。相對於漿料組成物的重量,抗氧化劑的添加量為0.05至1重量%,較佳濃度為0.1至0.5重量%,最佳濃度為0.2至0.3重量%。若用量過小,則不會表現出金屬的抗氧化效果;若用量過大,則抗氧化劑會被消耗掉而無進一步的效果,或者會殘留在晶圓表面上而成為缺陷的原因。In a preferred embodiment of the present invention, the antioxidant is selected from the group consisting of ascorbic acid, L(+)-ascorbic acid, isoascorbic acid, and ascorbic acid derivatives. (ascorbic acid derivatives), gallic acid, formamidinesulfinic acid, uric acid, tartaric acid, and cysteine More than one type in the group. Relative to the weight of the slurry composition, the amount of antioxidant added is 0.05 to 1% by weight, the preferred concentration is 0.1 to 0.5% by weight, and the optimum concentration is 0.2 to 0.3% by weight. If the dosage is too small, the antioxidant effect of the metal will not be shown; if the dosage is too large, the antioxidant will be consumed without further effect, or it will remain on the wafer surface and become the cause of defects.

從組成物的穩定性方面來看,較佳地,根據本發明一實施例的CMP漿料組成物的pH値為9至12。若pH値範圍小於9,則膠態二氧化矽顆粒的聚集現象以及去除速率(Removal rate)不穩定,若pH値範圍超過12,則去除速率(Removal rate)不穩定,因此不佳。From the perspective of the stability of the composition, preferably, the pH value of the CMP slurry composition according to an embodiment of the present invention is 9 to 12. If the pH value range is less than 9, the aggregation phenomenon of the colloidal silica particles and the removal rate (Removal rate) are unstable. If the pH value range exceeds 12, the removal rate (Removal rate) is unstable, which is not good.

為了調節為所述pH値範圍,能夠單獨或者混合使用KOH、NH 4OH、NaOH、TMAH、TBAH、KNO 3、NH 4NO 3等作為鹼性物質,由於pH値與漿料組成物的顆粒穩定性以及研磨速率密切相關,因此必須精密地調節。 In order to adjust the pH value to the above range, KOH, NH 4 OH, NaOH, TMAH, TBAH, KNO 3 , NH 4 NO 3 , etc. can be used alone or in mixture as alkaline substances, since the pH value is stable with the particles of the slurry composition. The properties and grinding rate are closely related and therefore must be adjusted precisely.

在根據本發明一實施例的CMP漿料組成物中,所述溶劑用於透過調節組成物的濃度以調節膜質的去除速率,溶劑可以使用去離子水、水等,但較佳使用去離子水。In the CMP slurry composition according to an embodiment of the present invention, the solvent is used to adjust the concentration of the composition to adjust the removal rate of the membrane quality. The solvent can be deionized water, water, etc., but deionized water is preferably used. .

所述漿料組成物的研磨對象膜還可以包括含銅膜。The polishing target film of the slurry composition may further include a copper-containing film.

並且,所述漿料的組成物能夠針對用作含銅膜和阻障膜的薄膜或者用於半導體絕緣膜的氧化膜調整所期望的研磨速率,所述薄膜包括選自由鈦(Ti)、鉭(Ta)、釕(Ru)、鉬(Mo)、鈷(Co)或金(Au)所組成的群組中的任一種。因此,所述漿料組成物還能夠表現出研磨對象膜與其他薄膜之間的優異的研磨選擇比。Furthermore, the composition of the slurry can adjust a desired polishing rate for a thin film used as a copper-containing film and a barrier film or an oxide film used for a semiconductor insulating film, the thin film including titanium (Ti), tantalum Any one of the group consisting of (Ta), ruthenium (Ru), molybdenum (Mo), cobalt (Co) or gold (Au). Therefore, the slurry composition can also exhibit excellent polishing selectivity between the film to be polished and other films.

以下,透過實施例對本發明進行更加詳細的說明。但是,這些實施例僅僅是為了舉例說明本發明,不得用這些實施例限制本發明的範圍,這對於本發明所屬技術領域中具有通常知識者來說是顯而易見的。 [ 實施例 1 7 以及比較例 1 2] Hereinafter, the present invention will be described in more detail through examples. However, these embodiments are only for illustrating the present invention and shall not be used to limit the scope of the present invention. This will be obvious to those with ordinary skill in the technical field to which the present invention belongs. [ Examples 1 to 7 and Comparative Examples 1 and 2]

按照下述表1中記載的含量製造實施例1至實施例7以及比較例1和比較例2的用於研磨銅阻障層的漿料組成物。The slurry compositions for polishing the copper barrier layer of Examples 1 to 7 and Comparative Examples 1 and 2 were manufactured according to the contents described in Table 1 below.

在此,膠態二氧化矽(colloidal silica)的含量均設為13重量%,所使用的膠態二氧化矽的粒徑為90 nm。pH調節劑均使用KOH,氮化物均使用KNO 3,並分別設為0.5重量%。抗氧化劑使用抗壞血酸(ascorbic acid),設為0.2重量%。 Here, the content of colloidal silica is set to 13% by weight, and the particle size of the colloidal silica used is 90 nm. KOH was used as the pH adjuster, and KNO 3 was used as the nitride, and each was set to 0.5% by weight. Ascorbic acid was used as an antioxidant and was set to 0.2% by weight.

[表1]    二氧化矽粒徑 雜環化合物 有機酸 表面保護劑 (nm) 成分 含量(wt%) 成分 含量(wt%) 成分 含量(wt%) 成分 含量(wt%) 成分 含量(wt%) 實施例1 90 BTA 0.1       AA 0.06       PVP 0.15 實施例2 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 實施例3 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 實施例4 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.2 實施例5 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.3 實施例6 90 BTA 0.1 IDA 0.5 AA 0.06 ADBS 0.5 PVP 0.3 實施例7 90 BTA 0.1 IDA 1.0 AA 0.06 ADBS 0.5 PVP 0.3 比較例1 90 BTA 0.1                         比較例2 90 BTA 0.02                         BTA:苯并三唑 IDA:亞胺基二乙酸 AA:乙酸 ADBS:十二烷基苯磺酸銨 PVP:聚乙烯吡咯烷酮 [ 實驗例 1 7 以及比較實驗例 1 2] [Table 1] Silica particle size Heterocyclic compounds organic acid surface protectant (nm) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Example 1 90 BTA 0.1 AA 0.06 PVP 0.15 Example 2 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 Example 3 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 Example 4 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.2 Example 5 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.3 Example 6 90 BTA 0.1 IDA 0.5 AA 0.06 ADBS 0.5 PVP 0.3 Example 7 90 BTA 0.1 IDA 1.0 AA 0.06 ADBS 0.5 PVP 0.3 Comparative example 1 90 BTA 0.1 Comparative example 2 90 BTA 0.02 BTA: Benzotriazole IDA: Iminodiacetic acid AA: Acetic acid ADBS: Ammonium dodecylbenzenesulfonate PVP: Polyvinylpyrrolidone [ Experimental Examples 1 to 7 and Comparative Experimental Examples 1 and 2]

分別測量基於如實施例1至實施例7以及比較例1和比較例2的漿料組成物的研磨速率(Removal Rate)以及凹陷(dishing),實驗例1至實驗例7以及比較實驗例1和比較實驗例2的結果記載於下表2。The removal rate and dishing based on the slurry compositions of Examples 1 to 7 and Comparative Examples 1 and 2, Experimental Examples 1 to 7 and Comparative Experimental Examples 1 and 2 were measured respectively. The results of Comparative Experiment Example 2 are shown in Table 2 below.

[研磨條件] 1. 研磨設備:12英寸用(300 mm)CMP設備-AP-300(CTS公司) 2. 研磨墊:IC1010(Dow公司) 3. 壓盤速度(Platen speed):103 rpm 4. 磨頭速度(Head speed):97 rpm 5. 流率(Flow rate):300 cc/min 6. 壓力:2.2 psi [Grinding conditions] 1. Grinding equipment: 12-inch (300 mm) CMP equipment-AP-300 (CTS company) 2. Polishing pad: IC1010 (Dow Company) 3. Platen speed: 103 rpm 4. Head speed: 97 rpm 5. Flow rate: 300 cc/min 6. Pressure: 2.2 psi

關於研磨速率的測量,在使用12英寸用(300mm)CMP設備進行研磨的情況下,利用四點探針(CMT-SR 5000,AIT Co., Ltd)計算Cu、Ta的研磨速率。Regarding the measurement of the polishing rate, when polishing using a 12-inch (300mm) CMP equipment, a four-point probe (CMT-SR 5000, AIT Co., Ltd) was used to calculate the polishing rate of Cu and Ta.

對於作為氧化物的PTEOS,使用Nanometrics公司的Atlas設備測量CMP前後的厚度變化,以計算研磨速率。For PTEOS as an oxide, the thickness change before and after CMP was measured using Atlas equipment from Nanometrics to calculate the grinding rate.

關於研磨選擇比,如下根據各膜質的研磨速率進行計算。 - 氧化矽膜(Silicon oxide)相對於氮化鉭膜(TaN)的研磨選擇比 = 氧化矽膜的研磨速率/氮化鉭膜(TaN)的研磨速率 - 銅膜(Cu)相對於氮化鉭膜(TaN)的研磨選擇比 = 銅膜(Cu)的研磨速率/氮化鉭膜(TaN)的研磨速率 The polishing selectivity ratio is calculated as follows based on the polishing rate of each film quality. - Polishing selectivity ratio of silicon oxide film to tantalum nitride film (TaN) = polishing rate of silicon oxide film / polishing rate of tantalum nitride film (TaN) - Polishing selectivity ratio of copper film (Cu) to tantalum nitride film (TaN) = polishing rate of copper film (Cu) / polishing rate of tantalum nitride film (TaN)

關於凹陷(dishing)測量,利用穿透式電子顯微鏡(JEM-2000,JEOL)如下測量各膜質的厚度來計算。 - Cu凹陷 = (Cu邊緣厚度 – Cu中央厚度) - Ox凹陷 = (Ox邊緣厚度 – Ox中央厚度) Regarding dishing measurement, the thickness of each film quality was measured using a transmission electron microscope (JEM-2000, JEOL) as follows and calculated. - Cu depression = (Cu edge thickness – Cu center thickness) - Ox depression = (Ox edge thickness – Ox center thickness)

[表2]    研磨速率(Å/min) 選擇比 凹陷(Å) Cu TaN 氧化矽膜 氧化矽膜/TaN Cu/TaN 1-1μm 實驗例1 157 215 750 3.49 0.73 37 實驗例2 162 320 815 2.55 0.51 30 實驗例3 182 320 830 2.59 0.57 20 實驗例4 200 325 820 2.52 0.62 17 實驗例5 205 323 970 3.00 0.63 16 實驗例6 214 310 915 2.95 0.69 17 實驗例7 215 320 961 3.00 0.67 19 比較實驗例1 107 260 498 1.92 0.41 69 比較實驗例2 127 295 578 1.96 0.43 118 [Table 2] Grinding rate (Å/min) selection ratio Depression(Å) Cu N silicon oxide film Silicon oxide film/TaN Cu/TaN 1-1μm Experimental example 1 157 215 750 3.49 0.73 37 Experimental example 2 162 320 815 2.55 0.51 30 Experimental example 3 182 320 830 2.59 0.57 20 Experimental example 4 200 325 820 2.52 0.62 17 Experimental example 5 205 323 970 3.00 0.63 16 Experimental example 6 214 310 915 2.95 0.69 17 Experimental example 7 215 320 961 3.00 0.67 19 Comparative Experiment Example 1 107 260 498 1.92 0.41 69 Comparative Experiment Example 2 127 295 578 1.96 0.43 118

如下評估表2中記載的實驗例1至實驗例7以及比較實驗例1和比較實驗例2的研磨速率、選擇比、以及凹陷(dishing)值。The polishing rate, selectivity ratio, and dishing value of Experimental Examples 1 to 7 and Comparative Experimental Examples 1 and 2 described in Table 2 were evaluated as follows.

第一,可以確認到與現有的比較例1以及比較例2相比,在使用錯合劑(Complexing Agents)的實驗例1至實驗例7中,銅膜的研磨速率顯著增加。First, it was confirmed that in Experimental Examples 1 to 7 using complexing agents, the polishing rate of the copper film was significantly increased compared to the conventional Comparative Examples 1 and 2.

第二,可以確認到與現有的比較例1以及比較例2相比,在使用作為表面保護劑的聚乙烯吡咯烷酮(PVP)的實驗例1至實驗例7中,氧化矽膜的研磨速率顯著增加。Second, it was confirmed that in Experimental Examples 1 to 7 using polyvinylpyrrolidone (PVP) as a surface protective agent, the polishing rate of the silicon oxide film was significantly increased compared to the conventional Comparative Examples 1 and 2. .

第三,可以確認到在實驗例1至實驗例7中,作為錯合劑的亞胺基二乙酸(IDA)含量越增加,則銅膜的研磨速率越增加;而作為表面保護劑的十二烷基苯磺酸銨(ADBS)的含量越增加,則銅膜層的凹陷越減少。Third, it can be confirmed that in Experimental Examples 1 to 7, as the content of iminodiacetic acid (IDA) as a complexing agent increases, the polishing rate of the copper film increases; while dodecane as a surface protective agent As the content of ammonium benzene sulfonate (ADBS) increases, the depression of the copper film layer decreases.

基於這樣的理由,實驗例1至實驗例7的選擇比優於現有的比較實驗例1以及比較實驗例2的選擇比。For this reason, the selection ratios of Experimental Examples 1 to 7 are superior to the selection ratios of Comparative Experimental Example 1 and Comparative Experimental Example 2.

在比較實驗例2的情況下,出現了如下問題點:由於作為防腐蝕劑的苯并三唑(BTA)的含量少,因此,雖然銅膜層的研磨速率有所提高,但是凹陷增加。 [ 實施例 8 11 以及比較例 3 5] In the case of Comparative Experimental Example 2, the following problem occurred: since the content of benzotriazole (BTA) as an anticorrosive agent was small, although the polishing rate of the copper film layer was increased, dents increased. [ Examples 8 to 11 and Comparative Examples 3 to 5]

按照下述表3中記載的含量製造實施例8至11以及比較例3至5的用於研磨銅阻障層的漿料組成物。製造根據膠態二氧化矽的粒徑和表面保護劑ADBS含量的用於研磨銅阻障層的漿料組成物。The slurry compositions for polishing the copper barrier layer of Examples 8 to 11 and Comparative Examples 3 to 5 were manufactured according to the contents described in Table 3 below. A slurry composition for grinding the copper barrier layer is manufactured according to the particle size of the colloidal silica and the content of the surface protective agent ADBS.

在此,膠態二氧化矽(colloidal silica)的含量均設為15重量%。雜環化合物使用BTA並設為0.05重量%,有機酸使用AA並設為0.1重量%,表面保護劑使用PVP並設為0.2重量%,pH調節劑使用KOH並設為0.2重量%,氮化物使用KNO 3並設為1.0重量%。 Here, the content of colloidal silica is always set to 15% by weight. BTA was used as the heterocyclic compound and was set to 0.05% by weight, AA was used as the organic acid and was set to 0.1% by weight, PVP was used as the surface protective agent and was set to 0.2% by weight, KOH was used as the pH adjuster and was set to 0.2% by weight, and nitride was used KNO 3 and set to 1.0 wt%.

[表3]    二氧化矽粒徑 雜環化合物 有機酸 表面保護劑    (nm) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 比較例3 35 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 比較例4 60 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例8 80 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例9 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 比較例5 100 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例10 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 實施例11 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 [ 實驗例 8 11 以及比較實驗例 3 5] [table 3] Silica particle size Heterocyclic compounds organic acid surface protectant (nm) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Comparative example 3 35 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Comparative example 4 60 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 8 80 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 9 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Comparative example 5 100 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 10 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 Example 11 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 [ Experimental Examples 8 to 11 and Comparative Experimental Examples 3 to 5]

分別測量基於如實施例8至實施例11以及比較例3至比較例5的漿料組成物的研磨速率(Removal Rate)、選擇比、以及defect(缺陷數),實驗例8至實驗例11以及比較實驗例3至比較實驗例5的結果記載於下述表4。The removal rate (Removal Rate), selectivity ratio, and defect (number of defects) based on the slurry compositions of Examples 8 to 11 and Comparative Examples 3 to 5 were measured respectively. Experimental Examples 8 to 11 and The results of Comparative Experiment Example 3 to Comparative Experiment Example 5 are shown in Table 4 below.

關於Defect(缺陷數)測量,使用KLA-Tencor公司製造的商品名為[AIT-XP+]的設備的10 μm光點尺寸的光源進行了測量。Regarding the Defect (number of defects) measurement, the measurement was performed using a light source with a spot size of 10 μm of a device with a trade name [AIT-XP+] manufactured by KLA-Tencor Corporation.

[表4]    研磨速率(Å/min) 選擇比 缺陷數(n) Cu TaN 氧化矽膜 氧化矽膜/TaN Cu/TaN 比較實驗例3 97 260 296 1.14 0.37 24 比較實驗例4 105 287 430 1.50 0.37 38 實驗例8 146 290 720 2.48 0.50 35 實驗例9 150 300 711 2.37 0.50 37 比較實驗例5 175 382 757 1.98 0.46 119 實驗例10 161 318 842 2.65 0.51 27 實驗例11 163 337 852 2.53 0.48 23 [Table 4] Grinding rate (Å/min) selection ratio Number of defects(n) Cu N silicon oxide film Silicon oxide film/TaN Cu/TaN Comparative Experiment Example 3 97 260 296 1.14 0.37 twenty four Comparative Experiment Example 4 105 287 430 1.50 0.37 38 Experimental example 8 146 290 720 2.48 0.50 35 Experimental example 9 150 300 711 2.37 0.50 37 Comparative Experiment Example 5 175 382 757 1.98 0.46 119 Experimental example 10 161 318 842 2.65 0.51 27 Experimental example 11 163 337 852 2.53 0.48 twenty three

所述表4中,粒徑越增加,則研磨速率越增加,但是存在缺陷數增加的問題,在粒徑為70 nm以下的比較實驗例3、4的情況下,兩者的膜質的研磨速率均顯著地下降而導致製程時間延遲,在生產率方面成為問題。In Table 4, the polishing rate increases as the particle size increases, but there is a problem of an increase in the number of defects. In the case of Comparative Experimental Examples 3 and 4 with a particle size of 70 nm or less, the polishing rate of the film quality of both are significantly reduced, causing process time delays and becoming a problem in terms of productivity.

並且,可以確認到作為表面保護劑的十二烷基苯磺酸銨(ADBS)的含量越增加,則缺陷數越減少。 [ 實施例 12 18 以及比較例 6 7] Furthermore, it was confirmed that as the content of ammonium dodecylbenzene sulfonate (ADBS) as a surface protective agent increases, the number of defects decreases. [ Examples 12 to 18 and Comparative Examples 6 and 7]

按照下述表5中記載的含量製造實施例12至實施例18以及比較例6和比較例7的用於研磨銅阻障層的漿料組成物。The slurry compositions for polishing the copper barrier layer of Examples 12 to 18 and Comparative Examples 6 and 7 were manufactured according to the contents described in Table 5 below.

在此,膠態二氧化矽(colloidal silica)的含量均設為15重量%,所使用的膠態二氧化矽的粒徑為90 nm。pH調節劑均使用KOH,氮化物均使用KNO 3,並分別設為0.5重量%。抗氧化劑使用抗壞血酸(ascorbic acid)並設為0.2重量%。 Here, the content of colloidal silica is set to 15% by weight, and the particle size of the colloidal silica used is 90 nm. KOH was used as the pH adjuster, and KNO 3 was used as the nitride, and each was set to 0.5% by weight. Ascorbic acid was used as an antioxidant and was set to 0.2% by weight.

[表5]    二氧化矽粒徑 雜環化合物 有機酸 表面保護劑 (nm) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 實施例12 90 BTA 0.1       AA 0.06       PVP 0.15 實施例13 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 實施例14 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 實施例15 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.2 實施例16 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.3 實施例17 90 BTA 0.1 IDA 0.5 AA 0.06 ADBS 0.5 PVP 0.3 實施例18 90 BTA 0.1 IDA 1.0 AA 0.06 ADBS 0.5 PVP 0.3 比較例6 90 BTA 0.1                         比較例7 90 BTA 0.02                         BTA:苯并三唑 IDA:亞胺基二乙酸 AA:乙酸 ADBS:十二烷基苯磺酸銨 PVP:聚乙烯吡咯烷酮 [ 實驗例 12 18 以及比較實驗例 6 7] [table 5] Silica particle size Heterocyclic compounds organic acid surface protectant (nm) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Example 12 90 BTA 0.1 AA 0.06 PVP 0.15 Example 13 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 Example 14 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 Example 15 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.2 Example 16 90 BTA 0.1 IDA 0.1 AA 0.06 ADBS 0.5 PVP 0.3 Example 17 90 BTA 0.1 IDA 0.5 AA 0.06 ADBS 0.5 PVP 0.3 Example 18 90 BTA 0.1 IDA 1.0 AA 0.06 ADBS 0.5 PVP 0.3 Comparative example 6 90 BTA 0.1 Comparative example 7 90 BTA 0.02 BTA: Benzotriazole IDA: Iminodiacetic acid AA: Acetic acid ADBS: Ammonium dodecylbenzenesulfonate PVP: Polyvinylpyrrolidone [ Experimental Examples 12 to 18 and Comparative Experimental Examples 6 and 7]

分別測量基於如實施例12至實施例18以及比較例6和比較例7的漿料組成物的研磨速率(Removal Rate)、選擇比、以及凹陷(dishing),實驗例12至實驗例18以及比較實驗例6和比較實驗例7的結果記載於下表6。The removal rate (Removal Rate), selectivity ratio, and dishing based on the slurry compositions of Examples 12 to 18 and Comparative Examples 6 and 7 were measured respectively. Experimental Examples 12 to 18 and Comparison The results of Experimental Example 6 and Comparative Experimental Example 7 are shown in Table 6 below.

[表6]    研磨速率(Å/min) 選擇比 選擇比 凹陷(Å) Cu TaN Ox Ox/TaN Cu/TaN 1-1μm 實驗例12 185 370 887 2.40 0.50 39 實驗例13 191 376 960 2.55 0.51 31 實驗例14 215 378 972 2.57 0.57 23 實驗例15 233 382 968 2.53 0.61 19 實驗例16 240 380 1140 3.00 0.63 19 實施例17 252 368 1080 2.93 0.68 18 實驗例18 254 379 1130 2.98 0.67 21 比較實驗例6 127 309 586 1.90 0.41 75 比較實驗例7 149 347 680 1.96 0.43 128 [Table 6] Grinding rate (Å/min) selection ratio selection ratio Depression(Å) Cu N Ox Ox/TaN Cu/TaN 1-1μm Experimental example 12 185 370 887 2.40 0.50 39 Experimental example 13 191 376 960 2.55 0.51 31 Experimental example 14 215 378 972 2.57 0.57 twenty three Experimental example 15 233 382 968 2.53 0.61 19 Experimental example 16 240 380 1140 3.00 0.63 19 Example 17 252 368 1080 2.93 0.68 18 Experimental example 18 254 379 1130 2.98 0.67 twenty one Comparative Experiment Example 6 127 309 586 1.90 0.41 75 Comparative Experiment Example 7 149 347 680 1.96 0.43 128

如下評估表6中記載的實驗例12至實驗例18以及比較實驗例6和比較實驗例7的研磨速率、選擇比、以及凹陷(dishing)值。The polishing rate, selectivity ratio, and dishing value of Experimental Examples 12 to 18 and Comparative Experimental Examples 6 and 7 described in Table 6 were evaluated as follows.

第一,可以確認到與現有的比較實驗例6以及比較實驗例7相比,在使用錯合劑(Complexing Agents)的實驗例12至實驗例18中,銅膜的研磨速率顯著增加。First, it was confirmed that in Experimental Examples 12 to 18 using complexing agents, the polishing rate of the copper film was significantly increased compared to the conventional Comparative Experimental Example 6 and Comparative Experimental Example 7.

第二,可以確認到與現有的比較實驗例6以及比較實驗例7相比,在使用作為表面保護劑的聚乙烯吡咯烷酮(PVP)的實驗例12至實驗例18中,氧化矽膜的研磨速率顯著增加。Secondly, it was confirmed that in Experimental Examples 12 to 18 using polyvinylpyrrolidone (PVP) as a surface protective agent, the polishing rate of the silicon oxide film was lower than that of the conventional Comparative Experimental Example 6 and Comparative Experimental Example 7. Significant increase.

第三,可以確認到在實驗例12至實驗例18中,作為錯合劑的亞胺基二乙酸(IDA)的含量越增加,則銅膜的研磨速率越增加;而作為表面保護劑的十二烷基苯磺酸銨(ADBS)的含量越增加,則銅膜層的凹陷越減少。Third, it was confirmed that in Experimental Examples 12 to 18, as the content of iminodiacetic acid (IDA) as a complexing agent increases, the polishing rate of the copper film increases; while IDA as a surface protective agent As the content of alkyl ammonium benzene sulfonate (ADBS) increases, the depression of the copper film layer decreases.

根據這樣的理由,實驗例12至實驗例18的選擇比優於現有的比較實驗例6以及比較實驗例7的選擇比。For this reason, the selection ratios of Experimental Examples 12 to 18 are superior to the selection ratios of Comparative Experimental Example 6 and Comparative Experimental Example 7.

在比較實驗例7的情況下,出現了如下問題點:由於作為防腐蝕劑的苯并三唑(BTA)的含量少,因此雖然銅膜層的研磨速率有所提高,但是凹陷增加。 [ 實施例 19 22 以及比較例 8 10] In the case of Comparative Experimental Example 7, the following problem occurred: since the content of benzotriazole (BTA) as an anticorrosive agent was small, although the polishing rate of the copper film layer was increased, dents increased. [ Examples 19 to 22 and Comparative Examples 8 to 10]

按照下述表7中記載的含量製造實施例19至實施例22以及比較例8至比較例10的用於研磨銅阻障層的漿料組成物。The slurry compositions for polishing the copper barrier layer of Examples 19 to 22 and Comparative Examples 8 to 10 were manufactured according to the contents described in Table 7 below.

製造根據下述表7中使用的膠態二氧化矽的粒徑和表面保護劑ADBS的含量之用於研磨銅阻障層的漿料組成物。A slurry composition for polishing the copper barrier layer was produced according to the particle size of the colloidal silica and the content of the surface protective agent ADBS used in Table 7 below.

在此,膠態二氧化矽(colloidal silica)的含量均設為15重量%,雜環化合物使用BTA並設為0.05重量%,有機酸使用AA並設為0.1重量%,表面保護劑使用PVP並設為0.2重量%,pH調節劑使用KOH並設為0.2重量%,氮化物使用KNO 3並設為1.0重量%。 Here, the content of colloidal silica (colloidal silica) is all set to 15% by weight, BTA is used as the heterocyclic compound and is set to 0.05% by weight, AA is used as the organic acid and is set to 0.1% by weight, and PVP is used as the surface protective agent. It was 0.2 weight%, KOH was used as a pH adjuster, and it was 0.2 weight%, and KNO3 was used as a nitride and it was 1.0 weight%.

[表7]    二氧化矽粒徑 雜環化合物 有機酸 表面保護劑    (nm) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 成分 含量 (wt%) 比較例8 35 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 比較例9 60 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例19 80 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例20 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 比較例10 100 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 實施例21 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 實施例22 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 [ 實驗例 19 22 以及比較實驗例 8 10] [Table 7] Silica particle size Heterocyclic compounds organic acid surface protectant (nm) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Element Content(wt%) Comparative example 8 35 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Comparative example 9 60 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 19 80 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 20 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Comparative example 10 100 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.05 PVP 0.2 Example 21 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.1 PVP 0.2 Example 22 90 BTA 0.05 IDA 0.1 AA 0.06 ADBS 0.3 PVP 0.2 [ Experimental Examples 19 to 22 and Comparative Experimental Examples 8 to 10]

分別測量基於如實施例19至實施例22以及比較例8至比較例10的漿料組成物的研磨速率(Removal Rate)以及defect(缺陷數),實驗例19至實驗例22以及比較實驗例8至比較實驗例10的結果記載於下表8。The removal rate (Removal Rate) and the defect (number of defects) based on the slurry compositions of Examples 19 to 22 and Comparative Examples 8 to 10, Experimental Examples 19 to 22 and Comparative Experimental Example 8 were respectively measured. The results up to Comparative Experiment Example 10 are shown in Table 8 below.

關於Defect(缺陷數)測量,使用KLA-Tencor公司製造的商品名為[AIT-XP+]的設備的10 μm光點尺寸的光源進行了測量。Regarding the Defect (number of defects) measurement, the measurement was performed using a light source with a spot size of 10 μm of a device with a trade name [AIT-XP+] manufactured by KLA-Tencor Corporation.

[表8]    研磨速率(Å/min) 選擇比 缺陷數(n) Cu TaN Ox Ox/TaN Cu/TaN 比較實驗例8 115 310 348 1.12 0.37 27 比較實驗例9 125 338 510 1.51 0.37 41 實驗例19 172 341 846 2.48 0.50 47 實驗例20 178 354 956 2.70 0.50 46 比較實驗例10 209 452 891 1.97 0.46 135 實驗例21 187 376 994 2.64 0.50 39 實驗例22 194 397 1007 2.54 0.49 28 [Table 8] Grinding rate (Å/min) selection ratio Number of defects(n) Cu N Ox Ox/TaN Cu/TaN Comparative Experiment Example 8 115 310 348 1.12 0.37 27 Comparative Experiment Example 9 125 338 510 1.51 0.37 41 Experimental example 19 172 341 846 2.48 0.50 47 Experimental example 20 178 354 956 2.70 0.50 46 Comparative Experiment Example 10 209 452 891 1.97 0.46 135 Experimental example 21 187 376 994 2.64 0.50 39 Experimental example 22 194 397 1007 2.54 0.49 28

如下評估所述表8中記載的實驗例19至實驗例22以及比較實驗例8至比較實驗例10的研磨速率、選擇比、以及缺陷數值。The polishing rates, selectivity ratios, and defect values of Experimental Examples 19 to 22 and Comparative Experimental Examples 8 to 10 described in Table 8 were evaluated as follows.

即,膠態二氧化矽的粒徑越增加,則研磨速率越增加,但是存在缺陷數增加的問題,在粒徑為70 nm以下的比較實驗例8、9的情況下,兩者的膜質的研磨速率均顯著地下降而導致製程時間延遲,在生產率方面成為問題。That is, as the particle size of colloidal silica increases, the polishing rate increases, but there is a problem that the number of defects increases. In the case of Comparative Experimental Examples 8 and 9 with a particle size of 70 nm or less, the difference in film quality between the two The grinding rate is significantly reduced, resulting in a delay in process time, which becomes a problem in terms of productivity.

並且,可以確認到作為表面保護劑的十二烷基苯磺酸銨(ADBS)的含量越增加,則缺陷數越減少。Furthermore, it was confirmed that as the content of ammonium dodecylbenzene sulfonate (ADBS) as a surface protective agent increases, the number of defects decreases.

在膠態二氧化矽為13%和15%時,所述結果表現出相同的傾向,確保了再現性。When the colloidal silica was 13% and 15%, the results showed the same tendency, ensuring reproducibility.

如上所述,透過限定的實施例對本發明進行了說明,但是本發明並不限定於所述實施例,本發明所屬領域中具有通常知識者能夠根據這樣的記載進行各種修改及變化。因此,本發明的範圍不得由所描述的實施例界定,並且,其除了應由後述的申請專利範圍界定以外,還應由與所述申請專利範圍均等的部分界定。As mentioned above, the present invention has been described through limited embodiments. However, the present invention is not limited to the above-mentioned embodiments. A person with ordinary knowledge in the field to which the present invention belongs can make various modifications and changes based on such description. Therefore, the scope of the present invention should not be limited by the described embodiments, but should be defined not only by the scope of the patent application described below, but also by parts equal to the scope of the patent application.

without

無。without.

Claims (17)

一種用於研磨銅阻障層的CMP漿料組成物,包括: 研磨顆粒; 雜環化合物;氮化物;有機酸;表面保護劑;抗氧化劑;pH調節劑;以及餘量的去離子水。 A CMP slurry composition for grinding copper barrier layers, including: grinding particles; Heterocyclic compounds; nitrogen compounds; organic acids; surface protective agents; antioxidants; pH adjusters; and the balance of deionized water. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述研磨顆粒是奈米粒徑的二氧化矽顆粒穩定地分散於溶劑中而不產生沉降的膠態二氧化矽。The CMP slurry composition for grinding a copper barrier layer as described in claim 1, wherein the grinding particles are colloidal particles of nanometer-sized silica particles stably dispersed in a solvent without settling. Silica. 如請求項2所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述研磨顆粒在所述漿料組成物中以13至15重量%的量存在。The CMP slurry composition for grinding a copper barrier layer as claimed in claim 2, wherein the abrasive particles are present in the slurry composition in an amount of 13 to 15% by weight. 如請求項3所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述研磨顆粒的粒徑為75至95 nm。The CMP slurry composition for grinding a copper barrier layer as described in claim 3, wherein the particle size of the grinding particles is 75 to 95 nm. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述雜環化合物具有兩個以上的氮原子,並且選自由1,2,4-H-三唑、5-甲基苯并三唑、四唑、咪唑、1,2-二甲基咪唑、苯并三唑(BTA)、1H-苯并三唑乙腈、以及哌𠯤所組成的群組中的一種以上。The CMP slurry composition for polishing a copper barrier layer as described in claim 1, wherein the heterocyclic compound has more than two nitrogen atoms and is selected from the group consisting of 1,2,4-H-triazole, One of the group consisting of 5-methylbenzotriazole, tetrazole, imidazole, 1,2-dimethylimidazole, benzotriazole (BTA), 1H-benzotriazole acetonitrile, and piperazole above. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述氮化物選自由硝酸鉀(KNO 3)、硝酸(HNO 3)、硝酸銨(NH 4NO 3)、硝酸鐵(Fe(NO 3) 2)、以及硝酸銅(Cu(NO 3) 2)所組成的群組中的一種以上。 The CMP slurry composition for polishing the copper barrier layer as described in claim 1, wherein the nitride is selected from the group consisting of potassium nitrate (KNO 3 ), nitric acid (HNO 3 ), and ammonium nitrate (NH 4 NO 3 ) , iron nitrate (Fe(NO 3 ) 2 ), and copper nitrate (Cu(NO 3 ) 2 ). 如請求項6所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述氮化物在所述漿料組成物中以0.1至10重量%的量存在。The CMP slurry composition for polishing a copper barrier layer as described in claim 6, wherein the nitride is present in the slurry composition in an amount of 0.1 to 10% by weight. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述有機酸: i)作為羧酸類有機酸,包括選自由檸檬酸(citric acid)、戊二酸(glutaric acid)、蘋果酸(malic acid)、馬來酸(maleic acid)、草酸(oxalic acid)、鄰苯二甲酸(phthalic acid)、琥珀酸(succinic acid)、酒石酸(tartaric acid)、以及乙酸(acetic acid)所組成的群組中的一種以上; ii)作為胺基酸類有機酸,包括選自由氮基三乙酸(Nitrilotriacetic acid,NTA)、亞胺基二乙酸(Iminodiacetic acid,IDA)、甲基亞胺基二乙酸(Methyl iminodiacetic acid,MIDA)、羥乙基亞胺基二乙酸(Hydroxyethyl iminodiacetic acid,HIDA)、二乙三胺五乙酸(Diethylenetriamine pentaacetic acid,DPTA)、乙二胺四乙酸(Ethylenediamine tetraacetic acid,EDTA)、N-羥乙基乙二胺四乙酸(N-hydroxyethyl ethylenediamine tetraacetic acid,HEDTA)、甲基乙二胺四乙酸(Methyl ethylenediamine tetraacetic acid,MEDTA)、以及三乙四胺六乙酸(Triethylene tetraamine hexaacetic acid,TTHA)所組成的群組中的一種以上。 The CMP slurry composition for polishing the copper barrier layer as described in claim 1, wherein the organic acid: i) As carboxylic acid organic acids, include those selected from citric acid, glutaric acid, malic acid, maleic acid, oxalic acid, phthalic acid, etc. One or more from the group consisting of phthalic acid, succinic acid, tartaric acid, and acetic acid; ii) As amino acids, organic acids include those selected from the group consisting of Nitrilotriacetic acid (NTA), Iminodiacetic acid (IDA), Methyl iminodiacetic acid (MIDA), Hydroxyethyl iminodiacetic acid (HIDA), Diethylenetriamine pentaacetic acid (DPTA), Ethylenediamine tetraacetic acid (EDTA), N-hydroxyethylethylenediamine The group consisting of N-hydroxyethyl ethylenediamine tetraacetic acid (HEDTA), methylethylenediamine tetraacetic acid (MEDTA), and triethylene tetraamine hexaacetic acid (TTHA) More than one of them. 如請求項8所述之用於研磨銅阻障層的CMP漿料組成物,其中, 所述有機酸在所述漿料組成物中以0.1至3重量%的量存在。 The CMP slurry composition for polishing the copper barrier layer as described in claim 8, wherein, The organic acid is present in the slurry composition in an amount of 0.1 to 3% by weight. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述表面保護劑: 作為非離子型表面保護劑,包括選自由聚乙烯醇(PVA)、乙二醇(EG)、丙三醇、聚乙二醇(PEG)、聚丙二醇(PPG)、以及聚乙烯吡咯烷酮(PVP)所組成的群組中的一種以上; 作為陰離子型表面保護劑,包括選自由十二烷基苯磺酸銨(ammonium dodecyl benzene sulfonate)、聚氧乙烯烷基磺酸銨(ammonium polyoxyethylene alkyl sulfonate)、以及聚氧乙烯烷基芳基磺酸銨(ammonium polyoxyethylene alkyl aryl sulfonate)所組成的群組中的一種以上。 The CMP slurry composition for polishing the copper barrier layer as described in claim 1, wherein the surface protective agent: Non-ionic surface protective agents include polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG), and polyvinylpyrrolidone (PVP). More than one type of group; The anionic surface protective agent includes ammonium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl sulfonate, and polyoxyethylene alkyl aryl sulfonate. One or more of the group consisting of ammonium polyoxyethylene alkyl aryl sulfonate. 如請求項10所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述表面保護劑在所述漿料組成物中以0.3~0.8重量%的量存在。The CMP slurry composition for polishing the copper barrier layer according to claim 10, wherein the surface protective agent is present in the slurry composition in an amount of 0.3 to 0.8% by weight. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述抗氧化劑包括選自由抗壞血酸(ascorbic acid)、L(+)-抗壞血酸(L(+)-ascorbic acid)、異抗壞血酸(isoascorbic acid)、抗壞血酸衍生物(ascorbic acid derivatives)、沒食子酸(gallic acid)、甲脒亞磺酸(formamidinesulfinic acid)、尿酸(uric acid)、酒石酸(tartaric acid)、以及半胱氨酸(cysteine)所組成的群組中的一種以上。The CMP slurry composition for polishing the copper barrier layer according to claim 1, wherein the antioxidant includes ascorbic acid, L(+)-ascorbic acid (L(+)-ascorbic acid) ), isoascorbic acid, ascorbic acid derivatives, gallic acid, formamidinesulfinic acid, uric acid, tartaric acid, and One or more of the group consisting of cysteine. 如請求項12所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述抗氧化劑在所述漿料組成物中以0.1至0.5重量%的量存在。The CMP slurry composition for polishing a copper barrier layer as claimed in claim 12, wherein the antioxidant is present in the slurry composition in an amount of 0.1 to 0.5% by weight. 一種用於研磨銅阻障層的CMP漿料組成物,其中,所述pH調節劑是選自由KOH、NH 4OH、NaOH、TMAH、TBAH以及HNO 3所組成的群組中的一種以上。 A CMP slurry composition for polishing a copper barrier layer, wherein the pH adjuster is at least one selected from the group consisting of KOH, NH 4 OH, NaOH, TMAH, TBAH and HNO 3 . 如請求項14所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述漿料組成物的pH値為9至12。The CMP slurry composition for polishing the copper barrier layer according to claim 14, wherein the pH value of the slurry composition is 9 to 12. 如請求項1所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述漿料組成物的研磨對象膜包括用作含銅膜和阻障膜的薄膜或者用作半導體絕緣膜的氧化膜,所述薄膜包括選自由鈦(Ti)、鉭(Ta)、釕(Ru)、鉬(Mo)、鈷(Co)及金(Au)所組成的群組中的任一種。The CMP slurry composition for polishing a copper barrier layer as claimed in claim 1, wherein the polishing target film of the slurry composition includes a film used as a copper-containing film and a barrier film or as a semiconductor insulator. The oxide film of the film includes any one selected from the group consisting of titanium (Ti), tantalum (Ta), ruthenium (Ru), molybdenum (Mo), cobalt (Co) and gold (Au). 如請求項16所述之用於研磨銅阻障層的CMP漿料組成物,其中,所述CMP漿料組成物對氮化鉭膜(TaN)、氧化矽膜(Silicon oxide)、及銅膜(Cu)的研磨選擇比為1:1~4:0.5~1。The CMP slurry composition for polishing the copper barrier layer as described in claim 16, wherein the CMP slurry composition is effective for tantalum nitride film (TaN), silicon oxide film (Silicon oxide), and copper film The grinding selectivity ratio of (Cu) is 1:1~4:0.5~1.
TW112119206A 2022-07-06 2023-05-23 Cmp slurry composition for polishing a copper barrier layer TW202402985A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220083295A KR102515722B1 (en) 2022-07-06 2022-07-06 Cmp slurry composition for polishing a copper barrier layer
KR10-2022-0083295 2022-07-06

Publications (1)

Publication Number Publication Date
TW202402985A true TW202402985A (en) 2024-01-16

Family

ID=85985873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112119206A TW202402985A (en) 2022-07-06 2023-05-23 Cmp slurry composition for polishing a copper barrier layer

Country Status (3)

Country Link
KR (1) KR102515722B1 (en)
TW (1) TW202402985A (en)
WO (1) WO2024010249A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515722B1 (en) * 2022-07-06 2023-03-30 영창케미칼 주식회사 Cmp slurry composition for polishing a copper barrier layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072342B1 (en) * 2003-06-30 2011-10-11 동우 화인켐 주식회사 Slurry compositions for chemical mechanical polishing of copper
KR101202720B1 (en) * 2008-02-29 2012-11-19 주식회사 엘지화학 Aqueous slurry composition for chemical mechanical polishing and chemical mechanical polishing method
KR101107520B1 (en) * 2009-04-28 2012-01-31 솔브레인 주식회사 CMP Slurry composition for copper damascene process
KR101206075B1 (en) * 2010-12-16 2012-11-28 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR101298520B1 (en) * 2011-11-15 2013-08-22 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR101465604B1 (en) 2012-12-18 2014-11-27 주식회사 케이씨텍 Cmp slurry composition for polishing copper barrier layer and polishing method using the same
US20150104940A1 (en) 2013-10-11 2015-04-16 Air Products And Chemicals Inc. Barrier chemical mechanical planarization composition and method thereof
KR101548715B1 (en) 2013-12-30 2015-09-01 주식회사 케이씨텍 Slurry composition for polishing copper barrier layer
KR20210095548A (en) 2020-01-23 2021-08-02 영창케미칼 주식회사 Slurry composition for polishing a copper barrier layer
KR102515722B1 (en) * 2022-07-06 2023-03-30 영창케미칼 주식회사 Cmp slurry composition for polishing a copper barrier layer

Also Published As

Publication number Publication date
KR102515722B1 (en) 2023-03-30
WO2024010249A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
EP1152046B1 (en) Polishing composition and polishing method employing it
US7981316B2 (en) Selective barrier metal polishing method
JP4776269B2 (en) Metal film CMP slurry and method for manufacturing semiconductor device
JP4075985B2 (en) Polishing composition and polishing method using the same
EP1490897B1 (en) Tantalum barrier removal solution
KR101144419B1 (en) Method and composition for chemical mechanical planarization of a metal-containing substrate
US7316977B2 (en) Chemical-mechanical planarization composition having ketooxime compounds and associated method for use
US20130005149A1 (en) Chemical-mechanical planarization of substrates containing copper, ruthenium, and tantalum layers
US20110008965A1 (en) Polishing composition and polishing method
TWI729219B (en) A chemical mechanical polishing slurry for the planarization of the barrier layer
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
EP1544901B1 (en) Polishing compound composition and polishing method
JP2009514196A (en) Chemical mechanical polishing slurry for tantalum barrier layer
JP7103794B2 (en) Chemical mechanical polishing method for tungsten
TW202402985A (en) Cmp slurry composition for polishing a copper barrier layer
WO2018120808A1 (en) Chem-mechanical polishing liquid for barrier layer
TWI701323B (en) Slurry composition for polishing a copper barrier layer
KR20210095548A (en) Slurry composition for polishing a copper barrier layer
KR102253708B1 (en) Cmp slurry composition for polishing copper barrier layer and method for polishing using the same
CN114591686A (en) Copper barrier layer chemical mechanical polishing solution and application thereof
TW202225353A (en) Chemical mechanical polishing slurry and method of using the same
TW202235556A (en) Chemical mechanical polishing slurry and method of using the same
JP2003197572A (en) Composition for polishing
CN115058712A (en) Chemical mechanical polishing composition for copper barrier layer and application thereof