KR102483764B1 - 광 검출 소자 - Google Patents

광 검출 소자 Download PDF

Info

Publication number
KR102483764B1
KR102483764B1 KR1020150068990A KR20150068990A KR102483764B1 KR 102483764 B1 KR102483764 B1 KR 102483764B1 KR 1020150068990 A KR1020150068990 A KR 1020150068990A KR 20150068990 A KR20150068990 A KR 20150068990A KR 102483764 B1 KR102483764 B1 KR 102483764B1
Authority
KR
South Korea
Prior art keywords
layer
nitride
light absorbing
doped region
light
Prior art date
Application number
KR1020150068990A
Other languages
English (en)
Other versions
KR20160135540A (ko
Inventor
박기연
한건우
이충민
이수현
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to KR1020150068990A priority Critical patent/KR102483764B1/ko
Priority to PCT/KR2016/004900 priority patent/WO2016186364A1/en
Priority to US15/575,752 priority patent/US20180122970A1/en
Publication of KR20160135540A publication Critical patent/KR20160135540A/ko
Application granted granted Critical
Publication of KR102483764B1 publication Critical patent/KR102483764B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • H01L31/02725Selenium or tellurium characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

광 검출 소자가 개시된다. 광 검출 소자는, 제1 질화물층; 제1 질화물층 상에 위치하며, 언도프 질화물계 반도체를 포함하는 ESD(정전기방전) 방지층; ESD 방지층 상에 위치하는 광 흡수층; 광 흡수층 상에 위치하는 쇼트키 접합층; 및 쇼트키 접합층 및 제1 질화물층 각각에 전기적으로 연결된 제1 전극 및 제2 전극을 포함하며, ESD 방지층의 평균 n형 도펀트 도핑 농도는 제1 질화물층의 평균 n형 도펀트 도핑 농도보다 낮다.

Description

광 검출 소자{LIGHT DETECTING DEVICE}
본 발명은 반도체 광 검출 소자에 관한 것으로, 특히, 특정 파장의 광에 대한 검출 효율이 뛰어나며, 정전기 방전 특성이 향상된 반도체 광 검출 소자에 관한 것이다.
반도체 광 검출 소자는 광이 인가되면 전류가 흐르는 원리를 이용하여 작동하는 반도체 소자이다. 특히, 자외선 광을 검출하는 반도체 광 검출 소자는 상업, 의학, 군수, 통신 등 여러 분야에서 응용이 가능하여 그 중요도가 높다. 반도체를 이용한 광 검출 소자는 조사된 광에 의해 반도체 내의 전자와 정공의 분리에 의해 공핍 영역(depletion region)이 발생되고, 이로 인해 발생된 전자의 흐름에 따라 전류가 흐르는 원리를 이용한다.
종래에, 실리콘을 이용하여 제조된 반도체 광 검출 소자가 이용되었다. 그러나 실리콘을 이용하여 제조된 반도체 광 검출 소자는 구동을 위하여 높은 인가 전압이 요구되고, 검출 효율이 낮은 단점이 있다. 특히, 자외선 광을 검출하는 반도체 광 검출 소자를 실리콘을 이용하여 제조하는 경우, 자외선 광뿐만 아니라 가시광 및 적외선 광에 대해서도 높은 민감도를 갖는 실리콘의 특성으로 인하여 광 검출 효율이 떨어진다. 또한, 실리콘을 이용한 자외선 광 검출 소자는 열적, 화학적으로 불안정하다.
이에, 질화물계 반도체를 이용한 광 검출 소자가 제안되었다. 질화물계 반도체를 이용한 광 검출 소자는 실리콘 광 검출 소자에 비해 높은 반응도 및 반응 속도, 낮은 노이즈 레벨, 높은 열적, 화학적 안정성을 갖는다. 질화물계 반도체들 중, 특히, AlGaN을 광 흡수층으로 이용한 광 검출 소자는 자외선 광 검출 소자로서 우수한 특성을 보여준다.
이러한 질화물계 반도체 광 검출 소자는 다양한 구조로 제조되며, 예를 들어, 광전도체(photoconductor), 쇼트키 접합 광 검출 소자, p-i-n 형태의 광 검출 소자 등의 구조로 제조된다.
p-i-n 광 소자의 경우 검출하고자 하는 광이 p형 반도체층을 투과해야 하나 이로 인한 광손실이 심하기 때문에 소자로서의 특성이 현저히 나빠지는 단점이 있다. 반면 쇼트키 접합 광 검출 소자의 경우, 광이 얇은 Ni층을 투과하여 광 흡수층에 입사되고, Ni층이 전류 퍼짐층으로도 작용하기 때문에 소자 내 특성의 균일도가 우수하고 광 추출 효율 또한 우수하다.
쇼트키 접합 광 검출 소자는, 일반적으로, 기판, 상기 기판 상에 위치하는 버퍼층, 상기 버퍼층 상에 위치하는 광 흡수층 및 상기 광 흡수층 상에 위치하는 쇼트키 접합층을 포함한다. 또한, 제1 전극과 제2 전극은 각각 쇼트키 접합층과 버퍼층 또는 광 흡수층 상에 형성된다. 상기 쇼트키 접합 광 검출 소자가 자외선 광 검출 소자로 이용되려면, 광 흡수층은 자외선 광을 흡수할 수 있는 밴드갭 에너지를 갖는 질화물계 반도체로 형성된다. 이에 따라, 상기 광 흡수층을 이루는 반도체 물질로서 주로 AlGaN이 이용된다. 한편, 버퍼층으로는 GaN층이 일반적으로 이용된다.
뿐만 아니라, 종래의 질화갈륨 반도체 광 검출 소자에서 광 흡수층으로 사용되는 GaN층, InGaN층 및 AlGaN층은 결함을 근본적으로 가지고 있고, 이러한 결함에 의해 자외선 광이 아닌 가시광에도 반응하여 소자에 전류가 흐르게 된다. 이러한 반도체 광 검출 소자의 반응도(Responsivity)특성에서는 자외선광 대비 가시광 반응 비율(UV-to-Visible rejection ratio)이 약 103정도로 낮게 측정된다. 즉, 상기 종래의 반도체 광 검출 소자는 자외선 광이 아닌 가시광에 의해서도 반응하여 저 전류를 흐르게 하므로, 검출 정확도가 떨어진다.
더욱이, 쇼트키 접합 광 검출 소자의 경우, 구조가 상대적으로 단순하여 제조가 용이하고 효율이 높은 장점이 있으나, 쇼트키 접합층과 광 흡수층 사이에 밴드갭 차이가 작아 쇼트키 베리어가 충분히 높지 않기 때문에 공핍영역(depletion region) 이 충분히 두껍지 않아 정전기 방전에 매우 취약하다. 따라서 정전기 방전에 의해 소자의 불량이 쉽게 발생할 수 있어, 신뢰성이 떨어지며, 지속적인 사용에 따라 광 검출 정확도가 감소하는 문제가 있다.
본 발명이 해결하고자 하는 과제는, 검출하고자 하는 파장대의 광, 구체적으로 자외선 광에 대해서 높은 광 검출 효율을 갖는 광 검출 소자를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 결정성이 우수한 광 흡수층을 가짐과 동시에, 자외선 광에 대해서 높은 광 검출 효율을 갖는 광 검출 소자를 제조하는 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 정전기 방전 특성이 우수하여, 신뢰성이 우수한 광 검출 소자를 제공하는 것이다.
본 발명의 일 측면에 따른 광 검출 소자는, 제1 질화물층; 상기 제1 질화물층 상에 위치하며, 언도프 질화물계 반도체를 포함하는 ESD(정전기방전) 방지층; 상기 ESD 방지층 상에 위치하는 광 흡수층; 상기 광 흡수층 상에 위치하는 쇼트키 접합층; 및 상기 쇼트키 접합층 및 상기 제1 질화물층 각각에 전기적으로 연결된 제1 전극 및 제2 전극을 포함하며, 상기 ESD 방지층의 평균 n형 도펀트 도핑 농도는 상기 제1 질화물층의 평균 n형 도펀트 도핑 농도보다 낮다.
상기 ESD 방지층은 언도프 질화물계 반도체층을 적어도 하나 포함할 수 있으며, 상기 언도프 질화물계 반도체층은 300nm 내지 400nm의 총 두께를 가질 수 있다.
상기 광 검출 소자는, 상기 ESD 방지층과 광 흡수층 사이에 위치하며, 다층 구조층을 포함하는 저전류 차단층을 더 포함할 수 있다.
상기 다층 구조층의 각 층간 계면은 각 층보다 큰 밴드갭를 가질 수 있다.
상기 ESD 방지층은 n형 도펀트를 포함하는 도핑 영역을 포함할 수 있다.
상기 도핑 영역은 제1 도핑 영역, 상기 제1 도핑 영역 상에 위치하는 제2 도핑 영역, 및 상기 제2 도핑 영역 상에 위치하는 제3 도핑 영역을 포함할 수 있고, 상기 제2 도핑 영역의 도핑 농도는 상기 제1 도핑 영역의 도핑 농도보다 높고, 상기 제3 도핑 영역의 도핑 농도는 상기 제2 도핑 영역의 도핑 농도보다 높을 수 있다.
상기 제1 도핑 영역은 상기 제2 도핑 영역과 접하고, 상기 제2 도핑 영역은 상기 제3 도핑 영역과 접할 수 있다.
상기 제1 내지 제3 도핑 영역 중 적어도 하나 내에서, 상기 n형 도펀트 농도는 상기 광흡수층 측으로 향하는 방향에 따라 증가하거나, 감소하거나 또는 변조 도핑된 프로파일을 가질 수 있다.
상기 도핑 영역은 적어도 하나의 n형 도펀트 쇼크 영역을 포함할 수 있다.
상기 도핑 영역의 상부 및 하부에는 상기 언도프 질화물계 반도체가 위치할 수 있다.
상기 ESD 방지층의 언도프 질화물계 반도체는 상기 저전류 차단층 및 제1 질화물층 중 적어도 하나와 접할 수 있다.
상기 광 흡수층은 AlGaN 및 AlInGaN 중 적어도 하나를 포함할 수 있다.
상기 저전류 차단층의 다층 구조층은 AlxGa(1-x)N층 및 AlyGa(1-y)N층 (x ≠ y)이 반복 적층된 초격자 구조를 포함할 수 있다.
상기 저전류 차단층은 상기 광 흡수층보다 더 높은 결함 밀도를 가질 수 있다.
상기 광 검출 소자는, 상기 제1 질화물층 하부에 위치하는 기판을 더 포함할 수 있고, 상기 제1 전극은 쇼트키 접합층 상에 위치하고, 상기 제2 전극은 상기 제1 질화물층 상에 위치하여 전기적으로 접촉될 수 있다.
상기 광 흡수층이 상기 광 검출 소자의 하면으로 향하도록 2차 기판에 플립 본딩된 구조를 가질 수 있다.
상기 광 흡수층이 상기 광 검출 소자의 하면으로 향하도록 배치될 수 있고, 상기 제1 전극은 상기 쇼트키 접합층의 하부에 위치하고, 상기 제2 전극은 상기 제1 질화물층 상부에 위치할 수 있다.
상기 제1 질화물층의 밴드갭 에너지는 상기 광 흡수층의 밴드갭 에너지보다 클 수 있다.
상기 제1 질화물층의 밴드갭 에너지는 상기 광 흡수층의 밴드갭 에너지보다 클 수 있다.
본 발명에 따르면, 저전류 차단층을 포함하여 가시광에 대한 반응도가 낮은 광 검출 소자를 제공할 수 있다. 이에 따라, 상기 광 검출 소자는 높은 자외선 대비 가시광선 반응 비율을 가질 수 있고, 높은 광 검출 효율 및 신뢰성을 가질 수 있다.
또한, 본 발명의 광 검출 소자 제조 방법에 따르면, 광 흡수층의 결정질을 우수하게 함과 동시에 가시광에 반응하여 발생하는 미세 전류를 방지할 수 있는 광 검출 소자를 제공할 수 있다.
나아가, 본 발명의 광 검출 소자는 ESD(Electrostatic discharge; 정전기 방전) 방지층을 포함하여, 정전기 방전 특성이 향상된 광 검출 소자가 제공될 수 있다. 특히, 쇼트키 접합 형태를 가지면서도 정전기 방전에 대한 특성이 뛰어난 광 검출 소자가 제공될 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 광 검출 소자는 설명하기 위한 단면도 및 평면도이다.
도 3 내지 도 8은 본 발명의 또 다른 실시예에 따른 광 검출 소자 제조 방법을 설명하기 위한 단면도들이다.
도 9는 본 발명의 일 실험예에 따른 광 검출 소자의 특성을 설명하기 위한 그래프이다.
도 10은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다.
도 11은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다.
도 12는 본 발명의 다른 실시예에 따른 광 검출 소자의 ESD 방지층 구조를 설명하기 위한 확대도 및 그래프이다.
도 13은 본 발명의 또 다른 실시예에 따른 광 검출 소자의 ESD 방지층 구조를 설명하기 위한 확대도 및 그래프이다.
도 14는 본 발명의 다른 실험예에 따른 광 검출 소자의 특성을 비교 설명하기 위한 그래프이다.
도 15는 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다.
도 16은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다.
도 17 및 도 18은 본 발명의 실시예들에 따른 광 검출 소자 및 성장 기판 분리 방법을 설명하기 위한 단면도들이다.
도 19는 본 발명의 일 실시예에 따른 광 검출 소자의 저전류 차단층을 설명하기 위한 그래프 및 TEM(transmission electron microscope)사진이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 있는 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이하 설명되는 반도체층들에 대한 각 조성비, 성장 방법, 성장 조건, 두께 등은 예시에 해당하며, 하기 설명들이 본 발명을 제한하는 것은 아니다. 예를 들어, AlGaN로 표기되는 경우, Al과 Ga의 조성비는 통상의 기술자의 필요에 따라 다양하게 적용될 수 있다. 또한, 이하 설명되는 반도체층들은 이 기술 분야의 통상의 지식을 가진 자(이하, "통상의 기술자")에게 일반적으로 알려진 다양한 방법을 이용하여 성장될 수 있으며, 예를 들어, MOCVD(Metal Organic Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy) 또는 HVPE(Hydride Vapor Phase Epitaxy) 등의 기술을 이용하여 성장될 수 있다. 다만, 이하 설명되는 실시예에서는, 반도체층들은 MOCVD를 이용하여 동일한 챔버 내에서 성장된 것으로 설명되고, 챔버 내에 유입되는 소스 가스들은 조성비에 따라 통상의 기술자에게 알려진 소스 가스들을 이용할 수 있으며, 이에 본 발명이 제한되는 것은 아니다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 광 검출 소자는 설명하기 위한 단면도 및 평면도이다.
도 1 및 도 2를 참조하면, 상기 광 검출 소자는 제1 질화물층(130), 저전류 차단층(140), 광 흡수층(150) 및 쇼트키 접합층(160)을 포함한다. 나아가, 상기 광 검출 소자는 기판(110), 제2 질화물층(120), 제1 전극(171) 및 제2 전극(173)을 더 포함할 수 있다.
기판(110)은 소자의 저부에 위치하며, 반도체층들을 성장시킬 수 있는 기판이면 제한되지 않는다. 예를 들어, 기판(110)은 사파이어 기판, SiC 기판, ZnO 기판, GaN 기판 또는 AlN 기판과 같은 질화물계 기판을 포함할 수 있다. 본 실시예에 있어서, 상기 기판(110)은 사파이어 기판일 수 있다. 기판(110)은 생략될 수도 있다.
제1 질화물층(130)은 기판(110) 상에 위치할 수 있다. 제1 질화물층(130)은 질화물계 반도체층을 포함할 수 있으며, 예를 들어, GaN층을 포함할 수 있다. 제1 질화물층(130)은 Si와 같은 불순물을 더 포함하여 n형으로 도핑되거나 또는 언도핑될(undpoed) 수 있다. 질화물계 반도체는 언도핑된 상태에서도 n형의 특성을 가질 수 있으므로, 필요에 따라 도핑의 여부를 결정할 수 있다. 제1 질화물층(130)이 Si를 포함하여 n형 도핑된 경우, 상기 Si의 도핑농도는 1×108 이하일 수 있다. 한편, 제1 질화물층(130)은 약 2㎛의 두께를 가질 수 있다.
한편, 제1 질화물층(130)과 기판(110) 사이에는 제2 질화물층(120)이 더 위치될 수 있다. 제2 질화물층(120)은 제1 질화물층(130)과 유사한 물질을 포함할 수 있고, 예를 들어 GaN층을 포함할 수 있다. 제2 질화물층(120)은 약 25nm의 두께를 가질 수 있고, 제1 질화물층(130)에 비해 상대적으로 낮은 온도(예를 들어, 500 내지 600℃)에서 성장된 것일 수 있다. 제2 질화물층(120)은 제1 질화물층(130)의 결정성을 우수하게 하는 역할을 할 수 있고, 이에 따라, 제2 질화물층(120)이 더 형성됨으로써 제1 질화물층(130)의 광학적, 전기적 특성이 향상될 수 있다. 또한, 기판(110)이 사파이어 기판과 같은 이종 기판일 경우에, 제2 질화물층(120)은 제1 질화물층(130)이 성장될 수 있는 시드층 역할을 할 수도 있다.
또한, 제1 및 제2 질화물층(130, 120) 각각은 단일층 또는 다중층으로 이루어질 수 있다. 제1 질화물층(130)은 서로 다른 공정 조건에서 성장된 GaN층들을 포함할 수 있으며, 예컨대, 다른 성장 온도, 성장 압력 및 소스 유량 조건 하에서 성장된 층들을 포함할 수 있다. 이에 따라, 제1 질화물층(130) 내에서 n형 도펀트의 농도는 성장 방향에 따라 변화할 수 있다. 또한, 제1 질화물층(130)이 AlGaN, InGaN 등과 같은 3성분계 또는 AlInGaN과 같은 4성분계 질화물 반도체를 포함하는 경우, 서로 다른 조성비를 갖는 질화물 반도체층들이 형성될 수 있다. 예를 들어, 제1 질화물층(130)은 적어도 하나의 u-GaN층 및 상기 u-GaN층 상에 형성된 적어도 하나의 n-GaN층을 포함할 수 있다. 나아가, 적어도 하나의 u-GaN층 및 적어도 하나의 n-GaN층은 각각 복수로 형성될 수 있으며, 복수의 u-GaN층들과 복수의 n-GaN층들은 각각 서로 다른 공정 조건하에서 성장된 u-GaN층들 및 n-GaN층들을 포함할 수 있다.저전류 차단층(140)은 제1 질화물층(130) 상에 위치하며, 다층 구조층을 포함할 수 있다.
상기 다층 구조층은 (Al, In, Ga)N을 포함하는 2원 내지 4원계 질화물 반도체층을 포함할 수 있고, 나아가, 상기 다층 구조층은 서로 다른 조성비를 갖는 적어도 2 이상의 질화물층들이 반복 적층된 구조를 가질 수 있다. 이때, 각각의 질화물층은 5 내지 10nm의 두께를 가질 수 있다. 또한, 상기 다층 구조층은 한 쌍의 서로 다른 조성비를 갖는 질화물층이 3 내지 10쌍 적층된 구조를 포함할 수 있다.
상기 다층 구조층에 적층되는 질화물 반도체층들은 광 흡수층(150)의 질화물층의 조성에 따라 결정될 수 있다. 예를 들어, 상기 광 흡수층(150)이 AlGaN층을 포함하는 경우, 상기 다층 구조층은 AlN층/AlGaN층 또는 AlGaN층/AlGaN층의 반복 적층 구조를 포함할 수 있다. 또한, 광 흡수층(150)이 InGaN을 포함하는 경우 상기 다층 구조층은 InGaN층/InGaN층, GaN층/InGaN층, 또는 AlInGaN층/AlInGaN층의 반복 적층 구조를 포함할 수 있으며, 광 흡수층(150)이 GaN층을 포함하는 경우 GaN층/InGaN층, InGaN층/InGaN층 또는 GaN층/GaN층의 반복 적층 구조를 포함할 수 있다.
또한, 한편 저전류 차단층(140)은 다층 구조층을 가질 수 있으며 각 층의 계면의 밴드갭 에너지는 상대적으로 다른 부분에 비해 클 수 있다. 도 19의 (a) 및 (b)는 각가 조성비를 측정하기 위해 아톰 프로브(atom probe)를 이용하여 측정한 데이터와 TEM 사진이다. 깊이(Depth) 0 내지 90nm 까지는 광 흡수층이고, 깊이 90nm보다 큰 깊이, 즉 상기 광 흡수층의 하단에 저전류 차단층(140)이 구비되어 있다. 도 19의 (a) 및 (b)에 나타난 바와 같이, 다층 구조층의 각 층 사이에 Al 조성비가 높은 것을 알 수 있다. 이와 같이 Al 조성비가 높은 얇은 층이 다층 구조층의 층들 계면에 존재하면, 발생한 광전자가 터널링 효과를 통해 광 흡수층(150)과 제1 질화물층(130)의 사이에서 발생하는 계면 저항이 보다 효과적으로 낮아져 광전자의 손실이 감소되고 측정 감도(sensitivity)가 높아진다.
서로 다른 조성비를 갖는 질화물층들의 적층 구조는 각각의 질화물층들을 서로 다른 압력에서 성장시킴으로써 제공될 수 있다. 예를 들어, AlxGa(1-x)N층과 AlyGa(1-y)N층이 반복 적층된 구조를 포함하는 다층 구조층을 형성하는 경우, AlxGa(1-x)N층은 약 100Torr의 압력에서 성장시키고, AlyGa(1-y)N층은 약 400Torr의 압력에서 성장시킨다. 이때, 압력 외에 다른 성장 조건이 동일한 경우, 더 낮은 압력에서 성장된 AlxGa(1-x)N층은 더 높은 압력에서 성장된 AlyGa(1-y)N층에 비해 높은 Al 조성비를 가질 수 있다.
이와 같이, 서로 다른 압력에서 성장된 질화물층들은 성장 압력의 차이로 인하여 서로 다른 성장률을 가질 수 있다. 상기 질화물층들이 서로 다른 성장률을 가짐으로써, 성장 과정에서 전위가 전파되는 것을 차단하거나 또는 전위의 전파 경로를 변화시킬 수 있어서, 후속 공정에서 성장되는 다른 반도체층들의 전위 밀도를 감소시킬 수 있다. 나아가, 반복 적층되는 층들의 서로 조성비를 다르게 하는 경우, 격자 상수 차이에 의한 응력을 완화시킬 수 있어서, 후속 공정에서 성장되는 다른 반도체층들의 결정성을 우수하게 할 수 있고, 크랙 등의 손상이 발생하는 것을 방지할 수 있다. 특히, Al비율이 15%이상인 AlGaN층을 저전류 차단층(140) 상에 성장시키는 경우, AlGaN층에 크랙이 발생하는 것을 효과적으로 방지할 수 있어서, 종래에 AlN층 또는 GaN층 상에 AlGaN층을 형성할 때의 크랙 발생 문제를 해결할 수 있다. 본 실시예에 따르면, 광 흡수층(150) 아래에 다층 구조층을 포함하는 저전류 차단층(140)이 형성됨으로써, 광 흡수층(150)의 결정성을 우수하게 하고 광 흡수층(150)에 크랙이 발생하는 것을 방지할 수 있다. 광 흡수층(150)이 우수한 결정을 가지게 되면, 상기 광 검출 소자의 양자 효율이 향상될 수 있다.
한편, 저전류 차단층(140)은 광 흡수층(150)에 비해 더 높은 결함 밀도를 가질 수 있다. 저전류 차단층(140)의 저전류 차단 역할에 관해서는 후술하여 상세하게 설명한다.
다시 도 1을 참조하면, 광 흡수층(150)은 저전류 차단층(140) 상에 위치한다.
광 흡수층(150)은 질화물 반도체를 포함할 수 있으며, 예를 들어, GaN층 InGaN층, AlInGaN층 및 AlGaN층 중 적어도 하나의 층을 포함할 수 있다. 질화물 반도체층은 함유하는 3족 원소의 종류에 따라 에너지 밴드갭의 크기가 결정되므로, 광 검출 소자에서 검출하고자 하는 광의 파장을 고려하여 광 흡수층(150)의 질화물 반도체 물질이 결정될 수 있다. 예를 들어, UVA 영역의 자외선 광을 검출하는 광 검출 소자는 GaN층 또는 InGaN층을 갖는 광 흡수층(150)을 포함할 수 있고, UVB 영역의 자외선 광을 검출하는 광 검출 소자는 28% 이하의 Al 조성비를 갖는 AlGaN층을 포함하는 광 흡수층(150)을 포함할 수 있으며, UVC 영역의 자외선 광을 검출하는 광 검출 소자는 28%~50%의 Al 조성비를 갖는 AlGaN층을 포함하는 광 흡수층(150)을 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
광 흡수층(150)은 약 0.1 내지 0.5㎛를 가질 수 있고, 광 검출 효율의 향상을 위해서 0.1㎛ 이상의 두께를 갖도록 형성될 수 있다. 종래의 경우, AlN층이나 GaN층 상에 광 흡수층(150)을 형성하므로, Al 조성비가 15%인 AlGaN층을 포함하는 광 흡수층(150)을 0.1㎛이상의 두께로 형성하면 크랙이 쉽게 발생하는 문제가 있었다. 따라서, 종래에는 광 흡수층(150)의 두께가 0.1㎛ 이하로 얇아 소자 제조 수율 및 광 검출 효율이 낮았다. 반면, 본 발명은 다층 구조층을 포함하는 저전류 차단층(140) 상에 광 흡수층(150)을 형성하므로, 광 흡수층(150)에 크랙이 발생하는 것을 방지하여 0.1㎛ 이상의 두께를 갖는 광 흡수층(150)을 제조할 수 있다. 따라서 본 발명의 광 검출 소자는 높은 광 검출 효율을 갖는다.
쇼트키 접합층(160)은 광 흡수층(150) 상에 위치한다. 쇼트키 접합층(160)과 광 흡수층(150)은 서로 쇼트키 접촉을 형성할 수 있으며, 상기 쇼트키 접합층(160)은 ITO, Ni, Co, Pt, W, Ti, Pd, Ru, Cr, 및 Au 중 적어도 하나를 포함할 수 있다. 쇼트키 접합층(160)의 두께는 광 투과도 및 쇼트키 특성을 고려하여 조절될 수 있으며, 예를 들어, 10nm이하의 두께로 형성될 수 있다.
나아가, 상기 광 검출 소자는, 쇼트키 접합층(160)과 광 흡수층(150) 사이에 위치하는 캡층(미도시)을 더 포함할 수 있다. 캡층은 Mg과 같은 불순물을 포함하여 p형 도핑된 질화물 반도체층일 수 있다. 캡층은 100nm이하의 두께를 가질 수 있으며, 바람직하게는 5nm이하의 두께를 가질 수 있다. 캡층은 소자의 쇼트키 특성을 향상시킬 수 있다.
다시 도 1을 참조하면, 광 검출 소자는 광 흡수층(150) 및 저전류 차단층(140)이 부분적으로 제거되어, 제1 질화물층(130)의 표면이 노출된 영역을 포함할 수 있다. 상기 제1 질화물층(130)이 노출된 영역 상에 제2 전극(173)이 배치될 수 있으며, 제1 전극(171)은 쇼트키 접합층(160) 상에 배치될 수 있다.
제1 전극(171)은 금속을 포함할 수 있으며, 다중층으로 형성될 수 있다. 예를 들어, 제1 전극(171)은 Ni층/Au층이 적층된 구조를 포함할 수 있다. 제2 전극(173)은 제1 질화물층(130)과 오믹 접촉을 형성할 수 있으며, 금속을 포함하는 다중층으로 형성될 수 있다. 예를 들어, 제2 전극(173)은 Cr층/Ni층/Au층이 적층된 구조를 포함할 수 있다. 다만, 본 발명이 상술한 예시들에 한정되는 것은 아니다. 즉, 제1 전극(171)과 제2 전극(173)은 각각 쇼트키 접합층(160) 및 제1 질화물층(130)에 각각 전기적으로 연결된 구조이면 제한되지 않는다.
이하, 상기 광 검출 소자의 구동 원리에 따른 저전류 차단층(140)의 역할에 대해 구체적으로 설명한다.
상기 광 검출 소자의 제1 전극(171) 및 제2 전극(173)에 외부 전원이 연결되어, 전압을 인가하지 않거나 역전압이 인가된 상태로 광 검출 소자가 준비된다. 상기 준비된 광 검출 소자에 광이 조사되면, 광 흡수층(150)은 광 검출 소자에 조사되는 광을 흡수한다. 광 흡수층(150) 상에 쇼트키 접합층(160)을 형성하게 되면, 계면 사이에 전자-정공 분리 영역, 즉, 공핍 영역이 형성된다. 상기 조사된 광에 의해 형성된 전자에 의해 전류가 발생하고, 상기 발생된 전류를 측정함으로써 광 검출의 기능을 수행할 수 있다.
예를 들어, 상기 광 검출 소자가 자외선 광 검출 소자인 경우, 이상적인 자외선 광 검출 소자는 자외선 대비 가시광선 반응 비율(UV-to-visible rejection ratio)는 무한대값을 갖는다. 그런데, 종래의 자외선 광 검출 소자에 있어서, 광 흡수층이 갖는 결함으로 인하여 가시광에 의해서도 광 흡수층이 반응하여 전류가 발생한다. 따라서, 종래의 광 검출 소자는 자외선 대비 가시광선 반응 비율이 103 이하로 측정되며, 이는 광 측정의 오류를 발생시킨다.
반면, 본 발명의 광 검출 소자의 경우, 가시광에 의해 광 흡수층(150)에 생성된 전자들이 저전류 차단층(140)에 의해 포획됨으로써, 가시광에 의해 소자가 구동하는 것을 최대한 방지할 수 있다. 상술한 바와 같이, 저전류 차단층(140)은 광 흡수층(150)에 비해 더 높은 결함 밀도를 갖는다. 가시광에 의해 생성된 전자는 자외선에 의해 생성되는 전자에 비해 매우 적은 양이고, 따라서, 저전류 차단층(140)에 존재하는 결함만으로도 충분히 전자의 이동을 막을 수 있다. 즉, 저전류 차단층(140)은 광 흡수층(150)보다 더 높은 결함 밀도를 가짐으로써, 가시광에 의해 생성된 전자의 이동은 방지할 수 있다. 한편, 광 흡수층(150)에 자외선 광이 조사되어 생성된 전자들은 가시광에 의해 생성된 전자들에 비해 그 수가 월등히 많으므로, 저전류 차단층(140)에 포획되지 않고 소자에 전류가 흐르도록 할 수 있다. 그러므로, 본 발명의 광 검출 소자는 가시광에 반응하는 정도가 매우 낮아, 종래의 자외선 광 검출 소자에 비해 높은 자외선 대비 가시광선 반응 비율을 가질 수 있다. 특히, 본 발명의 광 검출 소자는 104 이상의 자외선 대비 가시광선 반응 비율을 갖는다. 따라서 본 발명에 따르면, 높은 검출 효율 및 신뢰성을 갖는 광 검출 소자가 제공될 수 있다.
도 3 내지 도 8은 본 발명의 또 다른 실시예에 따른 광 검출 소자 제조 방법을 설명하기 위한 단면도들이다. 본 실시예에 있어서, 도 1 및 도 2를 참조하여 설명한 구성들과 동일한 구성에 대해서는 상세한 설명을 생략한다.
먼저, 도 3을 참조하면, 기판(110) 상에 제2 질화물층(120)을 형성할 수 있다.
제2 질화물층(120)은 질화물 반도체를 포함할 수 있고, MOCVD를 이용하여 성장될 수 있다. 예를 들어, 약 550℃ 온도 및 100Torr의 압력 내의 챔버에 Ga 소스와 N 소스를 주입하여 성장시킬 수 있다. 이에 따라, 제2 질화물층(120)은 저온 성장된 GaN층을 포함할 수 있다. 제2 질화물층(120)은 약 25nm의 두께로 성장될 수 있으며, 제2 질화물층(120)을 저온에서 얇은 두께로 성장시킴으로써, 후술하는 공정에서 제1 질화물층(120)의 결정성, 광학적 및 전기적 특성을 우수하게 할 수 있다.
이어서, 도 4를 참조하면, 제2 질화물층(120) 상에 MOCVD를 이용하여 제1 질화물층(130)을 형성한다.
제1 질화물층(130)은 질화물 반도체를 포함할 수 있고, MOCVD를 이용하여 성장될 수 있다. 예를 들어, 약 1050℃ 내지 1300℃의 온도 및 약 100 Torr 내지 500 Torr의 압력 내의 챔버에 Ga 소스와 N 소스를 주입하여 성장시킬 수 있고, 이에 따라, 제1 질화물층(130)은 고온 성장된 GaN층을 포함할 수 있다. 또한, 제1 질화물층(130)은 성장시 Si 소스를 추가로 주입하여 n형 도핑된 GaN층을 포함할 수 있고, 이와 달리, 언도핑된 GaN층을 포함할 수도 있다. 제1 질화물층(130)은 약 2㎛ 내지 3㎛ 두께로 성장될 수 있다. 또한, 제1 질화물층(130)은 복수의 층들을 포함할 수 있고, 이 경우, 서로 다른 공정 조건에 성장된 복수의 u-GaN층 및/또는 n-GaN층들을 포함할 수 있다.
도 5를 참조하면, 제1 질화물층(130) 상에 저전류 차단층(140)을 형성한다.
저전류 차단층(140)은 다층 구조층을 포함할 수 있고, 상기 다층 구조층은 (Al, In, Ga)N을 포함하는 2원 내지 4원계 질화물층을 반복 적층함으로써 형성될 수 있다. 상기 다층 구조층은 서로 다른 조성비를 갖는 적어도 2 이상의 질화물층일 수 있다. 상기 다층 구조층에 적층되는 질화물층들은 광 흡수층(150)의 질화물층의 조성에 따라 결정될 수 있다. 예를 들어, 상기 광 흡수층(150)이 AlGaN층을 포함하는 경우, 상기 다층 구조층은 AlN층/AlGaN층 또는 AlGaN층/AlGaN층의 반복 적층 구조를 포함할 수 있다. 또한, 광 흡수층(150)이 InGaN을 포함하는 경우 상기 다층 구조층은 InGaN층/InGaN층, GaN층/InGaN층, 또는 AlInGaN층/AlInGaN층의 반복 적층 구조를 포함할 수 있으며, 광 흡수층(150)이 GaN층을 포함하는 경우 GaN층/InGaN층, InGaN층/InGaN층 또는 GaN층/GaN층의 반복 적층 구조를 포함할 수 있다. 상기 반복 적층 구조들은 3 내지 10 쌍이 적층되어 형성될 수 있으며, 저전류 차단층의 두께는 10 내지 100nm가 되도록 형성될 수 있다.
상기 서로 다른 조성비를 갖는 적어도 2 이상의 질화물층 각각은 5 내지 10nm의 두께로 성장될 수 있고, 소스 가스를 유입량을 조절하여 서로 다른 조성비를 갖도록 성장될 수 있다. 이와 달리, 소스 가스 유입량을 비롯한 다른 조건은 일정하게 유지하되, 챔버 내의 압력을 달리하여 질화물층을 적층함으로써, 서로 다른 조성비를 갖는 적어도 2 이상의 질화물층을 형성할 수도 있다.
예를 들어, AlxGa(1-x)N층과 AlyGa(1-y)N층이 반복 적층된 구조를 포함하는 다층 구조층을 형성하는 경우, AlxGa(1-x)N층은 약 100Torr의 압력에서 성장시키고, AlyGa(1-y)N층은 약 400Torr의 압력에서 성장시킨다. 이때, 압력 외에 다른 성장 조건이 동일한 경우, 더 낮은 압력에서 성장된 AlxGa(1-x)N층은 더 높은 압력에서 성장된 AlyGa(1-y)N층에 비해 높은 Al 조성비를 가질 수 있다. 이와 같이, 서로 다른 압력에서 성장되어 형성된 다층 구조층을 포함하는 저전류 차단층(140)은, 성장 과정에서 전위의 생성 및 전파를 방지하여 저전류 차단층(140) 상에 형성되는 광 흡수층(150)의 결정질을 향상시킬 수 있다. 또한, 서로 다른 압력에 성장되어 서로 다른 조성비를 갖는 질화물층이 반복 적층 됨으로써, 격자 상수 차이에 기인한 응력을 완화시켜 광 흡수층(150)에 크랙이 발생하는 것을 방지할 수 있다. 또한, 소스 가스의 유입량은 일정하게 유지하면서, 압력만 변화시켜 질화물층을 성장시키므로, 저전류 차단층(140) 형성 공정이 용이하다.
한편, 저전류 차단층(140)은 광 흡수층(150)보다 높은 결함 밀도를 가질 수 있다. 저전류 차단층(140)이 광 흡수층(150)보다 상대적으로 높은 결함 밀도를 가짐으로써, 광 흡수층(150)이 가시광에 반응하여 생성된 전자들의 흐름을 방지할 수 있다.
도 6을 참조하면, 저전류 차단층(140) 상에 광 흡수층(150)을 형성한다.
광 흡수층(150)은 질화물 반도체를 포함할 수 있으며, 광 검출 소자에서 검출하고자 하는 광의 파장에 따라 질화물 반도체의 원소 및 조성을 선택적으로 적용하여 성장시킬 수 있다. 예를 들어, UVA 영역의 자외선 광을 검출하는 광 검출 소자를 제조하는 경우, GaN층 또는 InGaN층을 갖는 광 흡수층(150)을 성장시킬 수 있고, UVB 영역의 자외선 광을 검출하는 광 검출 소자를 제조하는 경우 28% 이하의 Al 조성비를 갖는 AlGaN층을 포함하는 광 흡수층(150)을 성장시킬 수 있으며, UVC 영역의 자외선 광을 검출하는 광 검출 소자를 제조하는 경우 28%~50%의 Al 조성비를 갖는 AlGaN층을 포함하는 광 흡수층(150)을 성장시킬 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
광 흡수층(150)은 0.1㎛ 이상의 두께를 갖도록 성장될 수 있고, 이에 따라, 제조된 광 검출 소자는 높은 광 검출 효율을 가질 수 있다.
이어서, 도 7을 참조하면, 광 흡수층(150) 및 저전류 차단층(140)을 부분적으로 제거하여 제1 질화물층(130)을 부분적으로 노출시킬 수 있다. 나아가, 상기 노출된 부분 아래의 제1 질화물층(130)의 일부를 두께 방향으로 더 제거할 수 있다.
상기 광 흡수층(150) 및 저전류 차단층(140)을 부분적으로 제거하는 것은 사진 및 식각 공정을 통해 수행될 수 있으며, 예를 들어, 건식 식각을 이용할 수 있다.
다음, 도 8을 참조하면, 광 흡수층(150) 상에 쇼트키 접합층(160)을 형성한다. 쇼트키 접합층(160)은 ITO, Ni, Co, Pt, W, Ti, Pd, Ru, Cr, 및 Au 중 적어도 하나를 포함하는 물질을 증착 공정 등을 통해 형성할 수 있다. 쇼트키 접합층(160)의 두께는 광 투과도 및 쇼트키 특성을 고려하여 조절될 수 있으며, 예를 들어, 10nm이하의 두께로 형성될 수 있다.
나아가, 상기 제조 방법은, 쇼트키 접합층(160)과 광 흡수층(150) 사이에 위치하는 캡층(미도시)을 형성하는 것을 더 포함할 수 있다. 캡층은 Mg과 같은 불순물을 포함하는 p형 도핑된 질화물 반도체층을 성장시켜 형성할 수 있다. 캡층은 100nm이하의 두께를 가질 수 있으며, 바람직하게는 5nm이하의 두께를 가질 수 있다. 캡층은 소자의 쇼트키 특성을 향상시킬 수 있다.
이어서, 쇼트키 접합층(160) 및 제1 질화물층(130)이 노출된 영역 상에 각각 제1 전극(171) 및 제2 전극(173)을 형성하면, 도 1에 도시된 바와 같은 광 검출 소자가 제공된다.
제1 및 제2 전극(171, 173)은 금속물질의 증착 및 리프트 오프 공정을 이용하여 형성될 수 있으며, 다중층으로 형성될 수도 있다. 예를 들어, 제1 전극(171)은 Ni층/Au층을 적층하여 형성할 수 있고, 제2 전극(173)은 Cr층/Ni층/Au층을 적층하여 형성할 수 있다.
실험예 1
도 9는 본 발명의 일 실험예에 따른 광 검출 소자의 특성을 설명하기 위한 그래프로, 상기 광 검출 소자의 파장 대비 반응도를 나타내는 그래프이다. 도 9에서 이용된 광 검출 소자들은 본 발명의 구성들을 포함한다. UVA 광 검출 소자는 광 흡수층으로 GaN층을 이용하고, UVB 광 검출 소자는 광 흡수층으로 28%의 Al 조성비를 갖는 AlGaN층을 이용하며, UVC 광 검출 소자는 광 흡수층으로 50%의 Al 조성비를 갖는 AlGaN층을 이용한다.
각각의 광 검출 소자들은 도 9에 도시된 바와 같은 높은 반응도를 갖는다. 또한, 각각의 광 검출 소자들을 600nm의 피크파장을 갖는 백색 LED를 조사하여 얻은 반응도를 측정하여, 자외선 대비 가시광선 반응 비율을 계산한 결과 세 가지 모든 광 검출 소자들에 대해서 104 이상을 얻었다.
도 10은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다. 도 10의 광 검출 소자는 도 1의 광 검출 소자와 비교하여 ESD(electrostatic discharge; 정전기 방전) 방지층(180)을 더 포함하는 점에서 차이가 있다. 이하, 차이점을 중심으로 본 실시예의 광 검출 소자에 대해 더욱 상세하게 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다.
상기 광 검출 소자는 제1 질화물층(130), 광 흡수층(150), 쇼트키 접합층(160) 및 ESD 방지층(180)을 포함한다. 나아가, 상기 광 검출 소자는 기판(110), 제2 질화물층(120), 저전류 차단층(140), 제1 전극(171) 및 제2 전극(173)을 더 포함할 수 있다.
ESD 방지층(180)은 제1 질화물층(130)과 저전류 차단층(140)의 사이에 위치한다. ESD 방지층(180)은 (Al, In, Ga)N와 같은 질화물계 반도체를 포함할 수 있으며, 예를 들어, GaN을 포함할 수 있다. 또한, ESD 방지층(180)의 평균 n형 도펀트 농도는 제1 질화물층(130)의 평균 n형 도펀트 농도보다 낮을 수 있다. 나아가, ESD 방지층(180)은 언도프 질화물계 반도체를 포함할 수 있으며, 예컨대, u-GaN을 포함할 수 있으며, u-GaN으로 형성될 수도 있다. ESD 방지층(180)은 제1 질화물층(130)와 대체로 유사한 공정 조건 하에서 성장되어 형성될 수 있다. 또한, ESD 방지층(180)의 두께는 저전류 차단층(140)의 두께보다 작을 수 있다. 예를 들어, ESD 방지층(180)은 적어도 하나의 언도프 질화물계 반도체층을 포함할 수 있고, 상기 언도프 질화물계 반도체층들의 총 두께는 약 200nm 내지 400nm일 수 있고, 나아가, 약 300nm 내지 400nm 일 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
ESD 방지층(180)이 상대적으로 낮은 평균 n형 도펀트 농도를 갖고, 나아가 언도프 질화물계 반도체를 포함함으로써, 상기 광 검출 소자의 정전기 방전 특성을 향상시킬 수 있다. 특히, 언도프 질화물계 반도체를 포함하는 ESD 방지층(180)이 제1 질화물층(130)과 광 흡수 층(150)의 사이에 위치하여, 상기 광 검출 소자의 내부 커패시턴스를 향상시킬 수 있어, 정전기 방전에 대한 내성을 증가시킨다. 이에 따라, 본 실시예의 광 검출 소자는 쇼트키 접합 구조를 가지면서도, 종래에 비해 수배 이상의 정전기 방전에 대한 내성을 가질 수 있다.
한편, 본 실시예의 광 검출 소자는, 검출하고자 하는 광의 파장에 따라 다양한 조성비의 질화물계 반도체를 포함할 수 있다. 예컨대, 상기 광 검출 소자는 UVB 대역의 자외선 광을 검출하는 소자일 수 있다. 이때, 광 흡수층(150)은 AlGaN 및 AlInGaN 중 적어도 하나를 포함할 수 있고, 예를 들어, 약 30% 이하의 Al 조성비를 갖는 AlGaN으로 이루어질 수 있다. 나아가, 저전류 차단층(140)은 AlxGa(1-x)N층 및 AlyGa(1-y)N층 (x ≠ y)이 5주기 반복 적층된 초격자 구조를 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
도 11은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이며, 도 12 및 도 13은 각각 다른 실시예들에 따른 광 검출 소자의 ESD 방지층 구조를 설명하기 위한 확대도 및 그래프를 도시한다. 도 12 및 도 13 각각의 (a)는 ESD 방지층(190)을 확대 도시하며, (b)는 광 흡수층(150) 측으로 향하는 방향에 따른 n형 도펀트 농도의 변화를 도시한다.
도 11의 광 검출 소자는 도 10의 광 검출 소자와 비교하여 ESD 방지층(190)이 도핑 영역을 더 포함하는 점에서 차이가 있다. 이하, 차이점을 중심으로 본 실시예의 광 검출 소자에 대해 더욱 상세하게 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다.
상기 광 검출 소자는 제1 질화물층(130), 저전류 차단층(140), 광 흡수층(150), 쇼트키 접합층(160) 및 ESD 방지층(190)을 포함한다. 나아가, 상기 광 검출 소자는 기판(110), 제2 질화물층(120), 제1 전극(171) 및 제2 전극(173)을 더 포함할 수 있다. ESD 방지층(190)은 도 10의 ESD 방지층(180)과 대체로 유사하나, n형 도펀트를 포함하는 도핑 영역을 더 포함할 수 있다. n형 도펀트는 Si, Ge, Sn 등과 같은 공지의 도펀트를 포함할 수 있다.
먼저, 도 13을 참조하면, 일 실시예에 따른 ESD 방지층(190)은 적어도 하나의 도핑 영역(192, 193, 및 194 중 적어도 하나)을 포함할 수 있다. 도핑 영역(192, 193, 194)은 복수로 형성될 수 있으며, 예컨대, 도핑 영역(192, 193, 194)은 제1 도핑 영역(192), 제2 도핑 영역(193) 및 제3 도핑 영역(194)을 포함할 수 있다. 제2 도핑 영역(193)은 제1 도핑 영역(192) 상에 위치할 수 있고, 제3 도핑 영역(194)은 제2 도핑 영역(193) 상에 위치할 수 있다. 이때, 각각의 도핑 영역들(192, 193, 194)은 서로 접할 수도 있고, 서로 이격될 수도 있다.
또한, 도핑 영역들(192, 193, 194)은 서로 다른 도핑 농도를 가질 수 있다. 나아가, 도핑 영역들(192, 193, 194)의 도핑 프로파일은 특정 방향을 따라 증가하거나 감소할 수 있다. 예컨대, 도 13(b)에 도시된 바와 같이, 제2 도핑 영역(193)은 제1 도핑 영역(192)보다 높은 도핑 농도를 가질 수 있고, 제3 도핑 영역(194)은 제2 도핑 영역(193)보다 높은 도핑 농도를 가질 수 있다. 따라서, 제1 내지 제3 도핑 영역(192, 193, 194)들의 도핑 농도는 광 흡수층(150) 측으로 향하는 방향에 따라 증가할 수 있다. 이때, 도핑 농도의 증가율은 일정할 수도 있고, 불규칙적일 수도 있다. 덧붙여, 일 도핑 영역(192, 193 또는 194) 내에서의 도핑 프로파일은 증가하거나 감소할 수도 있고, 또한 n형 도펀트가 변조 도핑된(modulation-doped) 도핑 프로파일을 가질 수도 있다. 본 실시예에 있어서, 제1 질화물층(130)은 n형 도펀트를 포함하는 것으로 설명하고 있으나, 본 발명이 이에 한정되는 것은 아니며 제1 질화물층(130)은 언도프 상태일 수도 있다. 또한, 제1 질화물층(130) 내의 평균 도핑 농도와 ESD 방지층(190)의 평균 도핑 농도는 다양하게 조절될 수 있다.
광 흡수층(150)에서 발생된 광전자는 제3 도핑영역(194)을 통과한 뒤 제1 도핑 영역(192)을 통해 수평 이동하여 제2 전극(173)으로 이송된다. 이때, 제3 도핑영역(194)을 고농도로 하여 광전자가 전자 분산층에 진입하는 것을 용이하게 하고 제1 도핑 영역(192)을 통해 수평 이동한다. 도핑의 농도가 높으면 확산도가 커쳐 상층의 제1 도핑 영역(192)을 광전자가 투과하기 좋도록 한다. 반면 n형 도펀트(예컨대, Si) 농도가 높으면 수평 이동 시 저항으로 작용하기 때문에, 저농도층을 고농도 층에 인접시켜 광전자 주입 효율과 전자의 수평 이동 효율을 각각 향상시킬 수 있다.
또한, 도 14를 참조하면, 몇몇 실시예에 따른 ESD 방지층(190)은 도핑 영역을 포함할 수 있으며, 상기 도핑 영역은 적어도 하나의 n형 도펀트 쇼크층(195)을 포함할 수 있다.
도시된 바와 같이, ESD 방지층(190)은 상대적으로 얇은 두께 영역에 n형 도펀트가 도핑된 n형 도펀트 쇼크층(195)을 포함할 수 있다. n형 도펀트 쇼크층(195)은 도 13의 실시예에서 설명한 제1 내지 제3 도핑 영역(192, 193, 194)의 두께보다 얇은 두께를 갖도록 형성될 수 있으며, 나아가, 델타 도핑에 준하는 두께를 갖도록 형성될 수도 있다. n형 도펀트 쇼크층(195)은 복수로 형성될 수 있으며, 복수의 n형 도펀 쇼크층(195)들은 일정한 간격으로 ESD 방지층(190) 내에 배치될 수도 있고, 이와 달리, 불규칙한 간격으로 ESD 방지층(190) 내에 배치될 수도 있다. 또한, 복수의 n형 도펀 쇼크층(195)들은 광 흡수층(150) 측으로 향하는 방향에 따라 간격이 증가하거나 감소하도록 배치될 수도 있다.
도 13 또는 도 14에 도시된 바와 같이, 도핑 영역들(192, 193, 194, 195)은 ESD 방지층(190) 내에 위치할 수 있으므로, 도시된 바와 같이, 도핑 영역들(192, 193, 194, 195)의 상부 및 하부에는 언도핑 영역(언도프 질화물계 반도체, 191)이 위치할 수 있다. 따라서, ESD 방지층(190)에 있어서, 언도핑 영역(191)은 저전류 차단층(140) 및 제1 질화물층(130) 중 적어도 하나와 접할 수 있다.
도핑 영역 사이에 언도핑 영역을 추가함으로써 소자 동작 시에는 광 전자가 제2 전극(173)으로 유입되는 저항을 낮춰주고 ESD 인가 시에는 공핍 영역을 보다 넓게 발생시킨다.
ESD 방지층(190)이 n형 도펀트 도핑 영역을 포함함으로써, 정전기에 의해 공핍층이 확장되는 것이 상기 도핑 영역에 의해 저지된다. 이에 따라, 광 검출 소자의 정전기 방전 특성이 더욱 향상될 수 있다. 또한, ESD 방지층(190)의 도핑 영역에 의해 ESD 방지층(190)에서의 저항이 감소하여, 광 검출 소자 동작 시 전류의 흐름이 원활해져 소자의 광 검출 효율이 향상될 수 있다.
상술한 실시예들에 따른 광 검출 소자는 저전류 차단층(140)을 포함함과 더불어, ESD 방지층(190)을 더 포함함으로써, 정전기 등에 의한 소자의 손상을 방지할 수 있다. 이에 따라, 광 검출 소자의 사용에 따른 신뢰성 저하를 줄일 수 있어, 광 검출 소자가 실제 어플리케이션 등에 적용되었을 때, 상기 어플리케이션의 사용에 따라 자외선 대비 가시광선 반응 비율이 증가하는 것을 방지할 수 있다.
실험예 2
도 14는 본 발명의 다른 실험예에 따른 광 검출 소자의 특성을 비교 설명하기 위한 그래프이다.
본 실험예에서, 실시예는 도 10의 광 검출 소자와 대체로 유사한 구성을 갖는 광 검출 소자이고, 비교예는 도 10의 광 검출 소자에서 ESD 방지층(180)이 생략된 구성을 갖는 광 검출 소자이다. 본 실험에서, ESD 전압으로 100V, 200V, 300V, 400V 및 500V를 단계적으로 인가하여 실시예 및 비교예에 따른 광 검출 소자들의 광 반응 유지 비율을 측정하였다.
도 14의 그래프에 도시된 바와 같이, 실시예의 광 검출 소자의 경우, 400V의 ESD 전압에도 거의 100%에 가까운 광 반응을 유지하는 것을 알 수 있다. 반면 비교예의 광 검출 소자의 경우, 200V의 ESD 전압에 의해서도 광 반응이 감소하는 것을 알 수 있고, 300V의 ESD 전압에 의해 소자가 파손되어 광 검출 기능을 상실하는 것을 알 수 있다. 이와 같이 본 실험예에 따르면, ESD 방지층을 포함하는 광 검출 소자는 ESD 방지층을 포함하지 않는 소자에 비해 2배 이상의 ESD 전압에 의해서도 소자가 파손되지 않는 것을 알 수 있다.
실험예 3
ESD 방지층의 효과적인 두께를 조사하기 위하여 실험을 실시하였다. 본 실험예에서 적용된 광 검출 소자는, 기판, 약 3㎛의 n형 GaN 제1 질화물층, u-GaN ESD 방지층, 광 흡수층 및 Ni 쇼트키 컨택층을 갖는다. 또한, n형 GaN 제1 질화물층을 노출시키는 메사의 깊이는 약 0.6㎛이고, Ni 쇼트키 컨택층과 n형 GaN 제1 질화물층 상에 각각 제1 전극과 제2 전극을 형성하였다.
표 1은 u-GaN ESD 층의 두께를 증가시키면서 발생 전류와 ESD 수율 간의 측정 결과를 나타낸 것이다. 하기 ESD 측정 결과에 따른 ESD 수율은 등급(rank)에 따라 분류된 약 100개의 소자에, 400V를 인가한 뒤 단락(short)되지 않은 칩의 비율이다. 광 전류는 UV-B의 LED 광을 조사하면서 1V의 전압을 걸어주었을 때 발생한 전류를 측정한 것이다.
u-GaN 두께 (nm) 광 전류(nA) ESD 수율(%)
없음 43.74 53.4
100 56.97 62.1
200 52.15 63.7
300 78.18 88.5
400 71.04 90.5
500 60.5 90.6
표 1에 나타난 바와 같이, u-GaN ESD 방지층의 두께가 300nm이상인 경우 ESD 수율이 큰 폭으로 증가됨을 알 수 있었다. 이는 n형 도펀트가 전자의 이동도를 저감시키기 때문에, ESD 방지층이 광 전류를 수평 분산하는 효과가 원인인 것으로 분석된다. 다만, ESD 방지층이 300nm인 경우를 기점으로, 광 전류가 감소한다. 이는 전자의 수직 이동 측면에서 u-GaN이 저항요소로 작용하기 때문으로 판단된다. ESD 수율은 ESD 방지층의 두께가 400nm일 때까지 급격히 증가하다가, 그 이상의 두께에서는 증가 폭이 둔화되는 것을 알 수 있다. 본 실험예를 종합해 볼 때, ESD 방지층 내 u-GaN층의 두께는 약 200 내지 400nm일 때 ESD 및 광 전류 측면에서 가장 우수한 특성을 가지며, 나아가, ESD 방지층의 두께가 약300nm일 때 최적의 효과를 갖는 것을 알 수 있다. 다만, 본 발명이 본 실험예에 의해 한정되는 것은 아니다.
도 15는 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다. 본 실시예의 광 검출 소자는 도 1에 도시된 광 검출 소자와 대체로 유사하나, 상기 광 검출 소자가 2차 기판(200) 상에 플립 본딩될 수 있는 점에서 차이가 있다. 이하, 차이점을 중심으로 본 실시예의 광 검출 소자에 대해 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다.
도 15를 참조하면, 상기 광 검출 소자는 제1 질화물층(130), 저전류 차단층(140), 광 흡수층(150) 및 쇼트키 접합층(160)을 포함한다. 나아가, 상기 광 검출 소자는 제1 전극(171) 및 제2 전극(173)을 더 포함할 수 있고, 또한, 상기 광 검출 소자는 2차 기판(200) 상에 플립 본딩 되어 광 검출 소자 패키지로 제공될 수 있다. 이때, 2차 기판(200)은 베이스(210), 제1 리드 전극(221) 및 제2 리드 전극(223)을 포함할 수 있고, 광 검출 소자의 제1 및 제2 전극(171, 173)은 각각 2차 기판(200)의 제1 및 제2 리드 전극(221, 223)에 전기적으로 연결될 수 있다.
한편, 본 실시예의 광 검출 소자는, 도 1의 광 검출 소자와 비교하여, 기판(110)이 제1 질화물층(130)으로부터 제거될 수 있다. 상기 기판(110)은 레이저 리프트 오프, 화학적 리프트 오프, 열적 리프트 오프 및 스트레스 리프트 오프 중 적어도 하나의 방법을 이용하여 제1 질화물층(130)으로부터 분리되어 제거될 수 있다. 이와 관련하여서는, 도 17 및 도 18을 참조하여 더욱 상세하게 후술한다. 다만, 본 발명이 이에 한정되는 것은 아니며, 기판(110)은 제1 질화물층(130)으로부터 분리되지 않고 잔류할 수도 있다.
한편, 본 실시예의 광 검출 소자 동작 시, 조사되는 광은 주로 광 검출 소자의 상면, 즉, 제1 질화물층(130)의 상면으로부터 입사될 수 있다. 상기 광 검출 소자가 원활하게 동작하려면, 입사된 광이 제1 질화물층(130)을 통과하여 광 흡수층(150)에 도달하는 것이 바람직하다. 따라서, 제1 질화물층(130)은 소정 농도의 Al을 포함하는 질화물 반도체로 형성될 수 있다. 나아가, 자외선 광을 검출하는 광 검출 소자의 경우, 제1 질화물층(130)의 밴드갭 에너지는 광 흡수층(150)의 밴드갭 에너지보다 클 수 있다. 예컨대, 본 실시예의 광 검출 소자가 UVB 영역의 자외선 광을 검출하는 광 검출 소자인 경우, 제1 질화물층(130)은 약 28% 이상의 Al 조성비를 갖는 AlGaN을 포함할 수 있다. 이에 따라, 광 검출 소자에 입사된 광이 광 흡수층(150)에 도달하기 전에 제1 질화물층(130)에 흡수되는 것을 최소화할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 광 검출 소자가 검출하고자 하는 광의 파장대에 따라 제1 질화물층(130)의 조성 및 조성비는 다양하게 조절될 수 있다.
도 16은 본 발명의 다른 실시예에 따른 광 검출 소자를 설명하기 위한 단면도이다. 본 실시예의 광 검출 소자는 도 1에 도시된 광 검출 소자와 대체로 유사하나, 상기 광 검출 소자는 수직형으로 형성된 점에서 차이가 있다. 이하, 차이점을 중심으로 본 실시예의 광 검출 소자에 대해 설명하며, 동일한 구성에 대한 상세한 설명은 생략한다.
도 16을 참조하면, 상기 광 검출 소자는 제1 질화물층(130), 저전류 차단층(140), 광 흡수층(150) 및 쇼트키 접합층(160)을 포함한다. 나아가, 상기 광 검출 소자는 제1 전극(171) 및 제2 전극(173)을 더 포함할 수 있다.
본 실시예의 광 검출 소자는 도 1의 광 검출 소자와 비교하여, 기판(110)이 제1 질화물층(130)으로부터 분리될 수 있고, 이때, 제2 전극(173)은 기판(110)이 분리되어 노출된 제1 질화물층(130)의 상면 상에 위치할 수 있다. 즉, 제1 전극(171)과 제2 전극(173)은 수직적으로(vertically) 배치될 수 있다. 상기 기판(110)은 레이저 리프트 오프, 화학적 리프트 오프, 열적 리프트 오프 및 스트레스 리프트 오프 중 적어도 하나의 방법을 이용하여 제1 질화물층(130)으로부터 분리되어 제거될 수 있다. 이와 관련하여서는, 도 17 및 도 18을 참조하여 더욱 상세하게 후술한다.
본 실시예의 광 검출 소자 역시, 도 15의 광 검출 소자와 유사하게 조사되는 광은 주로 광 검출 소자의 상면, 즉, 제1 질화물층(130)의 상면으로부터 입사될 수 있다. 따라서, 광 검출 소자가 검출하고자 하는 광의 파장대에 따라 제1 질화물층(130)의 조성 및 조성비는 다양하게 조절될 수 있다.
이하, 도 17 및 도 18을 참조하여, 도 15 및 도 16의 실시예에 따른 광 검출 소자 제조 시 레이저 리프트 오프 방법을 이용한 기판(110) 분리 방법에 대해 더욱 상세하게 설명한다.
먼저, 도 17(a)는 기판(110) 분리 전의 광 검출 소자를 도시한다. 상기 광 검출 소자는 쇼트키 접합층(160), 상기 쇼트키 접합층(160) 상에 위치하는 광 흡수층(150), 상기 광 흡수층(150) 상에 위치하는 저전류 차단층(140), 상기 저전류 차단층(140) 상에 위치하는 제1 질화물층(130), 상기 제1 질화물층(130) 상에 위치하는 제2 질화물층(120) 및 기판(110)을 포함한다.
제2 질화물층(120)은 버퍼층(121) 및 보상층(123)을 포함할 수 있다. 버퍼층(121)은 기판(110)의 하면 아래에 위치할 수 있으며, Al을 1% 이하로 포함하는 질화물 반도체를 포함할 수 있다. 예를 들어, 버퍼층(121)은 GaN으로 형성될 수 있다. 보상층(123)은 버퍼층(121)과 제1 질화물층(130) 간의 격자상수 차이에 따른 스트레스를 완화시키는 역할을 할 수 있다. 따라서, 보상층(123)은 버퍼층(121)보다 높은 Al 조성비를 갖고, 제1 질화물층(130)보다 낮은 Al 조성비를 갖는 질화물 반도체를 포함할 수 있다. 나아가, 보상층(123)은 버퍼층(121)으로부터 제1 질화물층(130)으로 향하는 방향에 따라 Al 조성비가 증가하는 다중층 또는 조성비 그레디언트층을 포함할 수도 있다.
레이저 리프트 오프를 이용하여 기판(110)을 분리하는 경우, 기판(110)의 상면으로부터 하부 방향으로 레이저를 조사하게 되는데, 이때, 레이저는 주로 KrF 엑시머 레이저를 이용한다. 그런데, KrF 엑시머 레이저는 그 파장이 248nm여서, 기판(110)과 제1 질화물층(130)의 사이에 위치하는 제2 질화물층(120)이 Al을 포함하는 경우, 일부 레이저가 제2 질화물층(120)에서 흡수되지 못하고 통과하게 된다. 이러한 현상은 제2 질화물층(120)의 Al 조성비가 높을수록 심화될 수 있다. 본 실시예에 따르면, 제2 질화물층(120)이 Al을 거의 포함하지 않는, 예컨태 GaN으로 형성된 버퍼층(121)을 포함하여, 레이저 리프트 오프 시 적용되는 레이저가 상기 버퍼층(121)에서 흡수될 수 있다. 따라서, KrF 엑시머 레이저를 이용하더라도 용이하게 기판(110)을 분리할 수 있어, 본 실시예의 광 검출 소자 제조 공정이 용이해질 수 있다.
한편, 상술한 바와 같이, 도 15 및 도 16의 실시예에 따른 광 검출 소자에 있어서, 광 검출 소자에서 검출하고자 하는 광의 파장대에 따라 제1 질화물층(130)은 소정 조성비의 Al을 포함할 수 있다. 버퍼층(121)이 GaN으로 형성되는 경우, 버퍼층(121)과 Al을 포함하는 제1 질화물층(130) 간의 격자상수 차이에 의한 스트레스가 발생할 수 있고, 상기 스트레스가 심화되면 전위와 같은 결함의 농도가 증가하고 심지어 크랙이 발생할 수도 있다. 본 실시예에 따르면, 버퍼층(121)과 제1 질화물층(130) 상에 보상층(123)이 개재되어, 이러한 스트레스를 완화시켜 제1 질화물층(130)에 결함 농도가 증가하는 것을 방지할 수 있다.
이어서, 도 18을 참조하면, 레이저(L)를 기판(110) 상면에 조사하여, 기판(110)을 제1 질화물층(130)으로부터 분리할 수 있다. 이때, 기판(110)은 제2 질화물층(120)에서 분리될 수 있으며, 특히 버퍼층(121)에서 분리될 수 있다. 기판(110) 분리 후, 잔류하는 제2 질화물층(120)은 건식 식각, 습식 식각 또는 공지의 클리닝 공정을 통해 제거될 수 있다.
상술한 기판(110) 분리 방법은 도 15 및 도 16의 광 검출 소자 제조 시에 적용될 수 있다. 본 실시예에 따르면 용이하게 레이저 리프트 오프 공정을 적용하여 기판(110)을 분리할 수 있음과 동시에, 레이저 리프트 오프 공정을 적용하기 위한 버퍼층(121)으로 인한 제1 질화물층(130)의 결함 농도 증가를 방지할 수 있다.
이상에서, 본 발명의 다양한 실시예들 및 실험예에 대하여 설명하였지만, 상술한 다양한 실시예들 및 특징들에 본 발명이 한정되는 것은 아니고, 본 발명의 특허청구범위에 의한 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형과 변경이 가능하다.

Claims (19)

  1. 제1 질화물층;
    상기 제1 질화물층 상에 위치하며, 언도프 질화물계 반도체를 포함하는 ESD(정전기방전) 방지층;
    상기 ESD 방지층 상에 위치하는 광 흡수층;
    상기 광 흡수층 상에 위치하는 쇼트키 접합층; 및
    상기 쇼트키 접합층 및 상기 제1 질화물층 각각에 전기적으로 연결된 제1 전극 및 제2 전극을 포함하며,
    상기 ESD 방지층의 평균 n형 도펀트 도핑 농도는 상기 제1 질화물층의 평균 n형 도펀트 도핑 농도보다 낮고,
    상기 ESD 방지층은 n형 도펀트를 포함하는 도핑 영역을 포함하고,
    상기 도핑 영역은 적어도 하나의 n형 도펀트 쇼크 영역을 포함하는 광 검출 소자.
  2. 청구항 1에 있어서,
    상기 ESD 방지층은 언도프 질화물계 반도체층을 적어도 하나 포함하며, 상기 언도프 질화물계 반도체층은 300nm 내지 400nm의 총 두께를 갖는 광 검출 소자.
  3. 청구항 1에 있어서,
    상기 ESD 방지층과 상기 광 흡수층 사이에 위치하며, 다층 구조층을 포함하고, 상기 광 흡수층에서 생성된 전자의 일부를 차단하는 차단층을 더 포함하는 광 검출 소자.
  4. 청구항 3에 있어서,
    상기 다층 구조층의 각 층간 계면은 각 층보다 큰 밴드갭를 갖는 광 검출 소자.
  5. 삭제
  6. 청구항 1에 있어서,
    상기 도핑 영역은 제1 도핑 영역, 상기 제1 도핑 영역 상에 위치하는 제2 도핑 영역, 및 상기 제2 도핑 영역 상에 위치하는 제3 도핑 영역을 포함하고,
    상기 제2 도핑 영역의 도핑 농도는 상기 제1 도핑 영역의 도핑 농도보다 높고, 상기 제3 도핑 영역의 도핑 농도는 상기 제2 도핑 영역의 도핑 농도보다 높은 광 검출 소자.
  7. 청구항 6에 있어서,
    상기 제1 도핑 영역은 상기 제2 도핑 영역과 접하고, 상기 제2 도핑 영역은 상기 제3 도핑 영역과 접하는 광 검출 소자.
  8. 청구항 6에 있어서,
    상기 제1 내지 제3 도핑 영역 중 적어도 하나 내에서, 상기 n형 도펀트 농도는 상기 광흡수층 측으로 향하는 방향에 따라 증가하거나, 감소하거나 또는 변조 도핑된 프로파일을 갖는 광 검출 소자.
  9. 삭제
  10. 청구항 1에 있어서,
    상기 도핑 영역의 상부 및 하부에는 상기 언도프 질화물계 반도체가 위치하는 광 검출 소자.
  11. 청구항 10에 있어서,
    상기 ESD 방지층과 상기 광 흡수층 사이에 위치하며, 다층 구조층을 포함하고, 상기 광 흡수층에서 생성된 전자의 일부를 차단하는 차단층을 더 포함하고,
    상기 ESD 방지층의 언도프 질화물계 반도체는 상기 차단층 및 상기 제1 질화물층 중 적어도 하나와 접하는 광 검출 소자.
  12. 청구항 1에 있어서,
    상기 광 흡수층은 AlGaN 및 AlInGaN 중 적어도 하나를 포함하는 광 검출 소자.
  13. 청구항 12에 있어서,
    상기 ESD 방지층과 상기 광 흡수층 사이에 위치하며, 다층 구조층을 포함하고, 상기 광 흡수층에서 생성된 전자의 일부를 차단하는 차단층을 더 포함하고,
    상기 차단층의 다층 구조층은 AlxGa(1-x)N층 및 AlyGa(1-y)N층 (x ≠ y)이 반복 적층된 초격자 구조를 포함하는 광 검출 소자.
  14. 청구항 3에 있어서,
    상기 차단층은 상기 광 흡수층보다 더 높은 결함 밀도를 갖는 광 검출 소자.
  15. 청구항 1에 있어서,
    상기 제1 질화물층 하부에 위치하는 기판을 더 포함하고,
    상기 제1 전극은 쇼트키 접합층 상에 위치하고, 상기 제2 전극은 상기 제1 질화물층 상에 위치하여 전기적으로 접촉되는 광 검출 소자.
  16. 청구항 1에 있어서,
    상기 광 흡수층이 상기 광 검출 소자의 하면으로 향하도록 2차 기판에 플립 본딩된 구조를 갖는 광 검출 소자.
  17. 청구항 1에 있어서,
    상기 광 흡수층이 상기 광 검출 소자의 하면으로 향하도록 배치되며,
    상기 제1 전극은 상기 쇼트키 접합층의 하부에 위치하고, 상기 제2 전극은 상기 제1 질화물층 상부에 위치하는 광 검출 소자.
  18. 청구항 16에 있어서,
    상기 제1 질화물층의 밴드갭 에너지는 상기 광 흡수층의 밴드갭 에너지보다 큰 광 검출 소자.
  19. 청구항 17에 있어서,
    상기 제1 질화물층의 밴드갭 에너지는 상기 광 흡수층의 밴드갭 에너지보다 큰 광 검출 소자.
KR1020150068990A 2015-05-18 2015-05-18 광 검출 소자 KR102483764B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150068990A KR102483764B1 (ko) 2015-05-18 2015-05-18 광 검출 소자
PCT/KR2016/004900 WO2016186364A1 (en) 2015-05-18 2016-05-11 Light detection device
US15/575,752 US20180122970A1 (en) 2015-05-18 2016-05-11 Light detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150068990A KR102483764B1 (ko) 2015-05-18 2015-05-18 광 검출 소자

Publications (2)

Publication Number Publication Date
KR20160135540A KR20160135540A (ko) 2016-11-28
KR102483764B1 true KR102483764B1 (ko) 2023-01-03

Family

ID=57706793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150068990A KR102483764B1 (ko) 2015-05-18 2015-05-18 광 검출 소자

Country Status (1)

Country Link
KR (1) KR102483764B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120187370A1 (en) * 2011-01-26 2012-07-26 Jongpil Jeong Light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104074A (en) * 1997-12-11 2000-08-15 Apa Optics, Inc. Schottky barrier detectors for visible-blind ultraviolet detection
KR101639779B1 (ko) * 2013-09-25 2016-07-15 서울바이오시스 주식회사 반도체 광 검출 소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120187370A1 (en) * 2011-01-26 2012-07-26 Jongpil Jeong Light emitting device

Also Published As

Publication number Publication date
KR20160135540A (ko) 2016-11-28

Similar Documents

Publication Publication Date Title
KR101639779B1 (ko) 반도체 광 검출 소자
KR102538001B1 (ko) 자외선 발광 소자
KR101826951B1 (ko) 광 검출 소자
KR100676288B1 (ko) 자외선 감지 반도체 소자
KR100788834B1 (ko) 가시광 및 자외선 감지용 센서
US9356167B2 (en) Semiconductor ultraviolet (UV) photo-detecting device
KR102473352B1 (ko) 광 검출 소자
Mosca et al. Multilayer (Al, Ga) N structures for solar-blind detection
KR102483764B1 (ko) 광 검출 소자
US20180122970A1 (en) Light detection device
CN109196658B (zh) 用于检测uv辐射的器件和用于制造器件的方法
KR102071038B1 (ko) 질화물 반도체 소자 및 그 제조 방법
US9786805B2 (en) Semiconductor ultraviolet (UV)photo-detecting device
US9478690B2 (en) Semiconductor photo-detecting device
JP5791026B2 (ja) 紫外光検出デバイス及びその製造方法
JP2009278003A (ja) フォトダイオード
KR101639780B1 (ko) 자외선 광 검출 소자
KR20170086418A (ko) 자외선 검출소자
US9680055B2 (en) Hetero-substrate, nitride-based semiconductor light emitting device, and method for manufacturing the same
JP7200651B2 (ja) 半導体ウエハ、赤外線検出器、これを用いた撮像装置、半導体ウエハの製造方法、及び赤外線検出器の製造方法
KR100734407B1 (ko) 자외선 감지용 반도체 소자
US11274961B2 (en) Ultraviolet ray detecting device having Shottky layer forming Shottky barrier
JP2009272543A (ja) フォトダイオード
JP2004039913A (ja) 紫外線受光素子および火炎センサ
KR20230051905A (ko) 다파장 광 검출기 및 이의 제조 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant