KR102401792B1 - 서비스 슬라이스 선택 및 분리를 위한 방법 - Google Patents

서비스 슬라이스 선택 및 분리를 위한 방법 Download PDF

Info

Publication number
KR102401792B1
KR102401792B1 KR1020217034359A KR20217034359A KR102401792B1 KR 102401792 B1 KR102401792 B1 KR 102401792B1 KR 1020217034359 A KR1020217034359 A KR 1020217034359A KR 20217034359 A KR20217034359 A KR 20217034359A KR 102401792 B1 KR102401792 B1 KR 102401792B1
Authority
KR
South Korea
Prior art keywords
network
wtru
slice
message
functionality
Prior art date
Application number
KR1020217034359A
Other languages
English (en)
Other versions
KR20210134056A (ko
Inventor
마무드 와트파
베루즈 아기리
사드 아마드
유리세스 올베라-허난데즈
Original Assignee
아이디에이씨 홀딩스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이디에이씨 홀딩스, 인크. filed Critical 아이디에이씨 홀딩스, 인크.
Priority to KR1020227017032A priority Critical patent/KR102588488B1/ko
Publication of KR20210134056A publication Critical patent/KR20210134056A/ko
Application granted granted Critical
Publication of KR102401792B1 publication Critical patent/KR102401792B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Abstract

실시예는 통신 시스템에서 네트워크 슬라이스로의 액세스를 제공하기 위한 방법 및 디바이스를 포함한다. 실시예에서, 제어 평면(CP) 네트워크 기능(NF)을 구현하는 네트워크 서버는 무선 송수신 유닛(WTRU)으로부터 비 액세스 계층(NAS) 메시지를 수신할 수 있다. NAS 메시지는 등록을 위한 이동성 관리(MM) 메시지 및 네트워크 슬라이스에 의해 제공되는 특정 서비스를 위한 세션 관리(SM) 메시지를 포함한다. 네트워크 슬라이스를 선택한 후에, 네트워크 서버는 SM 메시지를 네트워크 슬라이스 내의 다른 CP NF로 SM 메시지를 송신하여 WTRU와 네트워크 슬라이스 사이의 통신 링크를 확립할 수 있다.

Description

서비스 슬라이스 선택 및 분리를 위한 방법{METHODS FOR SERVICE SLICE SELECTION AND SEPARATION}
관련 출원에 대한 상호 참조
본 출원은 2016년 4월 1일자로 출원된 US 가출원 No. 62/317,167 및 2016년 5월 16일자로 출원된 US 가출원 No. 62/337,085의 이익을 주장하며, 이들 출원의 내용은 본 명세서에서 참조로 포함된다.
배경
5 세대(fifth generation, 5G) 무선 통신 시스템의 개발에 관한 3 세대 파트너십 프로젝트(3rd Generation Partnership Project, 3GPP)에 의한 연구에 의하면, 네트워크 슬라이싱(network slicing)이 5G 시스템의 중요한 특징이 되며 상이한 서비스를 제공하고 상이한 서비스 요건을 충족시키는 조력자(enabler)가 된다는 것을 보여주었다. 네트워크 슬라이싱은 서로 다른 네트워크 엔티티를 논리적으로 또는 물리적으로 서로 격리될 수 있는 공유 네트워크 기능(shared network function) 및 전용 네트워크 기능(dedicated network function)과 같은 논리적 네트워크로 그룹화함으로써 수행될 수 있다. 예를 들어, 네트워크 슬라이스는 무선 통신 시스템의 다양한 노드에 상주하는 공유 네트워크 기능의 논리적 접속을 포함할 수 있으며, 사용자가 서비스별로 전용 서비스 또는 네트워크 용량을 획득하게 할 수 있다. 따라서, 네트워크 슬라이싱을 사용하여 이들 네트워크 기능을 지원하도록 구성된 방법 및 장치를 갖는 것이 바람직할 것이다.
일 실시예에 있어서, 무선 통신에서 네트워크 슬라이스로의 액세스를 제공하기 위한 방법이 개시된다. 방법은 공유 제어 평면(Control Plane, CP) 네트워크 기능(Network Function, NF)에서, 이동성 관리(Mobility Management, MM) 메시지 및 세션 관리(Session Management, SM) 메시지를 포함하는 비 액세스 계층(Non-Access Stratum, NAS) 메시지를 수신하는 단계; 및 네트워크 슬라이스에 의해 제공되는 사용자 평면(User Plane, UP) 서비스를 표시하는 SM 메시지를 네트워크 슬라이스 내의 비공유 CP NF에 전송하는 단계를 포함한다.
다른 실시예에 있어서, 무선 통신에서 네트워크 슬라이스로의 액세스를 제공하기 위한 공유 제어 평면(CP) 네트워크 기능(NF)을 구현하도록 구성된 네트워크 서버가 개시된다. 네트워크 서버는, 공유 CP NF에서, 이동성 관리(MM) 메시지 및 세션 관리(SM) 메시지를 포함하는 비 액세스 계층(NAS) 메시지를 수신하고; 네트워크 슬라이스에 의해 제공되는 사용자 평면(UP) 서비스를 표시하는 SM 메시지를 네트워크 슬라이스 내의 비공유 CP NF에 전송하도록 구성되는 프로세서를 포함할 수 있다.
첨부 도면과 관련하여 예로서 주어진 다음의 설명으로부터 보다 상세하게 이해될 수 있다.
도 1a는 하나 이상의 개시된 실시예가 구현될 수 있는 예시적인 통신 시스템의 시스템 다이어그램이다.
도 1b는 도 1a에 도시된 통신 시스템 내에서 사용될 수 있는 예시적인 무선 송수신 유닛(wireless transmit/receive unit, WTRU)의 시스템 다이어그램이다.
도 1c는 도 1a에 도시된 통신 시스템 내에서 사용될 수 있는 예시적인 무선 액세스 네트워크 및 예시적인 코어 네트워크의 시스템 다이어그램이다.
도 2a는 네트워크 슬라이스별로 독립적인 제어 평면(Control Plane, CP) 노드 및 사용자 평면(User Plane, UP) 노드에 의해 그룹화된 네트워크 슬라이스 인스턴스를 도시하는 다이어그램이다.
도 2b는 네트워크 슬라이스별로 공유 제어 평면(CP) 노드 및 부분적으로 독립적인 제어 평면(CP) 및 완전히 독립적인 사용자 평면(UP) 노드에 의해 그룹화된 네트워크 슬라이스 인스턴스를 도시하는 다이어그램이다.
도 2c는 네트워크 슬라이스별로 공유 제어 평면(CP) 및 독립적인 사용자 평면(UP) 노드에 의해 그룹화된 네트워크 슬라이스 인스턴스를 도시하는 다이어그램이다.
도 3은 공유 CP 노드 및 독립 UP 노드를 포함하는 예시적인 네트워크 슬라이싱을 나타내는 다이어그램이다.
도 4는 네트워크에 의해 제공되는 서비스별 네트워크 슬라이스 선택의 예를 나타내는 다이어그램이다.
도 5는 다차원 디스크립터에 기초한 네트워크 슬라이스 선택의 예를 나타내는 다이어그램이다.
도 6은 데이터 타입별 네트워크 슬라이싱을 위한 전체 아키텍처를 도시하는 다이어그램이다.
도 7a는 네트워크 슬라이스에 의해 지원되는 서비스를 위한 슬라이스 선택을 나타내는 시그널링 다이어그램이다.
도 7b는 도 7a의 연속이다.
도 8은 공유 CP 노드 내의 전용 슬라이스 선택을 예시하는 시그널링 다이어그램이다.
도 9는 세션 관리 절차 동안 지연된 네트워크 슬라이스 선택을 예시하는 시그널링 다이어그램이다.
도 10은 공유 CP 네트워크 기능(Network Function, NF) 내의 전용 네트워크 슬라이스로의 액세스를 제공하기 위한 예시적인 절차를 도시하는 다이어그램이다.
도 1a는 하나 이상의 개시된 실시예가 구현될 수 있는 예시적인 통신 시스템(100)의 다이어그램이다. 통신 시스템(100)은 음성, 데이터, 비디오, 메시징, 방송 등과 같은 콘텐츠를 다수의 무선 사용자에게 제공하는 다중 액세스 시스템일 수 있다. 통신 시스템(100)은 다수의 무선 사용자가 무선 대역폭을 비롯한 시스템 자원을 공유함으로써 그러한 콘텐츠에 액세스할 수 있게 할 수 있다. 예를 들어, 통신 시스템(100)은 코드 분할 다중 액세스(Code Division Multiple Access, CDMA), 시분할 다중 액세스(Time Division Multiple Access, TDMA), 주파수 분할 다중 액세스(Frequency Division Multiple Access, FDMA), 직교 FDMA(Orthogonal FDMA, OFDMA), 단일 캐리어 FDMA(Single-Carrier FDMA, SC-FDMA) 등을 사용할 수 있다.
도 1a에 도시된 바와 같이, 통신 시스템(100)은 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU)(102a, 102b, 102c, 102d), 무선 액세스 네트워크(Radio Access Network, RAN)(104), 코어 네트워크(106), 공중 교환 전화 네트워크(Public Switched Telephone Network, PSTN)(108), 인터넷(110) 및 다른 네트워크(112)를 포함할 수 있지만, 개시된 실시예는 임의의 수의 WTRU, 기지국, 네트워크, 및/또는 네트워크 요소를 고려한다는 것이 인식될 것이다. 각각의 WTRU(102a, 102b, 102c, 102d)는 무선 환경에서 동작 및/또는 통신하도록 구성된 임의의 타입의 디바이스일 수 있다. 예로서, WTRU(102a, 102b, 102c, 102d)는 무선 신호를 송신 및/또는 수신하도록 구성될 수 있으며, 사용자 장비(User Equipment, UE), 이동국, 고정 또는 이동 가입자 유닛, 페이저, 셀룰러 전화, 개인 휴대 정보 단말기(Personal Digital Assistant, PDA), 스마트폰, 랩톱, 넷북, 퍼스널 컴퓨터, 무선 센서, 가전 제품 등을 포함할 수 있다.
통신 시스템(100)은 또한 기지국(114a) 및 기지국(114b)을 포함한다. 각각의 기지국(114a, 114b)은 코어 네트워크(106), 인터넷(110) 및/또는 다른 네트워크(112)와 같은 하나 이상의 통신 네트워크로의 액세스를 용이하게 하기 위해 WTRU(102a, 102b, 102c, 102d) 중 적어도 하나와 무선으로 인터페이스하도록 구성된 임의의 타입의 디바이스일 수 있다. 예로서, 기지국(114a, 114b)은 송수신 기지국(Base Transceiver Station, BTS), 노드-B, eNode B, 홈 노드 B, 홈 eNode B, 사이트 컨트롤러(site controller), 액세스 포인트(access point, AP), 무선 라우터 등일 수 있다. 기지국(114a, 114b)은 각각 단일 요소로서 도시되어 있지만, 기지국(114a, 114b)은 임의의 수의 상호 접속된 기지국 및/또는 네트워크 요소를 포함할 수 있다는 것이 인식될 것이다.
기지국(114a)은 RAN(104)의 일부일 수 있으며, RAN(104)은 또한 다른 기지국 및/또는 네트워크 요소(도시되지 않음), 예컨대, 기지국 제어기(Base Station Controller, BSC), 무선 네트워크 제어기(Radio Network Controller, RNC), 중계 노드 등을 포함할 수 있다. 기지국(114a) 및/또는 기지국(114b)은 셀(도시되지 않음)이라고 지칭될 수 있는 특정 지리적 영역 내에서 무선 신호를 송신 및/또는 수신하도록 구성될 수 있다. 셀은 또한 셀 섹터로 더 분할될 수 있다. 예를 들어, 기지국(114a)과 연관된 셀은 세 개의 섹터로 분할될 수 있다. 따라서, 일 실시예에서, 기지국(114a)은 세 개의 송수신기, 즉 셀의 각 섹터마다 하나씩을 포함할 수 있다. 다른 실시예에서, 기지국(114a)은 다중 입력 다중 출력(Multiple-Input Multiple-Output, MIMO) 기술을 사용할 수 있고, 그러므로 셀의 각 섹터마다 다수의 송수신기를 이용할 수 있다.
기지국(114a, 114b)은 임의의 적합한 무선 통신 링크(예를 들어, 무선 주파수(Radio Frequency, RF), 마이크로웨이브, 적외선(Infrared, IR), 자외선(Ultraviolet, UV), 가시광 등)일 수 있는 무선 인터페이스(116)를 통해 WTRU(102a, 102b, 102c, 102d) 중 하나 이상과 통신할 수 있다. 무선 인터페이스(116)는 임의의 적합한 무선 액세스 기술(Radio Access Technology, RAT)을 사용하여 확립될 수 있다.
보다 구체적으로, 위에서 언급한 바와 같이, 통신 시스템(100)은 다중 액세스 시스템일 수 있으며, CDMA, TDMA, FDMA, OFDMA, SC-FDMA 등과 같은 하나 이상의 채널 액세스 방식을 사용할 수 있다. 예를 들어, RAN(104) 내의 기지국(114a) 및 WTRU(102a, 102b, 102c)는 광대역 CDMA(Wideband CDMA, WCDMA)를 사용하여 무선 인터페이스(116)를 설정할 수 있는 범용 이동 통신 시스템 지상 무선 액세스(Universal Mobile Telecommunications System (UTRA) Terrestrial Radio Access, TRA)와 같은 무선 기술을 구현할 수 있다. WCDMA는 고속 패킷 액세스(High-Speed Packet Access, HSPA) 및/또는 진화된 HSPA(Evolved HSPA, HSPA+)와 같은 통신 프로토콜을 포함할 수 있다. HSPA는 고속 다운 링크 패킷 액세스(High-Speed Downlink Packet Access, HSDPA) 및/또는 고속 업 링크 패킷 액세스(High-Speed Uplink Packet Access, HSUPA)를 포함할 수 있다.
다른 실시예에서, 기지국(114a) 및 WTRU(102a, 102b, 102c)는 롱텀 에볼루션(Long Term Evolution, LTE) 및/또는 LTE-어드밴스드(LTE-Advanced, LTE-A)를 사용하여 무선 인터페이스(116)를 설정할 수 있는 진화된 UMTS 지상 무선 액세스(Evolved UMTS Terrestrial Radio Access, E-UTRA)와 같은 무선 기술을 구현할 수 있다.
다른 실시예에서, 기지국(114a) 및 WTRU(102a, 102b, 102c)는 IEEE 802.16(즉, WiMAX(Worldwide Interoperability for Microwave Access)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, IS-2000(Interim Standard 2000), IS-95, IS-856, 글로벌 이동 통신 시스템(Global System for Mobile communications, GSM), EDGE(Enhanced Data rates for GSM Evolution), GSM EDGE(GERAN) 등)과 같은 무선 기술을 구현할 수 있다
도 1a에서 기지국(114b)은 기지국, 예를 들어, 무선 라우터, 홈 노드 B, 홈 eNode B 또는 액세스 포인트일 수 있으며, 사업장, 가정, 차량, 캠퍼스 등의 장소와 같은 국부적인 영역에서 무선 연결성(wireless connectivity)을 용이하게 하기 위한 임의의 적합한 RAT를 이용할 수 있다. 일 실시예에서, 기지국(114b) 및 WTRU(102c, 102d)는 IEEE 802.11과 같은 무선 기술을 구현하여 무선 근거리 네트워크(Wireless Local Area Network, WLAN)를 확립할 수 있다. 다른 실시예에서, 기지국(114b) 및 WTRU(102c, 102d)는 IEEE 802.15와 같은 무선 기술을 구현하여 무선 개인 영역 네트워크(Wireless Personal Area Network, WPAN)를 확립할 수 있다. 또 다른 실시예에서, 기지국(114b) 및 WTRU(102c, 102d)는 셀룰러 기반 RAT(예를 들어, WCDMA, CDMA2000, GSM, LTE, LTE-A 등)를 이용하여 피코셀 또는 펨토셀을 확립할 수 있다. 도 1a에 도시된 바와 같이, 기지국(114b)은 인터넷(110)에 직접 접속될 수 있다. 따라서, 기지국(114b)은 코어 네트워크(106)를 통해 인터넷(110)에 액세스하는 것이 요구되지 않을 수도 있다.
RAN(104)은 음성, 데이터, 애플리케이션 및/또는 보이스 오버 인터넷(Voice over Internet Protocol, VoIP) 서비스를 하나 이상의 WTRU(102a, 102b, 102c, 102d)에 제공하도록 구성된 임의 타입의 네트워크일 수 있는 코어 네트워크(106)와 통신할 수 있다. 예를 들어, 코어 네트워크(106)는 호 제어, 과금 서비스, 모바일 위치 기반 서비스(mobile location-based service), 선불 전화(pre-paid calling), 인터넷 연결성, 비디오 분배 등을 제공할 수 있고, 그리고/또는 사용자 인증과 같은 높은 수준의 보안 기능을 수행할 수 있다. 도 1a에는 도시되지 않았지만, RAN(104) 및/또는 코어 네트워크(106)는 RAN(104)과 동일한 RAT 또는 상이한 RAT를 사용하는 다른 RAN과 직접 또는 간접적으로 통신할 수 있다는 것을 인식할 것이다. 예를 들어, E-UTRA 무선 기술을 이용할 수 있는 RAN(104)에 접속하는 것 이외에, 코어 네트워크(106)는 또한 GSM 무선 기술을 사용하는 다른 RAN(도시되지 않음)과도 또한 통신할 수 있다.
코어 네트워크(106)는 또한 WTRU(102a, 102b, 102c, 102d)가 PSTN(108), 인터넷(110) 및/또는 다른 네트워크(112)에 액세스하기 위한 게이트웨이로서 역할을 할 수 있다. PSTN(108)은 기존 전화 서비스(Plain Old Telephone Service, POTS)를 제공하는 회선 교환 전화 네트워크를 포함할 수 있다. 인터넷(110)은 TCP/IP 인터넷 프로토콜 슈트(internet protocol suit)의 TCP(Transmission Control Protocol), UDP(User Datagram Protocol) 및 인터넷 프로토콜(Internet Protocol, IP)과 같은 공통 통신 프로토콜을 사용하는 상호 접속된 컴퓨터 네트워크 및 디바이스의 글로벌 시스템을 포함할 수 있다. 네트워크(112)는 다른 서비스 제공자에 의해 소유 및/또는 운영되는 유선 또는 무선 통신 네트워크를 포함할 수 있다. 예를 들어, 네트워크(112)는 RAN(104)과 동일한 RAT 또는 상이한 RAT를 사용할 수 있는 하나 이상의 RAN에 접속된 다른 코어 네트워크를 포함할 수 있다.
통신 시스템(100)의 일부 또는 모든 WTRU(102a, 102b, 102c, 102d)는 다중 모드 능력(multi-mode capabilities)을 포함할 수 있는데, 즉, WTRU(102a, 102b, 102c, 102d)는 상이한 무선 링크를 통해 상이한 무선 네트워크와 통신하기 위한 다수의 송수신기를 포함할 수 있다. 예를 들어, 도 1a에 도시된 WTRU(102c)는 셀룰러 기반 무선 기술을 사용할 수 있는 기지국(114a)과, IEEE 802 무선 기술을 사용할 수 있는 기지국(114b)과 통신하도록 구성될 수 있다.
도 1b는 예시적인 WTRU(102)의 시스템 다이어그램이다. 도 1b에 도시된 바와 같이, WTRU(102)는 프로세서(118), 송수신기(120), 송수신 요소(122), 스피커/마이크로폰(124), 키패드(126), 디스플레이/터치 패드(128), 비 착탈식 메모리(130), 착탈식 메모리(132), 전력 공급원(134), GPS(Global Positioning System) 칩셋(136) 및 기타 주변 기기(138)를 포함할 수 있다. WTRU(102)는 실시예와의 일관성을 유지하면서 전술한 요소의 임의의 서브 조합을 포함할 수 있다는 것을 인식할 것이다.
프로세서(118)는 범용 프로세서, 특수 목적 프로세서, 통상의 프로세서, 디지털 신호 프로세서(Digital Signal Processor, DSP), 복수의 마이크로프로세서, DSP 코어와 연관된 하나 이상의 마이크로프로세서, 제어기, 마이크로컨트롤러, 주문형 집적 회로(Application Specific Integrated Circuit, ASIC), 필드 프로그램 가능 게이트 어레이(Field Programmable Gate Array, FPGA) 회로, 임의의 다른 타입의 IC(Integrated Circuit), 상태 머신 등일 수 있다. 프로세서(118)는 WTRU(102)가 무선 환경에서 동작할 수 있게 하는 신호 코딩, 데이터 프로세싱, 전력 제어, 입력/출력 프로세싱 및/또는 임의의 다른 기능을 수행할 수 있다. 프로세서(118)는 송수신기 요소(122)에 연결될 수 있는 송수신기(120)에 연결될 수 있다. 도 1b에는 프로세서(118)와 송수신기(120)가 별개의 구성요소로서 도시되지만, 프로세서(118)와 송수신기(120)는 전자 패키지 또는 칩 내에 함께 통합될 수 있음이 인식될 것이다.
송수신 요소(122)는 무선 인터페이스(116)를 통해 기지국(예를 들어, 기지국(114a))에 신호를 송신하거나 기지국으로부터 신호를 수신하도록 구성될 수 있다. 예를 들어, 일 실시예에서, 송수신 요소(122)는 RF 신호를 송신 및/또는 수신하도록 구성된 안테나일 수 있다. 다른 실시예에서, 송수신 요소(122)는, 예를 들어, IR, UV 또는 가시광 신호를 송신 및/또는 수신하도록 구성된 이미 터(emitter)/검출기일 수 있다. 또 다른 실시예에서, 송수신 요소(122)는 RF 신호 및 광 신호 둘 모두를 송신 및 수신하도록 구성될 수 있다. 송수신 요소(122)는 무선 신호의 임의의 조합을 송신 및/또는 수신하도록 구성될 수 있음이 인식될 것이다.
또한, 송수신 요소(122)가 도 1b에서 단일 요소로서 도시되어 있지만, WTRU(102)는 임의의 수의 송수신 요소(122)를 포함할 수 있다. 보다 구체적으로, WTRU(102)는 MIMO 기술을 사용할 수 있다. 따라서, 일 실시예에서, WTRU(102)는 무선 인터페이스(116)를 통해 무선 신호를 송신 및 수신하기 위한 두 개 이상의 송수신 요소(122)(예를 들어, 다중 안테나)를 포함할 수 있다.
송수신기(120)는 송수신 요소(122)에 의해 송신될 신호를 변조하고, 송수신 요소(122)에 의해 수신되는 신호를 복조하도록 구성될 수 있다. 위에서 설명한 바와 같이, WTRU(102)는 다중 모드 능력을 가질 수 있다. 따라서, 송수신기(120)는 WTRU(102)가, 예를 들어, UTRA 및 IEEE 802.11과 같은 다수의 RAT를 통해 통신할 수 있게 하는 다수의 송수신기를 포함할 수 있다.
WTRU(102)의 프로세서(118)는 스피커/마이크로폰(124), 키패드(126), 및/또는 디스플레이/터치 패드(128)(예를 들어, 액정 디스플레이(Liquid Crystal Display, LCD) 디스플레이 유닛 또는 유기 발광 다이오드(Organic Light-Emitting Diode, OLED) 디스플레이 유닛)에 연결될 수 있고, 이들로부터 사용자 입력 데이터를 수신할 수 있다. 프로세서(118)는 또한 사용자 데이터를 스피커/마이크로폰(124), 키패드(126) 및/또는 디스플레이/터치 패드(128)에 출력할 수 있다. 또한, 프로세서(118)는 비 착탈식 메모리(130) 및/또는 착탈식 메모리(132)와 같은 임의의 타입의 적합한 메모리로부터의 정보에 액세스할 수 있고, 메모리에 데이터를 저장할 수 있다. 비 착탈식 메모리(130)는 RAN(Random-Access Memory), ROM(Read-Only Memory), 하드 디스크 또는 임의의 다른 타입의 메모리 저장 디바이스를 포함할 수 있다. 착탈식 메모리(132)는 가입자 식별 모듈(Subscriber Identity Module, SIM) 카드, 메모리 스틱, 보안 디지털(Secure Digital, SD) 메모리 카드 등을 포함할 수 있다. 다른 실시예에서, 프로세서(118)는 물리적으로 WTRU(102) 상에, 예컨대, 서버 또는 가정용 컴퓨터(도시되지 않음) 상에 위치하지 않는 메모리로부터의 정보에 액세스하고 메모리에 데이터를 저장할 수 있다.
프로세서(118)는 전력 공급원(134)으로부터 전력을 수신할 수 있고, 전력을 WTRU(102) 내의 다른 구성 요소에 분배 및/또는 제어하도록 구성될 수 있다. 전력 공급원(134)은 WTRU(102)에 전력을 공급하기 위한 임의의 적합한 디바이스일 수 있다. 예를 들어, 전력 공급원(134)은 하나 이상의 건전지(예를 들어, 니켈-카드뮴(nickel-cadmium, NiCd), 니켈-아연(nickel-zinc, NiZn), 니켈 금속 수소화물(nickel metal hydride, NiMH), 리튬 이온(lithium-ion, Li-ion) 등), 태양 전지, 연료 전지 등을 포함할 수 있다.
프로세서(118)는 WTRU(102)의 현재 위치에 관한 위치 정보(예를 들어, 경도 및 위도)를 제공하도록 구성될 수 있는 GPS 칩셋(136)에도 또한 연결될 수 있다. GPS 칩셋(136)으로부터의 정보 이외에 또는 그 대신에, WTRU(102)는 기지국(예를 들어, 기지국(114a, 114b))으로부터 무선 인터페이스(116)를 통해 위치 정보를 수신할 수 있고 및/또는 두 개 이상의 인근의 기지국으로부터 수신되는 신호의 타이밍에 기초하여 자신의 위치를 결정할 수 있다. WTRU(102)는 실시예와 일관성을 유지하면서 임의의 적합한 위치 결정 방법에 의해 위치 정보를 획득할 수 있다는 것이 인식될 것이다.
프로세서(118)는 추가의 특징, 기능성 및/또는 유선 또는 무선 연결성을 제공하는 하나 이상의 소프트웨어 및/또는 하드웨어 모듈을 포함할 수 있는 다른 주변 기기(138)에 추가로 연결될 수 있다. 예를 들어, 주변 기기(138)는 가속도계, 전자 나침반, 위성 송수신기, (사진용 또는 비디오용) 디지털 카메라, 범용 직렬 버스(Universal Serial Bus, USB) 포트, 진동 디바이스, 텔레비전 송수신기, 핸즈 프리 헤드셋, Bluetooth® 모듈, 주파수 변조(Frequency Modulation, FM) 라디오 유닛, 디지털 뮤직 플레이어, 미디어 플레이어, 비디오 게임 플레이어 모듈, 인터넷 브라우저 등을 포함할 수 있다.
도 1c는 실시예에 따른 RAN(104) 및 코어 네트워크(106)의 시스템 다이어그램이다. 위에서 언급한 바와 같이, RAN(104)은 무선 인터페이스(116)를 통해 WTRU(102a, 102b, 102c)와 통신하기 위해 E-UTRA 무선 기술을 사용할 수 있다. RAN(104)은 코어 네트워크(106)와도 또한 통신할 수 있다.
RAN(104)은 eNode-B(140a, 140b, 140c)를 포함할 수 있지만, RAN(104)은 실시예와 일관성을 유지하면서 임의의 수의 eNode-B를 포함할 수 있다는 것이 인식될 것이다. eNode-B(140a, 140b, 140c)는 각각 무선 인터페이스(116)를 통해 WTRU(102a, 102b, 102c)와 통신하기 위한 하나 이상의 송수신기를 포함할 수 있다. 일 실시예에서, eNode-B(140a, 140b, 140c)는 MIMO 기술을 구현할 수 있다. 따라서, eNode-B(140a)는, 예를 들어, 다중 안테나를 사용하여 WTRU(102a)에 무선 신호를 송신하고 WTRU(102a)로부터 무선 신호를 수신할 수 있다.
각각의 eNode-B(140a, 140b, 140c)는 특정 셀(도시되지 않음)과 연관될 수 있으며, 무선 자원 관리 결정, 핸드 오버 결정, 업 링크 및/또는 다운 링크에서 사용자의 스케줄링 등을 처리하도록 구성될 수 있다. 도 1c에 도시된 바와 같이, eNode-B(140a, 140b, 140c)는 X2 인터페이스를 통해 서로 통신할 수 있다.
도 1c에 도시된 코어 네트워크(106)는 이동성 관리 엔티티(Mobility Management Entity, MME)(142), 서빙 게이트웨이(144, Serving Gateway) 및 패킷 데이터 네트워크(Packet Data Network, PDN) 게이트웨이(146)를 포함할 수 있다. 전술한 각각의 요소는 코어 네트워크(106)의 일부로서 도시되지만, 이들 요소 중 임의의 요소는 코어 네트워크 운영자 이외의 엔티티에 의해 소유되고 그리고/또는 운영될 수 있다는 것이 인식될 것이다.
MME(142)는 S1 인터페이스를 통해 RAN(104) 내의 eNode-B(140a, 140b, 140c) 각각에 접속될 수 있으며, 제어 노드로서 기능할 수 있다. 예를 들어, MME(142)는 WTRU(102a, 102b, 102c)의 사용자 인증, 베어러 활성화/비활성화, WTRU(102a, 102b, 102c)의 초기 접속 동안 특정 서빙 게이트웨이의 선택 등을 담당할 수 있다. MME(142)는 RAN(104)과 GSM 또는 WCDMA와 같은 다른 무선 기술을 사용하는 다른 RAN(도시되지 않음) 사이를 스위칭하기 위한 제어 평면 기능을 또한 제공할 수 있다.
서빙 게이트웨이(144)는 S1 인터페이스를 통해 RAN(104) 내의 eNode-B(140a, 140b, 140c) 각각에 접속될 수 있다. 서빙 게이트웨이(144)는 일반적으로 WTRU(102a, 102b, 102c)로/로부터 사용자 데이터 패킷을 라우팅하고 포워딩할 수 있다. 서빙 게이트웨이(144)는 또한 eNode-B 간 핸드오버(inter-eNode B handover) 동안 사용자 평면을 고정하는 것(anchoring), 다운링크 데이터가 WTRU(102a, 102b, 102c)에 이용 가능할 때 페이징을 트리거링하는 것, WTRU(102a, 102b, 102c)의 컨텍스트를 관리 및 저장하는 것 등과 같은 다른 기능을 수행할 수 있다.
서빙 게이트웨이(144)는 또한 WTRU(102a, 102b, 102c)와 IP 가능 디바이스(IP-enabled device) 사이의 통신을 용이하게 하기 위해 WTRU(102a, 102b, 102c)에 인터넷(110)과 같은 패킷 교환 네트워크로의 액세스를 제공할 수 있는 PDN 게이트웨이(146)에도 또한 접속될 수 있다.
코어 네트워크(106)는 다른 네트워크와의 통신을 용이하게 할 수 있다. 예를 들어, 코어 네트워크(106)는 WTRU(102a, 102b, 102c)와 전통적인 지상 통신 회선(land-line) 통신 디바이스 사이의 통신을 용이하게 하기 위해 WTRU(102a, 102b, 102c)에 PSTN(108)과 같은 회선 교환 네트워크로의 액세스를 제공할 수 있다. 예를 들어, 코어 네트워크(106)는 코어 네트워크(106)와 PSTN(108) 사이의 인터페이스로서 작용하는 IP 게이트웨이(예를 들어, IP 멀티미디어 서브시스템(IP Multimedia Subsystem, IMS) 서버)를 포함할 수 있거나 또는 IP 게이트웨이와 통신할 수 있다. 또한, 네트워크(106)는 다른 서비스 제공자에 의해 소유 및/또는 운영되는 다른 유선 또는 무선 네트워크를 포함할 수 있는 네트워크(112)로의 액세스를 WTRU(102a, 102b, 102c)에 제공할 수 있다.
다른 네트워크(112)는 IEEE 802.11 기반 무선 로컬 영역 네트워크(Wireless Local Area Network, WLAN)(160)에 추가로 접속될 수 있다. WLAN(160)은 액세스 라우터(165)를 포함할 수 있다. 액세스 라우터는 게이트웨이 기능성을 포함할 수 있다. 액세스 라우터(165)는 복수의 액세스 포인트(Access Point, AP)(170a, 170b)와 통신할 수 있다. 액세스 라우터(165)와 AP(170a, 170b) 사이의 통신은 유선 이더넷(wired Ethernet)(IEEE 802.3 표준) 또는 임의의 타입의 무선 통신 프로토콜을 통해 이루어질 수 있다. AP(170a)는 WTRU(102d)와 무선 인터페이스를 통해 무선 통신한다.
이제 도 2a, 도 2b 및 도 2c를 참조하면, 네트워크 슬라이스별로 제어 평면(Control Plane, CP) 및 사용자 평면(User Plane, UP) 노드에 의해 그룹화되는 네트워크 슬라이스 인스턴스(206, 208, 210, 212, 214, 218, 220, 222)가 도시된다. 네트워크 슬라이스는, 도 2a에 도시된 바와 같이, 독립 CP(203, 207) 노드 및 UP 노드(205, 209)를 가질 수 있다. 구체적으로, CN 인스턴스 #1(206)은 CN 인스턴스 #1(206)의 네트워크 슬라이스 내부의 CP 노드(203) 및 UP 노드(205)를 포함할 수 있다. 유사하게, CN 인스턴스 #2(208)는 CN 인스턴스 #2(208)의 네트워크 슬라이스 내부의 CP 노드(207) 및 UP 노드(209)를 포함할 수 있다. CN 인스턴스 #1(206) 및 CN 인스턴스 #2(208) 내의 CP 노드(203, 207)는 각기 WTRU(202)로부터 제어 평면 시그널링 메시지를 수신할 수 있다. CN 인스턴스 #1(206) 및 CN 인스턴스 #2(208) 내의 UP 노드(205, 209)는 각기 WTRU(202)로부터 제어 평면 데이터를 수신할 수 있다. 예를 들어, WTRU(202)는 등록 및 인증 요청을 CN 인스턴스 #1(206)의 CP 노드(203)에 송신할 수 있다. WTRU(202)는 또한 데이터 패킷을 CN 인스턴스 #1(206)의 UP 노드(205)에 송신할 수 있다. 유사하게, WTRU(202)는 자신의 이동성 관리 메시지를 CN 인스턴스 #2(208)의 CP 노드(207)로 송신하고 자신의 세션 관리 메시지를 CN 인스턴스 #2(208)의 UP 노드(209)로 송신할 수 있다. WTRU(202)는 공유 액세스 네트워크(Shared Access Network, AN)(204)를 통해 CN 인스턴스 #1(206) 및 CN 인스턴스 #2(208)에 접속될 수 있다.
이제 도 2b를 참조하면, 네트워크 슬라이스가 CP 노드(210)를 공유하지만, 네트워크 슬라이스별로 부분적으로 독립적인 CP(211, 215) 및 완전히 독립적인 UP 노드(218, 216)를 갖는 실시예의 다이어그램이 도시된다. 구체적으로, CN 인스턴스 슬라이스 #1(212) 또는 CN 인스턴스 슬라이스 #2(214)는 공유 코어 네트워크(shared Core Network)(CN) 제어 평면(CP) 기능을 공유할 수 있다. CN 인스턴스 슬라이스 #1(212)는 부분적으로 독립적인 CP 노드(211) 및 완전히 독립적인 UP 노드(218)를 포함할 수 있다. CN 인스턴스 슬라이스 #2(214)는 부분적으로 독립적인 CP 노드(215) 및 완전히 독립적인 UP 노드(216)를 포함할 수 있다. 공유 CN CP 기능(210)은 CN 인스턴스 슬라이스 #1(212) 및 CN 인스턴스 슬라이스 #2(214)에 공통적인 네트워크 기능을 수행할 수 있다. 이러한 공통 네트워크 기능은 인증, 이동성 관리, 세션 관리, 게이트웨이 기능 등을 포함할 수 있다.
부분적으로 독립적인 CP 노드(211, 215)는 슬라이스 특정 제어 평면 네트워크 기능을 수행할 수 있다. 완전히 독립적인 UP 노드(213, 216)는 또한 슬라이스 특정 사용자 평면 네트워크 기능을 수행할 수 있다. WTRU(202)는 슬라이스 특정 네트워크 기능을 위해 공유 CN CP 기능(210) 없이 CN 인스턴스 슬라이스 #1(212) 또는 CN 인스턴스 #2(214)에 접속될 수 있다. 이러한 슬라이스 특정 네트워크 기능은 비공유 세션 관리 기능(non-shared session management functions)을 포함할 수 있다.
이제 도 2c를 참조하면, 네트워크 슬라이스가 공유 CN CP 노드(218) 내의 CP 기능(217)을 공유하고 네트워크 슬라이스별로 독립적인 UP 노드(219, 221)를 가질 수 있는 실시예의 다이어그램이 도시된다. 공유 CN CP 노드(218)는 UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222)와 같은 여러 코어 네트워크 인스턴스에 대해 공유 CP 기능(217)을 수행할 수 있다. UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222)는 각기 독립 UP 노드(219, 221)를 포함한다. 공유 CN CP(218), UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222)는 공유 액세스 네트워크(AN)(204)를 통해 WTRU(202)에 접속될 수 있다. UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222)는 제어 평면 기능성을 위한 공유 CN CP 노드(218)를 가질 수 있다. 공유 CN CP 기능(217)은 UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222)에 대해 공통 제어 평면 기능을 수행할 수 있다. 공유 CP 기능(217)에 의해 수행되는 공통 제어 평면 기능은 인증, 이동성 관리, 게이트웨이 기능 등을 포함할 수 있다. UP 인스턴스 #1(220) 및 UP 인스턴스 #2(222) 내의 UP 노드(219 및 221)는 비공유 세션 관리 기능과 같은 슬라이스 특정 사용자 평면 네트워크 기능을 수행할 수 있다.
이제 도 3을 참조하면, 공유 CP 기능성(314) 및 독립 UP 기능성(312, 316)을 포함하는 예시적인 네트워크 슬라이싱이 도시된다. 도 3에서 네트워크 슬라이싱은 도 2c에 도시된 네트워크 슬라이스 인스턴스에 대해 모델링될 수 있다. 공유 CP 기능성(314) 및 독립 UP 기능성(312)은 네트워크 슬라이스(즉, 코어 네트워크 인스턴스 #1(308))를 형성할 수 있다. 유사하게, 공유 CP 기능성(314) 및 독립 UP 기능성(316)은 또 다른 네트워크 슬라이스(즉, 코어 네트워크 인스턴스 #2(310))를 형성할 수 있다.
도 3에 도시된 바와 같이, 코어 네트워크 인스턴스 #1(308)은 단일 세트의 제어 평면 기능성(314)(C 평면 기능) 및 단일 세트의 사용자 평면 기능성(312)(U 평면 기능)을 포함할 수 있다. 단일 세트의 제어 평면 기능성(314)은 공통 네트워크 기능을 위한 CPF#1(320), CPF#2(322) 및 CPF#3(324)와 같은 다수의 기능을 포함할 수 있다. 이러한 공통 네트워크 기능은 인증, 이동성 관리, 세션 관리, 게이트웨이 기능 등을 포함할 수 있다. 단일 세트의 사용자 평면 기능성(312)은 슬라이스 특정 사용자 평면 네트워크 기능을 위한 NS-1 UPF#1(326), NS-1 UPF#2(328) 및 NS-1 UPF#3(330)과 같은 다수의 기능을 포함할 수 있다. 유사하게, 코어 네트워크 인스턴스 #2(310)는 단일 세트의 제어 평면 기능성(314) 및 단일 세트의 사용자 평면 기능성(316)을 포함할 수 있다. 단일 세트의 사용자 평면 기능성(316)은 슬라이스 특정 사용자 평면 네트워크 기능을 위한 NS-2 UPF#1(332), NS-2 UPF#2(334) 및 NS-2 UPF#3(336)과 같은 다수의 기능을 포함할 수 있다.
일 실시예에서, 코어 네트워크 인스턴스 #1(308) 또는 코어 네트워크 인스턴스 #2(310)는 WTRU(302)의 타입에 따라 WTRU(302)를 위한 전용 네트워크 슬라이스일 수 있다. WTRU(302)의 타입은 WTRU(302) 사용 타입, WTRU(302)의 가입 정보 등과 같은 특정 파라미터를 사용함으로써 식별될 수 있다.
한 세트의 C 평면 기능인 CPF#1(320), CPF#2(322) 및 CPF#3(324)은, WTRU(302)에 의해 이동성 관리가 요구되면, WTRU(302)의 이동성을 지원하기 위한 역할을 할 수 있다. 또한, CPF#1(320), CPF#2(322), 및 CPF#3(324)은 인증 및 가입 검증을 수행함으로써 WTRU(302)를 네트워크로 받아들이기 위한 역할을 할 수 있다. 예를 들어, CP 기능성(314) 내의 CPF#1(320)은 코어 네트워크 인스턴스 #1(308)에 대해 WTRU(302)에 이동성 관리를 제공할 수 있다. 동시에, CP 기능성(314) 내의 CPF#1은 코어 네트워크 인스턴스 #2(310)에 대해 WTRU(302)에 다른 이동성 관리를 제공할 수 있다. 유사하게, CP 기능성(314) 내의 CPF#2(322)는 코어 네트워크 인스턴스 #1(308)에 대해 WTRU(302)를 인증할 수 있다. CP 기능성(314) 내의 CPF#2(322)는 또한 코어 네트워크 인스턴스 #2(310)에 대해 WTRU(302)를 인증할 수 있다.
한 세트의 U 평면 기능(즉, 코어 네트워크 인스턴스 #1(308) 내의 NS-1 UPF#1(326), NS-1 UPF#2(328), NS-1 UPF#3(330) 및 코어 네트워크 인스턴스 #2 내의 NS-2 UPF#1(332), NS-2 UPF#2(334), NS-2 UPF#3(336))은 특정 서비스를 WTRU(302)에 제공하기 위한 역할을 수행한다. 위의 U 평면 기능 세트는 또한 특정 서비스의 U 평면 데이터를 WTRU(302)에 전송하기 위한 역할을 한다. 예를 들어, 코어 네트워크 인스턴스 #1(308) 내의 NS-1 UPS #1(326)은 강화된 모바일 광대역 서비스를 WTRU(302)에 제공할 수 있는 반면, 코어 네트워크 인스턴스 #2(310) 내의 NS-2 UPF#2(334)는 중요 통신(critical communications) 서비스를 WTRU(302)에 제공할 수 있다.
WTRU(302)가 먼저 RAN(304)을 통해 운영자의 네트워크에 접속할 때, WTRU(302) 사용 타입에 부합하는 디폴트 코어 네트워크 인스턴스가 WTRU(302)에 할당될 수 있다. 할당된 디폴트 코어 네트워크 인스턴스는 코어 네트워크 WTRU(302) 사용 타입에 따라 코어 네트워크 인스턴스 #1 또는 코어 네트워크 인스턴스 #2일 수 있다. WTRU(302)는 상이한 코어 네트워크 인스턴스에서 동시에 이용할 수 있는 상이한 세트의 U 평면 기능과의 다수의 U 평면 접속을 가질 수 있다. 이것은 WTRU(302)가 UP 기능성(312) 내의 사용자 평면 기능 NS-1 UPF#1(326), NS-1 UPF#2(328), NS-1 UPF#3(330)에 접속될 수 있고, 동시에 WTRU(302)가 UP 기능성(316) 내의 다른 사용자 평면 기능 NS-2 UPF#1(332), NS-2 UPF#2(334), NS-2 UPF#3(336)에 접속될 수 있다는 것을 의미한다. 도 3에는 도시되어 있지 않지만, 사용자 평면 기능과의 접속은 UP 기능성(312) 및 UP 기능성(316)으로 제한되지 않을 수 있다. WTRU(302)는 코어 네트워크 인스턴스 #1 및 코어 네트워크 인스턴스 #2 이외의 코어 네트워크 인스턴스 내의 상이한 사용자 평면 기능과의 다수의 사용자 평면 접속을 가질 수 있다.
코어 네트워크 선택 기능(Core Network Selection Function, CNSF)(306)은 코어 네트워크 인스턴스 #1 및 코어 네트워크 인스턴스 #2 중에서 코어 네트워크 인스턴스를 선택하기 위한 역할을 할 수 있다. CNSF(306)는 WTRU(302) 사용 타입과 같은 WTRU(302) 가입 및 특정 파라미터에 기초하여 코어 네트워크 슬라이스 선택을 결정할 수 있다. CNSF(306)는 또한 기지국이 통신할 수 있는 선택된 코어 네트워크 인스턴스 내의 제어 평면 기능을 선택하기 위한 역할을 할 수 있다. 예를 들어, CNSF(306)는 코어 네트워크 인스턴스 #1(308) 내의 CPF#2(322) 및 CPF#3(324)을 선택하여 기지국과 통신할 수 있다. 제어 평면 기능의 선택은 WTRU(302) 사용 타입과 같은 특정 파라미터를 사용함으로써 수행될 수 있다. CNSF(306)는 상이한 서비스의 사용자 평면 데이터를 전송하기 위해 접속시 기지국이 확립할 수 있는 한 세트의 사용자 평면 기능을 선택하기 위한 역할을 할 수 있다. 예를 들어, CNSF(306)는 강화된 모바일 광대역 서비스의 사용자 평면 데이터를 전송하기 위해 코어 네트워크 인스턴스 #1(308) 내의 NS-1 UPF#2(328)를 선택할 수 있다. NS-1 UPF#1(326), NS-1 UPF#2(328), NS-1 UPF#3(330), NS-2 UPF#1(332), NS-2 UPF#2(334) 및 NS-2 UPF#3(336) 중에서 사용자 평면 기능의 선택은 WTRU(302) 사용 타입, 서비스 타입 등과 같은 특정 파라미터를 사용함으로써 수행될 수 있다. 도 3에는 도시되어 있지 않지만, 사용자 평면 기능의 선택은 코어 네트워크 인스턴스 #1 및 코어 네트워크 인스턴스 #2로 제한되지 않을 수 있으며, CNSF(306)는 코어 네트워크 인스턴스 #1 및 코어 네트워크 인스턴스 #2 이외의 코어 네트워크 인스턴스 내에 위치하는 다른 사용자 기능을 선택할 수 있다.
이제 도 4를 참조하면, 네트워크에 의해 제공되는 서비스별 네트워크 슬라이스 선택의 예가 도시된다. 슬라이스 선택 및 라우팅 기능(406)은 통상의 NAS 노드 선택 기능과 유사할 수 있는 RAN(404)에 의해 제공될 수 있다. 대안적으로, CN 제공 기능(CN-provided function)이 그 작업을 수행할 수도 있다. 슬라이스 선택 및 라우팅 기능(406)은 WTRU(401) 제공 정보, CN 제공 정보 또는 유사한 것에 기초하여, 일반 CN 인스턴스(General CN Instance) A(408), 일반 CN 인스턴스 B(410), 기타 CN 인스턴스(Other CN Instance) N(411), NB CN 인스턴스 A(412) 및 NB CN 인스턴스 B(414)와 같은 CN 인스턴스에 시그널링하는 것을 라우팅할 수 있다.
PLMN(402)의 모든 네트워크 인스턴스는 무선 액세스를 공유할 수 있으며, 슬라이스별로 임의의 액세스 차단(access barring) 및 (오버)로드 제어를 분리할 필요가 있을 수 있다. 이것은 네트워크 공유를 위해 PLMN 운영자별로 제공되는 분리된 액세스 차단 및 (오버)로드 제어의 통상적인 방법에 의해 달성될 수 있다. 이 방법을 사용하면, 전송 네트워크 자원과 같은 완전히 분리될 수 없는 CN 자원이 있을 수 있다. 예를 들어, 일반 CN 인스턴스 A(408) 및 일반 CN 인스턴스 B(410)는 이들의 네트워크 기능으로서 제어 평면 및 사용자 평면 기능을 가질 수 있다. 예를 들어, 일반 CN 인스턴스 A(408)는 데이터 네트워크 1(436)에 대해 자신의 제어 평면 기능을 위한 NF1(416) 및 NF2(418) 그리고 자신의 사용자 평면 기능을 위한 NF3(420)을 포함할 수 있다. 유사하게, 일반 CN 인스턴스 B(410)는 데이터 네트워크 2(438)에 대해 자신의 제어 평면 기능을 위한 NF1(422) 및 NF2(424) 그리고 자신의 사용자 평면 기능을 위한 NF3(426)을 포함할 수 있다. NF1(416, 422), NF2(418, 424) 및 NF3(420, 426)을 사용하여, 일반 CN 인스턴스 A(408) 및 일반 CN 인스턴스 B는 코어 데이터 기능 전부를 WTRU(401)에 제공할 수 있다.
협대역(Narrowband, NB) CN 인스턴스 A(412) 내의 NF1(428) 및 NF3(430)은 데이터 네트워크 3(440)에 대해 협대역 서비스를 WTRU(401)에 제공할 수 있다. 유사하게, 협대역(NB) CN 인스턴스 B(414) 내의 NF1(432) 및 NF3(434)는 데이터 네트워크 4(442)에 대해 다른 협대역 서비스를 WTRU(401)에 제공할 수 있다. 협대역 서비스는 사물 인터넷(Internet of Things, IoT) 서비스일 수 있다. 이 경우, WTRU(401)는 IoT 디바이스일 수 있다. IoT 서비스는 코어 네트워크 기능성 전부를 필요로 하지 않기 때문에, NB CN 인스턴스 A(412) 및 NB CN 인스턴스 B(414)는 일반 CN 인스턴스 A(408) 및 일반 CN 인스턴스 B(410)가 포함할 수 있는 것보다 적은 수의 네트워크 기능을 포함할 수 있다. 이것은 협대역 서비스를 제공하기 위해, NB CN 인스턴스 A(412) 및 NB CN 인스턴스 B(414)가 일반 CN 인스턴스 A(408) 및 일반 CN 인스턴스 B(410)가 포함하는 것처럼 NF2를 포함할 필요가 없다는 것을 의미한다.
이제 도 5를 참조하면, 다차원 디스크립터에 기초한 네트워크 슬라이스 선택의 예가 도시된다. 도 5에 도시된 실시예는 네트워크 슬라이스 선택을 위한 다차원 디스크립터를 사용할 수 있다. 네트워크 슬라이스 선택을 수행하기 위해, 선택 원칙은 적절한 선택 기능이 특정 유스 케이스(use case)를 위해 설계된 기능의 클래스 내에서 조차도 특정 서비스를 전달할 수 있게 할 수 있다. 다시 말해서, 선택 기준에 기초하여, 정확한 네트워크 슬라이스 및 선택 슬라이스 내의 정확한 네트워크 기능이 애플리케이션이 요구하는 네트워크 서비스를 위한 WTRU(502, 504, 506)에서 실행중인 애플리케이션에 할당될 수 있다. WTRU(502, 504, 506)에서 실행 중인 애플리케이션은 다차원 디스크립터를 제공할 수 있다. 이러한 다차원 디스크립터는 애플리케이션 ID, 서비스 디스크립터(예를 들어, 강화된 모바일 광대역 서비스, 중요 통신 또는 대규모 머신 타입 통신(massive machine type communications)) 등을 포함할 수 있다.
위에서 설명한 바와 같이, 적절한 네트워크 슬라이스 및 네트워크 기능을 선택하기 위해, 네트워크는 네트워크에서 이용 가능한 다른 정보(예를 들어, WTRU의 가입)와 함께 다차원 디스크립터를 사용할 수 있다. 이것은 다차원 선택 메커니즘(multi-dimensional selection mechanism)이라고 지칭될 수 있다. 다음은 다차원 디스크립터에 기초하여 네트워크 슬라이스 및 기능을 선택하는 가능한 옵션일 수 있다. 첫 번째 옵션은 2 단계 선택 메커니즘(two-step selection mechanism)일 수 있다. 네트워크에서 이용 가능한 정보(예를 들어, WTRU의 가입)와 함께, RAN(508) 내의 선택 기능(507)은 애플리케이션 ID(다차원 디스크립터의 일부)를 사용하여 CN 슬라이스 A(510), CN 슬라이스 B(512) 및 CN 슬라이스 C(514) 중에서 적절한 코어 네트워크 슬라이스를 선택할 수 있다. 그 다음에, 선택 기능(507)은 서비스 디스크립터(다차원 디스크립터의 일부)를 사용하여 선택된 네트워크 슬라이스 내의 적절한 네트워크 기능을 선택할 수 있다. 대안적으로, 코어 네트워크 선택 기능(505)은 애플리케이션 ID를 사용하여 CN 슬라이스 A(510), CN 슬라이스 B(512) 및 CN 슬라이스 C(514) 중에서 적절한 코어 네트워크 슬라이스를 선택할 수 있다. 그 다음에, 코어 네트워크 선택 기능(505)은 서비스 디스크립터를 사용하여 선택된 네트워크 슬라이스 내의 적절한 네트워크 기능을 선택할 수 있다.
실시예에서, WTRU1(502)는 4K/8K UHD 및 홀로그램(Hologram)과 같은 강화된 모바일 광대역을 필요로 하는 애플리케이션을 실행할 수 있다. 애플리케이션은 자신의 애플리케이션 ID와 함께 다차원 디스크립터를 RAN(508)에 송신할 수 있다. 이 경우, 다차원 디스크립터는 그의 서비스 디스크립터에 대해 강화된 모바일 광대역을 포함할 수 있다. RAN(508) 내의 선택 기능(507)은 애플리케이션 ID를 사용하여 자신의 적절한 코어 네트워크 슬라이스에 대해 강화된 모바일 광대역 서비스를 제공하는 CN 슬라이스 A(510)를 선택할 수 있다. 그 후, RAN(508) 내의 선택 기능(507)은 서비스 디스크립터(즉, 강화된 모바일 광대역)를 사용하여 MM1(516), SM1(522) 및 PC1(528)를 선택할 수 있다. CN 슬라이스 A(510) 내의 MM1(516)은 모든 이동성 관리 기능(즉, MM1(516), MM2(518), MM3(520)) 중에서 WTRU1(502)을 위한 이동성 관리 기능(502)을 제공할 수 있다. SM1(522) 및 PC1(528)은 CN 슬라이스 A(510) 내의 모든 세션 관리(즉, SM1(522), SM2(524), SM3(526)) 및 패킷 코어 기능(즉, PC1(528), PC2(530), PC3(532)) 중에서 강화된 모바일 광대역 서비스를 위해 적절한 세션 관리 및 패킷 코어 기능을 제공할 수 있다. 따라서, RAN(508) 내의 선택 기능(507)은 MM1(516), SM1(522) 및 PC1(528)을 강화된 네트워크 기능으로서 선택하여 강화된 모바일 광대역 서비스를 제공할 수 있다.
다른 실시예에서, WTRU2(504)는 움직임 제어, 자율 주행 및 공장 자동화와 같은 중요 통신을 필요로 하는 애플리케이션을 실행할 수 있다. 위에서 설명한 바와 같이, 중요 통신 서비스를 실행하는 애플리케이션은 자신의 애플리케이션 ID와 함께 다차원 디스크립터를 RAN(508)에 송신할 수 있다. 다차원 디스크립터는 자신의 서비스 디스크립터에 대해 중요 통신을 포함할 수 있다. RAN(508) 내의 선택 기능(508)은 애플리케이션 ID를 사용하여 자신의 적절한 코어 네트워크 슬라이스에 중요 통신 서비스를 제공하는 CN 슬라이스 B(512)를 선택할 수 있다. 그 후, RAN(508) 내의 선택 기능(507)은 서비스 디스크립터, 중요 통신을 사용하여 MM3(538), SM3(544) 및 PC3(550)을 선택할 수 있다. CN 슬라이스 B(512) 내의 MM3(538)은 모든 이동성 관리 기능(MM1(534), MM2(536), MM3(538)) 중에서 WTRU2(504)를 위한 이동성 관리 기능을 제공할 수 있다. SM3(544) 및 PC3(550)은 모든 세션 관리(SMI(540, SM2(542), SM3(544)) 및 패킷 코어 기능(PC1(546), PC2(548), PC3(550)) 중에서 중요 통신 서비스에 적절한 세션 관리 및 패킷 코어 기능을 제공할 수 있다. 따라서, RAN(508) 내의 선택 기능(507)은 중요 통신 서비스를 위한 MM3(538), SM3(544) 및 PC3(550)을 선택할 수 있다.
다른 실시예에서, WTRU3(506)은 센서 네트워크와 같은 대규모 머신 타입 통신을 필요로 하는 애플리케이션을 실행할 수 있다. 위에서 설명한 바와 같이, 대규모 머신 타입 통신 서비스를 실행하는 애플리케이션은 자신의 애플리케이션 ID와 함께 다차원 디스크립터를 RAN(508)에 송신할 수 있다. 다차원 디스크립터는 자신의 서비스 디스크립터에 대해 대규모 머신 타입 통신을 포함할 수 있다. RAN(508) 내의 선택 기능(507)은 애플리케이션 ID를 사용하여 자신의 적절한 코어 네트워크 슬라이스에 대규모 머신 타입 통신 서비스를 제공하는 CN 슬라이스 C(514)를 선택할 수 있다. 그 후, RAN(508) 내의 선택 기능(507)은 서비스 디스크립터, 대규모 머신 타입 통신을 사용하여, SM2(558) 및 PC2(564)를 선택할 수 있다. 이 실시예에서, WTRU3(506)은 센서와 같은 IoT 디바이스일 수 있다. IoT 디바이스는, CN 슬라이스 A(510) 및 CN 슬라이스 B(512)에서와 같이, 전체 코어 네트워크 기능을 요구하지 않기 때문에, CN 슬라이스 C(514)는 CN 슬라이스 A(510) 및 CN 슬라이스 B(512)가 포함하는 것(즉, MM1(516, 534), MM2(518, 536), MM3(520, 538))보다 적은 수의 이동성 관리 기능(즉, MM1(552) 및 MM3(554))을 포함할 수 있다. 또한, WTRU3(506)은 대규모 머신 타입 통신 서비스를 수용하기 위해 이동성 관리 기능을 접속할 필요가 없을 수 있다. 따라서, CN 슬라이스 C(514)는 대규모 머신 타입 통신 서비스를 위해 WTRU(506)에 MM1(552) 및 MM3(554)를 제공할 필요가 없을 수 있다. CN 슬라이스 C(514) 내의 SM2(558) 및 PC2(564)는 모든 세션 관리 및 패킷 코어 기능(즉, SM1(556), SM2(558), SM3(560), PC1(562), PC2(564) 및 PC3(566)) 중에서 대규모 머신 타입 통신 서비스를 위해 적절한 세션 관리 및 패킷 코어 기능을 제공할 수 있다. 따라서, RAN(508) 내의 선택 기능(507)은 대규모 머신 타입 통신 서비스를 위한 SM2(558) 및 PC2(564)를 선택할 수 있다.
다른 옵션은 원 스텝 선택 메커니즘(one-step selection mechanism)일 수 있다. 네트워크에서 이용 가능한 정보(예를 들어, WTRU의 가입 정보)와 함께, RAN(508) 내의 선택 기능(507) 또는 코어 네트워크 내의 선택 기능(505)은 애플리케이션 ID 및 서비스 디스크립터(예를 들어, 다차원 디스크립터)를 사용하여 CN 슬라이스 A(510), CN 슬라이스 B(512), 및 CN 슬라이스 C(514) 내의 적절한 네트워크 슬라이스 및 그 각각의 네트워크 기능을 선택할 수 있다. 그 다음, 선택 기능은 이에 따라 WTRU(502, 504, 506)를 선택된 네트워크 슬라이스 및 기능으로 안내할 수 있다.
위에서 설명한 바와 같이, CP 및 UP 기능이 슬라이스별로 또는 슬라이스 전체에 걸쳐 어떻게 그룹화될 수 있는지에 대한 다양한 실시예가 도 2a, 도 2b, 도 2c, 도 3, 도 4 및 도 5에 도시된다. 그러나, 특정 CP 및 UP 기능이 추가로 설명될 필요가 있을 수 있다. 이러한 기능을 공유한 결과로서 5G 통신 시스템에 미치는 영향이 고려될 필요가 있을 수도 있다. 예를 들어, 페이징(paging)이 상이한 네트워크 슬라이스 사이에 공유된 네트워크 기능이라면, 네트워크 슬라이스가 공유된 페이징 기능을 어떻게 사용 또는 트리거하여 페이지를 WTRU에 전송하는지를 설명할 필요가 있다. 이와 반대로, 페이징이 공유된 네트워크 기능이 아니라면, 각각의 네트워크 슬라이스가 페이징 메시지를 WTRU에 어떻게 전송할 수 있는지를 설명할 필요가 있다. 각각의 네트워크 슬라이스가 페이징 메시지를 각각의 WTRU에 따로 따로 전송한다면, WTRU에 대해 하나 이상의 식별자를 사용할 필요가 있을 수 있다.
상이한 CP 및/또는 UP 노드에 의해 수행되는 상이한 네트워크 기능을 필요로 하는 특정 네트워크 서비스가 있을 수 있다. 예를 들어, 5G 시스템에서, 디바이스 또는 WTRU는 IP 및/또는 비 IP(non-IP) 데이터를 전송할 수 있다. 비 IP 데이터는 비 IP PDU 및 이더넷 프레임이라는 두 가지 형태를 취할 수 있다. 뿐만 아니라, IP 대 비 IP 데이터의 전송 요구 사항이 상이할 수 있다. 구체적으로, 네트워크가 지원하고 전송하는 데이터의 타입은, WTRU가 전송하는 데이터 타입을 지원하는 상이한 CP 및 UP 기능이 필요하기 때문에, 네트워크 슬라이스 선택에 영향을 미칠 수 있다. 네트워크가 지원할 수 있는 다른 타입의 데이터는 정보 중심 네트워킹(Information Centric Networking, ICN) 데이터이며, 이 경우 상이한 네트워크 슬라이스가 이러한 ICN 타입 데이터를 전송하는데 사용될 수 있다. 본 명세서에서 설명된 실시예는 독립적인 네트워크 슬라이스를 사용함으로써 상이한 데이터 지원을 처리할 수 있다.
위에서 설명한 바와 같이, 독립적인 네트워크 슬라이스에서 CP 노드를 그룹화하거나 네트워크 슬라이스 전체에 걸쳐 CP 노드를 공유된 기능으로서 그룹화하는 것은 높은 수준의 설계이다. CP 노드 및 기능이 어떻게 동작하는지에 관한 실시예가 추가로 설명될 필요가 있을 수 있다. 보다 구체적으로, 노드가 인증 및 페이징을 수행하는 것과 같은 실시예가 열거될 필요가 있을 수 있다. 보다 중요한 것은 액션을 수행함으로써, 예를 들면, 독립 노드 또는 공유 노드에서 페이징함으로써 5G 시스템에 미치는 영향이 또한 자세히 설명되어야 할 수도 있다.
또한, 네트워크 슬라이스가 할당된 후에 네트워크 기능의 적절한 선택을 설명하는 다른 실시예가 다루어질 필요가 있을 수 있다. 예를 들어, 슬라이스가 공유 CP 및 독립 UP 노드를 포함하는 경우, WTRU가 독립 UP 노드를 갖는 두 개의 상이한 네트워크 슬라이스로부터 서비스를 수신하도록 할당된 이후, 올바른 UP 노드의 선택(즉, 데이터가 올바른 UP 노드로 포워딩될 방법)이 다루어질 필요가 있을 수 있다.
또한, 인증, 인가 및 식별을 담당하는 노드의 위치가 기술되는 것이 필요할 수 있다. 도 2b에 도시된 바와 같이, 특정의 중요한 보안 기능이 존재하는 "곳"에 관한 몇 가지 질문이 있을 수 있다. 운영자가 중앙 집중식 제어 평면 관리를 갖고자 하면, "공유 CN CP 기능(210)"은 WTRU(202)의 등록을 취할 수 있다. 그러므로 이러한 공유 CN CP(210) 노드는 인증뿐만 아니라 식별자 관리를 담당할 수 있다. 공유 CN CP 기능(210)에 의해 수행되는 인증 프로세스에 응답하여, CN 인스턴스 슬라이스 #1(212) 및 CN 인스턴스 슬라이스 #2(214)가 인증 정보를 사용하는 방법 및 인증 정보가 WTRU(202) 식별자(예를 들어, 외부 ID)을 네트워크 내의 기존 ID에 매핑하는 방법이 다루어질 필요가 있을 수 있다.
3GPP 및 비 3GPP 액세스 네트워크와 같은 다중 액세스 네트워크(AN) 환경에서 네트워크 슬라이스를 처리하는 것이 다루어질 필요가 있을 수 있다. 위에서 설명한 실시예는 AN이 3GPP 기반 AN에 대응하는 경우를 다룰 수 있다. 그러나, 5G 시스템은 3GPP 및 비 3GPP 액세스 네트워크를 둘 모두 포함할 수 있다. 따라서, 5G 시스템은 네트워크 슬라이스를 관리할 때 허용되는 모든 타입의 액세스 네트워크를 고려해야 한다.
지연된 네트워크 슬라이스 선택(delayed network slice selection)은 특정 시나리오에서 다루어질 필요가 있을 수 있다. 네트워크가 초기 등록 또는 접속시 네트워크 슬라이스를 선택할 수 없는 그러한 시나리오는 도 2b에서 예시될 수 있다. 예를 들어, WTRU(202)는 공유 CN CP 기능(210)에 등록할 수 있다. 그러면 네트워크 슬라이스는 CN 인스턴스 #1(212) 및 CN 인스턴스 #2(214) 내의 비공유 CP 기능으로부터 특정 기능을 사용할 필요가 있을 때 선택될 수 있다. 결과적으로, 네트워크 슬라이스 선택은 특정 비공유 CP 기능을 이용하기 위해 일어날 수 있다. 그러한 절차는 특히 어떤 방법으로 어느 노드가 네트워크 슬라이스 선택을 담당하는지에 대해 자세히 할 필요가 있을 수 있다.
이제 도 6을 참조하면, 데이터 타입별 네트워크 슬라이싱을 위한 전체 아키텍처를 도시하는 다이어그램이 도시된다. 위에서 설명한 바와 같이, 상이한 네트워크 슬라이스가 WTRU(602, 604, 606)에 의해 지원되는 상이한 데이터 타입에 대해 사용될 수 있다. 5G 시스템에서, 네트워크 슬라이스는 IP 및 비 IP 데이터 타입 둘 모두를 지원할 수 있다. 네트워크 슬라이스는 IP 데이터를 반송하는 데 사용될 수 있고, 다른 네트워크 슬라이스는 비 IP 데이터를 반송하는 데 사용될 수 있다. 이것은 데이터 타입별 네트워크 슬라이스(network slice per data type)라고 지칭될 수 있다. IP 및 비 IP 데이터 타입 이외에, 네트워크 슬라이스는 상이한 비 IP 데이터 타입을 반송할 수 있다. 이것은 네트워크 슬라이스가 비 IP PDU 데이터를 반송하는데 사용될 수 있고, 다른 네트워크 슬라이스가 이더넷 프레임을 반송하는데 사용될 수 있다는 것을 의미한다. 이것은 비 IP 데이터 타입별 네트워크 슬라이스(network slice per non-IP data type)라고 지칭될 수 있다. 비 IP 데이터는 비 IP PDU 및 이더넷 프레임 둘 모두를 지칭할 수 있지만, 일부 실시예에서 이러한 타입의 비 IP 데이터는 상이한 것으로 간주될 수 있다.
도 6은 세 개의 네트워크 슬라이스(즉, 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614))가 상이한 데이터 타입을 서비스하고 전송하는 예를 도시한다. 이러한 네트워크 슬라이스인 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614)는 "공유 CP(616)"로 지칭되는 한 세트의 CP 기능을 공유할 수 있다. 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614)의 각각은 "비공유 CP #"로 지칭되는 자신의 독립적인/격리된 CP 기능 세트를 가질 수 있고, 여기서 "#"은 적어도 CN(즉, 비공유 CP1(618), 비공유 CP2(620), 또는 비공유 CP3(622)) 내의 슬라이스 ID를 지칭할 수 있다. 이 예에서, 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614)은 특정 데이터 타입, 예컨대, IP 데이터 타입, 비 IP 데이터 타입(예를 들어, 비 IP PDU 및/또는 이더넷 프레임) 또는 정보 중심 네트워킹(ICN)에 관련된 데이터 타입을 반송할 수 있다. ICN 데이터는 또한 비 IP 데이터, ICN PDU를 캡슐화하는 IP 데이터 또는 다른 형태의 전송용 ICN PDU일 수 있다.
비공유 CP1(618), 비공유 CP2(620) 및 비공유 CP3(622)는 또한 주(main) 또는 공유 CP 기능(616)과의 인터페이스(624, 626, 628)를 각각 가질 수 있다. 도 6에 도시된 바와 같이, WTRU(602, 604, 606)는 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614)으로의 액세스(630, 632, 634, 636)를 가질 수 있다. 예를 들어, WTRU Z(606)는 IP 데이터에 대해 네트워크 슬라이스 #1(610)로의 액세스(634)를 가질 수 있다. WTRU Z(606)는 비 IP 데이터에 대해 네트워크 슬라이스 #3(614)로의 액세스(636)를 가질 수 있다. WTRU X(602)는 IP 데이터에 대해 네트워크 슬라이스 #1(610)로의 액세스(630)를 가질 수 있다. WTRU Y(604)는 ICN 데이터에 대해 네트워크 슬라이스 #2(620)로의 액세스(632)를 가질 수 있다.
더욱이, WTRU(602, 604, 606)는 RAN(608)을 통해 공유 CP(616)와의 직접 액세스 또는 인터페이스(638)를 가질 수 있거나, 또는 비공유 CP1(618), 비공유 CP2(620) 및 비공유 CP3를 통한 간접 액세스 또는 인터페이스를 가질 수 있다. 간접 액세스 또는 인터페이스가 설정될 때, 액세스(630, 632, 636)는 비공유 CP(618), 비공유 CP2(620) 및 비공유 CP3을 통해 공유 CP(616)에 접속하는데 사용될 수 있다. 예를 들어, WTRU X(602)는 인터페이스(630)를 사용하여 비공유 CP1(618)를 통해 공유 CP(616)에 접속될 수 있다. WTRU Y(604)는 인터페이스(632)를 사용하여 비공유 CP2(620)를 통해 공유 CP(616)에 접속될 수 있다. WTRU Z(606)는 인터페이스(636)를 이용하여 비공유 CP3(622)를 통해 공유 CP(616)에 접속될 수 있다. 직접 액세스 또는 인터페이스가 설정될 때, 액세스(638)는 WTRU(602, 604, 606)를 공유 CP(616)에 접속하는데 사용될 수 있다.
WTRU(602, 604, 606)는 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614) 내의 비공유 CP1(618), 비공유 CP2(620) 및 비공유 CP3과 직접 접촉 또는 인터페이스를 가질 수 있다. 예를 들어, 직접 접속될 때, WTRU X(602)는 비공유 CP1(618)로의 직접 액세스(630)를 가질 수 있다. WTRU Y(604)는 비공유 CP2(620)로의 직접 액세스(632)를 가질 수 있다. WTRU Z(602)는 비공유 CP3(622)로의 직접 액세스(636)를 가질 수 있다.
또한, WTRU(602, 604, 606)는 공유 CP 노드(616)를 통해 네트워크 슬라이스 #1(610), 네트워크 슬라이스 #2(612) 및 네트워크 슬라이스 #3(614) 내의 비공유 CP1(618), 비공유 CP2(620) 및 비공유 CP3로의 간접 액세스 또는 인터페이스를 가질 수 있다. 간접적으로 접속될 때, WTRU X(602)는 공유 CP(616)를 통해 비공유 CP1(618)로의 액세스(624)를 사용할 수 있다. WTRU Y(604)는 공유 CP(616)를 통해 비공유 CP2(620)로의 액세스(626)를 사용할 수 있다. WTRU Z(606)는 공유 CP(616)를 통해 비공유 CP3(622)로의 액세스(628)를 사용할 수 있다.
다음의 실시예는 비 IP 데이터에 대해 지원 또는 필요성에 기초한 네트워크 슬라이스의 선택을 포함할 수 있다. 위에서 설명한 것처럼 "비 IP 데이터"라는 용어는 비 IP 데이터(예를 들어, 비 IP PDU, 이더넷 프레임, ICN 데이터 등)의 모든 형태를 지칭할 수 있다. "비 액세스 계층(Non Access Stratum, NAS)"은 통상적인 NAS 프로토콜과 같이 무선보다 상위 계층 메시지를 지칭하는데 사용될 수 있다. 그러나, NAS는 CN에서 WTRU와 CP 기능 사이에서 실행되는 임의의 다른 프로토콜일 수 있으며, 반드시 통상적인 NAS 프로토콜로 제한되는 것은 아니다. WTRU을 위한 네트워크 슬라이스의 선택은 RAN에서 또는 CN에서 수행될 수 있다.
WTRU는 무선 접속을 확립할 때, 요청된 서비스가 비 IP 데이터임을 표시할 수 있다. 이러한 표시는 능력 또는 명시적 서비스 타입과 같은 임의의 형태일 수 있거나, 또는 WTRU 타입으로부터 추론될 수 있다. WTRU는 이동성 또는 세션 관리 절차의 어느 하나와 관련된 NAS 메시지 중 임의의 메시지에서 비 IP 서비스의 필요성 또는 요청을 표시할 수도 있다.
RAN은 이러한 정보 또는 표시를 고려할 수 있으며, 이러한 서비스를 지원하는 네트워크 슬라이스를 선택할 수 있다. RAN 노드는 WTRU의 상위 계층 메시지(예를 들어, NAS)를 그 네트워크 슬라이스 내의 CP 기능에 포워딩할 수 있다. 대안적으로, RAN은 WTRU로부터의 다른 정보를 사용하여 CN 내의 가장 적절한 CP 기능의 선택을 수행할 수 있다. 그런 다음 RAN은 이러한 정보를 CP 기능에 전송할 수 있다.
CN 내의 CP 기능은 WTRU로부터 비 IP 데이터에 대한 표시가 있는 메시지를 수신할 수 있다. CP 기능은 요청된 비 IP 데이터의 특정 타입이 CP 기능에 의해 제공될 수 있는지를 검증할 수 있다. CP가 비 IP 데이터에 대해 서비스를 제공할 수 있다면, CP는 WTRU 요청을 계속 처리할 수 있다. 그렇지 않으면, CP 기능은 전용 코어 네트워크(Dedicated Core Network, DECOR) 솔루션을 사용하여 WTRU 메시지를 다른 네트워크 슬라이스로 리다이렉트할 수 있다. 이러한 실시예는 CP 기능이 요청된 서비스, 이 경우에는 비 IP 데이터에 대해 WTRU에 제공할 수 있는 네트워크 슬라이스 또는 CP 슬라이스 내의 CP 어드레스를 결정하는 로컬 정보 또는 구성을 갖고 있다고 가정할 수 있다. 비 IP 데이터에 대해 WTRU에 제공할 타깃 네트워크 슬라이스를 결정할 때, 현재 CP 기능은 서비스 타입(즉, 이 경우에는 "비 IP 데이터")을 자신의 로컬 룩업 기능에 넣을 수 있다.
일 실시예에서, WTRU는 특정 서비스(예를 들어, IP 데이터 서비스 또는 비 IP 데이터)를 위한 네트워크에 이미 등록될 수 있다. WTRU는 이차 데이터 타입에 필요한 서비스를 지원할 수 있으며, 이와 같이 서비스 받기를 원할 수 있다. WTRU는 다른 네트워크 슬라이스에 의해 제공될 수 있는 상이한 데이터 타입에 필요한 이차 서비스를 취득하려는 요청을 전송할 수 있다. 예를 들어 WTRU가 그렇게 할 필요가 있을 때와 같이, 이를 달성하는 방법이 본 명세서에서 설명된다.
WTRU가 이차 서비스를 선택할 필요가 있을 때, 하나의 네트워크 슬라이스가 상이한 서비스에 필요한 지원을 제공할 수 있다. 예를 들어, 접속 또는 전송 모드가 상이할 수 있는 사물 인터넷(IoT)을 위한 연결성을 제공하는 네트워크 슬라이스가 배치될 수 있다. 하나의 IoT 애플리케이션은 IP 접속을 요구할 수 있는 반면에, 다른 IoT 애플리케이션은 데이터가 제어 평면 메시지 내에 캡슐화되어 있으면 요구하지 않을 수 있다. 따라서, 일반적인 서비스 타입은 IoT일 수 있지만, 특정 서비스는 "IoT용 IP(IP for IoT)" 또는 "IoT용 CP를 통한 데이터(Data over CP for IoT)"일 수 있다.
그러므로, 하나의 네트워크 슬라이스가 실제로 이들 두 가지 타입의 전송 또는 접속을 WTRU에 제공하는데 사용될 수 있다. 그러므로 WTRU는 동일한 슬라이스가 복수의 서비스를 제공할 수 있는지를 아는 것이 중요하다. 그러하다면, WTRU는 네트워크 슬라이스에 의해 어떤 서비스가 제공되는지를 알아야 한다. 이것은 새로운 네트워크 슬라이스가 선택되고 등록되어야 하는지 또는 WTRU가 간단히 기존의 네트워크 슬라이스로부터 서비스를 요청할 수 있는지를 WTRU가 결정하는데 도움을 줄 수 있다. 다음의 실시예는 이러한 사안을 다룰 수 있다.
이제 도 7a 및 도 7b를 참조하면, 네트워크 슬라이스에 의해 지원되는 서비스를 위한 네트워크 슬라이스 선택을 예시하는 시그널링 다이어그램이 도시된다. WTRU(702)는 등록 요청(Registration Request) 메시지(710)를 네트워크의 CP 기능에 송신할 수 있다. 등록 요청 메시지(710)는 서비스 리스트 또는 WTRU(702)가 수용할 수 있는 지원되는 서비스 리스트(이하 "지원 서비스"라고 지칭함)를 포함할 수 있다. 대안적으로, WTRU(702)는 현재 네트워크 슬라이스 (또는 이 슬라이스 내의 현재 CP)가 지원하는 서비스 리스트를 알릴 것을 간단히 요청할 수 있다. 지원 서비스에 관한 이러한 표시 또는 네트워크의 지원 서비스의 간청(solicitation)은 네트워크로 전송된 등록 요청 메시지(710)에서 수행되거나 등록 요청 메시지(710)에 포함될 수 있다.
WTRU(702)가 이미 등록되어 있고 WTRU(702)가 네트워크가 다른 서비스를 지원하는지를 결정하고자 하면, WTRU(702)는, 예를 들어, NAS 시그널링 또는 지원 서비스 타입 요청(Supported Service Type Request) 메시지(714)를 통해 새로운 제어 메시지를 전송할 수 있다. 이러한 지원 서비스 타입 요청 메시지(714)에서, WTRU(702)는 지원되고/되거나 원하는 서비스를 표시하거나 또는 네트워크에서 지원되는 서비스 리스트를 제공할 것을 네트워크에 간청할 수 있다.
네트워크(예를 들어, 네트워크 내의 임의의 CP 노드 또는 NF)는 WTRU-지원 서비스(WTRU-supported service)의 리스트를 가진 NAS 메시지 또는 네트워크에서 지원되는 서비스에 관해 WTRU(702)에 알려 달라는 간청 요청이 있는 NAS 메시지를 수신할 수 있다. 네트워크는 WTRU의 가입이 그러한 정보를 WTRU(702)에 제공하도록 허용하는지를 검증할 수 있는데, 이 또한 네트워크 정책에 기초한 것일 수 있다. 네트워크는 지원 서비스 타입 응답(Supported Service Type Response) 메시지(716) 내의 지원 네트워크 서비스의 리스트를 WTRU(702)에 전송할 것을 결정할 수 있다. 네트워크는 NAS 메시지를 전송할 수 있고 NAS 메시지 내에서 지원 서비스를 표시할 수 있다.
대안적으로, WTRU(702)로부터의 요청이 특정 서비스를 위한 것이면, 네트워크는 {서비스 타입, 지원} 표시가 있는 응답을 전송할 수 있으며, 여기서 "서비스 타입"은 어떤 네트워크 지원이 요청되는지에 관한 특정 서비스를 반영하며, "지원"은 서비스가 지원되는지 또는 지원되지 않는지를 표시한다. 네트워크는 등록 프로세스의 일환으로서 또는 WTRU(702)가 그러한 요청을 담은 임의의 NAS 메시지를 전송할 때, 임의의 NAS 메시지 내에 이러한 리스트를 넣어 전송할 수 있다.
WTRU(702)가 특정 네트워크 슬라이스에 등록된 경우, WTRU(702)는, 위에서 설명한 실시예를 사용하여 결정된 바와 같이, 지원 서비스를 그 네트워크 슬라이스에 저장할 수 있다. WTRU(702)가 새로운 서비스를 요구하거나 필요로 할 때, WTRU(702)는 WTRU(702)가 등록된 네트워크 슬라이스에서 지원 서비스의 리스트를 확인할 수 있다. 서비스가 지원되는 것으로 표시되어 있으면, WTRU(702)는 단순히 NAS 메시지를 전송하여 서비스를 요청할 수 있다. NAS 메시지는 WTRU(702)가 등록되어 있는 네트워크 슬라이스 또는 이 네트워크 슬라이스 내의 CP/NF로 전송될 수 있다. 하위 계층 메시지(예를 들어, 무선 메시지)에는 이 네트워크 슬라이스를 가리키는 서비스 표시자가 포함될 수 있다. 이것은 서비스 요청 또는 새로운 서비스를 획득하는데 사용될 수 있는 임의의 NAS 메시지가 적절한 네트워크 슬라이스(예를 들어, WTRU(702)가 이미 등록되어 있는 네트워크 슬라이스)로 전송될 수 있음을 보장할 수 있다.
한편, WTRU(702)가 필요한 서비스가 네트워크 슬라이스에서 지원되지 않는다고 결정하면, WTRU(702)는 다른 무선 메시지(722)(예를 들어, RRC 메시지)를 전송할 수 있다. 이러한 무선 메시지(722)는 등록을 위해 NAS 메시지를 캡슐화할 수 있다. 무선 메시지(722)는 슬라이스 2(708)와 연관된 대응하는 서비스 디스크립터를 포함할 수 있으며, 이는 임의의 포맷으로 원하는 서비스 타입을 표시하는데 사용될 수 있다. RAN(704) 또는 슬라이스 선택 기능은 이 파라미터를 사용하여 적절한 네트워크 슬라이스를 선택하고 NAS 메시지(724)를 선택된 네트워크 슬라이스로 포워딩할 수 있다. NAS 등록 메시지는 동일한 네트워크 슬라이스 내에서 서비스를 취득하는데 사용된 NAS 메시지와 상이할 수 있음을 주목하여야 한다. 선택된 네트워크 슬라이스, 여기서는 슬라이스 2(708)는 서비스 응답(Service Response) 메시지(726)를 WTRU(702)에 전송할 수 있다.
따라서, 요구된 서비스가 현재의 네트워크 슬라이스에서 지원될 때, WTRU(702)는 부가 서비스 요청(Additional Service Request) 메시지(718)를 전송할 수 있다. WTRU(702)가 다른 네트워크 슬라이스로부터 서비스를 취득할 필요가 있으면, WTRU(702)는 등록 메시지를 그 네트워크 내의 제 1 레지스터에 전송할 수 있다. WTRU(702)는 하위 계층 파라미터(예를 들어, 전용 코어 네트워크 타입인 "WTRU 사용 타입(WTRU usage type)", "서비스 디스크립터(service descriptor)" 등)가 상이한 서비스 타입 및/또는 WTRU(702)가 이미 등록되어 있는 네트워크 슬라이스와는 상이한 네트워크 슬라이스를 반영하는 것을 보장할 수 있다.
다음의 실시예는 네트워크 슬라이싱시 보안 기능 및 식별자 관리를 담당하는 노드를 포함할 수 있다. 일 실시예에서, "공유 CN CP 기능"은 등록(예를 들어, 접속/TAU) 절차를 담당할 수 있다. WTRU로부터의 등록(접속/TAU) 요청(Registration (Attach/TAU) Request) 메시지는 공유 CN CP 기능에서 종단될 수 있다. 이러한 등록 요청 메시지는 능력, (e)DRX 파라미터, PSM 정보 등과 같은 중요한 WTRU 관련 파라미터를 포함할 수 있다.
이 시점에서, WTRU가 식별 목적을 위해 IMSI 또는 별칭(alias)을 사용하는지에 따라, 공유 CN CP 기능은 WTRU로 하여금 이를 (예를 들어, NAS 공간에서 식별 절차를 통해) 강제 전송하게 함으로써, 또는 WTRU가 등록된 이전의 앵커 노드(예를 들어, MME, SGSN 또는 다른 공유 CN CP 기능)로부터 단순히 이를 수신함으로써, WTRU의 IMSI 번호 또는 그와 유사한 것을 검색(retrieve)할 수 있다. 다음의 절차 중 일부 절차를 용이하게 하기 위해, 공유 CN CP 기능은 일단 등록 단계가 성공되어 완료되면, IMSI 번호를 CN 인스턴스 슬라이스 #1 및 슬라이스 #2로 전송할 수 있다. 이것은 슬라이스 둘 모두가 WTRU의 IMSI 번호 또는 유사한 식별 정보를 인식하게 되는 것을 보장할 수 있다.
다른 중요한 인자는, WTRU가 GUTI이든 아니면 S-TMSI이든 관계없이, 공유 CN CP 기능으로부터 할당된 자신의 "임시" 번호를 취득할 수 있다는 것이다. 이러한 메커니즘을 이용하면, 슬라이스가 WTRU로부터 숨겨질 수 있고, 이로 인해 WTRU가 하나의 노드만, 즉 공유 CP 노드와 통신하고 있다고 간주될 수 있다.
"등록 요청" 메시지를 수신하면, 공유 CN CP 기능은 홈 가입자 서버(Home Subscriber Server, HSS)에 연락하여 인증 벡터(Authentication Vector)를 요구할 수 있다. 벡터를 수신한 후에, 공유 CN CP 기능은 현재의 메커니즘에 기초하여 WTRU에 대해 인증 절차를 시작할 수 있다. WTRU가 이 단계를 통과하면, 공유 CN CP 기능은 이 WTRU가 성공적으로 인증되었음을 알리는 메시지를 인스턴스 슬라이스 #1 및 슬라이스 #2 둘 모두에 전송할 수 있다. 이 시점에서, 슬라이스 #1과 슬라이스 #2는 둘 모두 이들의 대응하는 데이터베이스에서 플래그를 설정하고 WTRU를 완전 "유효"라고 간주할 수 있다. 공유 CN CP 기능은 또한 WTRU에 대해 보안 모드 제어 절차를 시작한 다음 보안 컨텍스트를, 사용자 평면 보안을 위해 사용될 슬라이스 #1 및 슬라이스 #2로 전달할 수 있다.
공유된 RAN은 공유 CN CP 기능과의 시그널링 접속만을 가질 수 있고, 그래서 슬라이스 #1/슬라이스 #2와 WTRU 사이의 모든 통신은 공유 CN CP 기능을 거칠 수 있다. 예로서, 인스턴스 슬라이스 #1가 WTRU로 전송될 무언가를 갖고 있으면, 인스턴스 슬라이스 #1은 WTRU의 상태(예를 들면, 유휴/접속 모드)를 알 필요가 없을 수 있다. 인스턴스 슬라이스 #1은 그저 공유 CN CP 기능에 요청을 전송할 수 있고, 차례로 WTRU를 호출하고 시그널링 접속을 설정할 것이다.
다른 실시예에서, WTRU를 향한 서비스 거부 공격(denial of service attack)을 방지하는 메커니즘이 포함될 수 있다. 공유 CN CP 기능으로부터 WTRU로 전송된 제 1 인증 메시지는 WTRU의 IMSI 번호 및 RAND로부터 도출된 새로운 파라미터(예를 들어, "토큰")를 가질 수 있다. 인증 프로세스가 완료된 이후, 공유 CN CP 기능은 이 토큰을 향후 사용을 위해 슬라이스 #1 및 슬라이스 #2와 같은 다른 네트워크 슬라이스로 전달할 수 있다. 운영자의 구성이, 예를 들어, 슬라이스 #2가 제어 평면 및 사용자 평면 둘 모두를 대신할 수 있는 방식으로 동적 변경을 겪는다면, 슬라이스 #2는 WTRU에의 후속 NAS 메시지 내에 "토큰"을 포함시킬 수 있다. 이들 (후속) 메시지는 거절의 경우에도 무결성이 보호될 것이다.
WTRU는 공유 CN CP 기능과 통신할 수 있다. 이것은 WTRU가 가질 수 있는 임의의 외부 ID를 공유 CN CP 기능이 인식할 수 있다는 것을 의미한다. 그 이유 때문에, 슬라이스 #1 및 슬라이스 #2는 WTRU가 할당되거나 사용중인 임의의 외부 ID에 관해 공유 CN CP 기능에 알려줄 수 있다. 외부 ID, IMSI 및 임시 WTRU ID 간의 매핑은 공유 CN CP 기능에서 수행될 수 있다. 사용자 평면 베어러(User Plane bearer)가 공유 CN CP 기능에 의해 설정될 때, 공유 CN CP 기능은 대응하는 엔티티에게 사용자 평면 접속을 위해 사용된 식별자를 알려줄 수 있다.
다음의 실시예는 분할된 기능성 관리(split functionality management)를 포함할 수 있다. 도 2b에 도시된 바와 같이, 공유 CN CP 기능(210) 상의 부하는 등록된 WTRU의 수 및 공유 CN CP 기능(210)에 접속된 슬라이스의 수에 따라 극적으로 증가할 수 있다. 다음의 실시예에서, 네트워크 운영자는 도 3에 따라 자신들의 네트워크를 구성했다고 가정할 수 있다(즉, 공유 CN CP 기능에는 단지 두 개의 CN 인스턴스 슬라이스만 접속되어 있다). 또한, 모든 IP 트래픽은 코어 네트워크 인스턴스 #1(308)에 상주할 수 있으며, 모든 비 IP 트래픽은 코어 네트워크 인스턴스 #2(310)에 있을 수 있다고 가정할 수 있다.
공유 CN CP 기능 상의 부하를 감소시키기 위해, 공유 CN CP 기능은 WTRU와 코어 네트워크 사이에서 선택된 프로토콜의 "이동성 관리(Mobility Management)" 부분을 처리할 수 있다. 예로서, WTRU가 이동성 관리(MM) 메시지 및 세션 관리(Session Management, SM) 메시지를 둘 다 보안 방식으로 전송할 수 있다고 가정하면, 공유 CN CP 기능은 MM 메시지를 처리할 수 있다.
따라서, MM 메시지는 공유 CN CP 기능에서 종단될 수 있다. SM 메시지는 공유 CN CP 기능에 의해 슬라이스 #1 또는 슬라이스 #2 중 어느 하나로 전달될 수 있다. 위에서 설명한 바와 같이, 슬라이스 #1은 IP 트래픽에 대해 종단 노드이고, 슬라이스 #2는 비 IP 트래픽에 대해 종단 노드일 수 있다.
다음의 실시예는 WTRU가 전송할 짧은 패킷을 갖고 있고 WTRU가 자신의 데이터를 IP이든 아니면 비 IP이든지 간에, 제어 평면을 통해 전송할 수 있도록 네트워크가 구성되어 있다는 가정하의 네트워크 슬라이스와 데이터의 라우팅 사이를 구별할 수 있다.
일 실시예에서, (세션 관리에 따라) 새로운 프로토콜 계층은 모든 비 IP 관련 데이터를 전송하는데 사용될 수 있다. WTRU가 짧은 비 IP 패킷을 제어 평면을 통해 전송할 필요가 있을 때, WTRU는 이 새로운 프로토콜 메시지 포맷으로 패킷을 피기백(piggy-back)할 수 있고, 공유 CN CP 기능으로 전송할 수 있다. 공유 CN CP 기능에서, 메시지는 무결성 검사될 수 있고, 짧은 비 IP 패킷일 수 있는 메시지의 내용이 추출되어 그 인터페이스 상의 적절한 프로토콜을 사용하여 슬라이스 #2로 포워딩될 수 있다. 패킷의 해독(deciphering)은 공유 CN CP 기능에서 수행될 수 있다. 그러나, 기능성을 용이하게 하고 부하를 감소시키기 위해, 해독은 슬라이스 #2에서 수행될 수 있다.
IP 패킷에 대해, WTRU는 IP 패킷을 간단히 특정 SM 메시지에 피기백(piggy-back)하여 IP 패킷을 공유 CN CP 기능으로 전송할 수 있다. 공유 CN CP 기능은 메시지에 대해 무결성 검사를 수행할 수 있다. 그 이후, 공유 CN CP 기능은 IP 패킷을 추출하고 이를 Slice #1로 전송할 수 있다. 암호화/해독 옵션은 위에서 논의된 옵션과 동일할 수 있다. 암호화/해독이 슬라이스에서 일어난다면, 공유 CN CP 기능은 해독 키뿐만 아니라 알고리즘을 슬라이스에 전달할 필요가 있을 수 있음을 주의해야 한다.
다른 실시예에서, 위에서 설명한 MM 및 SM 프로토콜에서, 특정 SM 메시지는 제어 평면을 통해 IP 및 비 IP 패킷 둘 다를 반송하는데 사용될 수 있다. SM 메시지는 MM 메시지에 피기백될 수 있다. 이 예에서, WTRU는 바람직하게는 표시를 MM 메시지에 실어 공유 CN CP 기능으로 전송할 수 있다. 표시는 메시지가 SM 메시지를 반송 중에 있다는 것 및 메시지의 내용(즉, 피기백된 데이터)이 IP인지 또는 비 IP인지를 공유 CN CP 기능에 알려줄 수 있다. 이러한 표시를 사용하여, 공유 CN CP 기능은 어느 노드가 패킷의 실제 수신처인지를 알 수 있다. 위에서 논의한 바와 같이, 공유 CN CP 기능은 먼저 메시지의 무결성을 검사할 수 있다. 암호화/해독은 위에서 논의한 바와 동일한 메커니즘을 따를 수 있다. 하나의 주요한 차이는 슬라이스 #1 및 슬라이스 #2가 모두 SM 프로토콜을 지원할 수 있다는 것이다.
이제 도 8을 참조하면, 공유 CP 노드에서의 전용 슬라이스 선택을 예시하는 시그널링 다이어그램이 도시된다. 공유 CP(806)는 전용 슬라이스(808)에 의해 제공된 특정 서비스를 위한 전용 슬라이스(808)로의 WTRU(802) 액세스를 제공할 수 있다. WTRU(802)는 특정 서비스를 위한 접속을 설정하는 요청을 표시하는 NAS 메시지(810)(예를 들어, 등록 요청)를 전송할 수 있다. 위에서 설명한 바와 같이, NAS 메시지(810)는 MM 메시지 및 SM 메시지를 포함할 수 있다. NAS 메시지(810)는 IP 데이터 또는 비 IP 데이터를 표시하는 사용자 데이터 타입 표시를 포함할 수 있다. RAN(804)은 공유 CP(806)와의 시그널링 접속을 가질 수 있고, 그래서 모든 통신은 공유 CP(806)를 거칠 수 있다. NAS 메시지(810)를 수신하면, 단계(812)에서, 공유 CP(806)는 공유 CP 네트워크 기능(Network Function, NF) 내의 인증 기능을 사용하여 WTRU(802)를 인증할 수 있다.
WTRU(802)가 성공적으로 인증되면, 단계(814)에서, 공유 CP(806)는 NAS 메시지(810) 내의 사용자 데이터 타입 표시(user data type indication)에 기초하여 특정 서비스를 위한 전용 슬라이스(808)를 선택할 수 있다. 전용 슬라이스(808)를 선택하면, 공유 CP(806)는 단계(816)에서 사용자 데이터 표시에 기초하여 NAS 메시지(802)(예를 들어, MM 및/또는 SM)의 타입을 결정할 수 있고, 단계(816)에서 MM 메시지를 판독할 수 있다. 그 다음 단계(818)에서, 공유 CP(806)는 SM 메시지(820)을 인증 토큰과 함께 전용 슬라이스(808)로 전달한다. 구체적으로, 공유 CP NF는 MM 메시지를 판독하고 SM 메시지(820)를 전용 슬라이스(808)의 CP에 전송할 수 있다. 이것은 모든 MM 메시지가 공유 CP NF에서 종단될 수 있다는 것을 의미한다. 그러나, SM 메시지는 공유 CP NF에 의해 간단히 전용 네트워크 슬라이스로 전달될 수 있다.
인증 토큰(820)과 함께 SM 메시지를 수신하면, 전용 슬라이스(808)는 SM 응답 메시지(822)를 공유 CP(806)에 송신하여 WTRU(802)와 전용 슬라이스(808) 사이에 통신 링크를 확립할 수 있다. 공유 CP(806)는 SM 응답 메시지(822)를 MM 응답 메시지와 조합할 수 있고, 그런 다음 NAS 응답 메시지(824)를 WTRU(802)에 전송할 수 있다.
공유 CP(806)는 첨부된 요청 메시지가 제어 평면 데이터 또는 IP 접속의 전송을 위한 것인지에 기초하여 전용 슬라이스(808)를 선택할 수 있다. 공유 CP(806)는 공유 CP NF에 의한 인증의 표시로서 인증 토큰을 선택된 전용 슬라이스(808)에 제공할 수 있다. 공유 CP(806)는 WTRU(802)를 전용 슬라이스(808)에 접속하여, 특정 서비스를 제공할 수 있다. 따라서, WTRU(802)의 제어 평면이 공유 CP(806)를 통해 전용 슬라이스(808)에 접속될 수 있다.
다음의 실시예는 다중 액세스 네트워크 및 네트워크 슬라이스 관리를 포함할 수 있다. 위에서 설명한 다차원 디스크립터에 기초하여, WTRU는 네트워크로부터 요청된 서비스의 타입과 같은 파라미터를 표시하는 디스크립터 또는 템플릿을 제공할 수 있다. 요청이 TWAN 또는 ePDG(이하 "비 3GPP 액세스 게이트웨이(Non-3GPP Access Gateway)" 또는 "N3AGW"라고 지칭함) 중 어느 하나를 통해 수신될 때, N3AGW는 디스크립터에 기초하여 슬라이스 선택을 수행하거나 또는 중앙 CP 엔티티(Central CP entity) 또는 심지어 3GPP 액세스 네트워크 엔티티(3GPP Access Network entity)(예를 들어, 차세대 eNB)와 같은 CN 슬라이스 선택 노드(CN Slice Selection Node)로 그 요청을 포워딩할 수 있다. 이 노드는 하나 이상의 비 3GPP 액세스 포인트에 접속될 수 있는 논리 노드일 수 있다. 이 노드는 노드가 WTRU의 제공 서비스 디스크립터와 부합하는 적절한 네트워크 슬라이스 또는 노드를 선택할 수 있도록 하는 정보로 미리 구성될 수 있다. 이 노드는 서비스 디스크립터와 네트워크 슬라이스 또는 네트워크 슬라이스와 연관된 CP/NF 사이의 매핑을 갖고 있을 수 있다.
WTRU는 특정 N3AGW를 선택하는데 사용될 수 있는 SSID, 네트워크 서비스 ID 또는 애플리케이션 ID를 포함할 수 있다. WTRU는 OTA(over the air)(SSID 등)로 또는 L2 광고 프로토콜(예를 들어, 802.11u의 일반 광고 프로토콜(Generic Advertisement Protocol))을 통해 방송되거나 알려진 네트워크 식별자를 사용하여 N3AGW에 접속할 특정 서비스 타입(그리고 이에 따른 슬라이스)를 갖고 있는 네트워크에 접속하는 것으로 알려진 AP를 선택할 수 있다.
특정 네트워크의 선택은 WTRU가 슬라이스 선택 기능을 수행할 수 있는 네트워크를 식별할 수 있게 할 수 있다. WTRU는 APN을 사용하여 네트워크 슬라이스 선택을 수행할 수 있는 N3AGW 네트워크 노드에 시그널링할 수 있다. 예를 들어, WTRU에 의해 제공된 정보는 네트워크 슬라이스 선택을 수행할 수 있는 특정 CP 엔티티의 선택에 이르게 할 수 있다. WTRU는 요구된 서비스 디스크립터를 비 3GPP 액세스 기술의 L2 MAC 프레임에 포함시킬 수 있다.
네트워크 슬라이스 선택(Network Slice Selection) 기능은 디스크립터에서 제공된 파라미터를 사용하여 N3AGW가 WTRU에 의해 요청된 서비스를 지원할 수 있는지를 결정할 수 있다. N3AGW가 디스크립터에서 명시된 특정 서비스의 요구 사항을 만족하면 CP 엔티티는 다른 CN 특정 기능을 선택하는 것으로 진행할 수 있다. 이것은 가입자 정보의 양상뿐만 아니라 디스크립터의 다른 양상에 따라 다를 수 있다. 그렇지 않으면, CP 엔티티는 WTRU에게 지시하여 (예를 들어, 둘 모두 3 GPP 및 비 3GPP 기반한) 다른 AN를 재선택하도록 할 수 있다. CP 엔티티는 WTRU에 특정한 AN을 선택할 수 있거나 또는 WTRU에게 새로운 AN을 함께 선택하도록 명령할 수 있다.
다음의 설명은 지연된 네트워크 슬라이스 선택을 다룰 수 있다. 위에서 설명한 바와 같이, 공유 CP 기능은 이동성 관리 기능성을 포함할 수 있는 반면, 다양한 슬라이스 내의 비공유 CP 기능은 세션 관리 기능성을 포함할 수 있다. 따라서, 이동성 관리 이벤트인 WTRU가 네트워크에 초기에 등록(즉, 접속)할 때, WTRU는 이동성 관리를 위해 공유 CP와 상호 작용할 수 있다. 네트워크가 상이한 슬라이스 내의 공유 CP로부터 CP 기능을 선택 또는 사용할 필요가 없으면, 네트워크는 초기 등록시 네트워크 슬라이스를 선택할 수 없다.
그러나, 등록 단계에서, 네트워크는 WTRU가 접속하도록 허가 받은 가능한 네트워크 슬라이스에 관한 정보를 WTRU에 전송할 수 있다. 위에서 설명한 바와 같이, 공유 CP 기능은 가입 데이터베이스(즉, HSS와 유사함)로부터의 가입 정보와 함께 WTRU 능력 및/또는 서비스 타입에 기초하여 가능한 네트워크 슬라이스에 관한 정보를 전송할 수 있다. WTRU는 네트워크와의 세션 관리 절차(예를 들어, PDU 접속 요청) 중에 그 정보를 사용할 수 있다.
네트워크 슬라이스는 PDU 연결 설정을 포함할 수 있는 세션 관리(SM) 절차 동안 선택될 수 있다. SM 절차 동안, WTRU는 이전에 접속 절차 중에 수신된 슬라이스 정보를 포함할 수 있다. 그 네트워크 슬라이스 정보를 이용하여, WTRU는 공유 CP 기능을 보조하여 슬라이스를 선택하거나 또는 WTRU의 SM 요청을 적절한 네트워크 슬라이스로 향하게 할 수 있다. 네트워크 슬라이스 선택 기능은 RAN 또는 공유 CP 기능의 일부일 수 있다. 어느 경우든, 세션 관리는 적절한 슬라이스로 전달될 수 있다.
네트워크 슬라이스 선택 기능은 SM 메시지 내의 정보를 고려하여, WTRU의 세션 요구 사항을 가장 잘 충족시킬 수 있는 네트워크 슬라이스로 메시지를 라우팅(리다이렉트)하는 결정을 내릴 수 있다. 정보는 PDU 접속 타입 (IP 대 비 IP), IP 버전(IPv4 또는 IPv6), 애플리케이션 정보(앱(app) ID), 요구된 서비스 품질, 접속/등록 절차 동안 수신된 네트워크 슬라이스 정보 등을 포함할 수 있다.
이제 도 9를 참조하면, 세션 관리 요청이 있을 때의 네트워크 슬라이스 선택을 예시하는 다이어그램이 도시된다. PDU 접속 요청은 도 9에 도시된 SM 절차의 예일 수 있다. 이 절차는 다른 SM 호 흐름으로 확장될 수 있다.
단계(909)에서, WTRU(902)는 비공유 CP에 접속될 수 있지만, 공유 CP에 대해 선택된 네트워크 슬라이스는 없다. WTRU(902)는 PDU 접속 요청(910, PDU connection request)을 공유 CP(906)에 전송할 수 있다. 메시지는 다음의 파라미터 중 하나 이상: 접속 타입(IP 대 비 IP), IP 버전(IPv4 또는 IPv6), 애플리케이션 정보(앱 ID), 요구된 서비스 품질(이것으로 제한되는 것은 아니지만 QCI 값, 우선 순위 및 필요한 비트 레이트를 포함함), 슬라이스 정보(슬라이스 ID, 강화된 모바일 광대역과 같은 슬라이스의 타입, mIoT, 중요 통신 등), 데이터 네트워크 이름(APN과 유사함) 등을 포함할 수 있다.
PDU 접속 요청(910)을 수신하면, 단계(911)에서, 공유 CP(906) 내의 네트워크 슬라이스 선택 기능은 수신된 파라미터에 기초하여 네트워크 슬라이스를 선택할 수 있다. 수신된 파라미터와 함께 추가 파라미터가 사용될 수 있다. 이러한 추가 파라미터는 초기 접속 절차 동안 또는 네트워크 슬라이스 선택 절차 동안 CP 노드에 의해 수신될 수 있는 네트워크 구성/로컬 정책 및 WTRU/사용자 가입 정보를 포함할 수 있다. 공유 CP(906)는, 슬라이스 선택 결정을 수행할 때, 제어 평면 및 사용자 평면의 혼잡도를 또한 고려할 수 있다.
공유 CP(906)는 PDU 접속 요청 메시지(912)를 선택된 네트워크 슬라이스의 비공유 CP 기능인 CP 슬라이스 #1(908)로 포워딩할 수 있다. 단계(913)에서 CP 슬라이스 1(908)에서의 비공유 CP 기능은 SM 절차를 실행하고, WTRU(902)로부터 수신된 파라미터에 기초하여 사용자 평면 접속을 설정할 수 있다. 비 공유 CP 기능은 PDU 접속 수락(PDU connection accept) 메시지(914)를 공유 CP(906)에서의 공유 CP 기능으로 송신할 수 있다. 그 후, PDU 접속 수락 메시지(916)는 공유 CP(906)와 WTRU(902) 사이의 인터페이스(NAS와 유사함)를 통해 WTRU(902)로 포워딩될 수 있다.
PDU 접속 수락 메시지(916)는 기지국 또는 WTRU(902) 중 어느 하나를 위해 선택된 네트워크 슬라이스에 관한 정보를 포함할 수 있다. 기지국은 사용자 평면 메시지를 적절한 네트워크 슬라이스로 라우팅할 수 있다. 단계(918)에서 WTRU(902)는 사용자 평면 데이터 및 후속하는 다른 제어 메시지(예를 들어, SM 메시지)를 선택된 네트워크 슬라이스로 라우팅할 수 있다. 일단 WTRU(902)가 선택된 네트워크 슬라이스를 인식하면, 데이터는 선택된 네트워크 슬라이스의 UP 기능으로 전송될 수 있다.
실시예에서, WTRU(902)가 전술한 파라미터 및 요구된 데이터 접속의 특성에 기초하여 공유 CP 기능에 또 다른 PDU 접속 요청을 전송하면, 다수의 네트워크 슬라이스가 공유 CP(906)에 의해 선택될 수 있다.
이제 도 10을 참조하면, 공유 CP 네트워크 기능(NF) 내의 전용 네트워크 슬라이스로의 액세스를 제공하기 위한 예시적인 절차를 도시하는 다이어그램이 도시된다. 단계(1002)에서, 공유 CP 노드 내의 공유 CP NF는 WTRU로부터 NAS 메시지를 수신할 수 있다. 위에서 설명한 바와 같이, NAS 메시지는 MM 메시지 및 SM 메시지를 포함할 수 있다. MM 메시지는 WTRU와 전용 네트워크 슬라이스에 의해 제공되는 특정 서비스를 위한 전용 네트워크 슬라이스 사이에 통신 링크를 확립하라는 요청을 표시하는 등록 요청을 포함할 수 있다. NAS 메시지는 또한 인터넷 프로토콜(IP) 데이터 및 비 IP 데이터를 표시하는 사용자 데이터 타입 표시를 포함할 수 있다. 비 IP 데이터는 비 IP 프로토콜 데이터 유닛(Protocol Data Unit, PDU), 이더넷 프레임, 정보 중심 네트워크(ICN) 데이터 등을 포함할 수 있다.
NAS 메시지를 수신하면, 단계(1004)에서 공유 CP NF는 WTRU를 인증하기 위해 공유 CP NF 내의 인증 기능을 개시할 수 있다. WTRU가 성공적으로 인증되면, 단계(1006)에서 공유 CP NF는 보안 및 식별자 관리를 위한 인증 토큰을 생성할 수 있다. 단계(1008)에서, 공유 CP NF는 네트워크 슬라이스에 의해 제공되는 사용자 평면(UP) 서비스를 위한 다수의 네트워크 슬라이스 중에서 하나의 네트워크 슬라이스를 선택할 수 있다. 공유 CP NF는 네트워크 슬라이스를 사용자 데이터 타입 표시에 기초하여 선택할 수 있다. 선택된 네트워크 슬라이스는 UP 서비스를 WTRU에 제공하는 전용 네트워크 슬라이스일 수 있다. 단계(1010)에서, 공유 CP NF는 NAS 메시지에 포함된 사용자 데이터 타입 표시에 기초하여 NAS 메시지의 타입을 결정할 수 있다.
NAS 메시지의 타입, 예를 들어, MM 또는 SM을 결정한 후에, 단계(1012)에서 공유 CP NF는 메시지의 SM 부분을 인증 토큰과 함께 선택된 네트워크 슬라이스 내의 비공유 CP NF로 전송할 수 있다. SM 메시지는 선택된 네트워크 슬라이스에 의해 제공되는 UP 서비스를 표시할 수 있다. 단계(1014)에서, 공유 CP NF는 비공유 CP NF로부터 SM 응답 메시지를 수신할 수 있다. SM 응답 메시지는 선택된 네트워크 슬라이스가 UP 서비스를 제공할 수 있는지를 표시할 수 있다. 선택된 네트워크 슬라이스가 UP 서비스를 제공한다면, 공유 CP NF는 선택된 네트워크 슬라이스와 WTRU 사이에서 UP 서비스를 위한 통신 링크를 확립하기 위해 MM 및 SM 부분을 둘 모두 포함하는 NAS 응답 메시지를 WTRU에 전송할 수 있다. 공유 CP NF로부터 송신된 NAS 응답 메시지는 비공유 CP NF로부터 수신된 SM 응답을 포함할 수 있다.
위에서 특징 및 요소가 특정 조합으로 설명되었지만, 관련 기술분야에서 통상의 기술자라면 각각의 특징 또는 요소가 단독으로 또는 다른 특징 및 요소와 임의의 조합으로 사용될 수 있다는 것을 인식할 것이다. 또한, 본 명세서에서 설명된 방법은 컴퓨터 또는 프로세서에 의한 실행을 위해 컴퓨터 판독 가능한 매체에 통합된 컴퓨터 프로그램, 소프트웨어 또는 펌웨어로 구현될 수 있다. 컴퓨터 판독 가능한 매체의 예는 (유선 또는 무선 접속을 통해 전송되는) 전자 신호 및 컴퓨터 판독 가능한 저장 매체를 포함한다. 컴퓨터 판독 가능한 저장 매체의 예는 이것으로 제한되는 것은 아니지만, 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), 레지스터, 캐시 메모리, 반도체 메모리 디바이스, 내부 하드 디스크 및 착탈식 디스크와 같은 자기 매체, 광자기(magneto-optical) 매체, 및 CD-ROM 디스크와 같은 광학 매체, 및 디지털 다기능 디스크(digital versatile disk, DVD)를 포함한다. 소프트웨어와 연관된 프로세서는 WTRU, UE, 단말기, 기지국, RNC 또는 임의의 호스트 컴퓨터에서 사용하기 위한 무선 주파수 송수신기를 구현하는데 사용될 수 있다.

Claims (20)

  1. 네트워크 슬라이스에의 액세스를 제공하기 위해 이동성 관리(mobility management, MM) 기능성을 수행하는 네트워크 노드에서 사용하기 위한 방법에 있어서,
    무선 송수신 유닛(wireless transmit/receive unit, WTRU)으로부터, MM 메시지인 비 액세스 계층(Non-Access Stratum, NAS) 메시지를 수신하는 단계로서, 상기 MM 메시지는 상기 네트워크 슬라이스와 연관된 프로토콜 데이터 유닛(protocol data unit, PDU) 세션에 대한 세션 관리(session management, SM) 메시지를 포함하는 것인, 상기 NAS 메시지를 수신하는 단계; 및
    상기 네트워크 슬라이스와 연관된 SM 기능성을 수행하는 네트워크 노드에, 상기 네트워크 슬라이스와 연관된 PDU 세션에 의해 제공되는 사용자 평면(user plane, UP) 서비스를 표시하는 상기 SM 메시지를 송신하는 단계
    를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 MM 메시지는 상기 WTRU와 상기 네트워크 슬라이스 사이의 통신 링크를 확립하라는 등록 요청(registration request)을 포함하는 것인, 방법.
  3. 제2항에 있어서,
    상기 MM 메시지에 기초하여 상기 WTRU를 인증하는 단계;
    상기 WTRU가 성공적으로 인증되면 인증 토큰을 생성하는 단계; 및
    상기 네트워크 슬라이스와 연관된 SM 기능성을 수행하는 네트워크 노드에, 상기 인증 토큰을 송신하는 단계
    를 더 포함하는, 방법.
  4. 제3항에 있어서,
    상기 인증 토큰은 상기 WTRU의 식별 정보에 기초하여 생성되는 것인, 방법.
  5. 제1항에 있어서,
    상기 SM 기능성을 수행하는 네트워크 노드로부터, 상기 네트워크 슬라이스가 상기 UP 서비스를 제공하는지를 표시하는 SM 응답 메시지를 수신하는 단계를 더 포함하는, 방법.
  6. 제1항에 있어서,
    상기 NAS 메시지는 인터넷 프로토콜(Internet Protocol, IP) 데이터 및 비 IP 데이터를 표시하는 사용자 데이터 타입 표시(user data type indication)를 포함하고, 상기 비 IP 데이터는 비 IP 프로토콜 데이터 유닛(PDU), 이더넷 프레임, 및 정보 중심 네트워크(Information Centric Network, ICN) 데이터를 포함하는 것인, 방법.
  7. 제6항에 있어서,
    상기 사용자 데이터 타입 표시에 기초하여 상기 NAS 메시지의 타입을 결정하는 단계; 및
    상기 NAS 메시지의 타입에 기초하여 상기 SM 메시지를 상기 SM 기능성을 수행하는 네트워크 노드에 송신하는 단계
    를 더 포함하는, 방법.
  8. 제6항에 있어서,
    상기 사용자 데이터 타입 표시에 기초하여, 복수의 네트워크 슬라이스 중에서 상기 네트워크 슬라이스를 선택하는 단계를 더 포함하는, 방법.
  9. 제1항에 있어서,
    상기 MM 기능성을 수행하는 네트워크 노드는 상기 MM 기능성을 수행하는 제어 평면(control plane, CP) 네트워크 기능(network function, NF)이고, 상기 SM 기능성을 수행하는 네트워크 노드는 상기 SM 기능성을 수행하는 CP NF인 것인, 방법.
  10. 제9항에 있어서,
    상기 MM 기능성을 수행하는 CP NF와 상기 SM 기능성을 수행하는 CP NF는 네트워크 노드 내에서 논리적으로 격리된(isolated) 것인, 방법.
  11. 네트워크 슬라이스에의 액세스를 제공하기 위한 이동성 관리(mobility management, MM) 기능성을 수행하는 네트워크 노드에 있어서,
    프로세서;
    수신기; 및
    송신기를 포함하고,
    상기 프로세서 및 상기 수신기는, 무선 송수신 유닛(wireless transmit/receive unit, WTRU)으로부터, MM 메시지인 비 액세스 계층(Non-Access Stratum, NAS) 메시지를 수신하도록 구성되고, 상기 MM 메시지는 상기 네트워크 슬라이스와 연관된 프로토콜 데이터 유닛(protocol data unit, PDU) 세션에 대한 세션 관리(session management, SM) 메시지를 포함하고,
    상기 프로세서 및 상기 송신기는, 상기 네트워크 슬라이스와 연관된 SM 기능성을 수행하는 네트워크 노드에, 상기 네트워크 슬라이스와 연관된 PDU 세션에 의해 제공되는 사용자 평면(user plane, UP) 서비스를 표시하는 상기 SM 메시지를 송신하도록 구성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  12. 제11항에 있어서,
    상기 MM 메시지는 상기 WTRU와 상기 MM 기능성을 수행하는 네트워크 노드 사이의 통신 링크를 확립하라는 등록 요청(registration request)을 포함하는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  13. 제12항에 있어서,
    상기 프로세서는,
    상기 MM 메시지에 기초하여 상기 WTRU를 인증하고;
    상기 WTRU가 성공적으로 인증되면 인증 토큰을 생성하도록 구성되고,
    상기 프로세서 및 상기 송신기는 또한, 상기 네트워크 슬라이스와 연관된 SM 기능성을 수행하는 네트워크 노드에, 상기 인증 토큰을 송신하도록 구성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  14. 제13항에 있어서,
    상기 인증 토큰은 상기 WTRU의 식별 정보에 기초하여 생성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  15. 제11항에 있어서,
    상기 프로세서 및 상기 수신기는 또한, 상기 SM 기능성을 수행하는 네트워크 노드로부터, 상기 네트워크 슬라이스가 상기 UP 서비스를 제공하는지를 표시하는 SM 응답 메시지를 수신하도록 구성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  16. 제11항에 있어서,
    상기 NAS 메시지는 인터넷 프로토콜(Internet Protocol, IP) 데이터 및 비 IP 데이터를 표시하는 사용자 데이터 타입 표시(user data type indication)를 포함하고, 상기 비 IP 데이터는 비 IP 프로토콜 데이터 유닛(PDU), 이더넷 프레임, 및 정보 중심 네트워크(Information Centric Network, ICN) 데이터를 포함하는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  17. 제16항에 있어서,
    상기 프로세서는 상기 사용자 데이터 타입 표시에 기초하여 상기 NAS 메시지의 타입을 결정하도록 구성되고,
    상기 프로세서 및 상기 송신기는 또한, 상기 NAS 메시지의 타입에 기초하여 상기 SM 메시지를 상기 SM 기능성을 수행하는 네트워크 노드에 송신하도록 구성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  18. 제16항에 있어서,
    상기 프로세서는 또한, 상기 사용자 데이터 타입 표시에 기초하여, 복수의 네트워크 슬라이스 중에서 상기 네트워크 슬라이스를 선택하도록 구성되는 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  19. 제11항에 있어서,
    상기 MM 기능성을 수행하는 네트워크 노드는 상기 MM 기능성을 수행하는 제어 평면(control plane, CP) 네트워크 기능(network function, NF)이고, 상기 SM 기능성을 수행하는 네트워크 노드는 상기 SM 기능성을 수행하는 CP NF인 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
  20. 제19항에 있어서,
    상기 MM 기능성을 수행하는 CP NF와 상기 SM 기능성을 수행하는 CP NF는 네트워크 노드 내에서 논리적으로 격리된(isolated) 것인, 이동성 관리(MM) 기능성을 수행하는 네트워크 노드.
KR1020217034359A 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법 KR102401792B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227017032A KR102588488B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662317167P 2016-04-01 2016-04-01
US62/317,167 2016-04-01
US201662337085P 2016-05-16 2016-05-16
US62/337,085 2016-05-16
PCT/US2017/025603 WO2017173404A1 (en) 2016-04-01 2017-03-31 Methods for service slice selection and separation
KR1020187030314A KR102320063B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187030314A Division KR102320063B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227017032A Division KR102588488B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Publications (2)

Publication Number Publication Date
KR20210134056A KR20210134056A (ko) 2021-11-08
KR102401792B1 true KR102401792B1 (ko) 2022-05-26

Family

ID=58645363

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217034359A KR102401792B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법
KR1020187030314A KR102320063B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법
KR1020227017032A KR102588488B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020187030314A KR102320063B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법
KR1020227017032A KR102588488B1 (ko) 2016-04-01 2017-03-31 서비스 슬라이스 선택 및 분리를 위한 방법

Country Status (6)

Country Link
US (3) US11350274B2 (ko)
EP (2) EP4075846A1 (ko)
JP (1) JP6679751B2 (ko)
KR (3) KR102401792B1 (ko)
CN (2) CN113810905A (ko)
WO (1) WO2017173404A1 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880813B2 (en) * 2016-04-05 2020-12-29 Lg Electronics Inc. Method for processing access request from UE, and network node
MX2018014143A (es) * 2016-05-17 2019-02-25 Sharp Kk Aparato terminal, entidad de gestion de sesiones (sme) y metodo de control de comunicacion.
WO2017206183A1 (zh) * 2016-06-03 2017-12-07 华为技术有限公司 一种网络切片的确定方法、装置及系统
KR101981909B1 (ko) 2016-07-04 2019-05-23 애플 인크. 네트워크 슬라이스 선택
JP6889740B2 (ja) * 2016-07-04 2021-06-18 アップル インコーポレイテッドApple Inc. ネットワークスライス選択
EP3563610B1 (en) 2016-12-30 2020-03-04 Telefonaktiebolaget LM Ericsson (publ) Network slice selection
WO2018165336A1 (en) * 2017-03-10 2018-09-13 Hughes Network Systems, Llc Network sharing by multiple service providers in a 3gpp framework using single core network
US10749796B2 (en) * 2017-04-27 2020-08-18 At&T Intellectual Property I, L.P. Method and apparatus for selecting processing paths in a software defined network
US10820185B2 (en) 2017-05-08 2020-10-27 Qualcomm Incorporated Mobility between areas with heterogeneous network slices
EP3651432B1 (en) 2017-05-09 2024-02-14 Telefonaktiebolaget LM Ericsson (publ) Selection of ip version
US10264506B2 (en) * 2017-05-13 2019-04-16 Qualcomm Incorporated Enable a network-trigger change of network slices
EP3796618A1 (en) 2017-06-19 2021-03-24 Huawei Technologies Co., Ltd. Registration method, session establishment method, terminal, and amf entity
CN109391669B (zh) * 2017-08-11 2020-12-08 华为技术有限公司 一种业务管理的方法、装置及存储介质
CN109560952B (zh) * 2017-09-27 2021-04-09 华为技术有限公司 一种网络切片管理方法及设备
CN109560955B (zh) * 2017-09-27 2021-10-01 华为技术有限公司 网络的部署信息确定方法及设备
WO2019073977A1 (en) * 2017-10-11 2019-04-18 Nec Corporation CONFIGURING AND UPDATING UE WITH A NETWORK WAFER SELECTION POLICY
KR101985266B1 (ko) * 2017-10-18 2019-06-03 에스케이 텔레콤주식회사 패킷 처리 기능 선택방법 및 그를 위한 장치
US10660016B2 (en) * 2017-11-08 2020-05-19 Ofinno, Llc Location based coexistence rules for network slices in a telecommunication network
CN107888425B (zh) * 2017-11-27 2019-12-06 北京邮电大学 移动通信系统的网络切片部署方法和装置
US11044773B2 (en) * 2017-11-30 2021-06-22 At&T Intellectual Property I, L.P. Dual session packet data network connection
US11382163B2 (en) 2017-12-19 2022-07-05 At&T Intellectual Property I, L.P. Instantiating intelligent service delivery parameters within protected hardware
US10797894B2 (en) * 2017-12-28 2020-10-06 Ofinno, Llc Service type and device type-based policy and charging control
EP3787341A1 (en) * 2018-01-08 2021-03-03 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatuses for selecting a session management entity for serving a wireless communication device
US11722534B2 (en) * 2018-04-04 2023-08-08 Lenovo (Singapore) Pte. Ltd. Selecting a network connection based on a media type
CN112005613B (zh) 2018-04-06 2024-03-22 联想(新加坡)私人有限公司 确定远程单元行为参数
CN110602802B (zh) * 2018-06-12 2021-04-23 中国电信股份有限公司 数据传输方法、系统、装置及计算机可读存储介质
US10986010B2 (en) 2018-08-09 2021-04-20 At&T Intellectual Property I, L.P. Mobility network slice selection
US11539699B2 (en) 2018-08-13 2022-12-27 Lenovo (Singapore) Pte. Ltd. Network slice authentication
WO2020064242A1 (en) * 2018-09-27 2020-04-02 British Telecommunications Public Limited Company Network slice registration management
US11665635B2 (en) 2018-09-27 2023-05-30 British Telecommunications Public Limited Company Network slice management
US10863556B2 (en) * 2018-10-11 2020-12-08 Verizon Patent And Licensing Inc. Method and system for network slice identification and selection
WO2020092263A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Supporting information centric networking in next generation cellular networks
EP3903511A4 (en) * 2018-12-29 2022-07-13 Telefonaktiebolaget LM Ericsson (publ) METHOD AND DEVICE FOR LOCATION-BASED GROUP MESSAGING
WO2020168275A1 (en) * 2019-02-14 2020-08-20 Apple Inc. Registration management in information centric networking for next generation cellular networks
US10834618B1 (en) * 2019-08-05 2020-11-10 Sprint Communications Company L.P. Wireless communication network access using different functionality splits for different communication services
KR20210031297A (ko) * 2019-09-11 2021-03-19 삼성전자주식회사 무선 통신 시스템에서 트래픽을 처리하기 위한 장치 및 방법
US10785652B1 (en) * 2019-09-11 2020-09-22 Cisco Technology, Inc. Secure remote access to a 5G private network through a private network slice
CN110519783B (zh) * 2019-09-26 2021-11-16 东华大学 基于增强学习的5g网络切片资源分配方法
US11108636B2 (en) 2019-10-23 2021-08-31 Cisco Technology, Inc. Integrity verification for managing network configurations
US11197154B2 (en) 2019-12-02 2021-12-07 At&T Intellectual Property I, L.P. Secure provisioning for wireless local area network technologies
JP2021106348A (ja) * 2019-12-26 2021-07-26 ソニーグループ株式会社 端末装置、管理装置及び通信方法
US11523283B2 (en) * 2020-02-14 2022-12-06 Cisco Technology, Inc. GPS-attack prevention system and method for fine timing measurement (FTM) in 802.11AZ
US11277790B2 (en) 2020-06-15 2022-03-15 Sprint Communications Company L.P. Wireless network slice selection in wireless user equipment (UE)
CN111787587B (zh) * 2020-06-22 2022-07-29 维沃移动通信有限公司 数据传输方法、装置和电子设备
US11864026B2 (en) * 2020-09-18 2024-01-02 Verizon Patent And Licensing Inc. Systems and methods for access barring based on slice information
CN116319334A (zh) * 2021-12-03 2023-06-23 中兴通讯股份有限公司 基于应用的切片选择方法、网关、终端和存储介质
CN114301789A (zh) * 2021-12-29 2022-04-08 中国电信股份有限公司 数据传输方法及装置、存储介质、电子设备
US20240031803A1 (en) * 2022-07-20 2024-01-25 Cisco Technology, Inc. Device authentication and network function registration and discovery for 5g vertical networks
JP7442708B1 (ja) 2023-03-09 2024-03-04 Kddi株式会社 制御装置、制御方法及びプログラム

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139530B2 (en) * 2007-03-22 2012-03-20 Telefonaktiebolaget L M Ericsson (Publ) Mobility management (MM) and session management (SM) for SAE/LTE
US8699711B2 (en) 2007-07-18 2014-04-15 Interdigital Technology Corporation Method and apparatus to implement security in a long term evolution wireless device
US8532614B2 (en) 2007-10-25 2013-09-10 Interdigital Patent Holdings, Inc. Non-access stratum architecture and protocol enhancements for long term evolution mobile units
US10368340B2 (en) * 2010-04-01 2019-07-30 Hon Hai Precision Industry Co., Ltd. Network service exposure method and apparatus utilizing the same
US8982838B2 (en) * 2011-02-11 2015-03-17 Lg Electronics Inc. Method for processing data associated with handover in a wireless network
EP2742704A1 (en) * 2011-08-11 2014-06-18 Interdigital Patent Holdings, Inc. Machine type communications connectivity sharing
US9532185B2 (en) * 2012-05-02 2016-12-27 Qualcomm Incorporated Achieving fast EMBMS channel switching and adding in LTE
WO2013170045A2 (en) * 2012-05-09 2013-11-14 Interdigital Patent Holdings, Inc. Flexible network sharing
JP5954783B2 (ja) * 2012-08-27 2016-07-20 国立研究開発法人情報通信研究機構 モバイルネットワーク
TW201807961A (zh) * 2012-09-27 2018-03-01 內數位專利控股公司 在噓擬網路中端對端架構、api框架、發現及存取
US9854381B2 (en) 2012-11-02 2017-12-26 Lg Electronics Inc. Method for transmitting data of MTC device
US20140226531A1 (en) 2013-02-14 2014-08-14 Telefonaktiebolaget L M Ericsson (Publ) Multicast support for EVPN-SPBM based on the mLDP signaling protocol
WO2014129783A1 (en) 2013-02-22 2014-08-28 Samsung Electronics Co., Ltd. Method and system for providing simultaneous connectivity between multiple e-nodebs and user equipment
US9386511B2 (en) * 2013-02-25 2016-07-05 Lg Electronics Inc. Method and an apparatus for access network selection in visited network in a wireless communication system
US9781632B2 (en) 2013-04-22 2017-10-03 Nokia Solutions And Networks Management International Gmbh Interaction and migration of EPC towards virtualized mobile backhaul/sharing of RAT (eNB, RNC, BSC)
CN103237342B (zh) * 2013-04-28 2016-04-20 哈尔滨工业大学 基于td-lte的公网集群同组用户的交叉身份注册方法
CN105532043B (zh) * 2013-09-13 2019-05-03 Lg电子株式会社 用于重新选择负责控制平面的网络节点的方法
EP3018963B1 (en) * 2014-11-07 2020-09-16 Ericsson-LG Co., Ltd. Method and apparatus for controlling of ddn message, and computer readable medium for the same
EP3281453B1 (en) 2015-04-08 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Method and control node for selection of a network partition and corresponding routing of a received message
US10117137B2 (en) 2015-04-08 2018-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes for network partition preservation at inter-access handovers
US10111163B2 (en) * 2015-06-01 2018-10-23 Huawei Technologies Co., Ltd. System and method for virtualized functions in control and data planes
WO2017023196A1 (en) * 2015-08-05 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Distributed management of network slices using a gossip protocol
WO2017037776A1 (ja) * 2015-08-28 2017-03-09 日本電気株式会社 端末とネットワークノードと通信制御方法並びにプログラム
US9775045B2 (en) * 2015-09-11 2017-09-26 Intel IP Corporation Slicing architecture for wireless communication
WO2017052342A1 (ko) * 2015-09-24 2017-03-30 삼성전자 주식회사 리모트 프로세(remote prose) 단말에 대한 네트워크 망에서의 합법적 감청 지원 방안
US10129108B2 (en) * 2015-11-13 2018-11-13 Huawei Technologies Co., Ltd. System and methods for network management and orchestration for network slicing
EP3398305B1 (en) * 2015-12-29 2021-10-27 Telefonaktiebolaget LM Ericsson (PUBL) Method and architecture for virtualized network service provision
WO2017121454A1 (en) * 2016-01-11 2017-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, network node, database, configuration control node, and methods performed thereby
CN108476547B (zh) * 2016-01-15 2022-04-29 瑞典爱立信有限公司 传送通信装置、接收通信装置以及由此在网络切片的上下文中执行的方法
WO2017135860A1 (en) * 2016-02-05 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes and methods performed therein for enabling communication in a communication network
US9961713B2 (en) * 2016-02-23 2018-05-01 Motorola Mobility Llc Procedures to support network slicing in a wireless communication system
CN110572838B (zh) * 2016-03-03 2020-08-07 华为技术有限公司 通信方法、终端设备和网络侧设备
WO2017168112A1 (en) * 2016-03-31 2017-10-05 Nec Europe Ltd Sdn-based methods and apparatuses for providing tdd radio access network services
CN106210042B (zh) 2016-07-11 2019-06-18 清华大学 一种基于端到端网络切片的用户服务请求选择方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP S2-160980
3GPP TR23.799 v0.3.0

Also Published As

Publication number Publication date
KR102588488B1 (ko) 2023-10-12
JP2019511882A (ja) 2019-04-25
US11350274B2 (en) 2022-05-31
KR102320063B1 (ko) 2021-11-03
JP6679751B2 (ja) 2020-04-15
EP4075846A1 (en) 2022-10-19
CN109196898A (zh) 2019-01-11
CN113810905A (zh) 2021-12-17
US20220256342A1 (en) 2022-08-11
CN109196898B (zh) 2021-08-20
US11877151B2 (en) 2024-01-16
KR20190002462A (ko) 2019-01-08
EP3437352B1 (en) 2022-07-27
EP3437352A1 (en) 2019-02-06
KR20210134056A (ko) 2021-11-08
US20240073687A1 (en) 2024-02-29
US20190124508A1 (en) 2019-04-25
KR20220074979A (ko) 2022-06-03
WO2017173404A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR102401792B1 (ko) 서비스 슬라이스 선택 및 분리를 위한 방법
US11706598B2 (en) Interface of an M2M server with the 3GPP core network
US20220061118A1 (en) Methods for supporting session continuity on per-session basis
US20230116626A1 (en) Network slice reselection
US9655007B2 (en) Managing data mobility policies
WO2018236819A1 (en) SYSTEMS AND METHODS FOR PROTECTING THE CONFIDENTIALITY OF A 5G WAFER IDENTIFIER
KR101614999B1 (ko) M2m 디바이스에 대하여 다운링크 데이터에 대한 페이징을 수행하는 방법
AU2011352162A1 (en) Triggering devices that are not attached to a wireless network
WO2018064479A1 (en) Switching a ran connection with a core network slice
US20230061284A1 (en) Security and privacy support for direct wireless communications
EP4275375A1 (en) Authentication and authorization associated with layer 3 wireless-transmit/receive -unit-to-network
US20230224778A1 (en) Methods, apparatuses and systems directed to a change of wtru to wtru relay
WO2017123938A1 (en) Integration of non-3gpp access in a 5g system user plane framework
WO2022271957A1 (en) Discovery of internet of things network
US20220345894A1 (en) Registration and security enhancements for a wtru with multiple usims

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right