KR102357802B1 - Mask integrated frame and producing method of mask integrated frame - Google Patents

Mask integrated frame and producing method of mask integrated frame Download PDF

Info

Publication number
KR102357802B1
KR102357802B1 KR1020200091191A KR20200091191A KR102357802B1 KR 102357802 B1 KR102357802 B1 KR 102357802B1 KR 1020200091191 A KR1020200091191 A KR 1020200091191A KR 20200091191 A KR20200091191 A KR 20200091191A KR 102357802 B1 KR102357802 B1 KR 102357802B1
Authority
KR
South Korea
Prior art keywords
mask
frame
cell
integrated
edge
Prior art date
Application number
KR1020200091191A
Other languages
Korean (ko)
Other versions
KR20200093486A (en
Inventor
이유진
Original Assignee
주식회사 오럼머티리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190067431A external-priority patent/KR102142435B1/en
Application filed by 주식회사 오럼머티리얼 filed Critical 주식회사 오럼머티리얼
Priority to KR1020200091191A priority Critical patent/KR102357802B1/en
Publication of KR20200093486A publication Critical patent/KR20200093486A/en
Application granted granted Critical
Publication of KR102357802B1 publication Critical patent/KR102357802B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H01L51/56
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • H01L51/0011
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 프레임 일체형 마스크와 프레임 일체형 마스크의 제조 방법에 관한 것이다. 본 발명에 따른 프레임 일체형 마스크의 제조 방법은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비한 프레임을 준비하는 단계; (b) 마스크의 적어도 두 측을 인장한 상태에서 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및 (c) 마스크를 프레임에 부착하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a frame-integrated mask and a method for manufacturing the frame-integrated mask. A method of manufacturing a frame-integrated mask according to the present invention is a method of manufacturing a frame-integrated mask in which a plurality of masks and a frame supporting the mask are integrally formed, (a) among a first direction and a second direction perpendicular to the first direction. preparing a frame having a plurality of mask cell regions along at least one direction; (b) applying the mask to the mask cell region of the frame while at least two sides of the mask are stretched; and (c) attaching the mask to the frame.

Description

프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법 {MASK INTEGRATED FRAME AND PRODUCING METHOD OF MASK INTEGRATED FRAME}MASK INTEGRATED FRAME AND PRODUCING METHOD OF MASK INTEGRATED FRAME

본 발명은 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 마스크를 프레임과 일체를 이루도록 할 수 있고, 각 마스크 간의 얼라인(align)을 명확하게 할 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법에 관한 것이다.The present invention relates to a frame-integrated mask and a method for manufacturing the frame-integrated mask. More specifically, it relates to a frame-integrated mask and a method of manufacturing the frame-integrated mask, which can make the mask integral with the frame and can clearly align the masks with each other.

최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.Recently, in the manufacture of thin plates, research on an electroforming method is in progress. The electroplating method immerses the anode body and the cathode body in an electrolyte, and applies power to electrodeposit a thin metal plate on the surface of the cathode body, so an ultra-thin plate can be manufactured and mass production can be expected.

한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.On the other hand, as a technology for forming pixels in the OLED manufacturing process, the FMM (Fine Metal Mask) method is mainly used to deposit an organic material at a desired location by attaching a thin metal mask to the substrate.

기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 마스크 하나에는 디스플레이 하나에 대응하는 셀이 여러개 구비될 수 있다. 또한, 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 프레임에 고정하는 과정에서 각 마스크가 평평하게 되도록 인장을 하게 된다. 마스크의 전체 부분이 평평하게 되도록 인장력을 조절하는 것은 매우 어려운 작업이다. 특히, 각 셀들을 모두 평평하게 하면서, 크기가 수 내지 수십 ㎛에 불과한 마스크 패턴을 정렬하기 위해서는, 마스크의 각 측에 가하는 인장력을 미세하게 조절하면서, 정렬 상태를 실시간으로 확인하는 고도의 작업이 요구된다.In the existing OLED manufacturing process, the mask is manufactured in the form of a stick or plate, and then the mask is welded and fixed to the OLED pixel deposition frame. A plurality of cells corresponding to one display may be provided in one mask. In addition, for large-area OLED manufacturing, several masks can be fixed to the OLED pixel deposition frame, and in the process of fixing to the frame, each mask is tensioned so that it is flat. Adjusting the tension so that the entire part of the mask is flat is a very difficult task. In particular, in order to align a mask pattern with a size of only a few to several tens of μm while flattening each cell, a high-level operation is required to check the alignment state in real time while finely adjusting the tensile force applied to each side of the mask. do.

그럼에도 불구하고, 여러 개의 마스크를 하나의 프레임에 고정시키는 과정에서 마스크 상호간에, 그리고 마스크 셀들의 상호간에 정렬이 잘 되지 않는 문제점이 있었다. 또한, 마스크를 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점이 있었다.Nevertheless, in the process of fixing a plurality of masks to one frame, there is a problem in that the masks are not well aligned with each other and between the mask cells. In addition, in the process of welding and fixing the mask to the frame, since the thickness of the mask film is too thin and has a large area, there is a problem in that the mask is sagged or twisted by a load.

초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. 이렇듯 초고화질의 OLED의 화소 크기를 고려하여 각 셀들간의 정렬 오차를 수 ㎛ 정도로 감축시켜야 하며, 이를 벗어나는 오차는 제품의 실패로 이어지게 되므로 수율이 매우 낮아지게 될 수 있다. 그러므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.In the case of ultra-high-definition OLED, the current QHD image quality is 500-600 PPI (pixel per inch), with a pixel size of about 30-50㎛, and 4K UHD and 8K UHD high-definition are higher than this -860 PPI, ~1600 PPI, etc. has a resolution of As such, in consideration of the pixel size of the ultra-high-definition OLED, the alignment error between each cell should be reduced to about several μm, and an error outside of this may lead to product failure, and thus the yield may be very low. Therefore, there is a need to develop a technology capable of preventing deformation such as sagging or twisting of the mask, and clarifying alignment, and a technology of fixing the mask to the frame.

따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크와 프레임이 일체형 구조를 이룰 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.Accordingly, the present invention has been devised to solve the problems of the prior art as described above, and an object of the present invention is to provide a frame-integrated mask and a method of manufacturing the frame-integrated mask, in which the mask and the frame can form an integrated structure.

또한, 본 발명은 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a frame-integrated mask and a method of manufacturing the frame-integrated mask that can prevent deformation such as sagging or warping of the mask and clarify alignment.

또한, 본 발명은 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킨 프레임 일체형 마스크 및 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a frame-integrated mask and a method for manufacturing the frame-integrated mask, which significantly reduce the manufacturing time and significantly increase the yield.

본 발명의 상기의 목적은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비한 프레임을 준비하는 단계; (b) 마스크의 적어도 두 측을 인장한 상태에서 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및 (c) 마스크를 프레임에 부착하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.
프레임은, 중공 영역을 포함하는 테두리 프레임부; 복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부를 포함하고, 마스크 셀 시트부는, 테두리 시트부; 제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부; 및 제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 포함할 수 있다.
제1 그리드 시트부 및 제2 그리드 시트부의 길이 방향에 수직하는 단면 형상은 삼각형 또는 사다리꼴 형상이거나, 또는, 단면 형상의 변, 모서리 중 적어도 하나가 라운딩진 삼각형 또는 사다리꼴 형상일 수 있다.
제1 그리드 시트부 및 제2 그리드 시트부는 OLED 화소 형성용 유기물 소스가 마스크 셀 영역을 통과할때 새도우 이펙트(shadow effect)가 생기는 것을 방지할 수 있다.
마스크는, 복수의 마스크 패턴이 형성된 마스크 셀, 및 마스크 셀 주변의 더미를 포함하고, 더미의 적어도 일부가 마스크 셀 시트부에 부착될 수 있다.
마스크는 하나의 마스크 셀을 포함하고, 각각의 마스크 셀 영역 상에 각각의 마스크가 부착될 수 있다.
마스크는 복수의 마스크 셀을 포함하고, 각각의 마스크 셀 영역 상에 각각의 마스크가 부착될 수 있다.
테두리 프레임부의 두께는 마스크 셀 시트부의 두께보다 두껍고, 마스크 셀 시트부의 두께는 마스크보다 두꺼울 수 있다.
마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질일 수 있다.
(b) 단계에서, 마스크의 각 측에 가하는 인장력은 4N을 초과하지 않을 수 있다.
하나의 마스크 셀을 포함하는 마스크의 각 측에 가하는 인장력은, N개(N은 2이상)의 마스크 셀을 포함하는 마스크의 경우보다, 인장력이 1/N로 감소될 수 있다.
(b) 단계에서, 마스크의 모든 측을 인장할 수 있다.
(b) 단계에서, 마스크가 평평한 상태로 마스크 셀 영역에 대응하도록 인장력을 조절하면서 마스크와 마스크 셀 영역의 정렬 상태를 확인할 수 있다.
(c) 단계에서, 프레임의 모서리에 최인접한 영역에 용접을 수행하여 마스크를 프레임에 부착할 수 있다.
(c) 단계에서, 마스크가 프레임에 부착될 때 마스크 셀 시트부와 마스크의 테두리가 겹치는 폭은 0.1mm 내지 2.5mm일 수 있다.
(c) 단계 이후, 프레임에 부착된 마스크를 기준 위치로 하여, 이웃하는 마스크 셀 영역 상에 마스크를 순차적으로 대응하고 정렬할 수 있다.
그리고, 본 발명의 상기의 목적은, 복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크로서, 프레임은, 중공 영역을 포함하는 테두리 프레임부; 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부를 포함하고, 각각의 마스크는 적어도 두 측이 인장된 상태에서 각각의 마스크 셀 영역에 대응되게 마스크 셀 시트부의 상부에 부착될 수 있다.
그리고, 본 발명의 상기의 목적은, 상기 프레임 일체형 마스크의 제조 방법으로 제조된, 프레임 일체형 마스크에 의해 달성된다.
The above object of the present invention is a method of manufacturing a frame-integrated mask in which a plurality of masks and a frame supporting the masks are integrally formed, (a) in at least one of a first direction and a second direction perpendicular to the first direction. preparing a frame having a plurality of mask cell regions along the (b) applying the mask to the mask cell region of the frame while at least two sides of the mask are stretched; and (c) attaching the mask to the frame.
The frame may include: an edge frame portion including a hollow region; It has a plurality of mask cell regions and includes a mask cell sheet part connected to an edge frame part, and the mask cell sheet part includes: an edge sheet part; at least one first grid sheet portion extending in a first direction and having both ends connected to the edge sheet portion; and at least one second grid sheet portion extending in a second direction perpendicular to the first direction, intersecting the first grid sheet portion, and having both ends connected to the edge sheet portion.
A cross-sectional shape perpendicular to the longitudinal direction of the first grid sheet portion and the second grid sheet portion may be a triangular or trapezoidal shape, or a triangular or trapezoidal shape in which at least one of a side and a corner of the cross-sectional shape is rounded.
The first grid sheet portion and the second grid sheet portion may prevent a shadow effect from occurring when the organic material source for forming an OLED pixel passes through the mask cell region.
The mask includes a mask cell in which a plurality of mask patterns are formed, and a dummy around the mask cell, and at least a portion of the dummy may be attached to the mask cell sheet portion.
The mask includes one mask cell, and each mask may be attached on each mask cell region.
The mask includes a plurality of mask cells, and each mask may be attached to each mask cell region.
The thickness of the edge frame part may be thicker than the thickness of the mask cell sheet part, and the thickness of the mask cell sheet part may be thicker than the mask.
The mask and the frame may be made of any one of invar, super invar, nickel, and nickel-cobalt.
In step (b), the tensile force applied to each side of the mask may not exceed 4N.
The tensile force applied to each side of the mask including one mask cell may be reduced to 1/N compared to the case of the mask including N (N is 2 or more) mask cells.
In step (b), all sides of the mask can be tensioned.
In step (b), the alignment state of the mask and the mask cell region may be checked while adjusting the tensile force so that the mask corresponds to the mask cell region in a flat state.
In step (c), the mask may be attached to the frame by welding in the region closest to the edge of the frame.
In step (c), when the mask is attached to the frame, the overlapping width of the mask cell sheet portion and the edge of the mask may be 0.1 mm to 2.5 mm.
After step (c), by using the mask attached to the frame as a reference position, the masks may be sequentially matched and aligned on the neighboring mask cell regions.
In addition, the above object of the present invention is a frame-integrated mask in which a plurality of masks and a frame supporting the mask are integrally formed, the frame comprising: an edge frame portion including a hollow region; A plurality of mask cell regions are provided along at least one of a first direction and a second direction perpendicular to the first direction, and a mask cell sheet portion connected to an edge frame portion, wherein each mask has at least two sides In a stretched state, it may be attached to the upper portion of the mask cell sheet to correspond to each mask cell region.
And, the above object of the present invention is achieved by a frame-integrated mask manufactured by the method for manufacturing the frame-integrated mask.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기와 같이 구성된 본 발명에 따르면, 마스크와 프레임이 일체형 구조를 이룰 수 있는 효과가 있다.According to the present invention configured as described above, there is an effect that the mask and the frame can form an integrated structure.

또한, 본 발명에 따르면, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 효과가 있다.In addition, according to the present invention, there is an effect of preventing deformation such as sagging or twisting of the mask and clarifying alignment.

또한, 본 발명에 따르면, 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 효과가 있다.In addition, according to the present invention, there is an effect that can significantly reduce the manufacturing time and significantly increase the yield.

도 1은 종래의 OLED 화소 증착용 마스크를 나타내는 개략도이다.
도 2는 종래의 마스크를 프레임에 부착하는 과정을 나타내는 개략도이다.
도 3은 종래의 마스크를 인장하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도 및 측단면도이다.
도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도 및 측단면도이다.
도 6은 본 발명의 일 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 8은 본 발명의 일 실시예에 따른 마스크의 인장 형태 및 마스크를 프레임의 셀 영역에 대응시키는 상태를 나타내는 개략도이다.
도 9는 본 발명의 일 실시예에 따른 마스크를 프레임의 셀 영역에 대응하여 부착하는 과정을 나타내는 개략도이다.
도 10은 본 발명의 여러 실시예에 따른 마스크가 프레임에 부착된 형태를 나타내는 부분 확대 단면도이다.
도 11은 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.
1 is a schematic diagram showing a conventional mask for OLED pixel deposition.
2 is a schematic diagram illustrating a process of attaching a conventional mask to a frame.
3 is a schematic diagram illustrating that an alignment error between cells occurs in the process of tensioning a conventional mask.
4 is a front view and a side cross-sectional view showing a frame-integrated mask according to an embodiment of the present invention.
5 is a front view and a side cross-sectional view illustrating a frame according to an embodiment of the present invention.
6 is a schematic diagram illustrating a manufacturing process of a frame according to an embodiment of the present invention.
7 is a schematic diagram illustrating a manufacturing process of a frame according to another embodiment of the present invention.
8 is a schematic diagram illustrating a state in which a mask is stretched and a mask corresponds to a cell region of a frame according to an embodiment of the present invention.
9 is a schematic diagram illustrating a process of attaching a mask corresponding to a cell region of a frame according to an embodiment of the present invention.
10 is a partially enlarged cross-sectional view illustrating a form in which a mask is attached to a frame according to various embodiments of the present invention.
11 is a schematic diagram illustrating an OLED pixel deposition apparatus using a frame-integrated mask according to an embodiment of the present invention.

후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 종래의 OLED 화소 증착용 마스크(10)를 나타내는 개략도이다.
도 1을 참조하면, 종래의 마스크(10)는 스틱형(Stick-Type) 또는 판형(Plate-Type)으로 제조될 수 있다. 도 1의 (a)에 도시된 마스크(10)는 스틱형 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임에 용접 고정시켜 사용할 수 있다. 도 1의 (b)에 도시된 마스크(100)는 판형(Plate-Type) 마스크로서, 넓은 면적의 화소 형성 공정에서 사용될 수 있다.
마스크(10)의 바디(Body)[또는, 마스크 막(11)]에는 복수의 디스플레이 셀(C)이 구비된다. 하나의 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 셀(C)에는 디스플레이의 각 화소에 대응하도록 화소 패턴(P)이 형성된다. 셀(C)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(P)이 나타난다. 일 예로, 셀(C)에는 70 X 140의 해상도를 가지도록 화소 패턴(P)이 형성된다. 즉, 수많은 화소 패턴(P)들은 군집을 이루어 셀(C) 하나를 구성하며, 복수의 셀(C)들이 마스크(10)에 형성될 수 있다.
도 2는 종래의 마스크(10)를 프레임(20)에 부착하는 과정을 나타내는 개략도이다. 도 3은 종래의 마스크(10)를 인장(F1~F2)하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다. 도 1의 (a)에 도시된 6개의 셀(C: C1~C6)을 구비하는 스틱 마스크(10)를 예로 들어 설명한다.
도 2의 (a)를 참조하면, 먼저, 스틱 마스크(10)를 평평하게 펴야한다. 스틱 마스크(10)의 장축 방향으로 인장력(F1~F2)을 가하여 당김에 따라 스틱 마스크(10)가 펴지게 된다. 그 상태로 사각틀 형태의 프레임(20) 상에 스틱 마스크(10)를 로딩한다. 스틱 마스크(10)의 셀(C1~C6)들은 프레임(20)의 틀 내부 빈 영역 부분에 위치하게 된다. 프레임(20)은 하나의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수 있고, 복수의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수도 있다.
도 2의 (b)를 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절하면서 정렬을 시킨 후, 스틱 마스크(10) 측면의 일부를 용접(W)함에 따라 스틱 마스크(10)와 프레임(20)을 상호 연결한다. 도 2의 (c)는 상호 연결된 스틱 마스크(10)와 프레임의 측단면을 나타낸다.
도 3을 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절함에도 불구하고, 마스크 셀(C1~C3)들의 상호간에 정렬이 잘 되지 않는 문제점이 나타난다. 가령, 셀(C1~C3)들의 패턴(P)간에 거리(D1~D1", D2~D2")가 상호 다르게 되거나, 패턴(P)들이 비뚤어지는 것이 그 예이다. 스틱 마스크(10)는 복수(일 예로, 6개)의 셀(C1~C6)을 포함하는 대면적이고, 수십 ㎛ 수준의 매우 얇은 두께를 가지기 때문에, 하중에 의해 쉽게 쳐지거나 뒤틀어지게 된다. 또한, 각 셀(C1~C6)들을 모두 평평하게 하도록 인장력(F1~F2)을 조절하면서, 각 셀(C1~C6)들간의 정렬 상태를 현미경을 통해 실시간으로 확인하는 것은 매우 어려운 작업이다.
따라서, 인장력(F1~F2)의 미세한 오차는 스틱 마스크(10) 각 셀(C1~C3)들이 늘어나거나, 펴지는 정도에 오차를 발생시킬 수 있고, 그에 따라 마스크 패턴(P)간에 거리(D1~D1", D2~D2")가 상이해지게 되는 문제점을 발생시킨다. 물론, 완벽하게 오차가 0이 되도록 정렬하는 것은 어려운 것이지만, 크기가 수 내지 수십 ㎛인 마스크 패턴(P)이 초고화질 OLED의 화소 공정에 악영향을 미치지 않도록 하기 위해서는, 정렬 오차가 3㎛를 초과하지 않는 것이 바람직하다. 이렇게 인접하는 셀 사이의 정렬 오차를 PPA(pixel position accuracy)라 지칭한다.
이에 더하여, 대략 6~20개 정도의 복수의 스틱 마스크(10)들을 프레임(20) 하나에 각각 연결하면서, 복수의 스틱 마스크(10)들간에, 그리고 스틱 마스크(10)의 복수의 셀(C~C6)들간에 정렬 상태를 명확히 하는 것도 매우 어려운 작업이고, 정렬에 따른 공정 시간이 증가할 수밖에 없게 되어 생산성을 감축시키는 중대한 이유가 된다.
이에, 본 발명은 마스크(100)가 프레임(200)과 일체형 구조를 이룰 수 있게 하는 프레임(200) 및 프레임 일체형 마스크를 제안한다. 프레임(200)에 일체로 형성되는 마스크(100)는 쳐지거나 뒤틀리는 등의 변형이 방지되고, 프레임(200)에 명확히 정렬될 수 있다. 그리고, 마스크(100)를 프레임(200)에 일체로 연결하는 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 이점을 가진다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도[도 4의 (a)] 및 측단면도[도 4의 (b)]이고, 도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도[도 5의 (a)] 및 측단면도[도 5의 (b)]이다.
도 4 및 도 5를 참조하면, 프레임 일체형 마스크는, 복수의 마스크(100) 및 하나의 프레임(200)을 포함할 수 있다. 다시 말해, 복수의 마스크(100)들을 각각 하나씩 프레임(200)에 부착한 형태이다. 이하에서는, 설명의 편의상 사각 형태의 마스크(100)를 예로 들어 설명하나, 마스크(100)들은 프레임(200)에 부착되기 전에는 양측에 클램핑되는 돌출부를 구비한 스틱 마스크 형태일 수 있고, 프레임(200)에 부착된 후에 돌출부가 제거될 수 있다.
각각의 마스크(100)에는 복수의 마스크 패턴(P)이 형성되며, 하나의 마스크(100)에는 하나의 셀(C)이 형성될 수 있다. 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응할 수 있다. 얇은 두께로 형성할 수 있도록, 마스크(100)는 전주도금(electroforming)으로 형성될 수 있다. 마스크(100)는 열팽창계수가 약 1.0 X 10-6/℃인 인바(invar), 약 1.0 X 10-7/℃ 인 슈퍼 인바(super invar) 재질일 수 있다. 이 재질의 마스크(100)는 열팽창계수가 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 이 외에, 최근에 온도 변화값이 크지 않은 범위에서 화소 증착 공정을 수행하는 기술들이 개발되는 것을 고려하면, 마스크(100)는 이보다 열팽창계수가 약간 큰 니켈(Ni), 니켈-코발트(Ni-Co) 등의 재질일 수도 있다. 마스크의 두께는 약 2㎛ 내지 50㎛ 정도로 형성될 수 있다.
프레임(200)은 복수의 마스크(100)를 부착시킬 수 있도록 형성된다. 프레임(200)은 최외곽 테두리를 포함해 제1 방향(예를 들어, 가로 방향), 제2 방향(예를 들어, 세로 방향)으로 형성되는 여러 모서리를 포함할 수 있다. 이러한 여러 모서리들은 프레임(200) 상에 마스크(100)가 부착될 구역을 구획할 수 있다.
프레임(200)은 대략 사각 형상, 사각틀 형상의 테두리 프레임부(210)를 포함할 수 있다. 테두리 프레임부(210)의 내부는 중공 형태일 수 있다. 즉, 테두리 프레임부(210)는 중공 영역(R)을 포함할 수 있다. 프레임(200)은 인바, 슈퍼인바, 알루미늄, 티타늄 등의 금속 재질로 구성될 수 있으며, 열변형을 고려하여 마스크와 동일한 열팽창계수를 가지는 인바, 슈퍼 인바, 니켈, 니켈-코발트 등의 재질로 구성되는 것이 바람직하고, 이 재질들은 프레임(200)의 구성요소인 테두리 프레임부(210), 마스크 셀 시트부(220)에 모두 적용될 수 있다.
이에 더하여, 프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하며, 테두리 프레임부(210)에 연결되는 마스크 셀 시트부(220)를 포함할 수 있다. 마스크 셀 시트부(220)는 마스크(100)와 마찬가지로 전주도금으로 형성되거나, 그 외의 막 형성 공정을 사용하여 형성될 수 있다. 또한, 마스크 셀 시트부(220)는 평면의 시트(sheet)에 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결할 수 있다. 또는, 마스크 셀 시트부(220)는 평면의 시트를 테두리 프레임부(210)에 연결한 후, 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 마스크 셀 시트부(220)에 먼저 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결한 것을 상정하여 설명한다.
마스크 셀 시트부(220)는 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225) 중 적어도 하나를 포함하여 구성될 수 있다. 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)는 동일한 시트에서 구획된 각 부분을 지칭하며, 이들은 상호간에 일체로 형성된다.
테두리 시트부(221)가 실질적으로 테두리 프레임부(210)에 연결될 수 있다. 따라서, 테두리 시트부(221)는 테두리 프레임부(210)와 대응하는 대략 사각 형상, 사각틀 형상을 가질 수 있다.
또한, 제1 그리드 시트부(223)는 제1 방향(가로 방향)으로 연장 형성될 수 있다. 제1 그리드 시트부(223)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 마스크 셀 시트부(220)가 복수의 제1 그리드 시트부(223)를 포함하는 경우, 각각의 제1 그리드 시트부(223)는 동등한 간격을 이루는 것이 바람직하다.
또한, 이에 더하여, 제2 그리드 시트부(225)가 제2 방향(세로 방향)으로 연장 형성될 수 있다. 제2 그리드 시트부(225)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 제1 그리드 시트부(223)와 제2 그리드 시트부(225)는 서로 수직 교차될 수 있다. 마스크 셀 시트부(220)가 복수의 제2 그리드 시트부(225)를 포함하는 경우, 각각의 제2 그리드 시트부(225)는 동등한 간격을 이루는 것이 바람직하다.
한편, 제1 그리드 시트부(223)들 간의 간격과, 제2 그리드 시트부(225)들 간의 간격은 마스크 셀(C)의 크기에 따라서 동일하거나 상이할 수 있다.
제1 그리드 시트부(223) 및 제2 그리드 시트부(225)는 박막 형태의 얇은 두께를 가지지만, 길이 방향에 수직하는 단면의 형상은 직사각형, 사다리꼴과 같은 사각형 형상[도 5의 (b) 및 도 10 참조], 삼각형 형상 등일 수 있고, 변, 모서리 부분이 일부 라운딩 될 수도 있다. 단면 형상은 레이저 스크라이빙, 에칭 등의 과정에서 조절 가능하다.
테두리 프레임부(210)의 두께는 마스크 셀 시트부(220)의 두께보다 두꺼울 수 있다. 테두리 프레임부(210)는 프레임(200)의 전체 강성을 담당하기 때문에 수mm 내지 수cm의 두께로 형성될 수 있다.
마스크 셀 시트부(220)의 경우는, 실질적으로 두꺼운 시트를 제조하는 공정이 어렵고, 너무 두꺼우면 OLED 화소 증착 공정에서 유기물 소스(600)[도 10 참조]가 마스크(100)를 통과하는 경로를 막는 문제를 발생시킬 수 있다. 반대로, 두께가 너무 얇아지면 마스크(100)를 지지할 정도의 강성 확보가 어려울 수 있다. 이에 따라, 마스크 셀 시트부(220)는 테두리 프레임부(210)의 두께보다는 얇지만, 마스크(100)보다는 두꺼운 것이 바람직하다. 마스크 셀 시트부(220)의 두께는, 약 0.1mm 내지 1mm 정도로 형성될 수 있다. 그리고, 제1, 2 그리드 시트부(223, 225)의 폭은 약 1~5mm 정도로 형성될 수 있다.
평면의 시트에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외하여, 복수의 마스크 셀 영역(CR: CR11~CR56)이 제공될 수 있다. 다른 관점에서, 마스크 셀 영역(CR)이라 함은, 테두리 프레임부(210)의 중공 영역(R)에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외한, 빈 영역을 의미할 수 있다.
이 마스크 셀 영역(CR)에 마스크(100)의 셀(C)이 대응됨에 따라, 실질적으로 마스크 패턴(P)을 통해 OLED의 화소가 증착되는 통로로 이용될 수 있게 된다. 전술하였듯이 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 하나의 마스크(100)에는 하나의 셀(C)을 구성하는 마스크 패턴(P)들이 형성될 수 있다. 또는, 하나의 마스크(100)가 복수의 셀(C)을 구비하고 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응할 수도 있으나, 마스크(100)의 명확한 정렬을 위해서는 대면적 마스크(100)를 지양할 필요가 있고, 하나의 셀(C)을 구비하는 소면적 마스크(100)가 바람직하다. 또는, 프레임(200)의 하나의 셀 영역(CR)에 복수의 셀(C)을 가지는 하나의 마스크(100)가 대응할 수도 있다. 이 경우, 명확한 정렬을 위해서는 2-3개 정도의 소수의 셀(C)을 가지는 마스크(100)를 대응하는 것을 고려할 수 있다.
프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하고, 각각의 마스크(100)는 각각 하나의 마스크 셀(C)이 마스크 셀 영역(CR)에 대응되도록 부착될 수 있다. 각각의 마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미[셀(C)을 제외한 마스크 막(110) 부분에 대응]를 포함할 수 있다. 더미는 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 마스크 셀(C)은 프레임(200)의 마스크 셀 영역(CR)에 대응하고, 더미의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 부착될 수 있다. 이에 따라, 마스크(100)와 프레임(200)이 일체형 구조를 이룰 수 있게 된다.
이하에서는, 프레임 일체형 마스크를 제조하는 과정에 대해 설명한다.
먼저, 도 4 및 도 5에서 상술한 프레임(200)을 제공할 수 있다. 도 6은 본 발명의 일 실시예에 따른 프레임(200)의 제조 과정을 나타내는 개략도이다.
도 6의 (a)를 참조하면, 테두리 프레임부(210)를 제공한다. 테두리 프레임부(210)는 중공 영역(R)을 포함한 사각 틀 형상일 수 있다.
다음으로, 도 6의 (b)를 참조하면, 마스크 셀 시트부(220)를 제조한다. 마스크 셀 시트부(220)는 전주도금 또는 그 외의 막 형성 공정을 사용하여 평면의 시트를 제조한 후, 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분을 제거함에 따라 제조할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)가 존재할 수 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응할 수 있다. 대응시키는 과정에서, 마스크 셀 시트부(220)의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220)를 평평하게 편 상태로 테두리 시트부(221)를 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 6의 (b)의 예로, 1~3포인트]로 마스크 셀 시트부(220)를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220)를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220)의 테두리 시트부(221)를 용접(W)하여 부착할 수 있다. 마스크 셀 시트부(220)가 테두리 프레임부(220)에 견고하게 부착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220)와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220)를 일체로 연결하는 매개체가 될 수 있다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다. 도 6의 실시예는 마스크 셀 영역(CR)을 구비한 마스크 셀 시트부(220)를 먼저 제조하고 테두리 프레임부(210)에 부착하였으나, 도 7의 실시예는 평면의 시트를 테두리 프레임부(210)에 부착한 후에, 마스크 셀 영역(CR) 부분을 형성한다.
먼저, 도 6의 (a)처럼, 중공 영역(R)을 포함한 테두리 프레임부(210)를 제공한다.
다음으로, 도 7의 (a)를 참조하면, 테두리 프레임부(210)에 평면의 시트[평면의 마스크 셀 시트부(220')]를 대응할 수 있다. 마스크 셀 시트부(220')는 아직 마스크 셀 영역(CR)이 형성되지 않은 평면 상태이다. 대응시키는 과정에서, 마스크 셀 시트부(220')의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220')를 평평하게 편 상태로 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 7의 (a)의 예로, 1~3포인트]로 마스크 셀 시트부(220')를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220')를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220')를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220')의 테두리 부분을 용접(W)하여 부착할 수 있다. 마스크 셀 시트부(220')가 테두리 프레임부(220)에 견고하게 부착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220') 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220')와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220')를 일체로 연결하는 매개체가 될 수 있다.
다음으로, 도 7의 (b)를 참조하면, 평면의 시트[평면의 마스크 셀 시트부(220')]에 마스크 셀 영역(CR)을 형성한다. 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분의 시트를 제거함에 따라 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 마스크 셀 영역(CR)을 형성하게 되면, 테두리 프레임부(210)와 용접(W)된 부분이 테두리 시트부(221)가 되고, 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)를 구비하는 마스크 셀 시트부(220)가 구성될 수 있다.
한편, 도 6 및 도 7에서는 테두리 프레임부(210)와 마스크 셀 시트부(220)가 용접(W)으로 부착된 실시예를 설명하였으나, 반드시 이에 제한되는 것은 아니며, 도 10에서 후술할, 유테틱 접착부(EM), 전주 도금부(150) 및 기타 유무기 접착제 등을 사용한 방법으로 부착을 수행할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 마스크(100)의 인장 형태[도 8의 (a)] 및 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응시키는 상태[도 8의 (b)]를 나타내는 개략도이다.
다음으로, 복수의 마스크 패턴(P)이 형성된 마스크(100)를 제공할 수 있다. 전주도금 방식으로 인바, 슈퍼 인바 재질의 마스크(100)를 제조할 수 있고, 마스크(100)에는 하나의 셀(C)이 형성될 수 있음은 상술한 바 있다.
전주도금에서 음극체(cathode)로 사용하는 모판(mother plate)은 전도성 재질을 사용한다. 전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(또는, 음극체)의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막[마스크(100)]의 일부가 불균일하게 형성될 수 있다.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막 및 도금막 패턴[마스크 패턴(P)]의 불균일은 화소의 형성에 악영향을 미칠 수 있다. FMM, 새도우 마스크의 패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다.
또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.
따라서, 본 발명은 단결정 실리콘 재질의 모판(또는, 음극체)를 사용할 수 있다. 전도성을 가지도록, 단결정 실리콘 재질의 모판에는 1019/cm3이상의 고농도 도핑이 수행될 수 있다. 도핑은 모판의 전체에 수행될 수도 있으며, 모판의 표면 부분에만 수행될 수도 있다.
도핑된 단결정 실리콘의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막[마스크(100)]이 생성될 수 있는 이점이 있다. 균일한 도금막을 통해 제조하는 프레임 일체형 마스크(100, 200)는 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.
또한, 실리콘 재질의 모판을 사용함에 따라서, 필요에 따라 모판의 표면을 산화(Oxidation), 질화(Nitridation)하는 과정만으로 절연부를 형성할 수 있는 이점이 있다. 절연부는 포토레지스트를 사용하여 형성할 수도 있다. 절연부가 형성된 부분에서는 도금막[마스크(100)]의 전착이 방지되어, 도금막에 패턴[마스크 패턴(P)]을 형성하게 된다.
마스크 패턴(P)의 폭은 40㎛보다 작게 형성될 수 있고, 마스크(100)의 두께는 약 2~50㎛로 형성될 수 있다. 프레임(200)이 복수의 마스크 셀 영역(CR: CR11~CR56)을 구비하므로, 각각의 마스크 셀 영역(CR: CR11~CR56)에 대응하는 마스크 셀(C: C11~C56)을 가지는 마스크(100)도 복수개 구비할 수 있다.
도 8의 (a)를 참조하면, 마스크(100)를 프레임(200)의 하나의 마스크 셀 영역(CR)에 대응할 수 있다. 도 8의 (a)에 도시된 바와 같이, 대응시키는 과정에서, 마스크(100)의 일축 방향을 따라 두 측을 인장(F1~F2)하여 마스크(100)를 평평하게 편 상태로 마스크 셀(C)을 마스크 셀 영역(CR)에 대응할 수 있다. 한 측에서도 여러 포인트(도 8의 예로, 1~3포인트)로 마스크(100)를 잡고 인장할 수 있다. 한편, 일축 방향이 아니라, 모든 축 방향을 따라 마스크(100)의 모든 측을 인장(F1~F4) 할 수도 있다.
예를 들어, 마스크(100)의 각 측에 가하는 인장력은 4N을 초과하지 않을 수 있다. 마스크(100)의 크기에 따라 가하는 인장력은 동일하거나, 달라질 수 있다. 다시 말해, 본 발명의 마스크(100)는 1개의 마스크 셀(C)을 포함하는 크기이므로, 복수개의 셀(C1~C6)을 포함하는 종래의 스틱 마스크(10)보다 필요로 하는 인장력이 동일하거나, 적어도 줄어들 가능성이 있다. 9.8N이 1kg의 중력 힘을 의미함을 고려하면, 1N은 400g의 중력 힘보다도 작은 힘이기 때문에, 마스크(100)가 인장된 후에 프레임(200)에 부착되어도 마스크(100)가 프레임(200)에 가하는 장력(tension), 또는, 반대로 프레임(200)이 마스크(100)에 가하는 장력은 매우 적게 된다. 그리하여, 장력에 의한 마스크(100) 및/또는 프레임(200)의 변형이 최소화되어 마스크(100)[또는, 마스크 패턴(P)]의 정렬 오차가 최소화 될 수 있다.
그리고, 종래의 도 1의 마스크(10)는 셀 6개(C1~C6)를 포함하므로 긴 길이를 가지는데 반해, 본 발명의 마스크(100)는 셀 1개(C)를 포함하여 짧은 길이를 가지므로 PPA(pixel position accuracy)가 틀어지는 정도가 작아질 수 있다. 예를 들어, 복수의 셀(C1~C6, ...)들을 포함하는 마스크(10)의 길이가 1m이고, 1m 전체에서 10㎛의 PPA 오차가 발생한다고 가정하면, 본 발명의 마스크(100)는 상대적인 길이의 감축[셀(C) 개수 감축에 대응]에 따라 위 오차 범위를 1/n 할 수 있다. 예를 들어, 본 발명의 마스크(100)의 길이가 100mm라면, 종래 마스크(10)의 1m에서 1/10로 감축된 길이를 가지므로, 100mm 길이의 전체에서 1㎛의 PPA 오차가 발생하게 되며, 정렬 오차가 현저히 감소하게 되는 효과가 있다.
한편, 마스크(100)가 복수의 셀(C)을 구비하고, 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응하여도 정렬 오차가 최소화되는 범위 내에서라면, 마스크(100)는 프레임(200)의 복수의 마스크 셀 영역(CR)에 대응할 수도 있다. 또는, 복수의 셀(C)을 가지는 마스크(100)가 하나의 마스크 셀 영역(CR)에 대응할 수도 있다. 이 경우에도, 정렬에 따른 공정 시간과 생산성을 고려하여, 마스크(100)는 가급적 적은 수의 셀(C)을 구비하는 것이 바람직하다.
마스크(100)가 평평한 상태로 마스크 셀 영역(CR)에 대응하도록 인장력(F1~F4)을 조절하면서, 현미경을 통해 실시간으로 정렬 상태를 확인할 수 있다. 본 발명의 경우는, 마스크(100)의 하나의 셀(C)을 대응시키고 정렬 상태를 확인하기만 하면 되므로, 복수의 셀(C: C1~C6)을 동시에 대응시키고 정렬 상태를 모두 확인하여야 하는 종래의 방법[도 2 참조]보다, 제조시간을 현저하게 감축시킬 수 있다.
즉, 본 발명의 프레임 일체형 마스크 제조 방법은, 6개의 마스크(100)에 포함되는 각각의 셀(C11~C16)을 각각 하나의 셀 영역(CR11~CR16)에 대응시키고 각각 정렬 상태를 확인하는 6번의 과정을 통해, 6개의 셀(C1~C6)을 동시에 대응시키고 6개 셀(C1~C6)의 정렬 상태를 동시에 모두 확인해야 하는 종래의 방법보다 훨씬 시간이 단축될 수 있다.
또한, 본 발명의 프레임 일체형 마스크 제조 방법은, 30개의 셀 영역(CR: CR11~CR56)에 30개의 마스크(100)를 각각 대응시키고 정렬하는 30번의 과정에서의 제품 수득률이, 6개의 셀(C1~C6)을 각각 포함하는 5개의 마스크(10)[도 2의 (a) 참조]를 프레임(20)에 대응시키고 정렬하는 5번의 과정에서의 종래의 제품 수득률보다 훨씬 높게 나타날 수 있다. 한번에 6개씩의 셀(C)이 대응하는 영역에 6개의 셀(C1~C6)을 정렬하는 종래의 방법이 훨씬 번거롭고 어려운 작업이므로 제품 수율이 낮게 나타나는 것이다.
한편, 마스크(100)를 프레임(200)에 대응한 후, 프레임(200)에 소정의 접착제를 개재하여 마스크(100)를 임시로 고정할 수도 있다. 이후에, 마스크(100)의 부착 단계를 진행할 수 있다.
도 9는 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응하여 부착하는 과정을 나타내는 개략도이다. 도 10은 도 9의 B-B' 단면도로서, 본 발명의 여러 실시예에 따른 마스크(100)가 프레임(200)[제1 그리드 시트부(223)]에 부착된 형태를 나타내는 부분 확대 단면도이다.
다음으로, 도 9, 도 10의 (a) 및 (b)를 참조하면, 마스크(100)의 테두리의 일부 또는 전부를 프레임(200)에 부착할 수 있다. 부착은 용접(W)으로 수행될 수 있고, 바람직하게는 레이저 용접(W)으로 수행될 수 있다. 용접(W)된 부분은 마스크(100)/프레임(200)과 동일한 재질을 가지고 일체로 연결될 수 있다.
레이저를 마스크(100)의 테두리 부분[또는, 더미]의 상부에 조사하면, 마스크(100)의 일부가 용융되어 프레임(200)과 용접(W)될 수 있다. 용접(W)은 프레임(200)의 모서리쪽에 최대한 가깝게 수행하여야 마스크(100)와 프레임(200) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크(100)와 동일한 재질을 가지고 마스크(100)와 프레임(200)을 일체로 연결하는 매개체가 될 수 있다.
제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 상면에 두 개의 이웃하는 마스크(100)의 일 테두리가 각각 부착(W)된 형태가 나타난다. 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 폭, 두께는 약 1~5mm 정도로 형성될 수 있고, 제품 생산성 향상을 위해, 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]와 마스크(100)의 테두리가 겹치는 폭을 약 0.1~2.5mm 정도로 최대한 감축시킬 필요가 있다.
제1, 2 그리드 시트부(223, 225)의 길이 방향에 수직하는 단면의 형상은 높이가 낮은 사각형, 사다리꼴 등일 수 있다.
용접(W) 방법은 마스크(100)를 프레임(200)에 부착하는 하나의 방법일 뿐이며, 이러한 실시예로 국한되지 않는다.
다른 예를 설명하면, 도 10의 (c)와 같이, 유테틱 재질의 접착부(EM)를 사용하여 마스크(100)를 프레임(200)에 부착할 수 있다. 유테틱 재질의 접착부(EM)는 적어도 두가지 금속을 포함하는 접착제로서, 필름, 선, 다발 형태 등의 다양한 모양을 가질 수 있고, 약 10 ~ 30㎛의 얇은 두께를 가질 수 있다. 예를 들어, 유테틱 재질의 접착부(EM)는 In, Sn, Bi, Au 등의 그룹과 Sn, Bi, Ag, Zn, Cu, Sb, Ge 등의 그룹에서 적어도 하나의 금속을 포함할 수 있다. 유테틱 재질의 접착부(EM)는 적어도 두 개의 금속 고상(solid phase)을 포함하고, 특정 온도/압력의 유테틱 포인트(eutectic point)에서는 두 개의 금속 고상이 모두 액상(liquid phase)이 될 수 있다. 그리고 유테틱 포인트를 벗어나면 다시 두 개의 금속 고상이 될 수 있다. 이에 따라, 고상 -> 액상 -> 고상의 상변화를 통해 접착제로서의 역할을 수행할 수 있는 것이다.
유테틱 접착부(EM)는 일반적인 유기 접착제와 다르게 휘발성 유기물을 전혀 포함하고 있지 않다. 따라서, 접착제의 휘발성 유기물질이 공정 가스와 반응하여 OLED의 화소에 악영향을 주거나, 접착제 자체에 포함된 유기물질 등의 아웃 가스가 화소 공정 챔버를 오염시키거나 불순물로서 OLED 화소에 증착되는 악영향을 방지할 수 있게 된다. 또한, 유테틱 접착부(EM)는 고체이므로, OLED 유기물 세정액에 의해서 세정되지 않고 내식성을 가질 수 있게 된다. 또한, 두가지 이상의 금속을 포함하고 있으므로, 유기 접착제에 비해서 동일한 금속 재질인 마스크(100), 프레임(200)과 높은 접착성을 가지고 연결될 수 있고, 금속 재질이므로 변형 가능성이 낮은 이점이 있다.
또 다른 예를 설명하면, 도 10의 (d)와 같이, 마스크(100)와 동일한 재질의 접착 도금부(150)를 더 형성하여 마스크(100)를 프레임(200)에 부착할 수 있다. 마스크(100)를 프레임(200)에 대응시킨 후, 마스크(100)의 하부면 방향에 PR 등의 절연부를 형성할 수 있다. 그리고, 절연부가 커버하지 않고 노출된 마스크(100)의 후면 및 프레임(200) 상에서 접착 도금부(150)를 전착할 수 있다.
접착 도금부(150)가 마스크(100)의 노출된 표면 및 프레임(200) 상에서 전착되면서, 마스크(100)와 프레임(200)을 일체로 연결하는 매개체가 될 수 있다. 이때, 접착 도금부(150)는 마스크(100)의 테두리 부분에 일체로 연결되며 전착되므로, 프레임(200) 내측 방향 또는 외측 방향으로 인장력을 가하는 상태를 가지며 마스크(100)를 지지할 수 있다. 그리하여, 별도로 마스크를 인장하고 정렬하는 과정을 수행할 필요없이, 팽팽하게 프레임(200) 측으로 당겨진 마스크(100)를 프레임(200)과 일체로 형성할 수 있게 된다.
도 10에서는 설명의 편의를 위해 용접(W)된 부분, 유테틱 재질의 접착부(EM) 부분의 두께 및 폭이 다소 과장되게 도시되었음을 밝혀두며, 실제로 이 부분은 거의 돌출되지 않고 마스크(100)에 포함된 상태로 프레임(200)을 연결하는 부분일 수 있다.
다음으로, 하나의 마스크(100)를 프레임(200)에 부착하는 공정을 완료하면, 나머지 마스크(100)들을 나머지 마스크 셀(C)에 순차적으로 대응시키고, 프레임(200)에 부착하는 과정을 반복할 수 있다. 이미 프레임(200)에 부착된 마스크(100)가 기준 위치를 제시할 수 있으므로, 나머지 마스크(100)들을 셀 영역(CR)에 순차적으로 대응시키고 정렬 상태를 확인하는 과정에서의 시간이 현저하게 감축될 수 있는 이점이 있다. 그리고, 하나의 마스크 셀 영역에 부착된 마스크(100)와 이에 이웃하는 마스크 셀 영역에 부착된 마스크(100) 사이의 PPA(pixel position accuracy)가 3㎛를 초과하지 않게 되어, 정렬이 명확한 초고화질 OLED 화소 형성용 마스크를 제공할 수 있는 이점이 있다.
도 11은 본 발명의 일 실시예에 따른 프레임 일체형 마스크(100, 200)를 이용한 OLED 화소 증착 장치(1000)를 나타내는 개략도이다.
도 11을 참조하면, OLED 화소 증착 장치(1000)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 프레임 일체형 마스크(100, 200)[또는, FMM]이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의해 대상 기판(900)에 밀착될 수 있다.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 프레임 일체형 마스크(100, 200)에 형성된 패턴(P)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. 프레임 일체형 마스크(100, 200)의 패턴(P)을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, 프레임 일체형 마스크(100, 200)의 패턴은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0012] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] Reference is made to the accompanying drawings, which show by way of illustration specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description set forth below is not intended to be taken in a limiting sense, and the scope of the present invention, if properly described, is limited only by the appended claims, along with all scope equivalents as those claimed. In the drawings, like reference numerals refer to the same or similar functions in various aspects, and the length, area, thickness, and the like may be exaggerated for convenience.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily practice the present invention.
1 is a schematic diagram showing a conventional mask 10 for OLED pixel deposition.
Referring to FIG. 1 , the conventional mask 10 may be manufactured in a stick-type or plate-type shape. The mask 10 shown in FIG. 1A is a stick-type mask, and can be used by welding and fixing both sides of the stick to the OLED pixel deposition frame. The mask 100 shown in FIG. 1B is a plate-type mask and may be used in a process of forming a large area pixel.
A plurality of display cells C are provided in the body of the mask 10 (or the mask film 11 ). One cell C corresponds to one display such as a smart phone. A pixel pattern P is formed in the cell C to correspond to each pixel of the display. When the cell C is enlarged, a plurality of pixel patterns P corresponding to R, G, and B appear. For example, a pixel pattern P is formed in the cell C to have a resolution of 70×140. That is, numerous pixel patterns P form a group to constitute one cell C, and a plurality of cells C may be formed on the mask 10 .
2 is a schematic diagram illustrating a process of attaching the conventional mask 10 to the frame 20 . 3 is a schematic diagram illustrating that an alignment error occurs between cells in the process of stretching (F1 to F2) of the conventional mask 10 . The stick mask 10 including six cells (C: C1 to C6) shown in FIG. 1A will be described as an example.
Referring to FIG. 2A , first, the stick mask 10 should be flattened. The stick mask 10 is unfolded as it is pulled by applying tensile force F1 to F2 in the long axis direction of the stick mask 10 . In this state, the stick mask 10 is loaded on the frame 20 in the form of a square frame. The cells C1 to C6 of the stick mask 10 are located in the blank area inside the frame 20 of the frame 20 . The frame 20 may have a size such that the cells C1 to C6 of one stick mask 10 are located in an empty area inside the frame, and the cells C1 to C6 of the plurality of stick masks 10 are placed in the frame. It may be large enough to be located in the inner blank area.
Referring to FIG. 2 (b), after aligning while finely adjusting the tensile force (F1 to F2) applied to each side of the stick mask 10, a part of the side of the stick mask 10 is welded (W). Accordingly, the stick mask 10 and the frame 20 are interconnected. Figure 2 (c) shows a cross-section of the stick mask 10 and the frame interconnected.
Referring to FIG. 3 , in spite of finely adjusting the tensile forces F1 to F2 applied to each side of the stick mask 10 , there is a problem in that the mask cells C1 to C3 are not well aligned with each other. For example, the distances D1 to D1″ and D2 to D2″ between the patterns P of the cells C1 to C3 are different from each other, or the patterns P are skewed. Since the stick mask 10 has a large area including a plurality of (eg, six) cells C1 to C6 and has a very thin thickness of several tens of μm, it is easily sagged or twisted by a load. In addition, it is very difficult to check the alignment between the cells C1 to C6 in real time through a microscope while controlling the tensile force F1 to F2 to flatten all the cells C1 to C6.
Therefore, a minute error in the tensile force F1 to F2 may cause an error in the extent to which each cell C1 to C3 of the stick mask 10 is stretched or unfolded, and accordingly, the distance D1 between the mask patterns P ~D1", D2~D2") causes a problem that becomes different. Of course, it is difficult to align perfectly so that the error becomes 0, but in order to prevent the mask pattern P having a size of several to several tens of μm from adversely affecting the pixel process of the ultra-high-definition OLED, the alignment error should not exceed 3 μm. It is preferable not to This alignment error between adjacent cells is referred to as PPA (pixel position accuracy).
In addition, while connecting approximately 6 to 20 of a plurality of stick masks 10 to one frame 20 , respectively, between the plurality of stick masks 10 and a plurality of cells C of the stick mask 10 . It is also very difficult to clarify the alignment state between ~C6), and the processing time according to alignment is inevitably increased, which is a significant reason for reducing productivity.
Accordingly, the present invention proposes a frame 200 and a frame-integrated mask that allows the mask 100 to form an integrated structure with the frame 200 . The mask 100 integrally formed with the frame 200 is prevented from being deformed such as sagging or twisting, and can be clearly aligned with the frame 200 . And, it has the advantage of significantly reducing the manufacturing time for integrally connecting the mask 100 to the frame 200 and significantly increasing the yield.
4 is a front view [Fig. 4 (a)] and a side cross-sectional view [Fig. 4 (b)] showing a frame-integrated mask according to an embodiment of the present invention, and Fig. 5 is a frame-integrated mask according to an embodiment of the present invention. It is a front view [FIG. 5(a)] and a side cross-sectional view [FIG. 5(b)] which show a frame.
4 and 5 , the frame-integrated mask may include a plurality of masks 100 and one frame 200 . In other words, a plurality of masks 100 are attached to the frame 200 one by one. Hereinafter, a rectangular mask 100 will be used as an example for convenience of description, but the masks 100 may be in the form of a stick mask having protrusions clamped on both sides before being attached to the frame 200 , and the frame 200 . ) after being attached to the protrusion can be removed.
A plurality of mask patterns P may be formed on each mask 100 , and one cell C may be formed on one mask 100 . One mask cell C may correspond to one display such as a smart phone. To form a thin film, the mask 100 may be formed by electroforming. The mask 100 may be made of an invar material having a thermal expansion coefficient of about 1.0 X 10 -6 /°C or a super invar material having a thermal expansion coefficient of about 1.0 X 10 -7 /°C. Since the mask 100 made of this material has a very low coefficient of thermal expansion, there is little fear that the pattern shape of the mask may be deformed by thermal energy, so it can be used as a fine metal mask (FMM) or a shadow mask in high-resolution OLED manufacturing. In addition, considering that technologies for performing a pixel deposition process in a range where the temperature change value is not large recently, the mask 100 may be formed of nickel (Ni) or nickel-cobalt (Ni-Co) having a slightly larger coefficient of thermal expansion than this. ) may be a material such as The thickness of the mask may be about 2 μm to about 50 μm.
The frame 200 is formed so that a plurality of masks 100 can be attached thereto. The frame 200 may include several corners formed in a first direction (eg, a horizontal direction) and a second direction (eg, a vertical direction) including an outermost edge. These various corners may define a region on the frame 200 to which the mask 100 is to be attached.
The frame 200 may include an edge frame portion 210 having a substantially rectangular shape or a rectangular frame shape. The inside of the edge frame part 210 may have a hollow shape. That is, the edge frame portion 210 may include the hollow region (R). The frame 200 may be made of a metal material such as Invar, Super Invar, aluminum, or titanium, and is made of Invar, Super Invar, Nickel, Nickel-Cobalt, etc., having the same coefficient of thermal expansion as the mask in consideration of thermal deformation. Preferably, these materials may be applied to both the edge frame part 210 and the mask cell sheet part 220 that are components of the frame 200 .
In addition, the frame 200 may include a plurality of mask cell regions CR, and may include a mask cell sheet unit 220 connected to the edge frame unit 210 . Like the mask 100 , the mask cell sheet unit 220 may be formed by electroplating, or may be formed using other film forming processes. In addition, the mask cell sheet unit 220 may be connected to the edge frame unit 210 after forming a plurality of mask cell regions CR on a flat sheet through laser scribing, etching, or the like. Alternatively, the mask cell sheet unit 220 may form a plurality of mask cell regions CR through laser scribing, etching, or the like after connecting a flat sheet to the edge frame unit 210 . In the present specification, it is assumed that a plurality of mask cell regions CR are first formed on the mask cell sheet part 220 and then connected to the edge frame part 210 .
The mask cell sheet part 220 may include at least one of the edge sheet part 221 and the first and second grid sheet parts 223 and 225 . The edge sheet portion 221 and the first and second grid sheet portions 223 and 225 refer to partitioned portions of the same sheet, and they are integrally formed with each other.
The edge sheet part 221 may be substantially connected to the edge frame part 210 . Accordingly, the edge sheet part 221 may have a substantially rectangular shape or a rectangular frame shape corresponding to the edge frame part 210 .
Also, the first grid sheet part 223 may be formed to extend in the first direction (horizontal direction). The first grid sheet part 223 may be formed in a straight shape so that both ends thereof may be connected to the edge sheet part 221 . When the mask cell sheet unit 220 includes a plurality of first grid sheet units 223 , each of the first grid sheet units 223 may have equal intervals.
In addition, the second grid sheet part 225 may be formed to extend in the second direction (vertical direction). The second grid sheet part 225 may be formed in a straight shape so that both ends thereof may be connected to the edge sheet part 221 . The first grid sheet unit 223 and the second grid sheet unit 225 may vertically cross each other. When the mask cell sheet unit 220 includes a plurality of second grid sheet units 225 , each of the second grid sheet units 225 may have equal intervals.
Meanwhile, the distance between the first grid sheet parts 223 and the distance between the second grid sheet parts 225 may be the same or different depending on the size of the mask cell C. As shown in FIG.
Although the first grid sheet part 223 and the second grid sheet part 225 have a thin thickness in the form of a thin film, the cross-section perpendicular to the longitudinal direction has a rectangular shape such as a rectangle or a trapezoid (Fig. 5(b)). and FIG. 10], may have a triangular shape, and the sides and corners may be partially rounded. The cross-sectional shape can be adjusted in the process of laser scribing, etching, etc.
The thickness of the edge frame part 210 may be thicker than the thickness of the mask cell sheet part 220 . The edge frame part 210 may be formed to a thickness of several mm to several cm because it is responsible for the overall rigidity of the frame 200 .
In the case of the mask cell sheet part 220 , the process of manufacturing a substantially thick sheet is difficult, and if it is too thick, the organic material source 600 (see FIG. 10 ) passes through the mask 100 in the OLED pixel deposition process. It may cause clogging problems. Conversely, if the thickness is too thin, it may be difficult to secure enough rigidity to support the mask 100 . Accordingly, the mask cell sheet portion 220 is thinner than the thickness of the edge frame portion 210 , but is preferably thicker than the mask 100 . The thickness of the mask cell sheet part 220 may be about 0.1 mm to about 1 mm. Also, the width of the first and second grid sheet parts 223 and 225 may be about 1 to 5 mm.
In the flat sheet, a plurality of mask cell regions CR: CR11 to CR56 may be provided except for regions occupied by the edge sheet part 221 and the first and second grid sheet parts 223 and 225 . From another point of view, the mask cell region CR is an area occupied by the edge sheet part 221 and the first and second grid sheet parts 223 and 225 in the hollow region R of the edge frame part 210 . may mean an empty area except for .
As the cell C of the mask 100 corresponds to the mask cell region CR, it can be used as a path through which the pixels of the OLED are deposited substantially through the mask pattern P. As described above, one mask cell C corresponds to one display such as a smart phone. Mask patterns P constituting one cell C may be formed on one mask 100 . Alternatively, one mask 100 may include a plurality of cells C, and each cell C may correspond to each cell region CR of the frame 200, but the mask 100 may be clearly aligned. For this, it is necessary to avoid the large-area mask 100 , and a small-area mask 100 including one cell C is preferable. Alternatively, one mask 100 having a plurality of cells C may correspond to one cell region CR of the frame 200 . In this case, it may be considered to correspond to the mask 100 having a small number of cells C of about 2-3 for clear alignment.
The frame 200 includes a plurality of mask cell regions CR, and each mask 100 may be attached such that one mask cell C corresponds to the mask cell region CR. Each mask 100 may include a mask cell C on which a plurality of mask patterns P are formed, and a dummy (corresponding to a portion of the mask film 110 excluding the cell C) around the mask cell C. have. The dummy may include only the mask layer 110 or the mask layer 110 on which a predetermined dummy pattern similar to the mask pattern P is formed. The mask cell C corresponds to the mask cell region CR of the frame 200 , and a part or all of the dummy may be attached to the frame 200 (the mask cell sheet unit 220 ). Accordingly, the mask 100 and the frame 200 can form an integrated structure.
Hereinafter, a process for manufacturing the frame-integrated mask will be described.
First, the frame 200 described above with reference to FIGS. 4 and 5 may be provided. 6 is a schematic diagram illustrating a manufacturing process of the frame 200 according to an embodiment of the present invention.
Referring to (a) of FIG. 6 , an edge frame part 210 is provided. The edge frame part 210 may have a rectangular frame shape including the hollow region R.
Next, referring to FIG. 6B , the mask cell sheet part 220 is manufactured. The mask cell sheet part 220 may be manufactured by manufacturing a flat sheet using electroplating or other film forming process, and then removing the mask cell region CR part through laser scribing, etching, etc. have. In the present specification, a case in which 6 X 5 mask cell regions CR: CR11 to CR56 are formed will be described as an example. Five first grid sheet parts 223 and four second grid sheet parts 225 may exist.
Next, the mask cell sheet part 220 may correspond to the edge frame part 210 . In the process of matching, all sides of the mask cell sheet part 220 are stretched (F1 to F4) to flatten the mask cell sheet part 220 and the edge sheet part 221 to the edge frame part 210 . can respond On one side, the mask cell sheet 220 may be held and tensioned at several points (eg, 1 to 3 points in FIG. 6(b) ). Meanwhile, the mask cell sheet unit 220 may be stretched (F1, F2) along some lateral directions instead of all sides.
Next, when the mask cell sheet part 220 corresponds to the edge frame part 210 , the edge sheet part 221 of the mask cell sheet part 220 may be attached by welding (W). It is preferable to weld (W) all sides so that the mask cell sheet part 220 can be firmly attached to the edge frame part 220 . Welding (W) should be performed as close to the edge of the edge frame part 210 as possible to reduce the floating space between the edge frame part 210 and the mask cell sheet part 220 as much as possible and increase adhesion. The weld (W) portion may be created in the form of a line or a spot, and has the same material as the mask cell sheet 220 and integrates the edge frame 210 and the mask cell sheet 220 together. It can be a medium that connects
7 is a schematic diagram illustrating a manufacturing process of a frame according to another embodiment of the present invention. In the embodiment of FIG. 6 , the mask cell sheet part 220 having the mask cell region CR is first manufactured and attached to the edge frame part 210 , but in the embodiment of FIG. 7 , a flat sheet is used as the edge frame part ( After attaching to 210 , a mask cell region CR portion is formed.
First, as shown in (a) of Figure 6, the frame portion 210 including the hollow region (R) is provided.
Next, referring to FIG. 7A , a flat sheet (planar mask cell sheet portion 220 ′) may correspond to the edge frame portion 210 . The mask cell sheet part 220 ′ is in a planar state in which the mask cell region CR is not yet formed. In the process of matching, all sides of the mask cell sheet unit 220' may be stretched (F1 to F4) to correspond to the edge frame unit 210 in a state in which the mask cell sheet unit 220' is flattened. On one side, the mask cell sheet part 220 ′ may be held and tensioned at several points (eg, 1 to 3 points in FIG. 7A ). Meanwhile, the mask cell sheet unit 220 ′ may be stretched (F1, F2) along some lateral directions instead of all sides.
Next, when the mask cell sheet portion 220 ′ corresponds to the edge frame portion 210 , the edge portion of the mask cell sheet portion 220 ′ may be attached by welding (W). It is preferable to weld (W) all sides so that the mask cell sheet part 220 ′ can be firmly attached to the edge frame part 220 . Welding (W) should be performed as close to the edge of the edge frame part 210 as possible so that the floating space between the edge frame part 210 and the mask cell sheet part 220 ′ can be reduced as much as possible and adhesion can be increased. The weld (W) portion may be created in the form of a line or a spot, and has the same material as the mask cell sheet portion 220 ′, and includes the edge frame portion 210 and the mask cell sheet portion 220 ′. It can be a medium that connects them together.
Next, referring to FIG. 7B , a mask cell region CR is formed on a flat sheet (planar mask cell sheet portion 220 ′). The mask cell region CR may be formed by removing the sheet of the mask cell region CR through laser scribing, etching, or the like. In the present specification, a case in which 6 X 5 mask cell regions CR: CR11 to CR56 are formed will be described as an example. When the mask cell region CR is formed, the edge frame portion 210 and the welded portion W become the edge sheet portion 221 , and five first grid sheet portions 223 and four second grids are formed. The mask cell sheet unit 220 including the sheet unit 225 may be configured.
On the other hand, although an embodiment in which the edge frame part 210 and the mask cell sheet part 220 are attached by welding (W) has been described in FIGS. 6 and 7 , it is not necessarily limited thereto, and will be described later with reference to FIG. Attachment may be performed by a method using the tick adhesive part (EM), the electroplating part 150, and other organic/inorganic adhesives.
FIG. 8 is a diagram showing a tensile form of the mask 100 according to an embodiment of the present invention (FIG. 8(a)) and a state in which the mask 100 corresponds to the cell region CR of the frame 200 (FIG. 8). (b)] is a schematic diagram showing.
Next, the mask 100 on which the plurality of mask patterns P are formed may be provided. It has been described above that the mask 100 made of Invar or Super Invar material can be manufactured by the electroplating method, and that one cell C can be formed in the mask 100 .
The mother plate used as a cathode in electroplating uses a conductive material. As a conductive material, in the case of a metal, metal oxides may be generated on the surface, impurities may be introduced during the metal manufacturing process, and in the case of a polycrystalline silicon substrate, inclusions or grain boundaries may exist, and a conductive polymer In the case of a base material, it is highly likely to contain impurities, and strength. Acid resistance, etc. may be weak. Elements that prevent the uniform formation of an electric field on the surface of the mother plate (or cathode body), such as metal oxides, impurities, inclusions, and grain boundaries, are referred to as “defects”. Due to the defect, a uniform electric field may not be applied to the cathode body made of the above material, so that a portion of the plating film (mask 100 ) may be non-uniformly formed.
In implementing ultra-high-definition pixels of UHD level or higher, the non-uniformity of the plating film and the plating film pattern [mask pattern P] may adversely affect the formation of the pixel. Since the pattern width of the FMM and the shadow mask can be formed in a size of several to several tens of μm, preferably smaller than 30 μm, even a defect having a size of several μm is large enough to occupy a large proportion in the pattern size of the mask.
In addition, in order to remove defects in the anode body made of the above-described material, an additional process for removing metal oxides, impurities, etc. may be performed, and in this process, other defects such as etching of the cathode body material may be induced. have.
Therefore, in the present invention, a mother plate (or a cathode body) made of a single crystal silicon material may be used. To have conductivity, a high concentration doping of 10 19 /cm 3 or more may be performed on the mother plate made of single crystal silicon. Doping may be performed on the entire mother plate, or may be performed only on the surface portion of the mother plate.
Since there is no defect in the case of doped single crystal silicon, there is an advantage that a uniform plating film (mask 100 ) can be generated due to uniform electric field formation on the entire surface during electroplating. The frame-integrated masks 100 and 200 manufactured through a uniform plating film can further improve the quality level of OLED pixels. And, since there is no need to perform an additional process for removing and resolving defects, there are advantages in that process costs are reduced and productivity is improved.
In addition, there is an advantage in that the insulating part can be formed only through the process of oxidizing and nitridation of the surface of the mother plate if necessary, according to the use of the silicon substrate. The insulating portion may be formed using a photoresist. Electrodeposition of the plating film (mask 100) is prevented in the portion where the insulating portion is formed, and a pattern (mask pattern P) is formed on the plating film.
The width of the mask pattern P may be formed to be smaller than 40 μm, and the thickness of the mask 100 may be formed to be about 2 to 50 μm. Since the frame 200 includes a plurality of mask cell regions CR: CR11 to CR56, the mask 100 having mask cells C: C11 to C56 corresponding to each of the mask cell regions CR: CR11 to CR56. ) may also be provided in plurality.
Referring to FIG. 8A , the mask 100 may correspond to one mask cell region CR of the frame 200 . As shown in (a) of FIG. 8 , in the process of matching, the mask cell C in a state in which the mask 100 is flattened by tensioning (F1 to F2) both sides along the uniaxial direction of the mask 100 . ) may correspond to the mask cell region CR. It is also possible to hold and tension the mask 100 at several points (eg, 1 to 3 points in FIG. 8 ) on one side. Meanwhile, all sides of the mask 100 may be stretched (F1 to F4) along all axial directions instead of in one axial direction.
For example, the tensile force applied to each side of the mask 100 may not exceed 4N. The tensile force applied according to the size of the mask 100 may be the same or may be different. In other words, since the mask 100 of the present invention has a size including one mask cell C, the tensile force required is the same as that of the conventional stick mask 10 including a plurality of cells C1 to C6, or , which is at least likely to decrease. Considering that 9.8N means the gravitational force of 1kg, 1N is a force smaller than the gravitational force of 400g, so even if the mask 100 is attached to the frame 200 after the mask 100 is tensioned, the frame 200 is The tension applied to the , or, conversely, the tension applied by the frame 200 to the mask 100 is very small. Thus, the deformation of the mask 100 and/or the frame 200 due to the tension is minimized, so that the alignment error of the mask 100 (or the mask pattern P) can be minimized.
In addition, the conventional mask 10 of FIG. 1 includes six cells (C1 to C6) and thus has a long length, whereas the mask 100 of the present invention has a short length including one cell (C). Therefore, the degree of PPA (pixel position accuracy) deviation may be reduced. For example, assuming that the length of the mask 10 including the plurality of cells C1 to C6, ... is 1 m, and a PPA error of 10 μm occurs in the entire 1 m, the mask 100 of the present invention can make the above error range 1/n according to the relative length reduction [corresponding to the reduction in the number of cells (C)]. For example, if the length of the mask 100 of the present invention is 100 mm, since it has a length reduced from 1 m to 1/10 of that of the conventional mask 10, a PPA error of 1 μm occurs over the entire length of 100 mm. , there is an effect that the alignment error is significantly reduced.
On the other hand, if the mask 100 includes a plurality of cells C, and each cell C corresponds to each cell region CR of the frame 200, within a range in which an alignment error is minimized, The mask 100 may correspond to a plurality of mask cell regions CR of the frame 200 . Alternatively, the mask 100 having a plurality of cells C may correspond to one mask cell region CR. Even in this case, in consideration of the processing time and productivity according to the alignment, it is preferable that the mask 100 includes as few cells C as possible.
While adjusting the tensile forces F1 to F4 so that the mask 100 corresponds to the mask cell region CR in a flat state, the alignment state can be checked in real time through a microscope. In the case of the present invention, since it is only necessary to match one cell (C) of the mask 100 and check the alignment state, it is necessary to simultaneously correspond a plurality of cells (C: C1 to C6) and check the alignment state. Compared to the conventional method [see Fig. 2], the manufacturing time can be significantly reduced.
That is, the frame-integrated mask manufacturing method of the present invention corresponds to each cell C11 to C16 included in the six masks 100 to one cell region CR11 to CR16 and checks the alignment state. Through this process, the time can be significantly reduced compared to the conventional method of simultaneously matching the six cells C1 to C6 and checking the alignment status of the six cells C1 to C6 at the same time.
In addition, in the frame-integrated mask manufacturing method of the present invention, the product yield in the 30-step process of matching and aligning 30 masks 100 to 30 cell regions (CR: CR11 to CR56) is 6 cells (C1). ~C6) each containing 5 masks 10 (see Fig. 2 (a)) can be shown to be much higher than the conventional product yield in the process of 5 times of matching and aligning with the frame 20. Since the conventional method of aligning six cells C1 to C6 in an area corresponding to six cells C at a time is a much cumbersome and difficult task, the product yield appears low.
Meanwhile, after the mask 100 corresponds to the frame 200 , the mask 100 may be temporarily fixed to the frame 200 with a predetermined adhesive interposed therebetween. Thereafter, an attaching step of the mask 100 may be performed.
9 is a schematic diagram illustrating a process of attaching the mask 100 to the cell region CR of the frame 200 according to an embodiment of the present invention. 10 is a cross-sectional view taken along line BB′ of FIG. 9 , and is a partially enlarged cross-sectional view illustrating a form in which the mask 100 according to various embodiments of the present invention is attached to the frame 200 (the first grid sheet part 223 ).
Next, referring to FIGS. 9 and 10 (a) and (b) , part or all of the edge of the mask 100 may be attached to the frame 200 . The attachment may be performed by welding (W), preferably by laser welding (W). The welded (W) portion may have the same material as the mask 100/frame 200 and may be integrally connected.
When a laser is irradiated to the upper portion of the edge portion (or dummy) of the mask 100 , a portion of the mask 100 may be melted and welded (W) to the frame 200 . The welding W should be performed as close to the edge of the frame 200 as possible to reduce the floating space between the mask 100 and the frame 200 as much as possible and increase adhesion. The weld (W) portion may be created in the form of a line or a spot, and may be a medium for integrally connecting the mask 100 and the frame 200 with the same material as the mask 100 . .
A form in which one edge of two adjacent masks 100 is attached (W) appears on the upper surface of the first grid sheet unit 223 (or the second grid sheet unit 225 ). The width and thickness of the first grid sheet part 223 (or the second grid sheet part 225 ) may be formed to be about 1 to 5 mm, and in order to improve product productivity, the first grid sheet part 223 [ Alternatively, it is necessary to reduce the overlapping width of the second grid sheet portion 225] and the edge of the mask 100 as much as possible to about 0.1 to 2.5 mm.
The shape of the cross-section perpendicular to the longitudinal direction of the first and second grid sheet parts 223 and 225 may be a low-height quadrangle, a trapezoid, or the like.
The welding (W) method is only one method of attaching the mask 100 to the frame 200, and is not limited to this embodiment.
In another example, as shown in FIG. 10C , the mask 100 may be attached to the frame 200 by using the adhesive part EM made of eutectic material. The adhesive part EM made of eutectic material is an adhesive containing at least two metals, and may have various shapes such as a film, a line, a bundle shape, and the like, and may have a thin thickness of about 10 to 30 μm. For example, the bonding portion EM of the eutectic material may include at least one metal from a group such as In, Sn, Bi, Au, and the like, and Sn, Bi, Ag, Zn, Cu, Sb, Ge, etc. . The bonding part EM of the eutectic material includes at least two solid phases of metal, and at a eutectic point of a specific temperature/pressure, both solid phases of the metal may be in a liquid phase. . And if you leave the eutectic point, you can again become two metal solids. Accordingly, the solid->liquid->solid phase change can serve as an adhesive.
Unlike a general organic adhesive, the eutectic adhesive part (EM) does not contain any volatile organic material. Therefore, the volatile organic material of the adhesive reacts with the process gas to adversely affect the pixel of the OLED, or the outgas such as the organic material contained in the adhesive itself contaminates the pixel process chamber or prevents the adverse effect of being deposited on the OLED pixel as an impurity be able to do In addition, since the eutectic bonding part EM is a solid, it is not cleaned by an OLED organic cleaning liquid and can have corrosion resistance. In addition, since it contains two or more metals, it can be connected with the mask 100 and the frame 200, which are the same metal material, with high adhesiveness compared to the organic adhesive, and since it is a metal material, there is an advantage in that the possibility of deformation is low.
In another example, as shown in FIG. 10D , the mask 100 may be attached to the frame 200 by further forming the adhesive plating part 150 made of the same material as the mask 100 . After the mask 100 corresponds to the frame 200 , an insulating part such as PR may be formed in the direction of the lower surface of the mask 100 . In addition, the adhesive plating part 150 may be electrodeposited on the back surface of the mask 100 and the frame 200 that are not covered by the insulating part and are exposed.
As the adhesive plating part 150 is electrodeposited on the exposed surface of the mask 100 and the frame 200 , it may become a medium for integrally connecting the mask 100 and the frame 200 . At this time, since the adhesive plating part 150 is integrally connected to the edge of the mask 100 and electrodeposited, it has a state of applying a tensile force in the inner direction or the outer direction of the frame 200 and can support the mask 100 . Thus, it is possible to form the mask 100 tautly pulled toward the frame 200 integrally with the frame 200 without the need to separately tension and align the mask.
In FIG. 10, it is revealed that the thickness and width of the welded (W) part and the eutectic adhesive part (EM) part are shown to be somewhat exaggerated for convenience of explanation, and in fact, this part hardly protrudes and is attached to the mask 100 . It may be a part that connects the frame 200 in an included state.
Next, when the process of attaching one mask 100 to the frame 200 is completed, the remaining masks 100 are sequentially matched to the remaining mask cells C, and the process of attaching the mask 100 to the frame 200 is repeated. can do. Since the mask 100 already attached to the frame 200 can suggest the reference position, the time required for sequentially matching the remaining masks 100 to the cell region CR and checking the alignment state is significantly reduced. There are advantages to being And, the pixel position accuracy (PPA) between the mask 100 attached to one mask cell area and the mask 100 attached to the neighboring mask cell area does not exceed 3 μm, so that the alignment is clear. There is an advantage in that it is possible to provide a mask for forming an OLED pixel.
11 is a schematic diagram illustrating an OLED pixel deposition apparatus 1000 using the frame-integrated masks 100 and 200 according to an embodiment of the present invention.
Referring to FIG. 11 , the OLED pixel deposition apparatus 1000 includes a magnet plate 300 in which a magnet 310 is accommodated and a coolant line 350 is disposed, and an organic material source 600 from a lower portion of the magnet plate 300 . ) includes a deposition source supply unit 500 for supplying the .
A target substrate 900 such as glass on which the organic source 600 is deposited may be interposed between the magnet plate 300 and the source deposition unit 500 . The frame-integrated masks 100 and 200 [or FMMs] that allow the organic material source 600 to be deposited for each pixel may be disposed in close contact with or very close to each other on the target substrate 900 . The magnet 310 may generate a magnetic field and adhere to the target substrate 900 by the magnetic field.
The deposition source supply unit 500 may supply the organic material source 600 while reciprocating in a left and right path, and the organic material sources 600 supplied from the deposition source supply unit 500 may include patterns P formed on the frame-integrated masks 100 and 200 . ) and may be deposited on one side of the target substrate 900 . The deposited organic material source 600 passing through the pattern P of the frame-integrated masks 100 and 200 may act as the pixel 700 of the OLED.
In order to prevent non-uniform deposition of the pixel 700 due to the shadow effect, the pattern of the frame-integrated masks 100 and 200 may be inclined (S) (or formed in a tapered shape (S)). . Since the organic material sources 600 passing through the pattern in a diagonal direction along the inclined surface may also contribute to the formation of the pixel 700 , the pixel 700 may be deposited to have a uniform thickness as a whole.
Although the present invention has been illustrated and described with reference to preferred embodiments as described above, it is not limited to the above-described embodiments and is not limited to the above-described embodiments, and various methods can be made by those of ordinary skill in the art to which the invention pertains within the scope that does not depart from the spirit of the present invention. Transformation and change are possible. Such modifications and variations are intended to fall within the scope of the present invention and the appended claims.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

100: 마스크
110: 마스크 막
150: 접착 도금부
200: 프레임
210: 테두리 프레임부
220: 마스크 셀 시트부
221: 테두리 시트부
223: 제1 그리드 시트부
225: 제2 그리드 시트부
1000: OLED 화소 증착 장치
C: 셀, 마스크 셀
CR: 마스크 셀 영역
EM: 유테틱 재질의 접착부
F1~F4: 인장력
R: 테두리 프레임부의 중공 영역
P: 마스크 패턴
W: 용접
100: mask
110: mask film
150: adhesive plating part
200: frame
210: border frame portion
220: mask cell sheet portion
221: border sheet portion
223: first grid sheet portion
225: second grid sheet portion
1000: OLED pixel deposition device
C: cell, mask cell
CR: mask cell area
EM: adhesive part of eutectic material
F1~F4: Tensile force
R: Hollow area of the border frame part
P: mask pattern
W: Weld

Claims (22)

복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,
(a) 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비한 프레임을 준비하는 단계;
(b) 적어도 두 측을 인장한 상태의 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및
(c) 마스크를 프레임에 부착하는 단계
를 포함하고,
프레임은,
중공 영역을 포함하는 테두리 프레임부;
복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부
를 포함하며,
마스크 셀 시트부는,
테두리 시트부;
제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부; 및
제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부
를 포함하고,
마스크 셀 시트부의 두께는 마스크보다 두꺼우며,
제1 그리드 시트부 및 제2 그리드 시트부의 길이 방향에 수직하는 단면 형상은 삼각형 또는 사다리꼴 형상이거나, 또는, 단면 형상의 변, 모서리 중 적어도 하나가 라운딩진 삼각형 또는 사다리꼴 형상으로서, OLED 화소 형성용 유기물 소스가 마스크 셀 영역을 통과하여 마스크로 진입하기 전에 새도우 이펙트(shadow effect)가 생기는 것을 방지하는, 프레임 일체형 마스크의 제조 방법.
A method of manufacturing a frame-integrated mask in which a plurality of masks and a frame supporting the masks are integrally formed, the method comprising:
(a) preparing a frame including a plurality of mask cell regions in at least one of a first direction and a second direction perpendicular to the first direction;
(b) corresponding to the mask cell region of the frame in a state in which at least two sides are stretched; and
(c) attaching the mask to the frame;
including,
frame is,
an edge frame unit including a hollow region;
A mask cell sheet portion having a plurality of mask cell regions and connected to the edge frame portion
includes,
The mask cell sheet part,
edge sheet portion;
at least one first grid sheet portion extending in a first direction and having both ends connected to the edge sheet portion; and
At least one second grid sheet portion extending in a second direction perpendicular to the first direction, intersecting the first grid sheet portion, and having both ends connected to the edge sheet portion
including,
The thickness of the mask cell sheet part is thicker than the mask,
The cross-sectional shape of the first grid sheet part and the second grid sheet part perpendicular to the longitudinal direction is a triangular or trapezoidal shape, or a triangular or trapezoidal shape in which at least one of the sides and corners of the cross-sectional shape is rounded, and the organic material for forming an OLED pixel A method of making a frame integral mask that prevents a shadow effect from occurring before the source enters the mask through the mask cell region.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
마스크는,
복수의 마스크 패턴이 형성된 마스크 셀, 및 마스크 셀 주변의 더미를 포함하고,
더미의 적어도 일부가 마스크 셀 시트부에 부착되는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
the mask,
a mask cell on which a plurality of mask patterns are formed, and a dummy around the mask cell;
A method of manufacturing a frame-integrated mask, wherein at least a portion of the dummy is attached to the mask cell sheet portion.
제1항에 있어서,
마스크는 하나의 마스크 셀을 포함하고, 각각의 마스크 셀 영역 상에 각각의 마스크가 부착되는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
A method of manufacturing a frame-integrated mask, wherein the mask includes one mask cell, and each mask is attached on each mask cell region.
제1항에 있어서,
마스크는 복수의 마스크 셀을 포함하고, 각각의 마스크 셀 영역 상에 각각의 마스크가 부착되는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
A method of manufacturing a frame-integrated mask, wherein the mask includes a plurality of mask cells, and each mask is attached on each mask cell region.
제1항에 있어서,
테두리 프레임부의 두께는 마스크 셀 시트부의 두께보다 두꺼운, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
A method of manufacturing a frame-integrated mask, wherein the thickness of the edge frame portion is thicker than the thickness of the mask cell sheet portion.
제1항에 있어서,
마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질인, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
The mask and the frame are made of any one of invar, super invar, nickel, and nickel-cobalt, a method of manufacturing a frame-integrated mask.
제1항에 있어서,
(b) 단계에서, 마스크의 각 측에 가하는 인장력은 4N을 초과하지 않는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
In step (b), the tensile force applied to each side of the mask does not exceed 4N, a method of manufacturing a frame-integrated mask.
제6항에 있어서,
하나의 마스크 셀을 포함하는 마스크의 각 측에 가하는 인장력은, N개(N은 2이상)의 마스크 셀을 포함하는 마스크의 경우보다, 인장력이 1/N로 감소되는, 프레임 일체형 마스크의 제조 방법.
7. The method of claim 6,
A method of manufacturing a frame-integrated mask, wherein the tensile force applied to each side of the mask including one mask cell is reduced to 1/N compared to the case of the mask including N (N is 2 or more) mask cells .
제1항에 있어서,
(b) 단계에서, 마스크의 모든 측을 인장하는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
In step (b), all sides of the mask are tensioned, a method of manufacturing a frame-integrated mask.
제1항에 있어서,
(b) 단계에서, 마스크가 평평한 상태로 마스크 셀 영역에 대응하도록 인장력을 조절하면서 마스크와 마스크 셀 영역의 정렬 상태를 확인하는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
In step (b), a method of manufacturing a frame-integrated mask to check the alignment state of the mask and the mask cell region while adjusting the tensile force so that the mask corresponds to the mask cell region in a flat state.
제1항에 있어서,
(c) 단계에서, 프레임의 모서리에 최인접한 영역에 용접을 수행하여 마스크를 프레임에 부착하는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
In step (c), welding is performed in an area closest to the edge of the frame to attach the mask to the frame, a method of manufacturing a frame-integrated mask.
제1항에 있어서,
(c) 단계에서, 마스크가 프레임에 부착될 때 마스크 셀 시트부와 마스크의 테두리가 겹치는 폭은 0.1mm 내지 2.5mm인, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
In step (c), when the mask is attached to the frame, the overlapping width of the mask cell sheet portion and the edge of the mask is 0.1 mm to 2.5 mm, the method of manufacturing a frame-integrated mask.
제1항에 있어서,
(c) 단계 이후, 프레임에 부착된 마스크를 기준 위치로 하여, 이웃하는 마스크 셀 영역 상에 마스크를 순차적으로 대응하고 정렬하는, 프레임 일체형 마스크의 제조 방법.
According to claim 1,
After the step (c), using the mask attached to the frame as a reference position, the mask is sequentially matched and aligned on the neighboring mask cell region, a method of manufacturing a frame-integrated mask.
복수의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크로서,
프레임은,
중공 영역을 포함하는 테두리 프레임부;
제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비하며, 테두리 프레임부에 연결되는 마스크 셀 시트부
를 포함하고,
마스크 셀 시트부는,
테두리 시트부;
제1 방향으로 연장 형성되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제1 그리드 시트부; 및
제1 방향에 수직인 제2 방향으로 연장 형성되어 제1 그리드 시트부와 교차되고, 양단이 테두리 시트부에 연결되는 적어도 하나의 제2 그리드 시트부를 포함하며,
각각의 마스크는 적어도 두 측이 인장된 상태에서 각각의 마스크 셀 영역에 대응되게 마스크 셀 시트부의 상부에 부착되고,
마스크 셀 시트부의 두께는 마스크보다 두꺼우며,
제1 그리드 시트부 및 제2 그리드 시트부의 길이 방향에 수직하는 단면 형상은 삼각형 또는 사다리꼴 형상이거나, 또는, 단면 형상의 변, 모서리 중 적어도 하나가 라운딩진 삼각형 또는 사다리꼴 형상으로서, OLED 화소 형성용 유기물 소스가 마스크 셀 영역을 통과하여 마스크로 진입하기 전에 새도우 이펙트(shadow effect)가 생기는 것을 방지하는, 프레임 일체형 마스크.
A frame-integrated mask in which a plurality of masks and a frame supporting the masks are integrally formed,
frame is,
an edge frame unit including a hollow region;
A mask cell sheet portion having a plurality of mask cell regions in at least one of a first direction and a second direction perpendicular to the first direction and connected to the edge frame portion
including,
The mask cell sheet part,
edge sheet portion;
at least one first grid sheet portion extending in a first direction and having both ends connected to the edge sheet portion; and
at least one second grid sheet portion extending in a second direction perpendicular to the first direction, intersecting the first grid sheet portion, and having both ends connected to the edge sheet portion,
Each mask is attached to the upper part of the mask cell sheet to correspond to each mask cell region in a state in which at least two sides are stretched,
The thickness of the mask cell sheet part is thicker than the mask,
The cross-sectional shape of the first grid sheet part and the second grid sheet part perpendicular to the longitudinal direction is a triangular or trapezoidal shape, or a triangular or trapezoidal shape in which at least one of the sides and corners of the cross-sectional shape is rounded, and the organic material for forming an OLED pixel A frame-integrated mask that prevents a shadow effect from occurring before the source enters the mask through the mask cell region.
제1항의 프레임 일체형 마스크의 제조 방법으로 제조된, 프레임 일체형 마스크.The frame-integrated mask manufactured by the method for manufacturing the frame-integrated mask of claim 1 . 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200091191A 2019-06-07 2020-07-22 Mask integrated frame and producing method of mask integrated frame KR102357802B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200091191A KR102357802B1 (en) 2019-06-07 2020-07-22 Mask integrated frame and producing method of mask integrated frame

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190067431A KR102142435B1 (en) 2019-06-07 2019-06-07 Mask integrated frame and producing method of mask integrated frame
KR1020200091191A KR102357802B1 (en) 2019-06-07 2020-07-22 Mask integrated frame and producing method of mask integrated frame

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190067431A Division KR102142435B1 (en) 2019-06-07 2019-06-07 Mask integrated frame and producing method of mask integrated frame

Publications (2)

Publication Number Publication Date
KR20200093486A KR20200093486A (en) 2020-08-05
KR102357802B1 true KR102357802B1 (en) 2022-02-07

Family

ID=80253002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200091191A KR102357802B1 (en) 2019-06-07 2020-07-22 Mask integrated frame and producing method of mask integrated frame

Country Status (1)

Country Link
KR (1) KR102357802B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4394078A1 (en) * 2022-12-26 2024-07-03 Samsung Display Co., Ltd. Mask and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534580B1 (en) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 Deposition mask for display device and Method for fabricating the same
KR20100000127A (en) * 2008-06-24 2010-01-06 엘지디스플레이 주식회사 A deposition mask unit for fabrication of organic light emitting display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4394078A1 (en) * 2022-12-26 2024-07-03 Samsung Display Co., Ltd. Mask and method for manufacturing the same

Also Published As

Publication number Publication date
KR20200093486A (en) 2020-08-05

Similar Documents

Publication Publication Date Title
KR102217810B1 (en) Producing method of mask integrated frame
KR102537761B1 (en) Frame and mask integrated frame and producing method thereof
KR102342736B1 (en) Producing method of mask integrated frame
KR20190096577A (en) Mask integrated frame and producing method of mask integrated frame
KR102357802B1 (en) Mask integrated frame and producing method of mask integrated frame
CN111357129B (en) Frame-integrated mask
KR20190105977A (en) Producing method of mask integrated frame
KR102371176B1 (en) Method for separating mask adhere to frame
KR102314853B1 (en) Mask for forming oled picture element and mask supporting tray
KR102010003B1 (en) Producing method of mask integrated frame
KR102071487B1 (en) Producing method of mask and mask
KR102217813B1 (en) Mask for forming oled picture element and producing method thereof and producing method of mask integrated frame
KR102404743B1 (en) Stick mask, producing method of stick mask and producing method of mask integrated frame
KR102010815B1 (en) Frame and mask integrated frame
KR102236539B1 (en) Producing method of mask integrated frame
KR102342737B1 (en) Producing method of mask
KR102142435B1 (en) Mask integrated frame and producing method of mask integrated frame
KR20190095238A (en) Frame and mask integrated frame
KR20190095237A (en) Frame and mask integrated frame
KR20200006346A (en) Producing method of mask integrated frame and mask for forming oled picture element
KR102010816B1 (en) Frame and mask integrated frame
KR102152688B1 (en) Producing method of mask integrated frame
KR102202528B1 (en) Producing method of mask integrated frame
KR20190092840A (en) Producing method of frame
KR20190141965A (en) Producing method of mask

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant