KR102442470B1 - 로터리 압축기 - Google Patents

로터리 압축기 Download PDF

Info

Publication number
KR102442470B1
KR102442470B1 KR1020210162701A KR20210162701A KR102442470B1 KR 102442470 B1 KR102442470 B1 KR 102442470B1 KR 1020210162701 A KR1020210162701 A KR 1020210162701A KR 20210162701 A KR20210162701 A KR 20210162701A KR 102442470 B1 KR102442470 B1 KR 102442470B1
Authority
KR
South Korea
Prior art keywords
suction
cylinder
passage
space
casing
Prior art date
Application number
KR1020210162701A
Other languages
English (en)
Other versions
KR20210146860A (ko
Inventor
신진웅
문석환
노기율
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020210162701A priority Critical patent/KR102442470B1/ko
Publication of KR20210146860A publication Critical patent/KR20210146860A/ko
Application granted granted Critical
Publication of KR102442470B1 publication Critical patent/KR102442470B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0064Magnetic couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Supercharger (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

본 발명에 의한 로터리 압축기는, 케이싱의 내부공간에 고정 결합되고, 압축공간을 이루는 내주면이 구비되는 실린더; 상기 실린더의 상하 양측에 구비되어 상기 실린더와 함께 압축공간을 형성하는 제1 베어링 및 제2 베어링; 상기 실린더의 내주면에 대해 편심지게 구비되어 회전하면서 상기 압축공간의 체적을 가변시키는 롤러; 및 상기 롤러에 삽입되어 그 롤러와 함께 회전하고, 상기 롤러의 회전시 상기 실린더의 내주면을 향해 인출되어 상기 압축공간을 복수 개의 압축실로 구획하는 베인;을 포함하고, 상기 제1 베어링 또는 제2 베어링에는 상기 압축공간에 연통되는 흡입통로가 형성되며, 상기 실린더의 측면에는 상기 흡입통로와 압축공간 사이를 연통시키는 흡입구가 형성될 수 있다.

Description

로터리 압축기{ROTARY COMPRESSOR}
본 발명은 로터리 압축기에 관한 것으로, 특히 저압식 베인 로터리 압축기에 관한 것이다.
일반적인 로터리 압축기는 롤러와 베인이 접촉되어, 그 베인을 중심으로 실린더의 압축공간이 흡입실과 토출실로 구분되는 압축기이다. 이러한 일반적인 로터리 압축기는 롤러가 선회운동을 하면서 베인이 직선운동을 하게 되고, 이에 따라 흡입실과 토출실은 체적(용적)이 가변되는 압축실을 형성하여 냉매를 흡입, 압축, 토출하게 된다.
또, 이러한 일반적인 로터리 압축기와는 반대로 베인이 롤러에 삽입되어, 그 롤러와 함께 회전운동을 하면서 원심력과 배압력에 의해 인출되면서 압축실을 형성하는 베인 로터리 압축기도 알려져 있다.
베인 로터리 압축기는 일반적인 로터리 압축기와 마찬가지로 케이싱의 내부공간이 토출압을 이루는 고압식 베인 로터리 압축기는 물론 케이싱의 내부공간이 흡입압을 이루는 저압식 베인 로터리 압축기가 알려져 있다.
전자는 흡입관이 압축실에 직접 연통됨에 따라, 케이싱의 외부 또는 내부에 별도의 어큐뮬레이터가 구비되어야 하는 제약이 뒤따르게 된다. 반면, 후자는 케이싱의 내부공간이 일종의 어큐뮬레이팅 공간으로 활용되므로 별도의 어큐뮬레이터를 구비할 필요가 없어 그만큼 재료비용이나 공간활용도를 높일 수 있다.
또, 베인 로터리 압축기는 일반 로터리 압축기와 마찬가지로 설치 형태에 따라 종형 또는 횡형으로 구분될 수 있다. 종형은 전동부를 이루는 구동모터와 압축부가 지면에 대해 직교하는 방향으로 배열되는 형태이고, 횡형은 구동모터와 압축부가 지면에 평행하거나 경사지게 배열되는 형태이다.
또, 베인 로터리 압축기는 일반 로터리 압축기와 마찬가지로 구동모터와 압축부가 한 개의 케이싱 내부에 설치되는지 여부에 따라, 밀폐형 또는 개방형으로 구분될 수 있다. 밀폐형은 한 개의 케이싱 내부에 구동모터와 압축부가 함께 설치되는 것이고, 개방형은 구동모터와 압축부가 각각 독립적으로 설치되는 것이다.
2006년 05월 18일자로 공개된 "용량가변형 기체 압축기(대한민국 공개특허 제10-2006-0048898호)"는 저압식이면서 개방형인 베인 로터리 압축기(이하, 베인 로터리 압축기로 약칭함)의 일례를 보이고 있다.
그러나, 상기와 같은 종래의 베인 로터리 압축기는, 압축실의 축방향 일측면에 해당하는 프론트 사이드 블록에 흡입구가 형성됨에 따라 흡입구의 면적이 제한되는 한계가 있었다. 즉, 베인 로터리 압축기에서의 흡입구는 그 특성상 로터와 실린더가 접하는 지점 부근에 형성되어야 하는데, 로터와 실린더가 접하는 지점은 그 로터와 실린더 사이의 간격이 가장 좁은 위치여서 흡입구의 면적이 매우 작아질 수밖에 없다. 이는 흡입구로 흡입되는 냉매에 대해 유로저항이 커지면서 흡입손실이 증가하여 압축기 성능이 저하되는 문제점이 있었다. 특히, 고속 운전시 흡입면적이 제한적이어서 대용량 모델에 적용하는데 한계가 있었다.
또, 앞서 제시된 선행기술의 경우, 케이싱의 내부공간이 토출압을 이루는 고압식이나, 케이싱의 내부공간이 흡입압을 이루는 저압식의 경우에는 케이싱의 내부공간으로 흡입되는 냉매가 흡입구로 직접 흡입되지 않고 케이싱의 내부공간에서 유동하게 되므로 일종의 유로손실이 발생하여 흡입손실이 더욱 증가하게 되는 문제점이 있었다.
또, 앞서 제시된 선행기술의 경우, 흡입구가 정형적으로 형성되어 그 흡입구가 흡입개시점으로부터 멀리 떨어져 형성됨에 따라 흡입개시시점이 지연되고, 이로 인해 흡입손실로 인한 압축성능이 저하될 수 있다. 이를 감안하여, 흡입완료시점이 압축진행방향을 기준으로 뒤쪽으로 이동하게 하면 그에 따라 압축주기가 단축되어 과압축이 발생되면서 압축손실이 야기될 수 있다.
대한민국 공개특허 제10-2006-0048898호
본 발명의 목적은, 흡입구의 면적을 넓게 확보하여 흡입손실을 미연에 방지하고 이를 통해 압축기 성능이 향상될 수 있는 로터리 압축기를 제공하려는데 있다.
또, 본 발명의 다른 목적은, 케이싱의 내부공간이 흡입압을 이루는 저압식에서 압축실로 흡입되는 냉매의 유로손실을 최소화할 수 있는 로터리 압축기를 제공하려는데 있다.
또, 본 발명의 다른 목적은, 흡입개시시점에서의 흡입면적을 확보하여 흡입개시시점이 지연되는 것을 방지하는 동시에, 흡입완료시점이 뒤로 밀리는 방지하여 압축주기가 단축되는 것을 방지할 수 있는 로터리 압축기를 제공하려는데 있다.
본 발명의 목적을 달성하기 위하여, 실린더; 상기 실린더의 상하 양측에 구비되는 복수 개의 베어링; 상기 압축공간에 구비되어 회전하는 롤러; 및 상기 롤러와 함께 상기 압축공간을 흡입실과 토출실로 분리하는 적어도 한 개 이상의 베인;을 포함하고, 상기 복수 개의 베어링 중에서 어느 한 개의 베어링에 흡입통로가 형성되며, 상기 흡입통로에 연통되는 흡입구가 상기 실린더의 내주면으로 관통되는 것을 특징으로 하는 로터리 압축기가 제공될 수 있다.
여기서, 상기 흡입통로의 입구에는 흡입관에 연결되는 흡입안내관의 단부가 대면되도록 구비될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 내부공간에 흡입관이 연통되는 케이싱; 상기 케이싱의 내부공간에 고정 결합되고, 압축공간을 이루는 내주면이 구비되는 실린더; 상기 실린더의 상하 양측에 구비되어 상기 실린더와 함께 압축공간을 형성하는 제1 베어링 및 제2 베어링; 상기 실린더의 내주면에 대해 편심지게 구비되어 회전하면서 상기 압축공간의 체적을 가변시키는 롤러; 및 상기 롤러에 삽입되어 그 롤러와 함께 회전하고, 상기 롤러의 회전시 상기 실린더의 내주면을 향해 인출되어 상기 압축공간을 복수 개의 압축실로 구획하는 베인;을 포함하고, 상기 제1 베어링 또는 제2 베어링에는 상기 압축공간에 연통되는 흡입통로가 형성되며, 상기 실린더의 측면에는 상기 흡입통로와 압축공간 사이를 연통시키는 흡입구가 형성되는 것을 특징으로 하는 로터리 압축기가 제공될 수 있다.
여기서, 상기 흡입통로는 그 반경방향 폭이 상기 실린더의 내주면과 롤러의 외주면 사이의 최대 간격보다 크게 형성될 수 있다.
그리고, 상기 흡입구는 상기 실린더의 내부를 관통하여 형성될 수 있다.
그리고, 상기 흡입구는 상기 실린더의 내주면 모서리를 면취하여 형성될 수 있다.
그리고, 상기 흡입통로는 평면투영시 상기 압축공간의 범위 밖에 형성될 수 있다.
그리고, 상기 흡입통로는 평면투영시 그 일부가 상기 압축공간의 범위 내에 형성될 수 있다.
그리고, 상기 흡입통로와 상기 흡입관 사이에는 흡입안내관이 구비될 수 있다.
그리고, 상기 흡입안내관의 일단은 상기 흡입관에 연결되고 타단은 상기 흡입통로를 수용하도록 구비될 수 있다.
그리고, 상기 케이싱의 내부공간에는 고정자와 회전자로 된 전동부가 더 구비되고, 상기 흡입관은 상기 전동부를 기준으로 상기 실린더가 구비되는 공간을 관통하여 연통될 수 있다.
그리고, 상기 흡입통로와 상기 흡입관 사이에는 흡입안내관이 결합될 수 있다.
그리고, 상기 케이싱의 내부공간에는 고정자와 회전자로 된 전동부가 더 구비되고, 상기 흡입관은 상기 전동부를 기준으로 상기 실린더가 구비되는 공간의 반대쪽 공간을 관통하여 연통될 수 있다.
그리고, 상기 케이싱의 외부에는 고정자와 회전자로 된 전동부가 더 구비되고, 상기 전동부는 상기 롤러에 결합되어 상기 케이싱을 관통하는 회전축에 기구적으로 연결될 수 있다.
여기서, 상기 흡입통로와 상기 흡입관 사이에는 흡입안내관이 결합될 수 있다. 그리고, 상기 흡입구는, 주 흡입부; 및 상기 주 흡입부에서 흡입개시방향으로 연장되는 부 흡입부;로 이루어질 수 있다.
그리고, 상기 부 흡입부는 그 반경방향 폭이 주 흡입부의 반경방향 폭보다 작게 형성되며, 상기 부 흡입부는 반경방향 폭보다 원주방향 길이가 더 길게 형성될 수 있다.
본 발명에 의한 베인 로터리 압축기는, 흡입관은 케이싱에 연결하고 메인베어링에 흡입통로가 형성됨에 따라, 흡입구의 면적을 넓게 확보하여 흡입손실을 미연에 방지하고 이를 통해 압축기 성능이 향상될 수 있
또, 케이싱의 내부공간이 흡입압을 이루는 저압식의 경우 흡입관과 흡입통로 사이에 흡입안내관을 연결함에 따라, 압축실로 흡입되는 냉매의 유로손실을 최소화하여 압축기 성능이 향상될 수 있다.
또, 흡입통로 또는 흡입구를 흡입개시시점 방향으로 연장 형성함에 따라, 흡입개시시점에서의 흡입면적을 확보하여 흡입개시시점이 지연되는 것을 방지하는 동시에, 흡입완료시점이 뒤로 밀리는 방지하여 압축주기가 단축되는 것을 방지할 수 있다.
도 1은 본 발명에 의한 횡형식이면서 개방형인 베인 로터리 압축기를 보인 종단면도,
도 2는 도 1에서 압축부를 확대하여 보인 종단면도,
도 3은 도 2에서, "Ⅵ-Ⅵ"선단면도,
도 4는 도 3에서 흡입통로를 확대하여 보인 평면도,
도 5는 도 2에서, "Ⅶ-Ⅶ"선단면도,
도 6 및 도 7은 도 2에서 흡입통로와 흡입구에 대한 다른 실시예를 보인 단면도,
도 8은 도 1에 따른 베인 로터리 압축기에서 흡입안내관이 적용된 예를 보인 종단면도,
도 9a 및 도 9b는 도 8에서 흡입안내관이 결합된 실시예를 보인 확대도,
도 10 및 도 11은 본 발명에 의한 횡형식이면서 밀폐형인 베인 로터리 압축기를 보인 종단면도.
이하, 본 발명에 의한 베인 로터리 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 참고로, 본 발명은 케이싱의 내부공간이 흡입압을 이루는 일종의 저압식 베인 로터리 압축기에 적용되는 것으로, 종형이나 횡형 모두에 적용될 수 있다. 또, 본 발명은 케이싱의 내부에 전동부와 압축부를 함께 설치하는 밀폐형이나 전동부를 케이싱의 외부에 구비하는 개방형에 모두 적용할 수 있다. 다만, 본 실시예에서는 편의상 횡형식이면서 개방형인 베인 로터리 압축기를 대표예로 들어 살펴본다. 그리고 다른 형식의 베인 로터리 압축기에 대해서는 대표예를 설명하고 나서 추가로 설명한다.
도 1은 본 발명에 의한 횡형식이면서 개방형인 베인 로터리 압축기를 보인 종단면도이고, 도 2는 도 1에서 압축부를 확대하여 보인 종단면도이다.
도 1에 도시된 바와 같이, 본 발명에 의한 횡형식 베인 로터리 압축기는, 케이싱(100)의 외부에 전동부(미도시)가 설치되고, 케이싱(100)의 내부에는 후술할 회전축(250)에 의해 전동부의 회전력을 전달받아 냉매를 압축하는 압축부(300)가 설치된다.
케이싱(100)은 전방쉘(101)과 후방쉘(102)로 이루어지고, 전방쉘(101)과 후방쉘(102)의 사이에는 후술할 메인베어링(310)이 삽입되어 볼트로 체결될 수 있다. 이에 따라, 케이싱(100)의 내부공간은 메인베이링(310)을 기준으로 두 개의 공간으로 분리되어, 후방측은 흡입공간(111)이, 전방측은 토출공간(112)이 각각 형성될 수 있다.
또, 회전축(250)의 전방단(도면의 우측)은 케이싱(100)의 외부에서 그 케이싱(100)의 후방쉘(102)을 관통하고, 그 케이싱(100)의 후방쉘(102)을 관통한 단부가 케이싱(100)의 전방쉘(101)을 향해 연장된다. 이로써, 회전축(250)은 일단부는 케이싱(100)의 외부에, 타단부는 케이싱(100)의 내부에 각각 위치하게 된다.
그리고, 회전축(250)의 일단(이하, 전방단)에는 케이싱(100)의 외부에서 마그네틱 클러치(400)에 결합되고, 회전축(250)의 타단(이하, 후방단)에는 케이싱(100)의 내부공간에서 후술할 롤러(340)가 결합될 수 있다.
그리고, 회전축(250)의 전방측은 케이싱(100)의 내부공간에 구비되는 볼베어링(120)에 의해 회전 가능하게 지지되는 반면 회전축(250)의 후방측은 압축부(300)를 이루는 메인베어링(310)과 서브베어링(320)에 회전 가능하게 지지될 수 있다. 그리고 회전축(250)의 타단부에는 롤러(340)가 일체로 형성되거나 결합되어 그 롤러(340)가 실린더(330)에 회전 가능하게 결합될 수 있다.
그리고 회전축(250)의 중심부에는 축방향을 따라 제1 오일유로(251)가 형성되고, 제1 오일유로(251)의 중간에는 반경방향으로 관통하는 제2 오일유로(252)가 형성된다. 이로써, 제1 오일유로(251)를 따라 이동하는 오일의 일부는 제2 오일유로(252)를 따라 이동하여 배압구멍(343)으로 유입될 수 있게 된다.
압축부(300)는 축방향 양측에 설치되는 메인베어링(이하, 제1 베어링)(310)과 서브베어링(이하, 제2 베어링)(320), 그리고 제1 베어링(310)과 제2 베어링(320)의 사이에 구비되어 압축공간(332)이 형성되는 실린더(330)를 포함한다.
제1 베어링(310)은 경우에 따라서는 케이싱(100)의 내주면에 열박음되거나 또는 용접되어 고정될 수도 있다. 하지만, 케이싱(100)의 내부공간을 흡입공간(111)과 토출공간(112)으로 구분하기 위해서는 제1 베어링(310)의 외주면에 실링부재를 구비하여 전방쉘(101)과 후방쉘(102) 사이에서 볼트 체결될 수도 있다. 그리고, 제1 베어링(310)의 일측면(후방면)에 실린더(330)와 제2 베어링(320)이 차례대로 밀착되어 볼트로 체결될 수 있다.
여기서, 제1 베어링(310)은 실린더(330)의 일측면을 복개하는 제1 플레이트부(311)와, 제1 플레이트부(311)의 중앙부에서 돌출 형성되어 회전축(250)을 지지하는 제1 축수부(312)로 이루어질 수 있다.
제1 플레이트부(311)는 케이싱(100)에 볼트로 체결됨에 따라, 제1 플레이트부(311)의 외경은 케이싱(100)의 내경보다는 크게 형성될 수 있다. 하지만, 도면으로 도시하지는 않았으나 제1 플레이트부(311)의 외주면이 케이싱(100)의 내주면에 열박음 또는 용접 고정될 수도 있다. 이 경우에는, 제1 플레이트(311)의 외경은 케이싱(100)의 내경과 동일하거나 또는 약간 크게 형성될 수 있다.
여기서, 제1 플레이트부(311)의 일측 가장자리에는 흡입통로(315)가 축방향으로 관통 형성된다. 이 흡입통로(315)는 케이싱(100)의 흡입공간(111)과 후술할 흡입구(334) 사이를 연통하도록 형성될 수 있다.
도 2에서와 같이, 흡입통로(315)는 반경방향 폭(D1)이 적어도 압축공간(333)의 최대 반경방향 길이(D2), 즉 실린더(330)의 내주면과 롤러(340)의 외주면 사이의 최대 간격보다 크게 형성될 수 있다.
그리고, 실린더(330)와 제2 베어링(320)의 외경은 각각 제1 베어링(310)의 외경보다 작게 형성될 수 있다. 이에 따라, 앞서 설명한 바와 같이, 케이싱(100)의 내부공간은 제1 베어링(310)의 제1 플레이트부(311)에 의해 양쪽 공간으로 분리되고, 한 쪽 공간은 흡입관(115)이 연통되는 흡입공간(111)을 형성하는 반면, 다른 쪽 공간은 토출관(116)이 연통되는 토출공간(112)을 형성하게 된다. 도면으로 도시하지는 않았지만, 제2 베어링(320)이 케이싱(100)의 내주면에 압입이나 용접, 또는 체결되어 고정되고, 그 제2 베어링(320)의 일측면에 실린더(330)와 제1 베어링(310)이 차례대로 밀착되어 볼트로 체결될 수도 있다.
제1 플레이트부(311)에는 후술할 실린더(330)의 흡입구(334)와 연통되도록 흡입통로(315)가 축방향으로 관통 형성된다. 이로써, 흡입통로(315)는 평면투영시 후술할 실린더(330)의 압축공간(333) 범위 밖에 형성됨에 따라, 흡입통로(315)의 면적을 실린더(330)와 롤러(340) 사이의 간격보다 크게 형성될 수 있다.
한편, 도 3 및 도 4에서와 같이, 흡입통로(315)는 대략 사각형 단면 형상이나 원형 단면 등 다양하게 형성될 수 있다. 다만, 제1 베어링(310)과 실린더(330) 그리고 제2 베어링(320)을 볼트(B)로 체결하는 경우, 그 볼트(B)의 체결자리를 고려하되 최대한 흡입개시각을 앞으로 당기기에 적정한 형상으로 형성되는 것이 바람직할 수 있다.
예를 들어, 볼트(B)가 흡입통로(또는 흡입구)(315) 주변에 위치하는 경우, 그 볼트(B)의 체결자리를 피해 비정형적으로 형성될 수 있다. 이 경우, 흡입통로(315)는 주 통로부(315a)와 부 통로부(315b)로 이루어질 수 있다. 주 통로부(315a)는 볼트자리를 피해 비교적 넓은 여유면적 부분에 대략 사각형 단면 형상으로 형성되고, 부 통로부(315b)는 주 통로부(315a)에서 후술할 접촉점(P)을 향해 원주방향으로 긴 직사각형 단면 형상으로 형성될 수 있다. 이로써, 흡입통로(흡입구도 마찬가지이다)(315)의 면적을 넓게 확보하면서도 흡입통로(315)가 접촉점(P) 부근으로 인접하게 위치하게 되어 흡입개시시점이 접촉점 방향으로 이동할 수 있고, 이를 통해 흡입개시가 신속하게 이루어지면서 압축성능이 향상될 수 있다.
또, 흡입통로(315)는 도 4와 같이 그 일부가 압축공간(332)에 연통될 수 있는 개방통로부(빗금친 부분)(315c)가 형성될 수 있다. 개방통로부(315c)는 주 통로부(315a)와 부 통로부(315b)의 내주면 부분에 형성되는 것으로, 축방향 투영시 압축공간(332)과 중첩될 수 있는 위치에 형성된다. 물론, 흡입통로(315)는 개방통로부(315c)를 배제하고 흡입통로(315)의 내주면이 축방향 투영시 실린더(330)의 범위를 벗어나지 않도록, 즉 압축공간(332)의 범위 밖에 형성될 수 있다.
한편, 본 실시예에 따른 실린더(330)는 그 내주면이 원형이 아닌 타원 형상으로 형성된다. 이러한 실린더(330)는 한 쌍의 장축과 단축을 가지는 대칭형 타원 형상으로 형성될 수도 있다. 하지만, 여러 쌍의 장축과 단축을 가지는 비대칭형 타원 형상으로 형성될 수 있다. 이러한 비대칭형 타원으로 된 실린더를 통상 하이브리드 실린더라고 하고, 본 실시예는 하이브리드 실린더가 적용되는 베인 로터리 압축기에 관한 것이다.
도 5에 도시된 바와 같이, 본 실시예에 따른 실린더(330)는 그 외주면은 원형 또는 비원형으로 형성될 수도 있다. 즉, 실린더(330)의 외주면은 제1 베어링(310)의 흡입통로(315)와 연통되는 흡입구(334)가 형성될 수 있는 형상이면 어떤 형상이든 족할 수 있다. 물론, 제1 베어링(310)이나 제2 베어링(320)이 케이싱(100)의 내주면에 고정되고, 실린더(330)는 그 케이싱(100)에 고정된 베어링에 볼트로 체결되는 것이 실린더(330)의 변형을 억제할 수 있어 바람직할 수 있다.
또, 실린더(330)의 중앙부에는 내주면(331)을 포함하여 압축공간(332)을 이루도록 빈 공간부가 형성된다. 이 빈공간부는 제1 베어링(더 정확하게는 후술할 중간 플레이트)(310)과 제2 베어링(320)에 의해 밀봉되어 압축공간(332)을 형성하게 된다. 압축공간(332)에는 후술할 롤러(340)가 회전 가능하게 결합되고, 롤러(340)에는 복수 개의 베인(350)이 외주면 방향으로 입출 가능하게 구비된다.
압축공간(332)을 이루는 실린더(330)의 내주면(331)은 복수 개의 원으로 이루어질 수 있다. 예를 들어, 실린더(330)의 내주면(331)과 롤러(340)의 외주면(341)이 거의 접촉되는 지점(이하, 접촉점)(P)과 실린더(330)의 중심(Oc)을 지나는 선을 제1 중심선(L1)이라고 할 때, 제1 중심선(L1)을 기준으로 한 쪽(도면으로는 상측)에는 타원 모양으로, 다른 쪽(도면으로는 하측)에는 원 모양으로 각각 형성될 수 있다.
그리고 제1 중심선(L1)에 직교하고 실린더(330)의 중심(Oc)을 지나는 선을 제2 중심선(L2)이라고 할 때, 실린더(330)의 내주면(331)은 제2 중심선(L2)을 기준으로 양측(도면으로는 좌우)이 서로 대칭되도록 형성될 수 있다. 물론, 좌우 양측이 서로 비대칭 형상으로 형성될 수도 있다.
또, 실린더(330)의 내주면(331)에는 그 실린더(330)의 내주면(331)과 롤러(340)의 외주면(341)이 거의 접촉되는 지점을 중심으로 원주방향 한 쪽에는 흡입구(334)가, 다른 쪽에는 토출구(335a,335b)가 각각 형성된다.
흡입구(334)는 실린더(330)의 내부를 관통하여 형성될 수 있다. 예를 들어, 흡입구(334)는 제1 베어링(310)의 흡입통로(315)와 연통되는 제1 흡입부(334a)와, 제1 흡입부(334a)에 연통되어 그 타단이 압축공간(332)에 연통되는 제2 흡입부(334b)로 이루어질 수 있다.
제1 흡입부(334a)는 축방향으로, 제2 흡입부(334b)는 반경방향으로 형성되어, 결국 흡입구(334)는 정면투영시 'ㄴ'자 단면 형상으로 형성될 수 있다. 하지만, 흡입구(334)는 경우에 따라서는 도 6과 같이 제1 흡입부(334a)와 제2 흡입부(334b)가 동일한 방향, 즉 경사진 방향으로 형성될 수도 있다.
또, 흡입구(334)는 경우에 따라서는 실린더의 모서리를 면취하여 형성될 수도 있다. 예를 들어, 도 7과 같이 실린더(330)의 내주면을 이루는 축방향 양쪽 모서리 중에서 제1 베어링(310)에 접하는 내측 모서리에서 흡입통로(315)와 대응되는 부분의 모서리를 면취하여 흡입구(334)가 형성되도록 할 수도 있다.
이 경우, 흡입구(334)는 도 2의 실시예와 같이 제1 흡입부(334a)와 제2 흡입부(334b)가 각각 축방향과 반경방향으로 된 'ㄴ'모양으로 형성될 수도 있고, 앞서 설명한 바와 같이 경사진 모양으로 형성될 수도 있다.
또, 흡입구(334)는 흡입손실을 최소화할 수 있도록 가급적이면 넓은 단면적을 가지도록 형성될 수 있다. 이에 따라, 흡입구(334)는 흡입통로(315)와 대응하는 형상으로 형성될 수 있다.
한편, 토출구(335a,335b)는 케이싱(100)의 내부공간(110)을 향해 연통되어 그 케이싱(100)에 관통 결합되는 토출관(116)과 간접적으로 연결된다. 이에 따라, 압축된 냉매는 토출구(335a,335b)를 통해 케이싱(100)의 내부공간(110)으로 토출되었다가 토출관(116)으로 배출된다. 따라서, 케이싱(100)의 내부공간(110)은 토출압을 이루는 고압상태가 유지된다.
또, 토출구(335a,335b)에는 그 토출구(335a,335b)를 개폐하는 토출밸브(336a,336b)가 설치된다. 토출밸브(336a,336b)는 일단이 고정되고 타단이 자유단을 이루는 리드형 밸브로 이루어질 수 있다. 하지만, 토출밸브(336a,336b)는 리드형 밸브 외에도 피스톤 밸브 등 필요에 따라 다양하게 적용될 수 있다.
또, 토출밸브(336a,336b)가 리드형 밸브로 이루어지는 경우 실린더(330)의 외주면에는 그 토출밸브(336a,336b)가 장착될 수 있도록 밸브홈(337a,337b)이 형성된다. 이에 따라, 토출구(335a,335b)의 길이가 최소한으로 줄어들어 사체적을 줄일 수 있다. 밸브홈(337a,337b)은 도 9과 같이 평평한 밸브시트면을 확보할 수 있도록 삼각형 모양으로 형성될 수 있다.
한편, 토출구(335a,335b)는 압축경로(압축진행방향)를 따라 복수 개가 형성된다. 편의상, 복수 개의 토출구(335a,335b)는 압축경로를 기준으로 상류측에 위치하는 토출구를 부 토출구(또는, 제1 토출구)(335a), 하류측에 위치하는 토출구를 주 토출구(또는, 제2 토출구)(335b)라고 한다.
하지만, 부 토출구는 반드시 필요한 필수구성은 아니고, 필요에 따라 선택적으로 형성할 수 있다. 예를 들어, 본 실시예와 같이 실린더(330)의 내주면(331)이 후술하는 바와 같이 압축주기를 길게 형성하여 냉매의 과압축을 적절하게 감소시키는 경우라면 부 토출구를 형성하지 않을 수도 있다. 다만, 압축되는 냉매의 과압축량을 최소한으로 줄이기 위해서라면 종래와 같은 부 토출구(335a)를 주 토출구(335b)의 앞쪽, 즉 압축진행방향을 기준으로 주 토출구(335b)보다 상류측에 형성할 수 있다.
한편, 실린더(330)의 압축공간(332)에는 앞서 설명한 롤러(340)가 회전 가능하게 구비된다. 롤러(340)는 그 외주면이 원형으로 형성되고, 롤러(340)의 중심에는 회전축(250)이 일체로 결합된다. 이로써, 롤러(340)는 회전축(250)의 축중심과 일치하는 중심(Or)을 가지며, 그 롤러의 중심(Or)을 중심으로 하여 회전축(250)과 함께 회전을 하게 된다.
또, 롤러(340)의 중심(Or)은 실린더(330)의 중심(Oc), 즉 실린더(330)의 내부공간의 중심에 대해 편심되어 그 롤러(340)의 외주면(341) 일측이 실린더(330)의 내주면(331)과 거의 접촉된다. 여기서, 롤러(340)의 일측이 거의 접촉되는 실린더(330)의 지점을 접촉점(P)이라고 할 때, 그 접촉점(P)은 실린더(330)의 중심을 지나는 제1 중심선(L1)이 실린더(330)의 내주면(331)을 이루는 타원곡선의 단축에 해당하는 위치가 될 수 있다.
또, 롤러(340)는 그 외주면(341)에 원주방향을 따라, 적당개소에 베인슬롯(342)이 형성되고, 각 베인슬롯(342)의 내측단에는 오일(또는 냉매)이 유입되도록 하여 각 베인(351,352,353)을 실린더(330)의 내주면 방향으로 가세할 수 있는 배압구멍(343)이 형성될 수 있다.
배압구멍(343)의 상하 양측에는 그 배압구멍(343)으로 오일을 공급할 수 있도록 상하 배압챔버(C1)(C2)가 각각 형성될 수 있다.
배압챔버(C1)(C2)는 각각 롤러(340)의 상하 양측면과 이에 대응하는 제1 베어링(310)과 제2 베어링(320), 그리고 회전축(250)의 외주면에 의해 형성된다.
또, 배압챔버(C1)(C2)는 회전축(250)의 제2 오일유로(252)와 각각 독립적으로 연통될 수도 있지만, 복수 개의 배압구멍(343)이 한 개의 배압챔버(C1)(C2)를 통해 제2 오일유로(252)에 함께 연통되도록 형성될 수도 있다.
베인(351,352,353)은 압축진행방향을 기준으로 접촉점(P)에서 가장 근접하는 베인을 제1 베인(351)이라고 하고, 이어서 제2 베인(352), 제3 베인(353)이라고 하면, 제1 베인(351)과 제2 베인(352)의 사이, 제2 베인(352)과 제3 베인(353)의 사이, 제3 베인(353)과 제1 베인(351)의 사이는 모두 동일한 원주각만큼 이격된다.
따라서, 제1 베인(351)과 제2 베인(352)이 이루는 압축실을 제1 압축실(333a), 제2 베인(352)과 제3 베인(353)이 이루는 압축실을 제2 압축실(333b), 제3 베인(353)과 제1 베인(351)이 이루는 압축실을 제3 압축실(333c)이라고 할 때, 모든 압축실(333a,333b,333c)은 동일한 크랭크각에서 동일한 체적을 가지게 된다.
베인(351,352,353)은 대략 직육면체 형상으로 형성된다. 여기서, 베인의 길이방향 양단 중에서 실린더(330)의 내주면(331)에 접하는 면을 베인의 실링면(355a)이라고 하고, 배압구멍(343)에 대향하는 면을 배압면(355b)이라고 한다.
베인(351,352,353)의 실링면(355a)은 실린더(330)의 내주면(331)과 선접촉하도록 곡면 형상으로 형성되고, 베인(351,352,353)의 배압면(355b)은 배압구멍(343)에 삽입되어 배압력을 고르게 받을 수 있도록 평면지게 형성될 수 있다.
상기와 같은 하이브리드 실린더가 구비된 횡형식이면서 개방형인 베인 로터리 압축기는, 케이싱(100)의 외부에 구비된 전동부(미도시)에 전원이 인가되어 그 전동부가 구동되면, 전동부에 구동풀리로 결합된 마그네틱 클러치(400)에 의해 전동부의 회전력이 회전축(250)에 전달되고, 이 회전력은 회전축(250)을 통해 롤러(340)에 전달되어 롤러(340)가 회전축(250)과 함께 회전을 하게 된다.
그러면, 베인(351,352,353)이 롤러(340)의 회전에 의해 발생되는 원심력과 그 베인(351,352,353)의 제1 배압면(355b)에 형성되는 배압력에 의해 롤러(340)로부터 인출되어, 베인(351,352,353)의 실링면(355a)이 실린더(330)의 내주면(331)에 접하게 된다.
그러면 실린더(330)의 압축공간(332)이 복수 개의 베인(351,352,353)에 의해 그 베인(351,352,353)의 개수만큼의 압축실(333a,333b,333c)을 형성하게 되고, 각각의 압축실(333a,333b,333c)은 롤러(340)의 회전을 따라 이동하면서 실린더(330)의 내주면(331) 형상과 롤러(340)의 편심에 의해 체적이 가변되며, 각각의 압축실(333a,333b,333c)에 채워지는 냉매는 롤러(340)와 베인(351,352,353)을 따라 이동하면서 냉매를 흡입, 압축하여 토출하는 일련의 과정을 반복하게 된다.
이를 보다 상세히 살펴보면 다음과 같다.
즉, 전동부에 의해 압축부(300)가 작동하면, 냉매가 흡입관(115)을 통해 케이싱(100)의 흡입공간(111)으로 흡입되고, 이 냉매는 제1 압축실(333a)을 기준으로 할 때, 제1 베인(351)이 흡입구(334)를 통과하고 제2 베인(352)이 흡입완료시점에 도달하기 전까지 제1 압축실(333a)의 체적은 지속적으로 증가하게 되어, 냉매가 흡입통로(315)와 흡입구(334)를 통해 제1 압축실(333a)로 지속적으로 유입된다.
다음, 제2 베인(352)이 흡입완료시점(또는, 압축개시각)에 도달하게 되면 제1 압축실(333a)은 밀봉상태가 되어 롤러(340)와 함께 토출구 방향으로 이동을 하게 된다. 이 과정에서 제1 압축실(333a)의 체적은 지속적으로 감소하게 되면서 그 제1 압축실(333a)의 냉매는 점진적으로 압축된다.
다음, 제1 베인(351)은 제1 토출구(335a)를 통과하고 제2 베인(352)은 제1 토출구(335a)에 도달하지 않은 상태가 되면, 제1 압축실(333a)은 제1 토출구(335a)와 연통되면서 그 제1 압축실(333a)의 압력에 의해 제1 토출밸브(336a)가 개방된다. 그러면 제1 압축실(333a)의 냉매 일부가 제1 토출구(335a)를 통해 케이싱(100)의 토출공간(112)으로 토출되어, 제1 압축실(333a)의 압력이 소정의 압력으로 하강하게 된다. 물론, 제1 토출구(335a)가 없는 경우에는 제1 압축실(333a)의 냉매가 토출되지 않고 주 토출구인 제2 토출구(335b)를 향해 더 이동을 하게 된다.
다음, 제1 베인(351)이 제2 토출구(335b)를 통과하고 제2 베인(352)이 토출개시각에 도달하게 되면, 제1 압축실(333a)의 압력에 의해 제2 토출밸브(336b)가 개방되면서 제1 압축실(333a)의 냉매가 제2 토출구(336b)를 통해 케이싱(100)의 토출공간(112)으로 토출된다.
상기와 같은 일련의 과정은 제2 베인(352)과 제3 베인(353) 사이의 제2 압축실(333b), 제3 베인(353)과 제1 베인(351) 사이의 제3 압축실(333c)에서도 동일하게 반복되어, 본 실시예에 따른 베인 로터리 압축기는 롤러(340)의 1회전 당 3회의 토출(제1 토출구에서 토출되는 것까지 포함하면 6회의 토출)이 이루어지게 된다.
한편, 본 실시예와 같이 흡입관이 케이싱의 내부공간에 연통되는 저압식의 경우, 흡입통로(315)는 제1 베어링(310)에 형성하되 흡입구(334)를 실린더(330)의 내주면(331)에 형성하게 되면 냉매가 압축실(332)로 흡입되는 흡입유로의 면적을 최대한 넓게 형성할 수 있어 흡입손실을 방지할 수 있다.
즉, 종래에는 흡입구가 제1 베어링에 형성됨에 따라 흡입구의 면적은 실린더의 내주면과 롤러의 외주면 사이의 간격에 크게 영향을 받게 된다. 이에 따라, 종래에는 앞서 설명한 바와 같이 흡입구의 면적을 넓히는데 한계가 있어 흡입손실에 따른 압축성능에 제한이 있었다.
하지만, 본 실시예와 같이 흡입유로의 출구에 해당하는 흡입구(334)가 실린더(330)의 내주면(331)에 형성되는 경우에는 그 흡입구(334)의 면적이 실린더(330)의 내주면(331)과 롤러(340)의 외주면(341) 사이의 간격에 영향을 받는 것이 아니라 실린더(330)의 높이에 영향을 받게 된다. 따라서, 흡입구(334)의 면적을 최대한 크게, 즉 실린더(330)의 높이(물론, 실링면적은 감안해야 한다)보다 작은 범위내에서 최대한 크게 형성할 수 있다. 이에 따라, 흡입유로의 입구에 해당하며 제1 베어링(310)에 형성되는 흡입통로(315)의 면적 역시 실린더(330)의 내주면(331)과 롤러(340)의 외주면(341) 사이의 간격에 영향을 받지 않게 되므로, 흡입구(334)의 면적만큼 크게 확대할 수 있다. 따라서, 흡입유로의 면적을 최대한 넓힐 수 있어 그만큼 흡입손실이 감소하면서 압축기 성능이 향상될 수 있다.
한편, 본 실시예와 같이 흡입관(115)이 케이싱(100)의 내부공간에 연통되는 경우에는 그 흡입관(115)을 통해 케이싱(100)의 내부공간으로 흡입되는 냉매가 케이싱(100)의 내부공간(즉, 흡입공간)(111)을 순환한 후 흡입통로(315)로 안내된다. 따라서, 냉매에 대한 유로손실이 발생하여 압축기 성능이 저하되는 원인이 된다.
이에, 본 실시예에서는 도 8 내지 도 9b와 같이, 케이싱(100)의 내부공간에 연통되는 흡입관(115)의 출구와 흡입통로(315) 사이에 흡입안내관(130)이 설치될 수 있다. 다만, 이 경우에는 흡입안내관(130)의 일단이 흡입관(115)의 출구에 고정 결합되면 그 반대쪽인 흡입안내관(130)의 타단은 흡입통로(315)가 형성된 제1 베어링(310) 또는 제2 베어링(320)에 고정될 수도 있고 약간 이격되게 설치되는 것이 바람직할 수 있다. 물론 반대의 경우도 가능하다.
이는, 흡입안내관(130)의 양단이 각각 흡입관(115)과 흡입통로(또는, 제1 또는 제2 베어링)(315)에 고정 연결되는 경우, 압축기 케이싱(100)의 외부 또는 내부의 원인에 따른 압축기의 진동에 의해 흡입안내관(130)이 파손될 수 있기 때문이다. 따라서, 흡입안내관(130)의 양단 중 적어도 어느 한 쪽 단부는 대응되는 부재로부터 약간 이격되도록 하는 것이 신뢰성 측면에서 바람직할 수 있다. 참고로, 도 9a에서는 흡입안내관(130)이 제1 베어링(310)의 흡입통로(315)로부터 일정 간격(t)만큼 이격된 예를 보인 도면이다. 다만, 이 경우에도 이격되는 단부는 그 단부가 대응하는 흡입관(115) 또는 흡입통로(315)를 수용할 수 있도록 배치되는 것이 바람직하다.
또, 흡입안내관은 흡입통로와 이격되는 단부에 확장부(131)와 실링부(132)가 형성될 수 있다. 확장부는 흡입안내관(또는 흡입관)(130)의 내경보다 흡입통로(315)의 내경(또는 단면적)이 큰 경우 흡입안내관(130)의 직경은 흡입관(115)의 직경에 대응하도록 형성하는 반면 흡입통로(315)에 대응하는 단부에는 확장부(131)를 형성하여 냉매가 흡입통로(315)로 원활하게 안내되도록 할 수 있다.
그리고, 앞서 설명한 바와 같이 흡입안내관(130)의 단부가 흡입통로(315)와 이격되는 경우, 흡입안내관(130)을 통과하는 냉매 중 일부가 벌어진 틈새(t)를 통해 누설될 수 있으므로 이 틈새(t)로 냉매가 누설되는 것을 최소화하도록 플랜지 형상의 실링부(132)가 형성될 수 있다. 이로써, 냉매가 흡입통로로 원활하게 안내될 수 있다.
또, 흡입안내관(130)은 그 양단이 앞서 설명한 바와 같이 흡입관(115) 또는 흡입통로(315) 중 어느 한 쪽으로부터 이격되도록 설치할 수도 있다. 하지만, 도 9b와 같이 흡입안내관(130)의 중간에 신축부(133)을 형성할 경우 그 흡입안내관(130)의 양단을 각각 흡입관(115)과 흡입통로(315)에 고정하여 연결할 수도 있다.
물론, 이 경우에 별도의 신축부(123)를 두지 않고 흡입안내관(130)의 전체를 플랙시블한 재질로 형성할 수도 있다. 그리고 이들 경우에 흡입안내관(130)의 양단 중에서 어느 한 쪽은 이격되도록 할 수도 있다. 도면중 미설명 부호인 134는 고정부이다.
상기와 같이, 케이싱(100)의 흡입공간(111)이 흡입압으로 채워지는 저압식 베인 로터리 압축기에서, 흡입관(115)과 흡입통로(315) 사이를 흡입안내관(130)으로 연결하는 경우에는, 흡입관(115)을 통해 흡입되는 냉매가 흡입안내관(130)을 따라 흡입통로(315)로 직접 안내된다.
이에 따라, 대부분의 냉매가 케이싱(100)의 흡입공간(111)을 거치지 않고 직접 압축실로 공급되면서 유로손실을 최소화하여 압축기 성능이 더욱 향상될 수 있다.
한편, 본 발명에 의한 로터리 압축기에 대한 다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예에서는 전동부가 케이싱의 외부에 별도로 구비되어 케이싱 내부에 구비된 압축부에 전동력을 전달하는 개방형 베인식 로터리 압축기에 적용되는 예를 보인 것이나, 본 실시예는 케이싱의 내부에 전동부와 압축부가 함께 설치되는 밀폐형 베인식 로터리 압축기에도 동일하게 적용될 수 있다.
예를 들어, 도 10과 같이 본 실시예에 따른 밀폐형 베인식 로터리 압축기는, 케이싱(100)의 내부에 전동부(200)와 압축부(300)가 일정 간격을 두고 배치되며, 전동부(200)와 압축부(300)는 회전축(250)으로 연결되어 전동부(200)의 회전력이 압축부(300)에 전달된다.
이 경우, 압축부(300)는 전술한 실시예와 동일하게 이루어질 수 있다. 특히, 메인베어링을 이루는 제1 베어링(310)에 흡입통로(315)가, 실린더(330)에 흡입구(334)가 각각 형성되는 것은 전술한 실시예와 동일하다. 따라서, 이에 대한 구체적인 설명은 생략한다.
다만, 본 실시예에서는 전동부(200)는 냉매를 압축하는 동력을 제공하는 역할을 하는 것으로, 고정자(210)와 회전자(220)를 포함한다.
고정자(210)는 케이싱(100)의 내부에 고정 설치되며, 케이싱(100)의 내주면에 열박음 등의 방법으로 장착될 수 있다.
회전자(220)는 고정자(210)와 서로 이격 배치되며, 고정자(210)의 내측에 위치된다. 회전자(220)의 중심에는 회전축(250)이 압입되고, 이 회전축(250)의 단부에는 압축부(300)를 이루는 롤러(340)가 일체로 형성되거나 조립된다. 이에 따라, 고정자(210)에 전원이 인가되면, 고정자(210)와 회전자(220) 사이에 형성된 자기장에 의해 발생하는 힘은 회전자(220)를 회전시키게 된다.
회전자(220)가 회전함에 따라 그 회전자(220)의 중심에 결합되는 회전축(250)에 의해 전동부의 회전력이 압축부(300)로 전달된다.
상기와 같이, 케이싱(100)의 내부에 전동부(200)와 압축부(300)가 모두 설치되는 경우에도 흡입통로(315)는 제1 베어링(310)에, 흡입구(334)는 실린더(330)의 측면에 각각 형성된다. 이에 따라, 흡입통로(315)의 면적을 넓게 확보할 수 있어 그만큼 흡입손실을 최소한으로 줄일 수 있다.
아울러, 이 경우에도 흡입관(115)과 흡입통로(315) 사이에 흡입안내관(미도시)(도 8 참고)을 설치하여, 흡입되는 냉매에 대한 유로손실을 최소한으로 줄일 수 있다. 참고로, 이 경우에는 흡입관이 전동부와 압축부 사이에 위치하는 것이 흡입안내관을 설치하는데 용이하다.
한편, 도 11과 같이, 본 실시예에 따른 밀폐형 베인식 로터리 압축기에서는, 흡입관(115)이 전동부(200)와 압축부(300)의 사이에 연결되지 않고, 전동부(200)의 일측, 즉 전동부(200)를 기준으로 압축부(300)의 반대쪽에 연결될 수 있다.
상기와 같이, 흡입관(115)이 전동부(200)를 사이에 두고 압축부(300)의 반대쪽에 설치되는 경우에는 흡입통로(315)와 흡입구(334a)(334b)는 전술한 실시예와 동일하게 이루어질 수 있다. 이에 대한 구체적인 설명은 생략한다.
다만, 본 실시예에서는 앞서 설명한 바와 같이 흡입관(115)이 전동부(200)를 사이에 두고 압축부(300)의 반대쪽에 설치됨에 따라, 흡입관(115)을 통해 흡입되는 차가운 흡입 냉매가 전동부(200)를 냉각시킬 수 있어 전동부의 효율을 높일 수 있다.
한편, 도면에서는 횡형 압축기에 적용된 예를 중심으로 살펴보았으나, 종형의 경우에도 동일하게 적용될 수 있다.
100 : 케이싱 111 : 흡입공간
112 : 토출공간 115 : 흡입관
116 : 토출관 130 : 흡입안내관
131 : 확장부 132 : 실링부
133 : 신축부 134 : 고정부
200 : 전동부 250 : 회전축
300 : 압축부 310 : 메인베어링
315 : 흡입통로 315a : 주 통로부
315b : 부 통로부 315c : 개방 통로부
330 : 실린더 334 : 흡입구
334a,334b : 제1,2 흡입부

Claims (17)

  1. 내부공간에 흡입관이 연통되는 케이싱;
    상기 케이싱의 내부공간에 고정 결합되고, 압축공간을 이루는 내주면이 구비되는 실린더;
    상기 실린더의 상하 양측에 구비되어 상기 실린더와 함께 압축공간을 형성하는 제1 베어링 및 제2 베어링;
    상기 실린더의 내주면에 대해 편심지게 구비되어 회전하면서 상기 압축공간의 체적을 가변시키는 롤러; 및
    상기 롤러에 삽입되어 그 롤러와 함께 회전하고, 상기 롤러의 회전시 상기 실린더의 내주면을 향해 인출되어 상기 압축공간을 복수 개의 압축실로 구획하는 베인;을 포함하고,
    상기 제1 베어링 또는 제2 베어링에는 상기 압축공간에 연통되는 흡입통로가 형성되며, 상기 실린더의 측면에는 상기 흡입통로와 압축공간 사이를 연통시키는 흡입구가 형성되고,
    상기 케이싱의 내부공간에서 상기 흡입통로와 상기 흡입관 사이를 연통시키도록 구비하는 흡입안내관이 더 구비되며,
    상기 흡입안내관의 일단은 상기 흡입관에 연결되고, 상기 흡입안내관의 타단은 상기 흡입통로를 마주보도록 구비되며,
    상기 흡입통로를 마주보는 상기 흡입안내관의 타단은,
    상기 흡입통로로부터 일정 간격(t)만큼 이격되고, 상기 흡입통로의 내경보다 넓게 확장된 확장부가 형성되는 로터리 압축기.
  2. 내부공간에 흡입관이 연통되는 케이싱;
    상기 케이싱의 내부공간에 고정 결합되고, 압축공간을 이루는 내주면이 구비되는 실린더;
    상기 실린더의 상하 양측에 구비되어 상기 실린더와 함께 압축공간을 형성하는 제1 베어링 및 제2 베어링;
    상기 실린더의 내주면에 대해 편심지게 구비되어 회전하면서 상기 압축공간의 체적을 가변시키는 롤러; 및
    상기 롤러에 삽입되어 그 롤러와 함께 회전하고, 상기 롤러의 회전시 상기 실린더의 내주면을 향해 인출되어 상기 압축공간을 복수 개의 압축실로 구획하는 베인;을 포함하고,
    상기 제1 베어링 또는 제2 베어링에는 상기 압축공간에 연통되는 흡입통로가 형성되며, 상기 실린더의 측면에는 상기 흡입통로와 압축공간 사이를 연통시키는 흡입구가 형성되고,
    상기 케이싱의 내부공간에서 상기 흡입통로와 상기 흡입관 사이를 연통시키도록 구비하는 흡입안내관이 더 구비되며,
    상기 흡입안내관의 일단은 상기 흡입관에 연결되고, 상기 흡입안내관의 타단은 상기 흡입통로를 마주보도록 구비되며,
    상기 흡입통로를 마주보는 상기 흡입안내관의 타단은,
    상기 흡입통로로부터 일정 간격(t)만큼 이격되고, 상기 흡입안내관의 외주면에서 반경방향으로 연장된 실링부가 형성되는 로터리 압축기.
  3. 제2항에 있어서,
    상기 실링부가 반경방향으로 연장되는 폭은 상기 흡입안내관의 타단과 상기 흡입통로 사이의 간격(t)보다 크거나 같은 로터리 압축기.
  4. 제3항에 있어서,
    상기 흡입통로를 마주보는 상기 흡입안내관의 타단은,
    상기 흡입통로의 내경보다 넓게 확장된 확장부가 형성되고,
    상기 실링부는,
    상기 확장부의 끝단 외주면에서 반경방향으로 연장되는 로터리 압축기.
  5. 삭제
  6. 삭제
  7. 제1항 또는 제2항에 있어서,
    상기 흡입통로는 그 반경방향 폭이 상기 실린더의 내주면과 롤러의 외주면 사이의 최대 간격보다 크게 형성되는 로터리 압축기.
  8. 제7항에 있어서,
    상기 흡입구는 상기 실린더의 내부를 관통하여 형성되거나 또는 상기 흡입구는 상기 실린더의 내주면 모서리를 면취하여 형성되는 로터리 압축기.
  9. 제1항 또는 제2항에 있어서,
    상기 흡입통로는 평면투영시 상기 압축공간의 범위 밖에 형성되는 로터리 압축기.
  10. 제1항 또는 제2항에 있어서,
    상기 흡입통로는 평면투영시 그 일부가 상기 압축공간의 범위 내에 형성되는 로터리 압축기.
  11. 제1항 또는 제2항에 있어서,
    상기 케이싱의 내부공간에는 고정자와 회전자로 된 전동부가 더 구비되고,
    상기 흡입관은 상기 전동부를 기준으로 상기 실린더가 구비되는 공간을 관통하여 연통되는 로터리 압축기.
  12. 제11항에 있어서,
    상기 흡입통로와 상기 흡입관 사이에는 흡입안내관이 결합되는 로터리 압축기.
  13. 제1항 또는 제2항에 있어서,
    상기 케이싱의 내부공간에는 고정자와 회전자로 된 전동부가 더 구비되고,
    상기 흡입관은 상기 전동부를 기준으로 상기 실린더가 구비되는 공간의 반대쪽 공간을 관통하여 연통되는 로터리 압축기.
  14. 제1항 또는 제2항에 있어서,
    상기 케이싱의 외부에는 고정자와 회전자로 된 전동부가 더 구비되고, 상기 전동부는 상기 롤러에 결합되어 상기 케이싱을 관통하는 회전축에 기구적으로 연결되는 로터리 압축기.
  15. 제14항에 있어서,
    상기 흡입통로와 상기 흡입관 사이에는 흡입안내관이 결합되는 로터리 압축기.
  16. 제1항 또는 제2항에 있어서,
    상기 흡입통로는,
    주 통로부; 및
    상기 주 통로부에서 흡입개시방향으로 연장되는 부 통로부로 이루어지는 로터리 압축기.
  17. 제16항에 있어서,
    상기 부 통로부는 그 반경방향 폭이 주 통로부의 반경방향 폭보다 작게 형성되며, 상기 부 통로부는 반경방향 폭보다 원주방향 길이가 더 길게 형성되는 로터리 압축기.
KR1020210162701A 2017-05-26 2021-11-23 로터리 압축기 KR102442470B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210162701A KR102442470B1 (ko) 2017-05-26 2021-11-23 로터리 압축기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170065454A KR102332211B1 (ko) 2017-05-26 2017-05-26 로터리 압축기
KR1020210162701A KR102442470B1 (ko) 2017-05-26 2021-11-23 로터리 압축기

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170065454A Division KR102332211B1 (ko) 2017-05-26 2017-05-26 로터리 압축기

Publications (2)

Publication Number Publication Date
KR20210146860A KR20210146860A (ko) 2021-12-06
KR102442470B1 true KR102442470B1 (ko) 2022-09-13

Family

ID=62244399

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170065454A KR102332211B1 (ko) 2017-05-26 2017-05-26 로터리 압축기
KR1020210162701A KR102442470B1 (ko) 2017-05-26 2021-11-23 로터리 압축기

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170065454A KR102332211B1 (ko) 2017-05-26 2017-05-26 로터리 압축기

Country Status (4)

Country Link
US (1) US10954945B2 (ko)
EP (1) EP3406906B1 (ko)
KR (2) KR102332211B1 (ko)
CN (1) CN208595062U (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189043B1 (ko) * 2018-12-07 2020-12-09 엘지전자 주식회사 로터리 압축기
KR102305246B1 (ko) * 2019-01-11 2021-09-27 엘지전자 주식회사 베인 로터리 압축기
KR102387189B1 (ko) * 2020-05-22 2022-04-15 엘지전자 주식회사 로터리 압축기
CZ2022179A3 (cs) * 2022-05-03 2023-05-17 Jiří MÁLEK Kryogenní geotermální motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882088A (ja) * 1981-10-07 1983-05-17 Hitachi Ltd ベ−ン形圧縮機
JPS59192893A (ja) * 1983-04-15 1984-11-01 Hitachi Ltd 車両用冷房装置における圧縮機の容量制御装置
KR100286714B1 (ko) * 1998-06-08 2001-05-02 구자홍 베어링부에 흡입구조를 가지는 로터리 압축기
JP2006046094A (ja) 2004-08-02 2006-02-16 Calsonic Compressor Inc 容量可変型気体圧縮機
EP2520803B1 (en) * 2009-12-29 2018-10-17 Valeo Japan Co., Ltd. Compressor
EP2784325B1 (en) * 2011-11-24 2018-07-25 Calsonic Kansei Corporation Gas compressor
CN104619987B (zh) 2012-09-13 2018-01-12 艾默生环境优化技术有限公司 具有引导吸入部的压缩机组件
JP6428200B2 (ja) 2014-11-28 2018-11-28 株式会社豊田自動織機 電動圧縮機

Also Published As

Publication number Publication date
CN208595062U (zh) 2019-03-12
KR102332211B1 (ko) 2021-11-29
EP3406906B1 (en) 2023-10-18
KR20180129428A (ko) 2018-12-05
US10954945B2 (en) 2021-03-23
KR20210146860A (ko) 2021-12-06
EP3406906A1 (en) 2018-11-28
US20180340534A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
KR102442470B1 (ko) 로터리 압축기
CN110268163B (zh) 封闭式压缩机
US11754071B2 (en) Hermetic compressor including an intermediate plate having a curved suction passage
KR102199140B1 (ko) 베인 로터리 압축기
CN215292888U (zh) 旋转式压缩机
CN113700648B (zh) 旋转式压缩机
CN215256803U (zh) 旋转式压缩机
KR102227090B1 (ko) 베인 로터리 압축기
KR102190063B1 (ko) 베인 로터리 압축기
KR102491472B1 (ko) 베인 로터리 압축기
US11788531B2 (en) Scroll compressor
US20230137362A1 (en) Rotary compressor
KR102301479B1 (ko) 로터리 압축기
KR102390684B1 (ko) 토출포트 주변에 라운드부가 구비되는 압축기

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant