KR102401934B1 - 압축비 가변 기구 - Google Patents

압축비 가변 기구 Download PDF

Info

Publication number
KR102401934B1
KR102401934B1 KR1020207027530A KR20207027530A KR102401934B1 KR 102401934 B1 KR102401934 B1 KR 102401934B1 KR 1020207027530 A KR1020207027530 A KR 1020207027530A KR 20207027530 A KR20207027530 A KR 20207027530A KR 102401934 B1 KR102401934 B1 KR 102401934B1
Authority
KR
South Korea
Prior art keywords
oil
hydraulic
chamber
oil passage
storage chamber
Prior art date
Application number
KR1020207027530A
Other languages
English (en)
Other versions
KR20200121883A (ko
Inventor
유타카 마스다
미쓰아키 하야시
Original Assignee
가부시키가이샤 아이에이치아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아이에이치아이 filed Critical 가부시키가이샤 아이에이치아이
Publication of KR20200121883A publication Critical patent/KR20200121883A/ko
Application granted granted Critical
Publication of KR102401934B1 publication Critical patent/KR102401934B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/026Rigid connections between piston and rod; Oscillating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/04Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/02Lubricating-pumps with reciprocating piston
    • F16N13/06Actuation of lubricating-pumps
    • F16N13/16Actuation of lubricating-pumps with fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Reciprocating Pumps (AREA)

Abstract

압축비 가변 기구는, 제1 유압실(168a)에 접속되는 배출 오일 통로와, 유압 펌프(P)에 접속되는 공급 오일 통로(182f)와, 배출 오일 통로 및 공급 오일 통로에 접속되는 제1 저유실(182m), 및 플런저(182b)에 의해 제1 저유실과 구획된 제2 저유실(182n)을 가지는 펌프 실린더(182a)와, 제2 저유실에 접속되는 분기 오일 통로(182h)와, 분기 오일 통로(182h)에 설치된 오리피스(182i)를 포함한다.

Description

압축비 가변 기구
본 개시는, 압축비 가변(可變) 기구(機構)에 관한 것이다. 본 출원은 2018년 2월 28일에 제출된 일본국 특허 출원 제2018―034780호에 기초한 우선권의 이익을 주장하는 것이며, 그 내용은 본 출원에 포함된다.
크로스헤드형(crosshead type) 엔진은, 피스톤과, 피스톤 로드와, 크로스헤드(crosshead)와, 크로스헤드 핀과, 연결봉과, 크랭크샤프트(crankshaft)를 구비한다. 피스톤은, 실린더 내를 왕복 이동한다. 피스톤 로드는, 일단(一端)이 피스톤에 연결되고, 타단이 크로스헤드 핀을 통해 크로스헤드에 연결된다. 연결봉은, 일단이 크로스헤드 핀을 통해 크로스헤드에 연결되고, 타단이 크랭크샤프트에 연결된다. 크로스헤드는, 피스톤 로드를 통해 피스톤과 일체로 왕복 이동한다. 크랭크샤프트는, 연결봉을 통해 피스톤 및 크로스헤드의 왕복 이동에 연동하여 회전한다.
크로스헤드형 엔진에는, 피스톤의 상사점 및 하사점의 위치를 가변으로 하는 압축비 가변 기구를 구비하는 것이 있다. 압축비 가변 기구는, 예를 들면, 피스톤의 스트로크 방향에 있어서, 피스톤 로드와 크로스헤드 핀의 사이의 상대적인 위치를 변경한다. 특허문헌 1의 압축비 가변 기구는, 플런저(plunger) 펌프를 구비하고 있다. 플런저 펌프는, 피스톤 로드와 크로스헤드 핀과의 사이에 형성된 유압실에 작동유를 공급한다. 플런저 펌프는, 크로스헤드 핀에 장착되고, 크로스헤드 핀과 일체로 이동한다. 플런저 펌프는, 크로스헤드 핀의 움직임에 따라서, 작동유를 흡입 및 배출한다. 플런저 펌프는, 작동유를 흡입함으로써 내부에 작동유를 저장한다. 플런저 펌프는, 내부에 저장한 작동유를 배출함으로써 유압실에 작동유를 공급한다. 유압실에 작동유를 공급함으로써, 피스톤의 상사점 위치가 변경된다.
국제 공개 제2015/108182호 공보
그러나, 플런저 펌프는, 피스톤이 하사점 근방을 이동하는 근소한 시간에 작동유의 흡입 및 배출을 행한다. 이 때, 플런저 펌프로의 작동유의 흡입이 급속히 행해지면, 공급압이 부압(負壓)으로 되어 캐비테이션(cavitation)이 발생할 우려가 있었다.
본 개시는, 캐비테이션의 발생을 억제할 수 있는 압축비 가변 기구를 제공하는 것을 목적으로 하고 있다.
상기 문제점을 해결하기 위해, 본 발명의 압축비 가변 기구는, 유압실에 접속되는 배출 오일 통로(oil passage)와, 유압(油壓) 공급원에 접속되는 공급 오일 통로와, 배출 오일 통로 및 공급 오일 통로에 접속되는 제1 저유실(貯油室; oil storage chamber), 및 플런저에 의해 제1 저유실과 구획된 제2 저유실을 가지는 펌프 실린더와, 제2 저유실에 접속되는 연통로와, 연통로에 설치된 오리피스(orifice)를 구비한다.
연통로는, 제1 저유실과 제2 저유실을 연통시켜도 된다.
연통로 중, 오리피스를 경계로 하여 제1 저유실 측과 제2 저유실 측을 접속하는 바이패스(bypass) 오일 통로와, 바이패스 오일 통로에 설치되고, 제2 저유실로부터 제1 저유실로의 작동유의 흐름을 제한하는 체크 밸브를 더 구비해도 된다.
상기 문제점을 해결하기 위해, 본 발명의 압축비 가변 기구는, 유압실에 접속되는 배출 오일 통로와, 배출 오일 통로에 접속되는 저유실을 가지는 펌프 실린더와, 저유실과 유압 공급원을 접속하는 공급 오일 통로와, 공급 오일 통로에 접속된 어큐뮬레이터(accumulator)를 구비한다.
공급 오일 통로 중, 어큐뮬레이터와의 접속점과 유압 공급원과의 사이에 설치된 오리피스를 더 구비해도 된다.
본 발명의 압축비 가변 기구에 의하면, 캐비테이션의 발생을 억제할 수 있다.
도 1은, 유니플로우(uniflow) 소기식(掃氣式; scavenging type) 2사이클 엔진(크로스헤드형 엔진)의 전체 구성을 나타낸 설명도이다.
도 2a는, 도 1의 1점 쇄선 부분을 추출한 확대도이다.
도 2b는, 도 2a의 IIB―IIB선 단면도(斷面圖)이다.
도 3a는, 피스톤 로드가 연결공에 얕게 진입한 상태를 나타낸 도면이다.
도 3b는, 피스톤 로드가 연결공에 깊게 진입한 상태를 나타낸 도면이다.
도 4는, 유압 조정 기구의 배치를 설명하기 위한 설명도이다.
도 5는, 유압 조정 기구의 상세한 구성을 설명하기 위한 설명도이다.
도 6a는, 제1 유압실로부터 작동유를 배출하고 있는 상태를 나타낸 도면이다.
도 6b는, 제1 유압실로부터의 작동유의 배출을 정지하고 있는 상태를 나타낸 도면이다.
도 6c는, 제1 유압실에 작동유를 공급하고 있는 상태를 나타낸 도면이다.
도 6d는, 제1 유압실로의 작동유의 공급을 정지하고 있는 상태를 나타낸 도면이다.
도 7은, 크랭크각과 플런저 펌프 및 스필 밸브(spill value)의 기본 동작 타이밍을 설명하기 위한 설명도이다.
도 8은, 본 실시형태의 플런저 펌프의 구성을 설명하기 위한 설명도이다.
도 9a는, 제1 저유실에 작동유를 흡입하는 상태를 나타낸 도면이다.
도 9b는, 제1 저유실로부터 제1 유압실에 작동유를 공급하는 상태를 나타낸 도면이다.
도 10은, 변형예의 플런저 펌프의 구성을 설명하기 위한 설명도이다.
이하에, 첨부 도면을 참조하면서, 본 발명의 실시형태에 대하여 상세하게 설명한다. 실시형태에 나타내는 치수, 재료, 그 외에 구체적인 수치 등은, 이해를 용이하게 하기 위한 예시에 지나지 않고, 특별히 한정하는 경우를 제외하고, 본 개시를 한정하는 것은 아니다. 그리고, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능, 구성을 가지는 요소에 대해서는, 동일한 부호를 부여함으로써 중복 설명을 생략한다. 또한, 본 개시에 직접 관계가 없는 요소(要素)는 도시를 생략한다.
이하의 실시형태에서는, 1주기(周期)가 2 사이클(2 스트로크)로서, 실린더 내부를 가스가 일방향으로 흐르는 유니플로우 소기식의 엔진을 예로 설명한다. 또한, 이하의 실시형태에서는, 가스 운전 모드와, 디젤 운전 모드 중 어느 하나의 운전 모드를 선택적으로 실행할 수 있는 이른바 듀얼 연료형의 엔진을 예로 설명한다. 가스 운전 모드는, 기체(氣體) 연료인 연료 가스를 주로 연소시킨다. 디젤 운전 모드는, 액체 연료인 연료 오일을 연소시킨다. 그러나, 엔진의 종류는, 듀얼 연료형, 2사이클형, 유니플로우 소기식, 크로스헤드형에 한정되지 않고, 왕복기관이면 된다.
도 1은, 유니플로우 소기식 2사이클 엔진(크로스헤드형 엔진)(100)의 전체 구성을 나타낸 설명도이다. 본 실시형태의 유니플로우 소기식 2사이클 엔진(100)은, 예를 들면, 선박 등에 사용된다. 유니플로우 소기식 2사이클 엔진(100)은, 실린더(110)와, 피스톤(112)과, 크로스헤드(114)와, 연결봉(116)과, 크랭크샤프트(118)와, 배기 포트(120)와, 배기 밸브(122)와, 소기 포트(124)와, 소기류(掃氣溜; scavenge reservoir)(126)와, 냉각기(128)와, 소기실(掃氣室; scavenge chamber)(130)과, 연소실(132)을 포함하여 구성된다.
유니플로우 소기식 2사이클 엔진(100)에서는, 피스톤(112)의 상승 행정(行程) 및 하강 행정의 2행정의 사이에, 배기, 흡기, 압축, 연소, 팽창이 행해져, 피스톤(112)이 실린더(110) 내를 왕복 이동한다. 피스톤(112)에는, 피스톤 로드(112a)의 일단이 연결되어 있다. 피스톤 로드(112a)의 타단에는, 크로스헤드(114)에서의 크로스헤드 핀(114a)이 연결되어 있다. 크로스헤드(114)는, 피스톤(112)과 일체로 왕복 이동한다. 크로스헤드(114)는, 크로스헤드 슈 (114b)에 의해, 피스톤(112)의 스트로크 방향에 수직인 방향(도 1 중, 좌우 방향)의 이동이 규제되어 있다.
크로스헤드 핀(114a)은, 연결봉(116)의 일단에 형성된 구멍에 삽통(揷通)된다. 크로스헤드 핀(114a)은, 연결봉(116)의 일단을 지지하고 있다. 연결봉(116)의 타단은, 크랭크샤프트(118)에 연결된다. 크랭크샤프트(118)는, 연결봉(116)에 대하여 회전 가능하게 구성된다. 피스톤(112)의 왕복 이동에 따라 크로스헤드(114)가 왕복 이동하면, 그 왕복 이동에 연동하여, 크랭크샤프트(118)가 회전한다.
배기 포트(120)는, 피스톤(112)의 상사점보다 위쪽의 실린더 헤드(110a)에 형성된 개구부이다. 배기 포트(120)는, 실린더(110) 내에서 생긴 연소 후의 배기 가스를 배기하기 위해 개폐된다. 배기 밸브(122)는, 도시하지 않은 배기 밸브 구동 장치에 의해 소정 타이밍에서 상하로 슬라이딩되고, 배기 포트(120)를 개폐한다. 배기 포트(120)를 통해 배기된 배기 가스는, 배기관(120a)을 통해 과급기(過給機; supercharger)(C)의 터빈측에 공급된 후, 외부로 배기된다.
소기 포트(124)는, 실린더(110)의 하단(下端) 측의 내주면(內周面)[실린더 라이너(110b)의 내주면]으로부터 외주면(外周面)까지 관통하는 구멍이다. 소기 포트(124)는, 실린더(110)의 전체 주위에 걸쳐, 복수 설치되어 있다. 소기 포트(124)는, 피스톤(112)의 슬라이딩 동작에 따라서, 실린더(110) 내에 활성 가스를 흡입한다. 이러한 활성 가스는, 산소, 오존 등의 산화제, 또는 그 혼합기(混合氣)(예를 들면, 공기)를 포함한다.
소기류(126)에는, 과급기(C)의 압축기에 의해 가압된 활성 가스(예를 들면, 공기)가 봉입(封入)되고, 냉각기(128)에 의해 활성 가스가 냉각되어 있다. 냉각된 활성 가스는, 실린더 쟈켓(110c) 내에 형성된 소기실(130)에 압입(壓入)된다. 소기실(130)과 실린더(110) 내의 차압(差壓)에 의해 소기 포트(124)로부터 실린더(110) 내에 활성 가스가 흡입된다.
실린더 헤드(110a)에는, 도시하지 않은 파일럿 분사 밸브가 설치된다. 가스 운전 모드에 있어서는, 엔진 사이클에서의 원하는 시점에서 적당량의 연료 오일이 파일럿 분사 밸브로부터 분사된다. 이러한 연료 오일은, 실린더 헤드(110a)와, 실린더 라이너(110b)와, 피스톤(112)에 위요된(surrounded) 연소실(132)의 열로 기화하여 연료 가스로 된다. 연소실(132)의 열로 기화된 연료 가스는, 자연 착화하여, 근소한 시간에 연소하여, 연소실(132)의 온도를 극히 높게 한다. 그 결과, 유니플로우 소기식 2사이클 엔진(100)은, 실린더(110)에 유입된 연료 가스를, 원하는 타이밍에서 확실하게 연소시킬 수 있다. 피스톤(112)은, 주로 연료 가스의 연소에 의한 팽창압에 의해 왕복 이동한다.
여기서, 연료 가스는, 예를 들면, LNG(액화 천연 가스)를 가스화하여 생성되는 것이다. 단, 연료 가스는, LNG에 한정되지 않고, 예를 들면, LPG(액화 석유 가스), 경유, 중유 등을 가스화한 것을 적용할 수도 있다.
한편, 디젤 운전 모드에 있어서는, 가스 운전 모드에서의 연료 오일의 분사량보다 다량의 연료 오일이 파일럿 분사 밸브로부터 분사된다. 피스톤(112)은, 연료 가스는 아니고, 연료 오일의 연소에 의한 팽창압에 의해 왕복 이동한다.
이와 같이, 유니플로우 소기식 2사이클 엔진(100)은, 가스 운전 모드와 디젤 운전 모드 중 어느 하나의 운전 모드를 선택적으로 실행한다. 각각의 선택 모드에 따라서 피스톤(112)의 압축비를 가변으로 하므로, 유니플로우 소기식 2사이클 엔진(100)은, 압축비 가변 기구(V)를 구비하고 있다. 이하, 압축비 가변 기구(V)의 구성에 대하여 상세하게 설명한다.
도 2a는, 도 1의 1점 쇄선 부분을 추출한 확대도이다. 도 2b는, 도 2a의 IIB―IIB선 단면도이다. 도 2a 및 도 2b에서는, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 연결 부분을 나타내고 있다.
도 2a, 도 2b에 나타낸 바와 같이, 크로스헤드 핀(114a)에는, 피스톤 로드(112a)의 단부(端部)가 삽입된다. 구체적으로, 크로스헤드 핀(114a)에는, 크로스헤드 핀(114a)의 축 방향(도 2b 중, 좌우 방향)과 수직으로 연장되는 연결공(160)이 형성되어 있다. 연결공(160)은, 유압실로 되어 있고, 유압실에 피스톤 로드(112a)의 단부가 삽입(진입)되어 있다. 연결공(160)에 피스톤 로드(112a)의 단부가 삽입되므로, 크로스헤드 핀(114a)과, 피스톤 로드(112a)가 연결된다.
피스톤 로드(112a)에는, 대경부(大徑部)(162a)와, 소경부(小徑部)(162b)가 형성되어 있다. 대경부(162a)는, 피스톤 로드(112a)의 일단측보다 큰 외경(外徑)을 가진다. 소경부(162b)는, 대경부(162a)보다 타단측에 위치하고, 대경부(162a)보다 작은 외경을 가진다.
연결공(160)은, 대경공부(大徑孔部)(164a)와, 소경공부(小徑孔部)(164b)를 가지고 있다. 대경공부(164a)는, 연결공(160)에서의 피스톤(112) 측에 위치한다. 소경공부(164b)는, 대경공부(164a)에 대하여 연결봉(116) 측으로 연속되고, 대경공부(164a)보다 작은 내경(內徑)을 구비한다.
피스톤 로드(112a)의 소경부(162b)는, 연결공(160)의 소경공부(164b)에 삽입 가능한 치수 관계로 되어 있다. 피스톤 로드(112a)의 대경부(162a)는, 연결공(160)의 대경공부(164a)에 삽입 가능한 치수 관계로 되어 있다. 소경공부(164b)의 내주면에는, O링으로 구성되는 제1 실링 부재(O1)가 배치된다.
피스톤 로드(112a)의 대경부(162a)보다 피스톤 로드(112a)의 일단측에는, 연결공(160)보다 외경이 큰 고정 커버(166)가 배치되어 있다. 고정 커버(166)은, 환형(環形) 부재로서, 피스톤 로드(112a)가 삽통되어 있다. 피스톤 로드(112a)가 삽통되는 고정 커버(166)의 내주면에는, O링으로 구성되는 제2 실링 부재(O2)가 배치된다.
크로스헤드 핀(114a)의 외주면에는, 크로스헤드 핀(114a)의 직경 방향으로 오목한 오목부(114c)가 형성되어 있다. 이 오목부(114c)에 고정 커버(166)가 맞닿는다.
피스톤 로드(112a)와 크로스헤드 핀(114a)과의 연결 부분에서 있어, 크로스헤드 핀(114a)의 내부에는, 제1 유압실(유압실)(168a) 및 제2 유압실(168b)이 형성된다.
제1 유압실(168a)은, 대경부(162a)와 소경부(162b)의 외경 차이에 의한 단차면과, 대경공부(164a)의 내주면과, 대경공부(164a)와 소경공부(164b)의 내경 차이에 의한 단차면(段差面)에 의해 위요된다.
피스톤 로드(112a)의 대경부(162a)와 소경부(162b)의 외경 차이에 의한 단차면은, 크로스헤드 핀(114a)의 대경공부(164a)와 소경공부(164b)의 내경 차이에 의한 단차면과 대향한다. 이하, 피스톤 로드(112a)의 대경부(162a)와 소경부(162b)의 외경 차이에 의한 단차면을, 단지 피스톤 로드(112a)의 단차면이라고 한다. 또한, 크로스헤드 핀(114a)의 대경공부(164a)와 소경공부(164b)의 내경 차이에 의한 단차면을, 단지 크로스헤드 핀(114a)의 단차라고 한다. 피스톤 로드(112a)의 단차면과 크로스헤드 핀(114a)의 단차면은, 서로 대향하는 대향부를 구성한다. 피스톤 로드(112a)와 크로스헤드 핀(114a)의 대향부는, 제1 유압실(168a)을 형성한다.
제2 유압실(168b)은, 대경부(162a) 중, 피스톤 로드(112a)의 일단측의 단면(端面)과, 대경공부(164a)의 내주면과, 고정 커버(166)에 의해 위요된다. 즉, 피스톤 로드(112a)의 대경부(162a)에 의해, 대경공부(164a)가 피스톤 로드(112a)의 일단측과 타단측으로 구획된다. 대경부(162a)보다 타단측에 구획된 대경공부(164a)에 의해 제1 유압실(168a)이 형성된다. 대경부(162a)보다 일단측에 구획된 대경공부(164a)에 의해 제2 유압실(168b)이 형성된다.
제1 유압실(168a)에는, 제1 오일 통로(170a) 및 제2 오일 통로(170b)가 연통되어 있다. 제1 오일 통로(170a)는, 일단이 대경공부(164a)의 내주면[제1 유압실(168a)]으로 개구되고, 타단이 후술하는 플런저 펌프와 연통되어 있다. 제2 오일 통로(170b)는, 일단이 대경공부(164a)의 내주면으로 개구되고, 타단이 후술하는 스필 밸브와 연통되어 있다.
제2 유압실(168b)에는, 고정 커버(166)의 벽면으로 개구되는 보조 오일 통로(170c)가 연통되어 있다. 보조 오일 통로(170c)는, 고정 커버(166)와 크로스헤드 핀(114a)과의 맞닿음 부분을 통해 크로스헤드 핀(114a)의 내부를 지나, 유압 펌프와 연통되어 있다.
도 3a는, 피스톤 로드(112a)가 연결공(160)에 얕게 진입한 상태를 나타낸 도면이다. 도 3b는, 피스톤 로드(112a)가 연결공(160)에 깊게 진입한 상태를 나타낸 도면이다. 도 3a, 도 3b에서는, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치의 변화를 나타내고 있다.
제1 유압실(168a)은, 피스톤(112)의 스트로크 방향의 길이가 가변으로 되어 있다. 제1 유압실(168a)에 작동유를 공급하고, 도 3a에 나타낸 상태로 제1 유압실(168a)을 밀폐하면, 작동유가 비압축성이므로, 도 3a 상태가 유지된다.
여기서, 후술하는 스필 밸브를 개구시키면, 제1 유압실(168a)에 밀폐된 작동유는, 제2 오일 통로(170b)를 통해 제1 유압실(168a)로부터 배출된다. 구체적으로, 작동유는, 피스톤(112)의 왕복 이동에 의한 피스톤 로드(112a) 및 크로스헤드 핀(114a)으로부터의 압축 하중(荷重)에 의해, 제1 유압실(168a)로부터 제2 오일 통로(170b)를 통해 스필 밸브 측으로 배출된다. 그 결과, 도 3b에 나타낸 바와 같이, 제1 유압실(168a)의 피스톤(112)의 스트로크 방향의 길이가 짧아진다. 한편, 제2 유압실(168b)은, 피스톤(112)의 스트로크 방향의 길이가 길어진다.
이와 같이, 피스톤 로드(112a) 및 크로스헤드 핀(114a)은, 상기 대향부의 스트로크 방향의 이격 거리에 따라서, 피스톤 로드(112a), 크로스헤드 핀(114a), 및 피스톤(112)의 스트로크 방향의 전체 길이를 가변으로 한다. 환언하면, 피스톤 로드(112a), 크로스헤드 핀(114a), 및 피스톤(112)의 스트로크 방향의 전체 길이는, 피스톤 로드(112a)의 단차면 및 크로스헤드 핀(114a)의 단차면의 스트로크 방향의 이격 거리에 따라 변화한다.
제1 유압실(168a) 및 제2 유압실(168b)의 피스톤(112)의 스트로크 방향의 길이가 변경된만큼, 피스톤 로드(112a)가 크로스헤드 핀(114a)의 연결공[유압실)(160)]로 진입하는 진입 위치(진입 깊이)가 변화한다. 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치를 변화시킴으로써, 피스톤(112)의 상사점 및 하사점의 위치가 변화한다. 이와 같이, 압축비 가변 기구(V)는, 피스톤(112)의 상사점 및 하사점의 위치를 변화시킴으로써, 피스톤(112)의 압축비를 가변으로 하고 있다.
그런데, 도 3b에 나타낸 상태에 있어서 피스톤(112)이 상사점에 도달했을 때, 크로스헤드 핀(114a)은, 연결봉(116)에 의해 피스톤(112)의 스트로크 방향의 위치가 유지되어 있다. 한편, 피스톤 로드(112a)는, 크로스헤드 핀(114a)에 연결되어 있을뿐, 제2 유압실(168b)의 분만큼 여유가 생기고 있다.
그러므로, 유니플로우 소기식 2사이클 엔진(100)의 회전수에 따라서는, 피스톤 로드(112a)의 관성력이 크고, 피스톤 로드(112a)가 피스톤(112) 측으로 이동하여 버릴 가능성이 있다. 피스톤 로드(112a)가 피스톤(112) 측으로 이동하면, 피스톤(112)의 상사점 위치가 어긋나게 된다. 피스톤(112)의 상사점 위치의 어긋남이 생기지 않도록, 제2 유압실(168b)에는, 보조 오일 통로(170c)를 통해 유압 펌프로부터의 유압을 작용시키고, 피스톤 로드(112a)의 이동을 억제하고 있다.
유니플로우 소기식 2사이클 엔진(100)은, 비교적 저속의 회전수로 사용되므로, 피스톤 로드(112a)의 관성력이 비교적 작다. 그러므로, 제2 유압실(168b)에 공급하는 유압이 낮아도, 상사점 위치의 어긋남을 억제할 수 있다.
피스톤 로드(112a)에는, 피스톤 로드(112a)의 외주면으로부터 직경 방향 내측을 향하는 유로공(流路孔)(172)이 형성되어 있다. 크로스헤드 핀(114a)에는, 크로스헤드 핀(114a)의 외주면 측으로부터 연결공(160)까지 관통하는 관통공(174)이 형성되어 있다. 관통공(174)은, 유압 펌프와 연통되어 있다.
유로공(172)과 관통공(174)은, 피스톤 로드(112a)의 직경 방향으로 대향하고 있다. 유로공(172)은, 관통공(174)과 연통되어 있다. 여기서, 유로공(172)의 외주면 측의 단부는, 유로공(172)의 다른 부위보다, 피스톤(112)의 스트로크 방향(도 3a, 도 3b 중, 상하 방향)의 유로(流路; flowpath) 폭이 넓게 형성되어 있다. 따라서, 도 3a, 도 3b에 나타낸 바와 같이, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치가 변경되어도, 유로공(172)과 관통공(174)의 연통 상태가 유지된다.
피스톤 로드(112a)의 외주면에는, 유로공(172)의 외주면 측의 단부를 피스톤 로드(112a)의 축 방향으로 협지하여, 제3 실링 부재(O3), 제4 실링 부재(O4))가 배치된다. 제3 실링 부재(O3), 제4 실링 부재(O4)는, O링으로 구성된다.
대경부(162a)는, 유로공(172)의 분만큼, 대경공부(164a)의 내주면에 대향하는 면적이 작아지게 된다. 대경부(162a)는, 대경공부(164a)의 내주면과 대향하는 면적이 작아지면, 대경공부(164a)에 대하여 경사지기 쉬워진다. 여기서는, 소경부(162b)가 소경공부(164b)에 가이드됨으로써, 피스톤 로드(112a)의 스트로크 방향에 대한 경사가 억제된다.
피스톤 로드(112a)의 내부에는, 피스톤(112)의 스트로크 방향으로 연장되는 냉각 오일 통로(176)가 형성되어 있다. 냉각 오일 통로(176)에는, 피스톤(112) 및 피스톤 로드(112a)를 냉각시키는 냉각유가 유통(流通)한다. 냉각 오일 통로(176)는, 내부에 냉각관(178)이 배치된다. 냉각 오일 통로(176)는, 냉각관(178)에 의해 피스톤 로드(112a)의 직경 방향 외측의 왕로(往路)(176a)와 내측의 복로(復路)(176b)로 나눌 수 있다. 유로공(172)은, 냉각 오일 통로(176) 중 왕로(176a)로 개구되어 있다.
유압 펌프로부터 공급된 냉각유는, 관통공(174), 유로공(172)를 통해 냉각 오일 통로(176)의 왕로(176a)에 유입(流入)된다. 왕로(176a)와 복로(176b)는, 피스톤(112)의 내부에서 연통되어 있다. 왕로(176a)를 흐른 냉각유는, 피스톤(112)의 내벽에 도달하면 복로(176b)를 통하여, 소경부(162b) 측으로 돌아온다. 냉각 오일 통로(176)의 내벽 및 피스톤(112)의 내벽에 냉각유가 접촉함으로써, 피스톤(112)이 냉각된다.
크로스헤드 핀(114a)에는, 크로스헤드 핀(114a)의 축 방향으로 연장되는 출구공(出口孔)(180)이 형성되어 있다. 소경공부(164b)는, 출구공(180)과 연통되어 있다. 피스톤(112)을 냉각한 후에, 냉각 오일 통로(176)로부터 소경공부(164b)에 유입된 냉각유는, 출구공(180)을 통하여, 크로스헤드 핀(114a) 밖으로 배출된다. 크로스헤드 핀(114a) 외에 배출된 냉각유는, 탱크에 환류(還流)한다.
제1 유압실(168a) 및 제2 유압실(168b)에 공급되는 작동유와, 냉각 오일 통로(176)에 공급되는 냉각유는, 모두 같은 탱크로 환류하여 같은 유압 펌프로 승압된다. 그러므로, 유압을 작용하게 하는 작동유의 공급과, 냉각용의 냉각유의 공급을, 1개의 유압 펌프로 수행할 수 있어, 비용을 저감하는 것이 가능해진다.
압축비 가변 기구(V)는, 제1 유압실(168a)의 유압을 조정하는 유압 조정 기구(196)를 구비한다. 이어서, 유압 조정 기구(196)의 구성에 대하여 상세하게 설명한다.
도 4는, 유압 조정 기구(196)의 배치를 설명하기 위한 설명도이다. 도 4에서는, 유니플로우 소기식 2사이클 엔진(100) 중, 크로스헤드(114) 근방의 외관 및 부분 단면을 나타낸다. 도 4에 나타낸 바와 같이, 유압 조정 기구(196)는, 크로스헤드(114) 근방에 배치된다. 유압 조정 기구(196)는, 플런저 펌프(182)와, 스필 밸브(184)와, 제1 캠판(188)과, 제2 캠판(190)과, 제1 액추에이터(192)와, 제2 액추에이터(194)를 포함하여 구성된다. 플런저 펌프(182) 및 스필 밸브(184)는, 각각, 도 4에 크로스해칭으로 나타내는 크로스헤드 핀(114a)에 배치된다.
크로스헤드(114)의 양측(도 4 중, 좌우 방향)에는, 크로스헤드(114)의 왕복 이동을 가이드하는 2개의 가이드판(186a)이 배치된다. 2개의 가이드판(186a)의 사이에는, 기관 가교(架橋)(186b)가 배치된다. 도 4 중, 좌우 방향에 있어서, 기관 가교(186b)의 양단은, 2개의 가이드판(186a)에 접속된다. 기관 가교(186b)는, 2개의 가이드판(186a)을 지지한다. 기관 가교(186b)는, 플런저 펌프(182) 및 스필 밸브(184) 각각의 아래쪽에 배치된다. 기관 가교(186b)에는, 제1 캠판(188) 및 제2 캠판(190)이 탑재되어 있다. 또한, 기관 가교(186b)에는, 제1 액추에이터(192) 및 제2 액추에이터(194)가 탑재되어 있다. 제1 캠판(188) 및 제2 캠판(190)은, 각각, 제1 액추에이터(192) 및 제2 액추에이터(194)에 의해, 기관 가교(186b) 상을 도 4 중, 좌우의 방향으로 가동(可動)한다.
플런저 펌프(182) 및 스필 밸브(184)는, 피스톤(112)의 스트로크 방향으로 크로스헤드 핀(114a)과 일체로 왕복 이동한다. 한편, 제1 캠판(188) 및 제2 캠판(190)은, 기관 가교(186b) 상에 탑재되고, 기관 가교(186b)에 대하여 피스톤(112)의 스트로크 방향으로는 이동하지 않는다.
도 5는, 유압 조정 기구(196)의 상세한 구성을 설명하기 위한 설명도이다. 도 5에 나타낸 바와 같이, 유압 조정 기구(196)는, 제1 전환 밸브(198)와, 제2 전환 밸브(200)와, 위치 센서(202)와, 유압 제어부(204)를 포함하여 구성된다.
플런저 펌프(182)는, 펌프 실린더(182a)와, 플런저(182b)를 포함하여 구성된다. 펌프 실린더(182a)는, 유압 펌프(유압 공급원)(P)와 연통되는 공급 오일 통로를 통하여, 내부에 작동유가 안내된다. 플런저(182b)는, 펌프 실린더(182a) 내를 스트로크 방향으로 이동하고 또한 일단이 펌프 실린더(182a)로부터 돌출한다.
제1 캠판(188)은, 피스톤(112)의 스트로크 방향에 대하여 경사지는 경사면(188a)을 구비한다. 제1 캠판(188)은, 플런저 펌프(182)의 스트로크 방향의 아래쪽에 배치되어 있다. 플런저 펌프(182)가 크로스헤드 핀(114a)과 일체로 스트로크 방향으로 이동하면, 하사점에 가까운 크랭크각에 있어서, 펌프 실린더(182a)로부터 돌출된 플런저(182b)의 일단이, 제1 캠판(188)의 경사면(188a)에 접촉한다.
플런저(182b)는, 제1 캠판(188)의 경사면(188a)으로부터, 크로스헤드(114)의 왕복 이동의 힘에 대응하는 반력(反力)을 받아, 펌프 실린더(182a) 내로 압입(押入)된다. 플런저 펌프(182)는, 플런저(182b)가 펌프 실린더(182a) 내에 압입됨으로써, 펌프 실린더(182a) 내의 작동유를 제1 유압실(168a)에 공급(압입)한다.
제1 액추에이터(192)는, 예를 들면, 제1 전환 밸브(198)를 통해 공급되는 작동유의 유압에 의해 작동한다. 제1 액추에이터(192)는, 제1 캠판(188)을 스트로크 방향과 교차하는 방향(여기서는, 스트로크 방향에 수직인 방향)으로 이동시킨다. 즉, 제1 액추에이터(192)는, 제1 캠판(188)을 가동하여, 제1 캠판(188)의 플런저(182b)에 대한 상대(相對) 위치를 변화시킨다.
제1 캠판(188)이 스트로크 방향에 수직인 방향으로 이동하면, 플런저(182b)와 제1 캠판(188)과의 스트로크 방향에서의 접촉 위치가 상대 변화한다. 예를 들면, 도 5 중, 좌측으로 제1 캠판(188)이 이동하면, 접촉 위치는 스트로크 방향의 위쪽으로 변위한다. 또한, 도 5 중, 우측에 제1 캠판(188)이 이동하면, 접촉 위치는 스트로크 방향의 아래쪽으로 변위한다. 접촉 위치에 따라서 펌프 실린더(182a)에 대한 최대 압입량(押入量)이 설정된다.
스필 밸브(184)는, 본체(184a)와, 밸브체(184b)와, 로드(184c)를 포함하여 구성된다. 본체(184a)의 내부에는, 제1 유압실(168a)로부터 배출된 작동유가 유통 가능한 내부 유로가 형성되어 있다. 밸브체(184b)는, 본체(184a) 내의 내부 유로에 배치된다. 로드(184c)는, 일단이 본체(184a) 내의 밸브체(184b)에 대향하고, 타단이 본체(184a)로부터 돌출되어 있다.
제2 캠판(190)은, 스트로크 방향에 대하여 경사지는 경사면(190a)을 구비한다. 제2 캠판(190)은, 로드(184c)의 스트로크 방향의 아래쪽에 배치되어 있다. 스필 밸브(184)가 크로스헤드 핀(114a)과 일체로 스트로크 방향으로 이동하면, 하사점에 가까운 크랭크각에 있어서, 스필 밸브(184)의 본체(184a)로부터 돌출된 로드(184c)의 일단이, 제2 캠판(190)의 경사면(190a)에 접촉한다.
로드(184c)는, 제2 캠판(190)의 경사면(190a)으로부터, 크로스헤드(114)의 왕복 이동의 힘에 대응하는 반력을 받아, 본체(184a) 내에 압입된다. 스필 밸브(184)는, 로드(184c)가 본체(184a) 내에 소정량 이상 압입됨으로써 밸브체(184b)를 이동시킨다. 밸브체(184b)가 이동하면, 스필 밸브(184)의 내부 유로를 작동유가 유통 가능하도록 되어, 제1 유압실(168a)로부터 탱크(T)를 향해 작동유가 배출된다.
제2 액추에이터(194)는, 예를 들면, 제2 전환 밸브(200)를 통해 공급되는 작동유의 유압에 의해 작동한다. 제2 액추에이터(194)는, 제2 캠판(190)을 스트로크 방향과 교차하는 방향(여기서는, 스트로크 방향에 수직인 방향)으로 이동시킨다. 즉, 제2 액추에이터(194)는, 제2 캠판(190)을 가동하여, 제2 캠판(190)의 로드(184c)에 대한 상대 위치를 변화시킨다.
제2 캠판(190)의 상대 위치에 따라서, 로드(184c)와 제2 캠판(190)과의 스트로크 방향에서의 접촉 위치가 변화한다. 예를 들면, 도 5 중, 좌측으로 제2 캠판(190)이 이동하면, 접촉 위치는 스트로크 방향의 위쪽으로 변위한다. 또한, 도 5 중, 우측에 제2 캠판(190)이 이동하면, 접촉 위치는 스트로크 방향의 아래쪽으로 변위한다. 접촉 위치에 따라서 스필 밸브(184)에 대한 최대 압입량이 설정된다.
위치 센서(202)는, 피스톤 로드(112a)의 스트로크 방향의 위치를 검지하고, 스트로크 방향의 위치를 나타내는 신호를 출력한다.
유압 제어부(204)는, 위치 센서(202)로부터의 신호를 취득하고, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치를 특정한다. 유압 제어부(204)는, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치가, 설정 위치로 되도록, 제1 액추에이터(192) 및 제2 액추에이터(194)를 구동시켜, 제1 유압실(168a) 내의 유압(작동유의 오일량)을 조정한다.
이와 같이, 유압 조정 기구(196)는, 제1 유압실(168a)에 작동유를 공급, 또는 제1 유압실(168a)로부터 작동유를 배출한다.
도 6a는, 제1 유압실(168a)로부터 작동유를 배출하고 있는 상태를 나타낸 도면이다. 도 6b는, 제1 유압실(168a)로부터의 작동유의 배출을 정지하고 있는 상태를 나타낸 도면이다. 도 6c는, 제1 유압실(168a)에 작동유를 공급하고 있는 상태를 나타낸 도면이다. 도 6d는, 제1 유압실(168a)에 대한 작동유의 공급을 정지하고 있는 상태를 나타낸 도면이다. 도 6a, 도 6b, 도 6c, 도 6d는, 압축비 가변 기구(V)의 동작을 나타내고 있다.
도 6a에서는, 로드(184c)와 제2 캠판(190)의 접촉 위치가 비교적 높은 위치로 되도록, 제2 캠판(190)의 상대 위치가 조정되어 있다. 그러므로, 하사점에 가까운 크랭크각에 있어서, 스필 밸브(184)의 본체(184a)에 로드(184c)가 깊게까지 압입되어 있다. 이로써, 스필 밸브(184)가 개방되어, 제1 유압실(168a)보다 작동유가 배출된다. 이 때, 제2 유압실(168b)에는 유압 펌프(P)의 유압이 작용하고 있으므로, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치가 안정적으로 유지되어 있다.
이 상태에 있어서, 피스톤(112)의 상사점은 낮아지고 있다[크로스헤드 핀(114a) 측에 가깝게 되어 있다]. 즉, 유니플로우 소기식 2사이클 엔진(100)의 압축비는 작아지게 되어 있다.
유압 제어부(204)는, ECU(Engine Control Unit) 등의 상위의 제어부로부터 유니플로우 소기식 2사이클 엔진(100)의 압축비를 크게 하는 지시를 받으면, 도 6b에 나타낸 바와 같이, 제2 캠판(190)을 도 6b 중, 우측으로 이동시킨다. 그 결과, 로드(184c)와 제2 캠판(190)의 접촉 위치가 낮아져, 하사점에 가까운 크랭크각에 있어서도, 로드(184c)가 본체(184a) 내에 압입되지 않게 된다. 이로써, 피스톤(112)의 스트로크 위치에 관계없이, 스필 밸브(184)가 폐쇄된 상태로 유지된다. 즉, 제1 유압실(168a) 내의 작동유가 배출되지 않게 된다.
유압 제어부(204)는, 도 6c에 나타낸 바와 같이, 제1 캠판(188)을 도 6c 중, 우측으로 이동시킨다. 그 결과, 플런저(182b)와 제1 캠판(188)의 접촉 위치가 높아진다. 하사점에 가까운 크랭크각에 있어서, 플런저(182b)가 제1 캠판(188)으로부터의 반력에 의해 펌프 실린더(182a) 내로 압입된다. 이로써, 펌프 실린더(182a) 내의 작동유가 제1 유압실(168a)로 압입된다.
제1 유압실(168a)에 작동유가 압입되면, 유압에 의해 피스톤 로드(112a)가 밀어올려진다. 도 6c에 나타낸 바와 같이, 피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치가 변위되고, 피스톤(112)의 상사점이 높아진다[크로스헤드 핀(114a) 측으로부터 멀어진다]. 즉, 유니플로우 소기식 2사이클 엔진(100)의 압축비는 커지게 된다.
플런저 펌프(182)는, 피스톤(112)의 1스트로크마다, 플런저 펌프(182) 내에 저장된 작동유를, 제1 유압실(168a)에 압입한다. 여기서는, 플런저 펌프(182) 내의 최대 용적에 대하여, 제1 유압실(168a)의 최대 용적이 수배 있는 것으로 한다. 유압 제어부(204)는, 플런저 펌프(182)가 피스톤(112)의 스트로크 몇회분, 동작을 할 것인지에 따라서, 제1 유압실(168a)에 압입되는 작동유의 양을 조정하고, 피스톤 로드(112a)의 밀어올림량을 조정하고 있다.
피스톤 로드(112a)와 크로스헤드 핀(114a)의 상대적인 위치가 원하는 위치로 되면, 유압 제어부(204)는, 제1 캠판(188)을 도 6d 중, 우측으로 이동시키고, 플런저(182b)와 제1 캠판(188)의 접촉 위치를 낮게 한다. 이와 같이 하여, 하사점에 가까운 크랭크각에 있어서도, 플런저(182b)가 펌프 실린더(182a) 내에 압입되지 않아, 플런저 펌프(182)가 작동하지 않게 된다. 즉, 제1 유압실(168a)에 대한 작동유의 압입이 정지한다.
이와 같이, 유압 조정 기구(196)는, 제1 유압실(168a)에 대한 스트로크 방향의 피스톤 로드(112a)의 진입 위치를 조정한다. 압축비 가변 기구(V)는, 유압 조정 기구(196)에 의해 제1 유압실(168a)의 유압을 조정하고, 피스톤 로드(112a) 및 크로스헤드(114)의 스트로크 방향의 상대적인 위치를 변경함으로써, 피스톤(112)의 상사점 및 하사점의 위치를 가변으로 한다.
도 7은, 크랭크각과 플런저 펌프(182) 및 스필 밸브(184)의 기본 동작 타이밍을 설명하기 위한 설명도이다. 도 7에 있어서는, 설명의 편의 상, 제1 캠판(188)의 경사면(188a)과의 접촉 위치가 상이한 2개의 플런저 펌프(182)를 배열하여 나타낸다. 그러나, 실제로는, 플런저 펌프(182)는, 1개로서, 제1 캠판(188)이 이동함으로써, 플런저 펌프(182)와의 접촉 위치가 변위한다. 또한, 스필 밸브(184) 및 제2 캠판(190)은 도시를 생략한다.
도 7에 나타낸 바와 같이, 하사점 바로 앞로부터 하사점까지의 크랭크각의 범위를 각 a라고 하고, 하사점으로부터 각 a와 같은 크기의 위상각 분의 크랭크각의 범위를 각 b라고 한다. 또한, 상사점 바로 앞로부터 상사점까지의 크랭크각의 범위를 각 c라고 하고, 상사점으로부터 각 c와 같은 크기의 위상각 분의 크랭크각의 범위를 각 d라고 한다.
플런저 펌프(182)와 제1 캠판(188)의 상대 위치가, 도 7 중, 우측에 나타낸 플런저 펌프(182)로 나타내는 상태일 때, 플런저(182b)는, 제1 캠판(188)의 경사면(188a)과, 크랭크각이 각 a의 개시 위치에서 접촉을 개시한다. 플런저(182b)는, 크랭크각이 하사점을 초과하여 각 b의 종료 위치에서, 경사면(188a)과 접촉이 해제된다. 도 7 중, 플런저 펌프(182)의 스트로크폭을 폭 s로 나타낸다.
플런저 펌프(182)와 제1 캠판(188)의 상대 위치가, 도 7 중, 좌측에 나타내는 플런저 펌프(182)로 나타내는 상태일 때, 플런저 펌프(182)의 플런저(182b)는, 크랭크각이 하사점으로 접촉한다. 그러나, 플런저(182b)는 펌프 실린더(182a)에 압입되지 않고, 바로 이격된다.
이와 같이, 플런저 펌프(182)는, 크랭크각이 각 a 및 각 b의 범위에 있을 때 동작한다. 구체적으로는, 크랭크각이 각 a의 범위에 있을 때, 플런저 펌프(182)는, 작동유를 제1 유압실(168a)로 압입한다. 또한, 크랭크각이 각 b의 범위에 있을 때, 플런저 펌프(182)는, 작동유를 흡입한다.
마찬가지로, 스필 밸브(184)는, 크랭크각이 각 a 및 각 b의 범위에 있을 때 동작한다. 구체적으로는, 크랭크각이 각 a의 개시 위치로부터 각 b의 종료 위치까지의 동안, 스필 밸브(184)는, 작동유를 제1 유압실(168a)로부터 배출한다.
여기서는, 플런저 펌프(182) 및 스필 밸브(184)는, 크랭크각이 각 a 및 각 b의 범위에 있을 때 동작하는 경우에 대하여 설명하였다. 그러나, 플런저 펌프(182) 및 스필 밸브(184)는, 크랭크각이 각 c 및 각 d의 범위에 있을 때 동작해도 된다. 이 경우, 크랭크각이 각 c의 범위에 있을 때, 플런저 펌프(182)는, 작동유를 제1 유압실(168a)에 압입한다. 또한, 크랭크각이 각 d의 범위에 있을 때, 플런저 펌프(182)는, 작동유를 흡입한다. 또한, 크랭크각이 각 c의 개시 위치로부터 각 d의 종료 위치까지의 동안, 스필 밸브(184)는, 작동유를 제1 유압실(168a)로부터 배출한다.
상사점이나 하사점 이외의 스트로크 범위에서 플런저 펌프(182)나 스필 밸브(184)를 동작시키는 경우, 제1 캠판(188), 제2 캠판(190) 등을, 플런저 펌프(182)나 스필 밸브(184)의 왕복 이동에 동기시켜 이동시키지 않으면 안된다. 그러나, 본 실시형태와 같이, 상사점이나 하사점 부근에서, 플런저 펌프(182)나 스필 밸브(184)를 동작시킴으로써, 이와 같은 동기(同期) 기구를 설치하지 않아도 되어, 비용을 저감하는 것이 가능해진다.
단, 크랭크각이 하사점을 협지한 각도 범위(각 a, 각 b)에 있어서 플런저 펌프(182) 및 스필 밸브(184)가 동작하는 경우의 쪽이, 실린더(110) 내의 압력은 낮으므로, 플런저 펌프(182)로부터 제1 유압실(168a)로 작동유를 용이하게 압입하는 것이 가능해진다. 또한, 스필 밸브(184)로부터 배출되는 작동유의 유압도 낮게, 캐비테이션의 발생을 억제하고, 스필 밸브(184)를 작동시키는 하중을 낮게 억제하는 것이 가능해진다. 또한, 작동유의 압력이 높고 피스톤(112)의 위치가 불안정하게 된다는 사태를 회피하는 것이 가능해진다.
그런데, 플런저 펌프(182)에는, 펌프 실린더(182a) 내에 플런저(182b)가 압입된 후, 펌프 실린더(182a) 내로부터 플런저(182b)를 인출하기 위해, 후술하는 가압부가 설치되어 있다. 가압부는, 크랭크각이 각 b의 개시 위치에 있어서, 플런저(182b)를 펌프 실린더(182a) 내로부터 인출하기 시작한다. 가압부는, 크랭크각이 각 b의 종료 위치에 도달했을 때, 펌프 실린더(182a) 내로부터의 플런저(182b)의 인출을 완료한다. 이 경우, 플런저 펌프(182)는, 크랭크각이 각 b의 개시 위치에 있어서 작동유의 흡입을 개시하고, 크랭크각이 각 b의 종료 위치에 있어서 작동유의 흡입을 종료한다.
플런저 펌프(182)는, 크랭크각이 각 b의 개시 위치에 있어서 작동유의 흡입을 개시하고, 크랭크각이 각 b의 종료 위치에 있어서 작동유의 흡입을 종료하면, 작동유의 흡입이 급속히 행해진다. 작동유의 흡입이 급속히 행해지면, 공급압이 부압으로 되어 캐비테이션이 발생할 우려가 있다.
따라서, 본 실시형태의 압축비 가변 기구(V)는, 캐비테이션의 발생을 억제하기 위해, 이하에서 설명하는 구성을 구비한 플런저 펌프(182)를 구비한다. 이하, 본 실시형태의 플런저 펌프(182)의 구체적인 구성에 대하여 설명한다.
도 8은, 본 실시형태의 플런저 펌프(182)의 구성을 설명하기 위한 설명도이다. 도 8은, 플런저(182b)의 중심축을 포함하는 면에 의한 단면을 나타낸다. 도 8에 나타낸 바와 같이, 펌프 실린더(182a)에는, 제1 유입구(182c)와, 제2 유입구(182d)와, 배출구(182e)가 설치되어 있다.
제1 유입구(182c)는, 공급 오일 통로(182f)와 접속된다. 공급 오일 통로(182f)는, 유압 펌프(P)에 접속된다. 공급 오일 통로(182f)는, 유압 펌프(P)로부터 송출되는 작동유를 제1 유입구(182c)에 공급한다. 공급 오일 통로(182f)에는, 유압 펌프(P)와 제1 유입구(182c)와의 사이에 체크 밸브(182g)가 설치되어 있다. 체크 밸브(182g)는, 작동유가 유압 펌프(P)로부터 제1 유입구(182c)를 향해 흐를 때 밸브를 개방하고, 제1 유입구(182c) 측으로부터 유압 펌프(P) 측을 향하는 작동유의 흐름을 제한(폐쇄)한다.
공급 오일 통로(182f)에는, 체크 밸브(182g)와 제1 유입구(182c)와의 사이에, 분기 오일 통로(연통로)(182h)가 접속된다. 분기 오일 통로(182h)에는, 제2 유입구(182d)가 접속된다. 따라서, 분기 오일 통로(182h)의 일단은, 공급 오일 통로(182f)에 접속되고, 분기 오일 통로(182h)의 타단은, 제2 유입구(182d)에 접속된다.
분기 오일 통로(182h)에는, 분기 오일 통로(182h)를 흐르는 작동유의 오일량을 좁히는(throttle) 오리피스(182i)가 설치되어 있다. 또한, 분기 오일 통로(182h)에는, 오리피스(182i)를 우회(迂回)(바이패스)하는 바이패스 오일 통로(182j)가 접속된다.
바이패스 오일 통로(182j)의 일단은, 공급 오일 통로(182f)와 오리피스(182i)와의 사이에 접속되고, 바이패스 오일 통로(182j)의 타단은, 제2 유입구(182d)와 오리피스(182i)와의 사이에 접속된다. 바이패스 오일 통로(182j)는, 오리피스(182i)를 경계로 하여 후술하는 제1 저유실 측과 제2 저유실 측에 접속된다.
바이패스 오일 통로(182j)에는, 체크 밸브(182k)가 설치되어 있다. 체크 밸브(182k)는, 오리피스(182i)와 병렬로 설치된다. 체크 밸브(182k)는, 작동유가 제1 유입구(182c)로부터 제2 유입구(182d)를 향해 흐를 때 밸브를 개방하고, 제2 유입구(182d)(제2 저유실) 측으로부터 제1 유입구(182c)(제1 저유실) 측으로의 작동유의 흐름을 제한(폐쇄)한다.
도 8에 나타낸 바와 같이, 펌프 실린더(182a)에는, 플런저(182b)에 의해 구획되는 제1 저유실(182m)과, 제2 저유실(182n)이 내부에 형성된다. 제1 유입구(182c)는, 제1 저유실(182m)과 연통된다. 제1 저유실(182m)은, 공급 오일 통로(182f)와 연통된다. 제1 저유실(182m)은, 공급 오일 통로(182f)로부터 제1 유입구(182c)를 통해 유입된 작동유를 저류(貯留)한다.
제1 저유실(182m)은, 배출구(182e)와 연통된다. 제1 저유실(182m)과 배출구(182e)의 사이에는, 체크 밸브(182p)가 설치되어 있다. 체크 밸브(182p)는, 작동유가 제1 저유실(182m)로부터 배출구(182e)를 향해 흐를 때 밸브를 개방하고, 배출구(182e) 측으로부터 제1 저유실(182m) 측으로의 작동유의 흐름을 제한(폐쇄)한다. 배출구(182e)는, 제1 오일 통로(배출 오일 통로)(170a)를 통해 제1 유압실(168a)에 접속된다. 배출구(182e)는, 제1 저유실(182m)에 저류된 작동유를 제1 유압실(168a)에 공급(배출)한다.
제2 유입구(182d)는, 제2 저유실(182n)과 연통된다. 제2 저유실(182n)은, 분기 오일 통로(182h)와 연통된다. 제2 저유실(182n)은, 분기 오일 통로(182h)로부터 제2 유입구(182d)를 통해 유입된 작동유를 저류한다.
가압부(182q)는, 예를 들면, 코일 스프링으로 구성된다. 가압부(182q)는, 일단이 펌프 실린더(182a)에 지지되고, 타단이 플런저(182b)에 유지된다. 가압부(182q)는, 플런저(182b)에 대하여, 펌프 실린더(182a)로부터 이격되는 측[제1 캠판(188) 측]을 향해 가압하는 가압력을 작용하게 한다.
다음에, 본 실시형태의 플런저 펌프(182)의 동작에 대하여 설명한다. 도 9a는, 제1 저유실(182m)에 작동유를 흡입하는 상태를 나타낸 도면이다. 도 9b는, 제1 저유실(182m)로부터 제1 유압실(168a)에 작동유를 공급하는 상태를 나타낸 도면이다. 도 9a, 도 9b에서는, 본 실시형태의 플런저 펌프(182)의 동작을 나타내고 있다. 도 7에서 설명한 바와 같이, 크랭크각이 각 a의 범위에 있을 때, 플런저 펌프(182)는, 작동유를 제1 유압실(168a)에 공급한다. 이 때, 플런저(182b)는, 제1 캠판(188)에 의해 펌프 실린더(182a)에 압입되고, 도 9a에 나타낸 상태 내지 도 9b에 나타낸 상태로 이행한다.
플런저(182b)는, 도 9a에 나타낸 상태 내지 도 9b에 나타낸 상태로 이행할 때, 제1 저유실(182m)에 저류된 작동유를 압압(押壓)한다. 제1 저유실(182m)에 저류된 작동유의 일부는, 플런저(182b)에 의해 압압됨으로써, 배출구(182e)로부터 제1 유압실(168a)로 배출(공급)된다.
또한, 제1 저유실(182m)에 저류된 작동유의 일부는, 플런저(182b)에 의해 압압됨으로써, 제1 유입구(182c)로부터 공급 오일 통로(182f)로 배출된다. 여기서, 공급 오일 통로(182f)에는, 체크 밸브(182g)가 설치되어 있다. 그러므로, 도 9b에 나타낸 바와 같이, 제1 유입구(182c)로부터 공급 오일 통로(182f)로 배출된 작동유는, 분기 오일 통로(182h)에 유입된다.
분기 오일 통로(182h)에는, 오리피스(182i)가 설치되어 있다. 분기 오일 통로(182h)는, 오리피스(182i)에 의해 좁혀지고, 분기 오일 통로(182h)를 유통하는 오일량이 제한된다. 그러므로, 분기 오일 통로(182h)를 유통하는 작동유의 상당수는, 바이패스 오일 통로(182j)에 유입된다.
바이패스 오일 통로(182j)에는, 체크 밸브(182k)가 설치되어 있다. 체크 밸브(182k)는, 작동유가 제1 유입구(182c)로부터 제2 유입구(182d)를 향해 흐를 때 밸브를 개방한다. 그러므로, 바이패스 오일 통로(182j)에 유입된 작동유는, 체크 밸브(182k)를 통과하여, 제2 유입구(182d)로부터 제2 저유실(182n)에 유입된다.
그리고, 플런저(182b)의 제1 저유실(182m)과 제2 저유실(182n)을 구획하는 구획벽은, 제1 저유실(182m) 측의 면적보다 제2 저유실(182n) 측의 면적 쪽이 작다. 또한, 제1 저유실(182m)의 최대 용량은, 제2 저유실(182n)의 최대 용량보다 크다. 즉, 도 9a에 나타낸 상태일 때, 제1 저유실(182m)에는, 제2 저유실(182n)의 최대 용량보다 많은 작동유가 저류되어 있다. 따라서, 도 9a에 나타낸 상태 내지 도 9b에 나타낸 상태로 이행할 때, 제1 저유실(182m)은, 제1 저유실(182m)의 최대 용량과 제2 저유실(182n)의 최대 용량의 차이에 상당하는 작동유(오일량)를 제1 유압실(168a)에 공급한다. 또한, 제1 저유실(182m)은, 제2 저유실(182n)의 최대 용량에 상당하는 작동유(오일량)를 제2 저유실(182n)에 공급한다.
한편, 크랭크각이 각 a의 범위(각 b의 개시 위치)를 넘었을 때, 플런저 펌프(182)는, 제1 저유실(182m)에 작동유를 흡입하는 흡입 동작을 개시한다. 이 때, 플런저(182b)는, 가압부(182q)에 의해 펌프 실린더(182a)로부터 인출되고, 도 9b에 나타낸 상태 내지 도 9a에 나타낸 상태까지 이행한다.
구체적으로, 도 9b에 나타낸 상태에서, 피스톤(112)의 상승 행정으로, 플런저(182b)가 제1 캠판(188)으로부터 이격되는 방향으로 이동하면, 플런저(182b)는, 가압부(182q)의 가압력에 따라, 도 9a에 나타낸 위치로 되돌아온다. 이와 같은 플런저(182b)의 이동의 과정에 있어서, 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유가 유입된다.
제1 저유실(182m)에 유입된 작동유는, 다음에 플런저(182b)가 펌프 실린더(182a)에 압입될 때, 배출구(182e)로부터 제1 유압실(168a)을 향해 공급되게 된다.
플런저(182b)는, 도 9b에 나타낸 상태 내지 도 9a에 나타낸 상태로 이행할 때, 제2 저유실(182n)에 저류된 작동유를 압압한다. 도 9a에 나타낸 바와 같이, 제2 저유실(182n)에 저류된 작동유는, 플런저(182b)에 의해 압압됨으로써, 제2 유입구(182d)로부터 분기 오일 통로(182h)로 배출(공급)된다.
여기서, 분기 오일 통로(182h)에는, 오리피스(182i)가 설치되어 있다. 분기 오일 통로(182h)는, 오리피스(182i)에 의해 좁혀지고, 분기 오일 통로(182h)를 유통하는 오일량이 제한된다. 제2 유입구(182d)로부터 분기 오일 통로(182h)로 배출된 작동유는, 오리피스(182i)에 의해 좁혀지면서, 분기 오일 통로(182h)를 유통하여, 공급 오일 통로(182f)에 유입된다.
공급 오일 통로(182f)에는, 유압 펌프(P)로부터 공급되는 작동유가 유입된다. 이로써, 분기 오일 통로(182h)로부터 공급 오일 통로(182f)에 유입된 작동유는, 공급 오일 통로(182f)를 유통하는 작동유와 합류한다. 공급 오일 통로(182f)와 합류한 작동유는, 제1 유입구(182c)를 통하여, 제1 저유실(182m)에 유입된다.
이와 같이, 플런저(182b)는, 도 9b에 나타낸 상태 내지 도 9a에 나타낸 상태로 이행할 때, 제2 저유실(182n)에 저류된 작동유를, 분기 오일 통로(182h)에 설치되는 오리피스(182i)를 통해 제1 저유실(182m)에 공급시킨다.
이로써, 제2 유입구(182d)로부터 배출되는 작동유는, 오리피스(182i)를 통과할 때 오일량이 좁혀진다. 오리피스(182i)를 통과할 때 오일량이 좁혀지면, 제2 저유실(182n)에 저류되는 작동유가 배출되기 어려워진다. 제2 저유실(182n)에 저류되는 작동유가 배출되기 어려워지면, 플런저(182b)는, 펌프 실린더(182a)로부터 이격되는 방향으로 이동하기 어려워진다.
플런저(182b)가 이동하기 어려워지면, 제1 유입구(182c)로부터 제1 저유실(182m)에 유입되는 작동유의 유입량도 제한된다. 그 결과, 공급 오일 통로(182f)의 유량(流量) 변동이 완만하도록 되어, 공급압이 부압으로 되지 않아, 캐비테이션의 발생을 억제할 수 있다.
이와 같이, 본 실시형태에서는, 플런저(182b)의 인출 시에, 플런저(182b)가 이동하기 어려워진다. 이로써, 플런저(182b)의 인출 시간은, 플런저(182b)의 압입 시간보다 길어진다.
구체적으로, 플런저(182b)는, 최소 돌출 위치(도 9b에 나타낸 위치)로부터 최대 돌출 위치(도 9a에 나타낸 위치)로 이동하는 시간이, 최대 돌출 위치로부터 최소 돌출 위치로 이동하는 시간보다 길어진다. 따라서, 본 실시형태의 플런저 펌프(182)는, 크랭크각이 각 a의 범위에 있어서, 작동유를 제1 유압실(168a)에 공급한다. 또한, 본 실시형태의 플런저 펌프(182)는, 크랭크각이 각 b보다 큰 범위에 있어서, 작동유를 제1 저유실(182m)에 흡입한다.
이와 같이, 본 실시형태의 플런저 펌프(182)는, 제1 저유실(182m)에 작동유를 공급하는 시간을 길게 함으로써, 공급 오일 통로(182f)의 유량 변동을 완만하게 한다. 이로써, 공급 오일 통로(182f)는, 공급압이 부압으로 되지 않아, 캐비테이션의 발생을 억제할 수 있다.
이상 설명한 바와 같이, 본 실시형태의 플런저 펌프(182)는, 제1 저유실(182m) 및 제2 저유실(182n)에 저류되는 오일량의 조정과, 가압부(182q)의 복원력에 의해, 플런저(182b)를 왕복 운동시킨다. 본 실시형태의 플런저 펌프(182)는, 이른바 복동형의 플런저 펌프에 의해 구성된다.
본 실시형태의 압축비 가변 기구(V)에 의하면, 제1 유입구(182c)와 제2 유입구(182d)를 연통시키는 연통로[분기 오일 통로(182h)]에 오리피스(182i)를 설치하고 있다.
그러므로, 제2 저유실(182n)에 저류된 작동유는, 연통로를 통해 제1 저유실(182m)을 향할 때, 오리피스(182i)에 의해 유량이 제한된다. 이로써, 플런저(182b)가 펌프 실린더(182a)로부터 이격되는 방향으로 이동하는 속도를 저하시킬 수 있다. 그 결과, 공급 오일 통로(182f)의 유량 변동을 억제하여, 캐비테이션의 발생을 억제할 수 있다.
(변형예)
도 10은, 변형예의 플런저 펌프(282)의 구성을 설명하기 위한 설명도이다. 그리고, 본 변형예에 있어서, 상기 실시형태와 실질적으로 동일한 기능, 구성을 가지는 요소에 대해서는, 동일 부호를 부여함으로써 중복 설명을 생략한다. 도 10에서는, 플런저(182b)의 중심축을 포함하는 면에 의한 단면을 나타낸다. 펌프 실린더(282a)에는, 제1 유입구(182c)와, 배출구(182e)가 설치되어 있다.
제1 유입구(182c)는, 공급 오일 통로(182f)와 접속된다. 공급 오일 통로(182f)에는, 유압 펌프(P)가 접속된다. 공급 오일 통로(182f)에는, 유압 펌프(P)와 제1 유입구(182c)와의 사이에 체크 밸브(182g)가 설치되어 있다. 제1 유입구(182c)는, 펌프 실린더(282a) 내의 제1 저유실(182m)과 연통된다.
본 변형예에서는, 공급 오일 통로(182f)는, 유압 펌프(P)와 체크 밸브(182g)와의 사이에, 오리피스(290) 및 어큐뮬레이터(292)가 설치되어 있다. 어큐뮬레이터(292)는, 오리피스(290)와 체크 밸브(182g)와의 사이의 공급 오일 통로(182f)에 접속된다. 오리피스(290)는, 공급 오일 통로(182f) 중, 어큐뮬레이터(292)와의 접속점과 유압 펌프(P)와의 사이에 설치된다.
어큐뮬레이터(292)는, 내부에 고무 막 등에 봉입한 축압 기체가 충전되어 있다. 유압 펌프(P)보다 작동유가 송출되면, 어큐뮬레이터(292) 내의 축압 기체가 압축되고, 어큐뮬레이터(292)는, 가압된 작동유를 축적한다.
작동유의 축적은, 공급 오일 통로(182f) 내의 압력이 저하되었을 때로부터, 다음에 공급 오일 통로(182f) 내의 압력이 저하될 때까지의 기간에 행해진다. 예를 들면, 작동유의 축적은, 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유가 공급될 때부터, 다음에 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유가 공급될 때까지의 기간에 행해진다. 이 때, 어큐뮬레이터(292)에는, 제1 저유실(182m)의 최대 용적 이상의 작동유가 축적된다.
이와 같이, 어큐뮬레이터(292)는, 다음의 플런저(182b)의 압입까지의 시간을 이용하여, 다음의 플런저(182b)의 압입 시에 필요한 오일량을 시간을 걸쳐 저장한다.
제1 유입구(182c)로부터 제1 저유실(182m)에 작동유가 공급될 때, 공급 오일 통로(182f) 내의 압력이 저하된다. 공급 오일 통로(182f) 내의 압력이 저하되면, 축압 기체가 팽창하고, 어큐뮬레이터(292)는, 축적된 작동유를 순간적으로 압출(壓出)하여 방출한다.
이로써, 공급 오일 통로(182f)는, 피스톤(112)이 하사점 근방(각 b)을 이동하는 근소한 시간에, 플런저 펌프(282)의 제1 저유실(182m)에 필요한 작동유를 어큐뮬레이터(292)로부터 순간적으로 공급할 수 있다. 즉, 어큐뮬레이터(292)는, 피스톤(112)이 하사점 근방(각 b)을 이동하는 근소한 시간에 있어서, 유압 펌프(P)가 공급 오일 통로(182f)를 통해 공급 가능한 작동유(오일량)보다 많은 작동유(오일량)를 공급할 수 있다.
또한, 어큐뮬레이터(292)와 유압 펌프(P)와의 사이에 오리피스(290)를 설치함으로써, 유압 펌프(P)로부터 제1 유입구(182c)를 향해 흐르는 작동유의 유량이 제한된다. 이로써, 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유가 공급될 때, 오리피스(290)와 유압 펌프(P)와의 사이의 공급 오일 통로(182f)는, 유량 변동이 억제되고, 공급압이 부압으로 되지 않아, 캐비테이션의 발생을 억제할 수 있다.
이상 설명한 바와 같이, 본 변형예의 펌프 실린더(282a)에는, 상기 실시형태와 상위하고, 제2 유입구(182d)가 설치되어 있지 않다. 또한, 제1 유입구(182c)와 제2 유입구(182d)를 연통시키는 연통로[분기 오일 통로(182h)]도 설치되어 있지 않다. 본 변형예의 플런저 펌프(282)는, 제1 저유실(182m)에 저류되는 오일량의 조정과, 가압부(182q)의 복원력에 의해, 플런저(182b)를 왕복 운동시킨다. 본 변형예의 플런저 펌프(282)는, 이른바 단동형(single-acting type)의 플런저 펌프에 의해 구성된다.
본 변형예의 압축비 가변 기구(V)에 의하면, 공급 오일 통로(182f)는, 오리피스(290) 및 어큐뮬레이터(292)를 구비하고 있다. 그러므로, 공급 오일 통로(182f)는, 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유를 어큐뮬레이터(292)로부터 순간적으로 공급할 수 있다. 또한, 오리피스(290)는, 공급 오일 통로(182f) 내의 유량 변동을 억제할 수 있다. 따라서, 본 변형예의 압축비 가변 기구(V)는, 플런저 펌프(282)가 단동형의 플런저 펌프에 의해 구성되어 있는 경우에도, 공급압이 부압으로 되지 않도록, 캐비테이션의 발생을 억제할 수 있다.
이상, 첨부 도면을 참조하면서 본 발명의 실시형태에 대하여 설명하였으나, 본 개시는 이러한 실시형태에 한정되지 않는 것은 물론이다. 당업자이면, 특허 청구의 범위에 기재된 범주에 있어서, 각종 변경예 또는 수정예에 이를 수 있는 것은 명백하고, 이들에 대해서도 당연하게 본 발명의 기술적 범위에 속하는 것으로 이해된다.
전술한 실시형태에서는, 제1 저유실(182m)과 제2 저유실(182n)을 연통시키는 연통로[분기 오일 통로(182h)]에 오리피스(182i)를 설치하는 구성에 대하여 설명하였다. 그러나, 이에 한정되지 않고, 제1 저유실(182m)은, 제1 연통로[공급 오일 통로(182f)]와 연통되고, 제2 저유실(182n)은, 제1 연통로와는 상이한 제2 연통로(즉, 제1 연통로와는 독립된 제2 연통로)와 연통되어도 된다. 즉, 제2 저유실(182n)은, 제1 저유실(182m)과 연통되지 않아도 된다. 이 경우, 제2 연통로에 오리피스(182i)를 설치하고, 제2 저유실(182n)은, 제2 연통로로부터 오리피스(182i)를 통해 작동유를 배출해도 된다. 또한, 제2 연통로에 오리피스(182i)가 설치되는 경우, 제2 저유실(182n)은, 제1 연통로 및 제2 연통로와는 상이한 제3 연통로(즉, 제1 연통로 및 제2 연통로와는 독립된 제3 연통로)와 연통되고, 제3 연통로로부터 작동유가 공급되어도 된다. 이 때, 제3 연통로에는, 제2 저유실(182n)로부터 작동유가 역류하지 않도록 체크 밸브가 설치되어 있어도 된다.
이와 같은 구성에 있어서도, 전술한 실시형태와 마찬가지의 효과를 얻을 수 있다. 단, 제2 저유실(182n)에 제2 연통로 및 제3 연통로를 설치하는 구성보다 간단하므로, 전술한 실시형태의 쪽이 구성을 소화할 수 있으므로 바람직하다.
또한, 전술한 변형예에서는, 공급 오일 통로(182f)에 오리피스(290) 및 어큐뮬레이터(292)를 설치하는 예에 대하여 설명하였다. 그러나, 이에 한정되지 않고, 공급 오일 통로(182f)에 오리피스(290)를 설치하지 않고, 어큐뮬레이터(292)만 설치하는 구성으로 해도 된다. 어큐뮬레이터(292)를 설치함으로써, 공급 오일 통로(182f)는, 제1 유입구(182c)로부터 제1 저유실(182m)에 작동유를 순간적으로 공급할 수 있다. 따라서, 플런저 펌프(282)가 단동형의 플런저 펌프에 의해 구성되어 있는 경우에도, 공급압이 부압으로 되지 않도록, 캐비테이션의 발생을 억제할 수 있다. 단, 공급 오일 통로(182f)에 오리피스(290)를 설치한 쪽이, 공급 오일 통로(182f) 내의 유량 변동을 더욱 억제할 수 있으므로, 바람직하다.
또한, 전술한 실시형태 및 변형예에서는, 공급 오일 통로(182f)에 작동유를 공급하는 유압 공급원으로서 유압 펌프(P)를 적용하는 예를 설명하였다. 그러나, 이에 한정되지 않고, 공급 오일 통로(182f)에 작동유를 공급하는 유압 공급원으로서, 복수의 플런저 펌프(182)를 적용해도 되고, 어큐뮬레이터(292)를 적용해도 된다.
또한, 전술한 실시형태 및 변형예에서는, 제1 캠판(188)과 제1 액추에이터(192)에 의해, 펌프 실린더(182a), (282a)에 대한 플런저(182b)의 최대 압입량이 조정 가능하도록 되어 있다. 따라서, 작동유의 압입량을 조정하여, 압축비의 미세 조정이 용이하게 가능하도록 되어 있다. 예를 들면, 1스트로크로 제1 저유실(182m)의 최대 용적분의 작동유를, 제1 유압실(168a)에 압입해도 된다. 또한, 제1 캠판(188)의 상대 위치를 조정하여, 1스트로크로 제1 저유실(182m)의 최대 용적의 절반의 양의 작동유를, 제1 유압실(168a)에 압입하는 것으로 해도 된다. 이와 같이, 1스트로크로 제1 유압실(168a)에 압입하는 작동유의 양을, 제1 저유실(182m)의 최대 용적의 범위 내에서 임의로 설정하는 것이 가능해진다. 단, 펌프 실린더(182a)에 대한 플런저(182b)의 최대 압입량을 조정하지 않아도 된다.
또한, 제2 캠판(190)과 제2 액추에이터(194)에 의해, 스필 밸브(184)의 본체(184a)에 대한 로드(184c)의 최대 압입량이 조정 가능하도록 되어 있다. 따라서, 1스트로크당의 작동유의 배출량을 조정하여, 압축비의 미세 조정이 용이하게 가능하도록 되어 있다. 단, 스필 밸브(184)의 본체(184a)에 대한 로드(184c)의 최대 압입량을 조정하지 않아도 된다.
전술한 실시형태 및 변형예에서는, 피스톤 로드(112a)의 단차면과, 크로스헤드 핀(114a)의 단차면과의 사이에 유압실을 형성하는 경우에 대하여 설명하였다. 그러나, 유압실은, 피스톤(112)을 구성하는 어느 부재의 사이에 형성되어도 된다. 예를 들면, 피스톤(112)을 2분할하고, 2분할된 피스톤(112)의 사이에 유압실을 형성해도 된다. 마찬가지로, 피스톤 로드(112a)를 2분할하고, 2분할된 피스톤 로드(112a)의 사이에 유압실을 형성해도 된다.
[산업 상의 이용 가능성]
본 개시는, 압축비 가변 기구에 이용할 수 있다.
P: 유압 펌프(유압 공급원), V: 압축비 가변 기구, 168a: 제1 유압실, 170a: 제1 오일 통로(배출 오일 통로), 182a: 펌프 실린더, 182b: 플런저, 182f: 공급 오일 통로, 182h: 분기 오일 통로(연통로), 182i: 오리피스, 182j: 바이패스 오일 통로, 182k: 체크 밸브, 182m: 제1 저유실, 182n: 제2 저유실, 282a: 펌프 실린더, 290: 오리피스, 292: 어큐뮬레이터

Claims (5)

  1. 유압실에 접속되는 배출 오일 통로(oil passage);
    유압 공급원에 접속되는 공급 오일 통로;
    상기 공급 오일 통로 및 상기 유압실을 통하여 상기 배출 오일 통로에 접속되는 제1 저유실(貯油室; oil storage chamber), 및 플런저(plunger)에 의해 상기 제1 저유실과 구획된 제2 저유실을 구비하는 펌프 실린더;
    상기 제2 저유실에 접속되는 연통로;
    상기 연통로에 설치된 오리피스(orifice); 및
    상기 제2 저유실을 좁히는 방향으로 상기 플런저를 가압하는 가압부
    를 포함하는 압축비 가변(可變) 기구(機構).
  2. 제1항에 있어서,
    상기 연통로는, 상기 제1 저유실과 상기 제2 저유실을 연통시키는, 압축비 가변 기구.
  3. 제2항에 있어서,
    상기 연통로 중, 상기 오리피스를 경계로 하여 상기 제1 저유실 측과 상기 제2 저유실 측을 접속하는 바이패스 오일 통로; 및
    상기 바이패스 오일 통로에 설치되고, 상기 제2 저유실로부터 상기 제1 저유실로의 작동유의 흐름을 제한하는 체크 밸브;
    를 더 포함하는, 압축비 가변 기구.
  4. 삭제
  5. 삭제
KR1020207027530A 2018-02-28 2019-02-21 압축비 가변 기구 KR102401934B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018034780A JP7027956B2 (ja) 2018-02-28 2018-02-28 圧縮比可変機構
JPJP-P-2018-034780 2018-02-28
PCT/JP2019/006665 WO2019167810A1 (ja) 2018-02-28 2019-02-21 圧縮比可変機構

Publications (2)

Publication Number Publication Date
KR20200121883A KR20200121883A (ko) 2020-10-26
KR102401934B1 true KR102401934B1 (ko) 2022-05-24

Family

ID=67804943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027530A KR102401934B1 (ko) 2018-02-28 2019-02-21 압축비 가변 기구

Country Status (7)

Country Link
US (1) US11156172B2 (ko)
EP (1) EP3760852B1 (ko)
JP (1) JP7027956B2 (ko)
KR (1) KR102401934B1 (ko)
CN (1) CN111788377A (ko)
DK (1) DK3760852T3 (ko)
WO (1) WO2019167810A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767089B1 (en) * 2018-03-16 2023-05-03 Ihi Corporation Engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282618A (ja) * 2004-03-26 2005-10-13 Equos Research Co Ltd 変速機用油圧制御装置
JP2006144698A (ja) * 2004-11-22 2006-06-08 Denso Corp 内燃機関用燃料噴射装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110878A (ja) * 1982-12-15 1984-06-26 Kenichi Takahata 負荷対応吐出量変化ポンプ
US5113809A (en) * 1991-04-26 1992-05-19 Ellenburg George W Axial cylinder internal combustion engine having variable displacement
DE10040526A1 (de) 2000-08-18 2002-03-14 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
JP4096700B2 (ja) * 2002-11-05 2008-06-04 日産自動車株式会社 内燃機関の可変圧縮比装置
JP2006207636A (ja) * 2005-01-26 2006-08-10 Honda Motor Co Ltd アクチュエータ駆動流体回路
JP5849706B2 (ja) 2012-01-04 2016-02-03 株式会社豊田自動織機 昇降装置
DE102012200708A1 (de) 2012-01-19 2013-07-25 Robert Bosch Gmbh Hochdruckpumpe und Verfahren zur Verringerung der Kavitationswirkung in einer Hochdruckpumpe
CN103541819B (zh) * 2012-07-17 2017-08-08 瓦锡兰瑞士公司 大型往复活塞式燃烧发动机及其控制设备和控制方法
CN105121929B (zh) 2013-04-17 2017-10-20 丰田自动车株式会社 液压控制阀和液压控制装置
EP3098417B1 (en) * 2014-01-20 2018-10-10 IHI Corporation Engine
US10343758B2 (en) 2016-08-31 2019-07-09 Brunswick Corporation Systems and methods for controlling vessel speed when transitioning from launch to cruise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282618A (ja) * 2004-03-26 2005-10-13 Equos Research Co Ltd 変速機用油圧制御装置
JP2006144698A (ja) * 2004-11-22 2006-06-08 Denso Corp 内燃機関用燃料噴射装置

Also Published As

Publication number Publication date
CN111788377A (zh) 2020-10-16
EP3760852A1 (en) 2021-01-06
EP3760852B1 (en) 2023-10-25
JP2019148251A (ja) 2019-09-05
WO2019167810A1 (ja) 2019-09-06
JP7027956B2 (ja) 2022-03-02
US11156172B2 (en) 2021-10-26
DK3760852T3 (da) 2023-12-18
US20200362774A1 (en) 2020-11-19
KR20200121883A (ko) 2020-10-26
EP3760852A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6137342B2 (ja) エンジン
JP6137341B2 (ja) クロスヘッド型エンジン
EP3296539B1 (en) Oil pressure generating device and crosshead engine
US11098620B2 (en) Variable compression ratio mechanism
KR102401934B1 (ko) 압축비 가변 기구
KR102384827B1 (ko) 엔진
CN111373131B (zh) 可变压缩装置和发动机系统
JP7214980B2 (ja) 圧縮比可変機構

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant