KR102392611B1 - 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법 - Google Patents

미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법 Download PDF

Info

Publication number
KR102392611B1
KR102392611B1 KR1020210133653A KR20210133653A KR102392611B1 KR 102392611 B1 KR102392611 B1 KR 102392611B1 KR 1020210133653 A KR1020210133653 A KR 1020210133653A KR 20210133653 A KR20210133653 A KR 20210133653A KR 102392611 B1 KR102392611 B1 KR 102392611B1
Authority
KR
South Korea
Prior art keywords
cooling
microporous
mold
cooling structure
mold core
Prior art date
Application number
KR1020210133653A
Other languages
English (en)
Inventor
박근
이준원
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Priority to KR1020210133653A priority Critical patent/KR102392611B1/ko
Application granted granted Critical
Publication of KR102392611B1 publication Critical patent/KR102392611B1/ko
Priority to US17/963,117 priority patent/US20230111054A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/04Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/4005Ejector constructions; Ejector operating mechanisms
    • B29C45/401Ejector pin constructions or mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

본 발명은 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법에 관한 것으로, 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 금형 코어 내부에서 고온이 발생되는 위치마다 설치되며, 공급되는 냉각 유체를 내부로 유동시켜 금형의 국부적 냉각을 수행하는 냉각 모듈로서, 금형 코어 내부로 삽입되는 몸체부; 상기 몸체부 상측에 삽입되며, 미세 단위 셀(Micro unit cell)이 주기적으로 반복 형성되어 다수의 연결된 중공부를 형성하는 미세 다공성 냉각구조체 및 상기 냉각 유체가 상기 미세 다공성 냉각구조체를 통과하도록 관로를 형성하는 냉각회로를 포함하여 구성될 수 있다.

Description

미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법{Cooling module with microporous cooling structure and local cooling method of mold using the same}
본 발명은 냉각 모듈 및 이를 활용한 냉각 방법에 관한 것으로, 특히 미세 단위 셀(Micro unit cell)이 주기적으로 반복되어 형성되는 구조체인 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법에 관한 것이다.
사출성형은 열가소성 플라스틱 제품을 성형하는 대표적인 생산 공정으로 고온으로 가소화된 액상의 고분자 수지를 금형 내부에서 고속·고압으로 분사하여 채운 후 냉각과정을 거쳐 제품을 제작하는 성형 방법이다.
또한, 다이캐스팅은 복잡한 형상의 금속 부품을 제작하는데 널리 사용되는 주조 공정으로, 금속 소재를 고온으로 용융시켜 금형 내부에서 고압으로 주입하여 채운 후 냉각과정을 거쳐 제품을 제작하는 성형 방법이다.
상기와 같은 사출성형이나, 다이캐스팅은 모두 금형을 사용하여 제품을 성형하며, 소재를 고온으로 용융시켜 금형 내측에 채워 성형한 후 냉각과정을 거쳐 제품을 생산하는 공통점이 있다.
이때, 위 성형 방법들은 금형의 냉각을 위해 일반적으로 금형 내부에 냉각회로(Cooling channel)를 가공하여 냉각수를 순환시키며, 종래에는 가공의 용이성으로 인해 도 1의 (a)에 도시된 직선형 냉각회로(15a)를 널리 사용하였다.
그러나, 직선형 냉각회로(15a)는 곡면 형상의 금형에 적용할 경우, 금형 표면의 균일한 냉각이 어려우며, 결과적으로 냉각시간이 지연됨은 물론 성형품의 온도가 불균일해짐에 따라 제품의 후변형이 발생되는 단점이 있다.
이 때문에, 최근 3D 프린팅 기술이 발전함에 따라 종래의 기계가공만으로는 구현이 어려웠던 도 1의 (b)에 도시된 등각 냉각회로(15b, Conformal cooling channel)가 활용되고 있다. 등각 냉각회로(15b)는 금형 표면의 곡면 형상에 근접하게 일정 간격으로 형성된 냉각회로로서, 균일하면서도 빠른 냉각이 가능한 장점이 있어 직선형 냉각회로(15a)를 사용하던 종래의 방식에서 냉각성능을 한층 끌어올렸다.
그러나, 등각 냉각회로(15b)를 제작하기 위해 사용되는 금속 3D 프린팅 공정은 높은 제작비용으로 인해 실제 산업 현장에서는 제한적으로 사용되고 있으며, 특히 3D 프린팅 공정의 단점인 낮은 표면조도로 인해 제조된 금형을 사용하기 위해서는 추가적인 후가공이 필수적인 문제점이 있다.
또한, 대형 금형의 경우 금형 전체를 3D 프린팅으로 제작하기에는 많은 시간과 비용이 소요되어 냉각이 집중적으로 필요한 부분만을 효과적으로 냉각할 수 있는 국부적 냉각 방법이 요구되고 있는 실정이다.
본 발명은 상기의 문제점을 해결하기 위하여 제안되는 것으로, 미세 단위 셀(Micro unit cell)이 주기적으로 반복되어 형성되는 구조체인 미세 다공성 냉각구조체를 적용하여 냉각 효율을 향상시킬 수 있으며, 국부적 냉각이 가능하도록 형성되는 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법을 제공하는 데 목적을 둔다.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 금형 코어 내부에서 고온이 발생되는 위치마다 설치되며, 공급되는 냉각 유체를 내부로 유동시켜 금형의 국부적 냉각을 수행하는 냉각 모듈로서, 금형 코어 내부로 삽입되는 몸체부; 상기 몸체부 상측에 삽입되며, 미세 단위 셀(Micro unit cell)이 주기적으로 반복 형성되어 다수의 연결된 중공부를 형성하는 미세 다공성 냉각구조체 및 상기 냉각 유체가 상기 미세 다공성 냉각구조체를 통과하도록 관로를 형성하는 냉각회로를 포함하여 구성될 수 있다.
여기서, 상기 미세 다공성 냉각구조체는, 상기 몸체부를 통해 상기 금형 코어로부터 분리 가능하도록 형성될 수 있다.
또한, 상기 몸체부 및 미세 다공성 냉각구조체는, 성형품과 마주하는 상기 금형 코어의 표면과 일정 거리를 유지하는 곡면을 형성하여 등각 냉각을 수행할 수 있다.
또한, 상기 미세 다공성 냉각 구조체는, 격자(Lattice) 형태 또는 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태로 형성될 수 있다.
상기 미세 다공성 냉각구조체는, 상기 중공부의 중공율을 달리하여 냉각율을 조절할 수 있다.
또한, 상기 미세 다공성 냉각구조체는, 3D 프린팅으로 제작될 수 있다.
또한, 상기 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 금형 내부에 이젝터핀이 마련될 경우 상기 이젝터핀과 간섭되지 않도록, 상기 이젝터핀을 내부로 삽입 관통시키는 이젝터핀 삽입홀을 더 포함할 수 있다.
또한, 상기 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 상기 몸체부와 금형 코어 사이에 개재되어 냉각 유체의 누출을 방지하는 밀폐부재를 더 포함할 수 있다.
상기와 같은 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법은, a) 금형의 고온부에 대응되는 금형 코어의 국부적 위치마다 상기 미세 다공성 냉각구조체가 적용된 냉각 모듈이 삽입될 음각의 삽입홈을 형성하는 단계; b) 미세격자 냉각구조체가 삽입된 냉각 모듈을 제작하는 단계; c) 상기 삽입홈마다 상기 냉각 모듈을 삽입하는 단계 및 d) 상기 미세 다공성 냉각구조체를 통해 냉각 유체를 유동시켜 상기 금형의 고온부를 냉각시키는 단계를 포함하여 구성될 수 있다.
여기서, 상기 미세 다공성 냉각구조체는, 상기 중공부의 미세 단위 셀의 형상 혹은 중공율을 달리하여 냉각율을 조절할 수 있다.
본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 후술하는 실험예에서 입증되는 바와 같이 금형에서 분리되는 구조로 형성되며, 미세 다공성 냉각구조체를 적용함으로써 종래 금형과 일체를 이루는 등각 냉각회로보다 뛰어난 냉각성능과 유지보수성을 나타내는 장점이 있다.
또한, 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 금형의 국부적 냉각이 가능하여 제작 시간과 비용을 절감하며, 가용 대비 보다 효과적으로 냉각을 수행할 수 있는 장점이 있다.
또한, 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈은, 금형과 일정 거리를 유지하는 등각 냉각구조로서 냉각 효율이 뛰어난 장점이 있다.
아울러, 위에서 언급된 본 발명의 실시 예에 따른 효과는 기재된 내용에만 한정되지 않고, 명세서 및 도면으로부터 예측 가능한 모든 효과를 더 포함할 수 있다.
도 1의 (a)는 기계가공으로 제작되는 종래의 직선형 냉각회로를 예시한 도면이고, (b)는 3D프린팅으로 제작 가능한 종래의 등각 냉각회로를 예시한 도면이다.
도 2의 (a)는 통상의 금형 구조를 설명하기 위한 도면이고, (b)는 (a)에 도시된 금형 코어에 종래의 등각 냉각회로가 일체형으로 구성된 상태를 보여주는 도면이다.
도 3은 금형 코어 내부에 마련된 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈을 보여주는 사시도이다.
도 4는 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈의 분해도이다.
도 5는 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈의 측단면도이다.
도 6의 (a) 내지 (d)는 격자(Lattice) 형태의 미세 다공 구조(Micro-cellular structure)들을 예시한 도면이다.
도 7의 (a) 내지 (c)는 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태의 미세 다공 구조(Micro-cellular structure)들을 예시한 도면이다.
도 8의 (a)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 8의 (b)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 8의 (c)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면이다.
도 9의 (a)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 9의 (b)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 9의 (c)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면이다.
도 10은 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈이 금형 코어 내에서 이젝터핀의 간섭을 회피하여 국부적으로 설치되는 것을 예시한 도면이다.
도 11은 도 10의 도면에서 상측 일부를 절개하여 바라본 평면도이다.
도 12는 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법의 흐름도이다.
도 13의 (a) 및 (b)는 미세 다공성 냉각구조체의 열 전달 특성 고찰을 위해 제작된 실험용 형판을 보여주는 도면이다.
도 14의 (a)는 도 13의 미세 다공성 냉각구조체의 열 전달 특성 고찰을 위해 형판을 가열한 과정에서 20초 경과 후 비교예의 형판 표면의 온도분포를 보여주는 도면이며, (b)는 제1 실시예의 형판 표면의 온도분포를 보여주는 도면이고, (c)는 제2 실시예의 형판 표면의 온도분포를 보여주는 도면이다.
도 15의 (a)는 도 14의 실험에서 비교예, 제1 실시예, 제2 실시예에 대한 B지점에서의 온도 변화를 도시한 그래프이고, (b)는 C지점에서의 온도 변화를 도시한 그래프이며, (c)는 B와 C점 간의 온도 차이의 변화를 도시한 그래프이다.
도 16은 사출성형 실험에서 비교예와 제2 실시예를 적용하였을 때 냉각시간에 따른 성형품의 변화량을 비교한 그래프이다.
이하, 도면을 참조한 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하의 설명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되는 용어로서, 그 자체에 의미가 한정되지 아니하며, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 명세서 전체에 걸쳐 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세히 설명하기로 한다.
먼저, 본 발명의 실시 예에 따른 냉각 모듈은, 냉각 효율을 향상시킬 수 있는 미세 다공성 냉각구조체가 적용된 냉각 모듈(이하 '냉각 모듈'이라 함)로서, 금형 코어 내부에서 등각 냉각을 수행하도록 구성될 수 있으며, 금형 코어 내부에서 고온이 발생되는 위치마다 설치되어 금형 코어 전반에 걸쳐 필요한 부분만 국부적 냉각을 수행하도록 하여 냉각 효율을 현저히 향상시킨 냉각 모듈이다.
도 1의 (a)는 기계가공으로 제작되는 종래의 직선형 냉각회로를 예시한 도면이고, (b)는 3D프린팅으로 제작 가능한 종래의 등각 냉각회로를 예시한 도면이며, 도 2의 (a)는 통상의 금형 구조를 설명하기 위한 도면이고, (b)는 (a)에 도시된 금형 코어에 종래의 등각 냉각회로가 일체형으로 구성된 상태를 보여주는 도면이다.
도 1 및 도 2를 참조하면, 금형 코어(10)라 함은 도 2의 (a)에 도시된 바와 같이 통상 하부 몰드에 마련된 형판(14)에 장착되며, 상부 몰드(11, Upper mold)와 하부 몰드(12, Lower mold) 사이 내부에 마련된 성형 공간(13, Cavity plate)에서 성형되는 성형품의 형태를 각 몰드(11, 12)와 함께 결정하면서 냉각수(CL)가 흐르는 냉각회로(15)가 내부로 연결되어 금형을 냉각하는 수단으로서, 종래의 금형 코어(10) 내부에는 도 1의 (a)와 같은 직선형 냉각회로(15a) 또는 도 1의 (b)와 도 3의 (b)에 도시된 바와 같이 성형품의 곡면 형상에 근접하게 형성되어 형상 적응형 냉각회로라고도 불리우는 등각 냉각회로(15b, Conformal cooling channel)가 마련되어 냉각을 수행하였다.
그러나, 직선형 냉각회로(15a)는 가공이 용이하다는 장점은 있으나, 금형 표면의 균일한 냉각이 어려워 냉각시간의 지연은 물론 성형품 온도가 불균일해져 제품의 후변형이 발생되었고, 등각 냉각회로(12)는 3D프린팅 기술의 발전으로 인해 성형품의 곡면 형상에 근접하게 형성되어 균일하면서도 빠른 냉각이 가능하나, 금속 3D 프린팅 공정의 높은 제작비용에 따른 산업 현장에서의 제한적 사용과, 낮은 표면조도로 인해 후가공이 필수적인 단점이 있었다.
본 발명의 실시 예에 따른 냉각 모듈(100)은, 상술한 직선형 냉각회로(15a) 또는 등각 냉각회로(15b)의 문제점을 보완하면서도 냉각 효율을 향상시킨 냉각 모듈로서, 후술할 때 자세히 설명하겠지만 직선형 냉각회로(15a)보다는 냉각 효율이 좋은 등각 냉각회로(15b)의 냉각시간보다 약 2배 이상을 감소시킨 효과가 있다.
도 3은 금형 코어 내부에 마련된 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈을 보여주는 사시도이며, 도 4는 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈의 분해도이고, 도 5는 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈의 측단면도이며,
또한, 도 6의 (a) 내지 (d)는 격자(Lattice) 형태의 미세 다공 구조(Micro-cellular structure)들을 예시한 도면이고, 도 7의 (a) 내지 (c)는 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태의 미세 다공 구조(Micro-cellular structure)들을 예시한 도면이다.
또한, 도 8의 (a)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 8의 (b)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 8의 (c)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면이다.
또한, 도 9의 (a)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 9의 (b)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 9의 (c)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면이다.
또한, 도 10은 도 3의 미세 다공성 냉각구조체가 적용된 냉각 모듈이 금형 코어 내에서 이젝터핀의 간섭을 회피하여 국부적으로 설치되는 것을 예시한 도면이고, 도 11은 도 10의 도면에서 상측 일부를 절개하여 바라본 평면도이다.
도 3 내지 도 11을 참조하면, 상기와 같은 본 발명의 실시 예에 따른 냉각 모듈(100)은, 몸체부(110), 미세 다공성 냉각구조체(120) 및 냉각회로(130)를 포함하여 금형 코어(10) 내부에서 냉각을 수행하도록 구성될 수 있다.
구체적으로, 몸체부(110)는 냉각 모듈(100)의 하우징을 구성하며, 미세 다공성 냉각구조체(120)가 삽입된 상태로 금형 코어(10) 내부로 삽입될 수 있다. 여기서, 몸체부(110)는 금형 코어(10)와 일 몸체를 이루도록 형성될 수도 있으나, 바람직하게는 금형 코어(10)로부터 분리 가능하도록 형성되어 후술하는 미세 다공성 냉각구조체(120)를 금형 코어(10)로부터 분리 가능한 형태로 형성할 수 있다.
미세 다공성 냉각구조체(120)가 금형 코어(10)로부터 분리 가능한 형태로 형성될 시에는 유지 보수성 향상 및 냉각 효율이 높아지는 장점이 있다.
몸체부(110)는 미세 다공성 냉각구조체(120)의 삽입을 위해 구조체 삽입홈(111)을 형성할 수 있고, 구조체 삽입홈(111)은 바람직하게는 몸체부(110) 상측에 마련될 수 있다. 즉, 몸체부(110) 상측은 내측으로 함몰되어 구조체 삽입홈(111)을 형성할 수 있다.
여기서, 몸체부(110)의 상측은 금형 코어(10)를 사이에 두고 성형품과 대향되는 부분으로써 성형품과 가장 가까이에 위치한 부분이다. 몸체부(110)의 상측에 마련된 구조체 삽입홈(111)에 삽입되는 미세 다공성 냉각구조체(120)는 몸체부(110) 내에서 성형품과 가장 가까이에 위치하여 냉각을 수행하도록 구성될 수 있다.
또한, 몸체부(110)는 금형 코어(10)에 삽입된 상태로 고정되기 위해 고정부(112)를 마련할 수 있다. 고정부(112)는 위치가 한정되지는 아니하나, 몸체부(110)가 금형 코어(10)에 삽입되었을 경우에 외측 방향으로 노출되는 부분인 하측에 마련됨이 바람직하며, 고정 방식은 한정되지 아니하고 체결부재를 이용하여 체결할 수도 있고, 핀을 삽입하여 고정할 수도 있고, 자력을 이용한 고정 방식 등 조립과 해제가 용이한 방식이라면 모두 사용될 수 있다.
한편, 금형 코어(10)는 성형품의 형태를 결정하기 위해 성형품의 형태와 상응하는 형태의 표면을 형성함이 당연한데, 금형 코어(10) 내부로 삽입되는 몸체부(110)는 상면에 이러한 금형 코어(10)의 표면과 일정 거리를 유지하는 곡면(113)을 형성할 수가 있다.
이는, 후술하는 미세 다공성 냉각구조체(120)가 등각 냉각을 수행하기 위해 성형품과 마주하는 금형 코어(10)의 표면과 일정 거리를 유지하는 곡면(113)을 형성함에 있어 미세 다공성 냉각구조체(120)의 곡면(123)과 면일치를 하기 위함으로, 미세 다공성 냉각구조체(120)와 함께 금형 코어(10)로 균일한 열 전도가 가능할 수 있다.
미세 다공성 냉각구조체(120)는 미세 단위 셀(Micro unit cell)이 주기적으로 반복되어 형성되는 구조체로서 다수의 중공부를 형성하며, 이 중공부들은 모두 연결될 수 있다.
보다 구체적으로, 미세 다공성 냉각구조체(120)는 도 6에 도시된 바와 같이 격자(Lattice) 형태이거나, 도 7에 도시된 바와 같이 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태일 수 있는데, 보다 바람직하게는 TPMS 형태로 형성될 수가 있다.
격자(Lattice) 형태는 도 6의 (a) 내지 (d)에 도시된 바와 같이 원통형 단위체가 격자를 이루어 Body-centered cubic(BCC) 형태, Edge-centered cubic(ECC) 형태, Octet-truss cubic(OTC) 형태, Hexagon cubic(HXC) 형태 등을 이루는 형태일 수 있다.
TPMS 형태는 도 7의 (a)와 같은 P surface (여기서, P: cos(x) + cos(y) + cos(z) = 0)이거나, 도 7의 (b)와 같은 D surface (여기서, D: sin(x)sin(y)sin(z) + sin(x)cos(y)cos(z) + cos(x)sin(y)cos(z) + cos(x)cos(y)sin(z) = 0)이거나, 도 7의 (c)와 같은 G surface(여기서, G: cos(x)sin(y) + cos(y)sin(z) + cos(z)sin(x) = 0)일 수 있으며, 여기에서 설명되지 아니하였더라도 통상 TPMS 형태로 분류된다면 모두 포함될 수 있다.
이러한 미세 다공성 냉각구조체(120)는 상술한 바와 같이 구조체 삽입홈(111)에 삽입되어 몸체부(110)를 통해 금형 코어(10) 내부로 위치될 수 있고, 미세 다공성 냉각구조체(120)로 냉각 유체를 흘려 보내주면 서로 연결된 다수의 중공부들을 통해 내부로 냉각 유체의 흐름이 자유롭게 이루어져 금형의 냉각을 수행할 수 있다.
이때, 미세 다공성 냉각구조체(120)는 미세 단위 셀의 크기가 20mm이하인 것이 냉각에 효과적이나, 반드시 이에 한정되는 것은 아니며 상술한 범위를 벗어날 수도 있다.
또한, 미세 다공성 냉각구조체(120)는 중공율을 달리하여 냉각율을 조절할 수도 있다. 이때, 중공율은 미세 단위 셀의 크기 변화나, 미세 단위 셀의 설계변수(격자 형태의 경우 원통부 직경, TPMS 형태의 경우 곡면 두께 등) 변화를 통해 중공부의 중공율을 달리할 수 있다.
구체적으로, 도 8의 (a)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 8의 (b)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 8의 (c)는 미세 단위 셀의 크기가 10mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면으로써, 중공율의 변화를 예시한다.
또한, 도 9의 (a)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 70%를 형성한 도면이고, 도 9의 (b)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 50%를 형성한 도면이며, 도 9의 (c)는 미세 단위 셀의 크기가 20mm일 경우에 설계변수를 조절하여 중공율 30%를 형성한 도면으로써, 중공율의 변화를 예시한다.
이처럼, 미세 단위 셀을 일정 크기에 고정하여 설계변수의 조절을 통해 중공율을 달리할 수도 있고, 도면에는 도시되지 않았으나 상술한 바와 같이 미세 단위 셀의 크기나 형상 변화 등을 통해 중공율을 달리할 수도 있다.
중공율을 달리할 경우에는 중공부를 따라 유동하는 유체 흐름이 조절됨으로써 냉각 효율이 달라질 수 있어, 중공율의 조절에 따라 냉각율을 원하는 대로 설정할 수 있다.
한편, 미세 다공성 냉각구조체(120)는 몸체부(110)의 설명하는 부분에서 상술하였듯이 몸체부(110)를 통해 금형 코어(10)로부터 분리 가능한 형태로 형성될 수가 있어 냉각 효율과 유지보수성을 향상시킬 수 있다.
또한, 몸체부(110)와 함께 성형품과 마주하는 금형 코어의 표면과 일정 거리를 유지하는 곡면(123)을 형성할 수 있다. 이를 통해, 냉각 부위에 대해 등각 냉각을 수행할 수가 있다.
아울러, 미세 다공성 냉각구조체(120)는 형상적 복잡함으로 인하여 3D 프린팅으로 제작함이 바람직하나, 반드시 한정되는 것은 아니며 기계가공이나 특수가공 등으로 제작할 수도 있다.
상기와 같은 미세 다공성 냉각구조체(120)는, 몸체부(110)의 구조체 삽입홈(111)에 삽입되어, 몸체부(110)를 통해 금형 코어(10) 내부에 위치될 수 있고, 냉각회로(130)로부터 냉각 유체를 전달 받아 금형을 냉각시킬 수 있다.
냉각회로(130)는 냉각 유체가 미세 다공성 냉각구조체(120)를 통과하도록 관로를 형성할 수 있다. 즉, 냉각회로(130)는 미세 다공성 냉각구조체(120)로 냉각 유체가 유입되도록 유입관(131)을 형성함과 동시에, 미세 다공성 냉각구조체(120)에서 냉각 작용을 한 냉각 유체가 배출되도록 배출관(132)을 형성할 수 있다.
이때, 냉각회로(130)는 금형 형판(미도시)과 연결될 수 있으나, 이는 예시적인 것일 뿐 한정되는 것은 아니며 냉각회로(130)는 다른 곳에 연결되어 냉각 유체를 전달 받도록 구성될 수도 있다.
상기와 같이 구성되는 냉각 모듈(100)은 도 10에 도시된 바와 같이 금형 코어 내부에서 고온이 발생되는 위치마다 근접하여 설치될 수 있고, 이를 통해 금형의 국부적 냉각을 수행할 수 있다. 이를 통해, 등각 냉각을 효과적으로 달성하면서도 필요한 부분만을 적은 제작비용으로 금형 크기에 제약 없이 적용이 가능한 장점을 나타낼 수 있다.
한편, 성형품 내측에 리브(RB) 등의 구조물이 많을 경우에는 금형 온도가 높게 나타나는게 일반적이고, 통상 주변에 이젝터핀(EJP)이 설치되는 관계로 냉각회로의 설치가 어렵거나 이젝터핀의 간섭을 피해 설치되어야 하는 관계로 리브가 포함된 고온부에는 근접하여 형성되기 어렵다.
그러나, 본 발명의 냉각 모듈은 도 10 및 도 11에 도시된 바와 같이 이젝터핀 삽입홀(140)을 더 포함하여 구성됨으로써 이러한 문제점을 회피하도록 구성되었다. 이젝터핀 삽입홀(140)은 통상 이젝터핀(EJP)이 형성되는 방향을 고려할 때 몸체부(110) 상하측 방향으로 형성될 수 있으나, 이는 예시적인 것으로 한정되는 것은 아니며 형성 방향은 달라질 수 있다.
이러한 이젝터핀 삽입홀(140)에 이젝터핀(EJP)이 삽입 관통되도록 하여 이젝터핀(EJP)과 냉각 모듈(100)의 간섭을 피할 수 있는데, 이때 이젝터핀 삽입홀(140)은 이젝터핀이 몸체부(110)와 미세 다공성 냉각구조체(120)를 관통하도록 형성할 수도 있고, 미세 다공성 냉각구조체(120)는 관통하지 않고 몸체부(110)만 관통하도록 형성되는 것 모두 가능할 수 있다.
본 발명의 냉각 모듈(100)은, 이젝터핀 삽입홀(140)을 이용해 이젝터핀하고 간섭을 회피하도록 함으로써 고온부(HP)에 보다 근접할 수 있고, 고온부(HP)를 효과적으로 냉각시킬 수가 있다.
아울러, 본 발명의 냉각 모듈(100)은, 몸체부(110)와 금형 코어(10) 사이에 개재되는 밀폐부재(150)를 더 포함할 수 있다. 여기서, 밀폐부재(150)는 재질은 한정되지 아니하나 바람직하게는 고무나 실리콘 등의 탄성 마찰 재질로 마련될 수 있으며, 몸체부(110)와 금형 코어(10) 사이에서 냉각 유체의 누출을 방지할 수 있다.
이하, 도 12를 참조하여, 상기와 같은 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법에 대해 간단히 설명하기로 한다.
도 12는 본 발명의 실시 예에 따른 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법의 흐름도이다.
도 12를 참조하면, 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법은, a) 금형의 고온부에 대응되는 금형 코어(10)의 국부적 위치마다 미세 다공성 냉각구조체(120)가 적용된 냉각 모듈(100)이 삽입될 음각의 삽입홈(도면부호 미도시)을 형성하는 단계(S10), b) 미세격자 냉각구조체가 삽입된 냉각 모듈(100)을 제작하는 단계(S20), c) 삽입홈마다 냉각 모듈(100)을 삽입하는 단계(S30) 및 d) 미세 다공성 냉각구조체(120)를 통해 냉각 유체를 유동시켜 금형의 고온부를 냉각시키는 단계(S40)를 포함하여 구성될 수 있다.
여기서, 금형의 고온부라 함은 통상 성형품 내측에 형성되는 리브(rib) 부분일 수 있으나, 이는 예시적인 것으로 한정되는 것은 아니며 작업자에 의해 달리 설정될 수도 있다.
또한, 금형 코어(10)와 냉각 모듈(100)은 3D 프린터로 제작될 수 있으며, 3D 프린터로 제작되기 때문에 일체형으로 마련될 수도 있으나, 바람직하게는 유지보수성과 냉각 효율의 향상을 위해 금형 코어(10)와 냉각 모듈(100)이 분리형으로 제작될 수 있다. 또한, 냉각 모듈(100)의 경우에도 미세 다공성 냉각구조체(120)가 몸체부(110)와 일체로도 제작되거나, 분리형으로 제작되어 삽입되는 것 모두 가능할 수 있다.
상기와 같이 냉각 모듈(100)을 이용하여 금형을 국부적으로 냉각하면 적은 비용으로도 보다 효과적으로 냉각할 수 있는 장점을 나타낼 수 있다.
이외에 설명되지 아니한 부분은 미세 다공성 냉각구조체가 적용된 냉각 모듈에 대한 설명에서 모두 설명하였으므로, 이하 구체적인 설명은 생략하기로 한다.
이하, 본 발명의 실시 예에 따른 냉각 모듈(100)의 효과를 보다 구체적으로 살펴보기 위해 하기 실험 예를 제시하나, 실험 예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 실험 예에 반드시 한정되는 것은 아니다.
[실험 예] 미세 다공성 냉각구조체의 냉각 성능 검증
[미세 다공성 냉각구조체의 설계]
미세 다공성 냉각구조체의 냉각 성능을 검증하기 위해, 본 발명의 실시 예와 같이 몸체부(110), 미세 다공성 냉각구조체(120) 및 냉각회로(130)를 포함하여 구성하였으며, 몸체부(110)는 금형 코어(10)로부터 분리되고, 미세 다공성 냉각구조체(120)는 몸체부(110)의 구조체 삽입홈(111)에 삽입 구성하였으며, 냉각회로(130)는 냉각 유체가 미세 다공성 냉각구조체(120)로 흘러들어간 후 통과하여 나오도록 구성하였다.
여기서, 미세 다공성 냉각구조체(120)는 삼중주기적 최소 곡면(TPMS) 중 단위체적당 표면적이 넓어 열교환 특성과 구조적 강성이 우수한 D-surface 구조를 사용하였으며, 부피 분율은 50%로 설정하고, 셀의 크기를 각각 10mm와 20mm로 하여 알루미늄 합금 분말재(AlSi-7Mg)를 소재로 3D 프린터로 제작 후, 마이크로 블라스팅 장비로 표면처리와, 진공 열처리로를 사용해 열처리를 수행하였다.
[미세 다공성 냉각구조체의 열 전달 특성 고찰]
본 실험에서는 상술한 셀의 크기가 10mm로 제작된 미세 다공성 냉각구조체가 적용된 냉각 모듈(이하, '제1 실시예')과, 셀의 크기가 20mm로 제작된 미세 다공성 냉각구조체가 적용된 냉각 모듈(이하, '제2 실시예')와, 종래 형상 적응형 냉각회로가 적용된 냉각 모듈(이하, '비교예')의 냉각 구조에 따른 열 전달 특성을 비교하였다.
도 13의 (a) 및 (b)는 미세 다공성 냉각구조체의 열 전달 특성 고찰을 위해 제작된 실험용 형판을 보여주는 도면이다.
실험을 위해 도 13에 도시된 바와 같이 제1 및 제2 실시예, 비교예가 적용된 금형 코어를 장착하기 위한 실험용 형판(Mold plate)를 제작하였고, 실험용 형판을 통한 가열 과정에서의 금형 표면 온도를 열화상 카메라로 촬영하면서, 온수조절기를 사용하여 실험용 형판 내부로 냉각수를 공급 후 배출시켰다.
(온도분포)
사출성형 후 20초 경과 시 제1 및 제2 실시예와 비교예의 금형 코어 표면의 온도분포를 비교하였다. 그 결과는 도 14에 도시하였다.
도 14의 (a)는 도 13의 미세 다공성 냉각구조체의 열 전달 특성 고찰을 위해 형판을 가열한 과정에서 20초 경과 후 비교예의 형판 표면의 온도분포를 보여주는 도면이며, (b)는 제1 실시예의 형판 표면의 온도분포를 보여주는 도면이고, (c)는 제2 실시예의 형판 표면의 온도분포를 보여주는 도면이다.
도 14를 참조하면, 온도 상승이 상대적으로 높게 나타나는 도 13의 B점을 기준으로 비교예가 68.2℃로 가장 높은 온도를 보인 반면, 제1 실시 예가 55.5℃로 가장 낮은 온도를 보였다.
(가열속도 및 균일도)
제1 및 제2 실시예와 비교예의 가열 속도와 균일도를 정량적으로 고찰하기 위해 도 13에 표시한 B, C점의 온도를 시간대별로 비교하였다.
도 15의 (a)는 도 14의 실험에서 비교예, 제1 실시예, 제2 실시예에 대한 B지점에서의 온도 변화를 도시한 그래프이고, (b)는 C지점에서의 온도 변화를 도시한 그래프이며, (c)는 B와 C점 간의 온도 차이의 변화를 도시한 그래프이다.
먼저, 도 15의 (a)를 참조하면, B 지점에서는 비교예가 가장 높은 가열속도를 보인 반면, 제1 실시예가 가장 낮은 가열속도를 보임을 확인할 수 있다.
또한, 도 15의 (b)를 참조하면, C 지점에서는 제2 실시예가 가장 높은 가열속도를 보인 반면, 제1 실시예 및 비교예는 유사한 경향을 보여, 위치별로 상이한 경향을 보였다.
한편, 도 15의 (c)를 참조하면, B와 C 지점간의 온도 차이(△T)의 변화는 비교예가 가장 높은 온도 차이를 보인 반면, 제1 실시예가 가장 낮은 온도 차이를 보임을 확인하였다.
위와 같은 결과를 종합적으로 고려할 때, 비교예는 중앙부(B)의 가열속도는 빠르지만 외곽부(C)는 열이 잘 전달되지 못하여 가열속도가 늦고, 결과적으로 온도 균일도가 낮게 나타났다.
반면, 실시예 2는 중앙부(B)의 가열속도가 높으면서도 외곽부(C)의 가열속도가 가장 빨라 우수한 온도균일도를 가져 궁극적으로 사출 금형의 냉각성능 측면에서 가장 우수한 특성을 보임을 알 수 있다.
[사출성형 실험]
상기 결과를 기반으로 가장 우수한 특성을 보인 제2 실시예와 비교를 위한 비교예를 삽입한 금형 코어를 적용하여 사출성형 실험을 실시하였으며, 각각의 경우에 대해 냉각시간에 따른 성형품의 품질을 확인하기 위해 5초부터 30초까지 5초 단위로 냉각시간을 변화시켜가며 실험을 실시하였다.
도 16은 사출성형 실험에서 비교예와 제2 실시예를 적용하였을 때 냉각시간에 따른 성형품의 변화량을 비교한 그래프이다.
도 16을 참조하면, 비교예의 경우 냉각시간이 5초일 때 변형량이 2mm부근으로 상대적으로 높게 나타난 반면, 10초 이상의 냉각시간이 적용된 경우 1.3~1.1mm 수준으로 서서히 감소하는 결과를 보였다.
반면, 제2 실시예의 경우 5초 냉각의 경우에도 변형량이 1.3mm 수준으로 낮게 나타났으며, 이후 냉각시간의 증가에 따라 서서히 감소함을 알 수 있다.
이와 같은 결과로부터 미세 다공성 냉각구조체를 사용한 경우, 종래의 형상 적응형 냉각회로를 적용한 금형 코어에 비해 냉각속도와 온도균일도가 향상된 성능을 보임을 확인할 수 있다.
이상으로 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.
10 : 금형 코어
11 : 상부 몰드
12 : 하부 몰드
13 : 성형 공간
14 : 형판
15 : 종래 냉각회로
15a : 직선형 냉각회로
15b : 등각 냉각회로
100 : 미세 다공성 냉각구조체가 적용된 냉각 모듈
110 : 몸체부
111 : 구조체 삽입홈
112 : 고정부
113 : 곡면
120 : 미세 다공성 냉각구조체
123 : 곡면
130 : 냉각회로
131 : 유입관
132 : 배출관
140 : 이젝터핀 삽입홀
150 : 밀폐부재
CL : 냉각수
HP: 고온부
EJP : 이젝터핀
RB : 리브

Claims (10)

  1. 금형 코어 내부에서 고온이 발생되는 위치마다 설치되며, 공급되는 냉각 유체를 내부로 유동시켜 금형의 국부적 냉각을 수행하는 냉각 모듈로서,
    금형 코어 내부로 삽입되는 몸체부;
    상기 몸체부 상측에 삽입되며, 미세 단위 셀(Micro unit cell)이 주기적으로 반복 형성되어 다수의 연결된 중공부를 형성하는 미세 다공성 냉각구조체 및
    상기 냉각 유체가 상기 미세 다공성 냉각구조체를 통과하도록 관로를 형성하는 냉각회로를 포함하고,
    상기 몸체부는,
    상기 금형 코어와 성형품 사이에서 대향되는 위치인 상측에서 내측으로 함몰된 구조로 구조체 삽입홈을 형성하여 상기 미세 다공성 냉각구조체를 포함하며,
    상기 금형 코어 내부에 삽입되었을 경우, 외측 방향으로 노출되는 하측에 고정부를 마련하여 상기 금형 코어에 삽입된 상태로 고정되고,
    상기 미세 다공성 냉각 구조체는,
    격자(Lattice) 형태 또는 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태로 형성되고,
    상기 미세 다공성 냉각구조체는,
    상기 중공부의 중공율을 달리하여 냉각율을 조절할 수 있으며,
    상기 중공율을 달리하여 냉각율을 조절하는 것은,
    상기 중공부를 따라 유동하는 유체 흐름이 조절되어 냉각율을 조절하는 것이고,
    상기 중공율은,
    상기 미세 단위 셀의 크기 변화, 상기 미세 단위 셀의 설계변수 변화를 통해 변경되고,
    상기 미세 단위 셀의 설계변수는,
    상기 격자 형태의 경우, 상기 격자 형태에 마련된 원통부의 직경의 변화를 설계변수로 설정하고, 상기 삼중주기적 최소 곡면 형태인 경우, 상기 삼중주기적 최소 곡면 형태의 곡면 두께의 변화를 설계변수로 설정하는 것을 특징으로 하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  2. 제 1 항에 있어서,
    상기 미세 다공성 냉각구조체는,
    상기 몸체부를 통해 상기 금형 코어로부터 분리 가능하도록 형성되는 것을 특징으로 하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  3. 제 1 항에 있어서,
    상기 몸체부 및 미세 다공성 냉각구조체는,
    성형품과 마주하는 상기 금형 코어의 표면과 일정 거리를 유지하는 곡면을 형성하여 등각 냉각을 수행하는 것을 특징으로 하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서,
    상기 미세 다공성 냉각구조체는,
    3D 프린팅으로 제작되는 것을 특징으로 하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  7. 제 1 항에 있어서,
    금형 내부에 이젝터핀이 마련될 경우 상기 이젝터핀과 간섭되지 않도록,
    상기 이젝터핀을 내부로 삽입 관통시키는 이젝터핀 삽입홀을 더 포함하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  8. 제 1 항에 있어서,
    상기 몸체부와 금형 코어 사이에 개재되어 냉각 유체의 누출을 방지하는 밀폐부재를 더 포함하는 미세 다공성 냉각구조체가 적용된 냉각 모듈.
  9. 제 1 항 내지 제 3 항 및 제 6 항 내지 제 8 항 중 어느 한 항의 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법으로서,
    a) 금형의 고온부에 대응되는 금형 코어의 국부적 위치마다 상기 미세 다공성 냉각구조체가 적용된 냉각 모듈이 삽입될 음각의 삽입홈을 형성하는 단계;
    b) 미세격자 냉각구조체가 삽입된 냉각 모듈을 제작하는 단계;
    c) 상기 삽입홈마다 상기 냉각 모듈을 삽입하는 단계 및
    d) 상기 미세 다공성 냉각구조체를 통해 냉각 유체를 유동시켜 상기 금형의 고온부를 냉각시키는 단계를 포함하고,
    상기 미세 다공성 냉각구조체가 적용된 냉각 모듈은,
    상기 금형 코어와 성형품 사이에서 대향되는 위치인 상측에서 내측으로 함몰된 구조로 구조체 삽입홈을 형성하여 상기 미세 다공성 냉각구조체를 포함하며,
    상기 금형 코어 내부에 삽입되었을 경우, 외측 방향으로 노출되는 하측에 고정부를 마련하여 상기 금형 코어에 삽입된 상태로 고정되고,
    상기 미세 다공성 냉각구조체는,
    격자(Lattice) 형태 또는 삼중주기적 최소 곡면(Triply periodic minimal surface; TPMS) 형태로 형성되고,
    상기 중공부의 미세 단위 셀의 형상 혹은 중공율을 달리하여 냉각율을 조절할 수 있으며,
    상기 중공율을 달리하여 냉각율을 조절하는 것은,
    상기 중공부를 따라 유동하는 유체 흐름이 조절되어 냉각율을 조절하는 것이고,
    상기 중공율은,
    상기 미세 단위 셀의 크기 변화, 상기 미세 단위 셀의 설계변수 변화를 통해 변경되고,
    상기 미세 단위 셀의 설계변수는,
    상기 격자 형태의 경우, 상기 격자 형태에 마련된 원통부의 직경의 변화를 설계변수로 설정하고, 상기 삼중주기적 최소 곡면 형태인 경우, 상기 삼중주기적 최소 곡면 형태의 곡면 두께의 변화를 설계변수로 설정하는 것을 특징으로 하는 미세 다공성 냉각구조체가 적용된 냉각 모듈을 활용한 금형의 국부적 냉각 방법.
  10. 삭제
KR1020210133653A 2021-10-08 2021-10-08 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법 KR102392611B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210133653A KR102392611B1 (ko) 2021-10-08 2021-10-08 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법
US17/963,117 US20230111054A1 (en) 2021-10-08 2022-10-10 Cooling module with microporous cooling structure applied thereto and method of locally cooling mold using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210133653A KR102392611B1 (ko) 2021-10-08 2021-10-08 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법

Publications (1)

Publication Number Publication Date
KR102392611B1 true KR102392611B1 (ko) 2022-04-29

Family

ID=81429025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210133653A KR102392611B1 (ko) 2021-10-08 2021-10-08 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법

Country Status (2)

Country Link
US (1) US20230111054A1 (ko)
KR (1) KR102392611B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030011666A (ko) * 2001-07-31 2003-02-11 에스케이케미칼주식회사 제품의 성형을 위한 방법 및 이때 사용하는 금형
KR101554491B1 (ko) * 2015-04-15 2015-09-21 이중재 라디에이터 그릴 성형용 사출 성형 금형 및 그 제조 방법
KR20180079499A (ko) * 2016-12-30 2018-07-11 한국화학연구원 3d 프린터를 이용하여 제작된 열교환 마이크로 반응기
KR101920157B1 (ko) * 2017-06-16 2018-11-19 박석동 3차원 냉각코어를 갖는 사출금형장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664476B2 (ja) * 2016-06-08 2020-03-13 三菱電機株式会社 射出圧縮成形金型および射出圧縮成形方法
GB201612294D0 (en) * 2016-07-15 2016-08-31 Rolls Royce Plc Method and apparatus for particle injection moulding
US10946555B2 (en) * 2017-10-17 2021-03-16 Autodesk, Inc. Conformal cooling molds with lattice structures for injection molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030011666A (ko) * 2001-07-31 2003-02-11 에스케이케미칼주식회사 제품의 성형을 위한 방법 및 이때 사용하는 금형
KR101554491B1 (ko) * 2015-04-15 2015-09-21 이중재 라디에이터 그릴 성형용 사출 성형 금형 및 그 제조 방법
KR20180079499A (ko) * 2016-12-30 2018-07-11 한국화학연구원 3d 프린터를 이용하여 제작된 열교환 마이크로 반응기
KR101920157B1 (ko) * 2017-06-16 2018-11-19 박석동 3차원 냉각코어를 갖는 사출금형장치

Also Published As

Publication number Publication date
US20230111054A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
EA012661B1 (ru) Формовочный инструмент
JP2001508710A (ja) コンポジット製品の成形装置
JP6085295B2 (ja) 連続段階冷却チャネルを備えた成形装置
CN108620484B (zh) 用于热冲压模具的模型组件
JP2001018229A (ja) 合成樹脂成形用金型並びに金型温度調整装置及び金型温度調整方法
SK49695A3 (en) Temperable tool, or temperable form for manufacture of plastic pressing and method of manufacture of these tools or forms
CN104760169B (zh) 一种基于激光制造技术的随形冷却装置制造方法
KR102392611B1 (ko) 미세 다공성 냉각구조체가 적용된 냉각 모듈 및 이를 활용한 금형의 국부적 냉각 방법
JP2013035204A (ja) 金型
JP3137150U (ja) 光学レンズの製造に用いる冷却水路を具えたプラスチック成型金型
CN110450368B (zh) 一种高散热注塑模具
US8033808B2 (en) Pressure compensating molding system
KR20200072121A (ko) 다이캐스팅 금형용 칠 벤트
CN107580541B (zh) 成型工具
KR101157511B1 (ko) 성형용 금형 및 이를 갖는 성형 시스템
KR20090067765A (ko) 냉각 구조를 갖는 금형
JP3827461B2 (ja) 成形用金型
CN109746426B (zh) 一种具有形状适应性的模块化铸造冷却速度控制装置
KR20070041468A (ko) 전열사출금형
JP7031666B2 (ja) 成形装置及び成形品の製造方法
JP5960862B2 (ja) 金型装置および金型装置の製造方法
KR101119344B1 (ko) 플라스틱 사출금형의 코어 삽입식 냉각장치
JP4034996B2 (ja) 成形方法
CN207290769U (zh) 一种液态硅胶冷流道唧嘴
JP7052106B2 (ja) 金型の構造

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant