KR102353090B1 - 기판을 지지하기 위한 장치 및 정전식 클램프를 동작시키는 방법 - Google Patents
기판을 지지하기 위한 장치 및 정전식 클램프를 동작시키는 방법 Download PDFInfo
- Publication number
- KR102353090B1 KR102353090B1 KR1020167025093A KR20167025093A KR102353090B1 KR 102353090 B1 KR102353090 B1 KR 102353090B1 KR 1020167025093 A KR1020167025093 A KR 1020167025093A KR 20167025093 A KR20167025093 A KR 20167025093A KR 102353090 B1 KR102353090 B1 KR 102353090B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- electrostatic clamp
- substrate
- channel
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Drying Of Semiconductors (AREA)
Abstract
기판을 지지하기 위한 장치 및 정전식 클램프를 동작시키는 방법이 제공된다. 장치는 베이스 및 베이스에 인접하고 기판의 표면을 지지하도록 구성된 절연체 부분을 포함할 수 있다. 장치는 또한 기판에 클램핑 전압을 인가하는 전극 시스템을 포함할 수 있고, 절연체 부분은 임의의 채널 폭을 갖는 적어도 하나의 채널을 통하여 기판에 가스를 제공하도록 구성되고, 가스 압력 및 채널 폭의 곱은 가스에 대한 파센 최소값보다 작고, 가스의 항복 전압이 최소인 파센 최소값은 인클로저의 표면들의 간격과 압력의 곱이다.
Description
본 실시예들은 기판 프로세싱에 관한 것으로 보다 상세하게는, 기판들을 보유하기 위한 정전식 클램프들에 관한 것이다.
기판 홀더들 예컨대 정전식 클램프들은 반도체 제조, 솔라 셀 제조, 및 다른 컴포넌트들의 프로세싱을 포함하는 많은 제조 프로세스들에 폭넓게 사용된다. 많은 기판 홀더들은 희망하는 온도에서 기판을 프로세싱하기 위해 기판 가열 뿐만 아니라 기판 냉각을 제공한다. 적절한 가열 또는 냉각을 유지하기 위해 정전식 클램프들의 디자인들을 포함하여 일부 기판 홀더 디자인들은 프로세스되는 기판, 예컨대 웨이퍼의 이면(backside)에 인접하여 또는 근접하여 흐를 수 있는 가스를 제공한다.
특별히 기판 홀더 디자인들, 예컨대 정전식 클램프들에서, 가스는 정전식 클램프에 의해 보유되는 웨이퍼의 이면과 정전식 클램프 표면사이에 열 도전체로서 제공되도록 이면 가스 분배 시스템을 통하여 제공될 수 있다. 기판의 냉각 또는 가열을 가능하게 하기 위해서, 가스 압력은 기판의 이면상에 과잉 압력을 생성하지 않으면서 요구되는 열 전송을 제공하기 위한 범위 내에서 유지될 수 있다. 높은 전기장이 정전식 클램프의 클램핑 전극들에 채용될 수 있기 때문에, 가스 종(gas specie)들은 정전식 클램프에 제공될 때 영향을 미칠 수 있다. 일부 환경들에서 이것은 이면 가스 분배 시스템내에 플라즈마의 생성으로 이어질 수 있다. 플라즈마 종(plasma specie)들 예컨대 이온들은 플라즈마와 접촉하게 되는 표면들을 에칭할 수 있고, 정전식 클램프에 의해 보유되고 있는 기판을 포함하여 프로세싱 시스템내 다른 영역들로 이송될 수 있는 에칭 종(etched specie)들을 생성한다.
비록 일부 제조 프로세스들에서 이면 가스 분배 시스템내의 플라즈마들의 형성에 의해 도입되는 기판 오염의 수준은 수락할 만 할 수 있지만, 다른 프로세스들에서 이것은 수락할 수 없을 정도로 높을 수 있다. 예를 들어, 기판이 높은 기판 온도에서 프로세스될 때, 이면 플라즈마내에 생성된 금속 오염 물질들은 웨이퍼의 전면에 다다를 정도로 충분히 이동성이 있을 수 있다.
본 출원은 개선들이 요구되는 이런 저런 사항들에 대한 것이다.
이 요약은 이하의 상세한 설명에서 추가로 설명되는 엄선한 개념들을 간략화된 형태로 소개하기 위해 제공된다. 이 요약은 청구된 내용의 주요 특징들 또는 핵심 특징들을 식별하도록 의도되지 않으며, 또한 청구된 내용의 범위를 결정하는데 보조수단으로서 의도되지도 않는다.
일 실시예에서, 기판을 지지하기 위한 장치는 베이스 및 상기 베이스에 인접하고 상기 기판의 표면을 지지하도록 구성된 절연체 부분을 포함할 수 있다. 상기 장치는 또한 상기 기판에 클램핑 전압을 인가하는 전극 시스템을 포함할 수 있고, 상기 절연체 부분은 임의의 채널 폭을 갖는 적어도 하나의 채널을 통하여 상기 기판에 가스를 제공하도록 구성되고, 상기 가스 압력 및 채널 폭의 곱은 가스에 대한 파센 최소값보다 작고, 상기 가스의 항복 전압이 최소인 상기 파센 최소값은 인클로저의 표면들의 간격과 압력의 곱이다.
다른 실시예에서, 정전식 클램프을 동작시키는 방법은 임의의 채널폭을 갖는 상기 정전식 클램프의 절연체 부분의 적어도 하나의 채널을 배열하는 단계, 상기 정전식 클램프의 전극에 클램핑 전압을 인가하는 단계, 상기 적어도 하나의 채널을 통하여 임의의 가스 압력에서 상기 정전식 클램프로 가스를 전달하는 단계를 포함할 수 있고, 상기 가스 압력 및 채널 폭의 곱은 상기 가스에 대한 파센 최소값(Paschen minimum)보다 작고, 상기 가스의 항복 전압이 최소인 상기 파센 최소값은 인클로저(enclosure)의 거리와 압력의 곱이다.
도 1 은 본 개시의 실시예들에 따른 정전식 클램프 시스템을 도시한다;
도 2a는 본 개시의 다양한 실시예들에 따른 조립된 정전식 클램프의 측부 단면도를 도시한다;
도 2b는 도 2a에 예시된 정전식 클램프의 절연체 부분의 평면도를 도시한다;
도 2c는 절연체 부분이 제거된 도 2a의 정전식 클램프의 베이스의 평면도를 도시한다;
도 3a 및 도 3b는 도 2a의 정전식 클램프의 변형예의 추가 세부사항들을 예시한다; 도 3b는 점선의 사각형에 의해 둘러싸인 도 3a의 부분의 확대도이다;
도 4 는 평행 플레이트 시스템내 가스에 대한 압력-거리 (PD)곱의 함수로서 항복 전압 VB을 보여주는 커브를 포함하는 그래프이다;
도 5a는 정전식 클램프를 동작시키기 위한 참조 시나리오를 도시한다;
도 5b는 본 개시의 실시예들에 따른 정전식 클램프를 동작시키는 시나리오를 도시한다;
도 5c는 본 개시의 다른 실시예들에 따른 정전식 클램프를 동작시키는 다른 시나리오를 도시한다;
도 5d는 본 개시의 추가 실시예들에 따른 정전식 클램프를 동작시키는 추가 시나리오를 도시한다;
도 5e는 본 개시의 추가 실시예들에 따른 정전식 클램프를 동작시키는 또 다른 시나리오를 도시한다; 및
도 6은 본 개시의 추가 실시예들에 따른 다른 정전식 클램프 부분을 도시한다.
도 2a는 본 개시의 다양한 실시예들에 따른 조립된 정전식 클램프의 측부 단면도를 도시한다;
도 2b는 도 2a에 예시된 정전식 클램프의 절연체 부분의 평면도를 도시한다;
도 2c는 절연체 부분이 제거된 도 2a의 정전식 클램프의 베이스의 평면도를 도시한다;
도 3a 및 도 3b는 도 2a의 정전식 클램프의 변형예의 추가 세부사항들을 예시한다; 도 3b는 점선의 사각형에 의해 둘러싸인 도 3a의 부분의 확대도이다;
도 4 는 평행 플레이트 시스템내 가스에 대한 압력-거리 (PD)곱의 함수로서 항복 전압 VB을 보여주는 커브를 포함하는 그래프이다;
도 5a는 정전식 클램프를 동작시키기 위한 참조 시나리오를 도시한다;
도 5b는 본 개시의 실시예들에 따른 정전식 클램프를 동작시키는 시나리오를 도시한다;
도 5c는 본 개시의 다른 실시예들에 따른 정전식 클램프를 동작시키는 다른 시나리오를 도시한다;
도 5d는 본 개시의 추가 실시예들에 따른 정전식 클램프를 동작시키는 추가 시나리오를 도시한다;
도 5e는 본 개시의 추가 실시예들에 따른 정전식 클램프를 동작시키는 또 다른 시나리오를 도시한다; 및
도 6은 본 개시의 추가 실시예들에 따른 다른 정전식 클램프 부분을 도시한다.
본 실시예들은 오염에 민감한 컴포넌트들의 제조에 악영향을 미칠 수 있는 현상을 다룬다. 본 출원에 설명된 실시예들은 기판 홀더들 예컨대 정전식 클램프들내 의도하지 않은 플라즈마 형성을 줄이기 위한 장치 및 방법들을 제공한다. 특별히, 본 실시예들은 현대 정전식 클램프들의 동작 동안 생성될 수 있는 이면 플라즈마들의 형성의 가능성을 줄인다. 이들 이면 플라즈마들은 기판의 이면상에 금속 또는 다른 오염 물질의 에칭 및 오염 물질들의 재응결을 유발할 수 있고, 이는 어떤 프로세스 상태들하의 기판의 전면에서 검출가능한 농도로 이어질 수 있다. CMOS 이미지 센서 제조의 예에서, 1E8/cm-2 만큼 낮은 금속 오염의 레벨들은 디바이스 수율에 영향을 미칠 수 있고, 기판의 프로세싱동안에 플라즈마들이 기판의 이면에 인접한 정전식 클램프에 형성될 때 이의 오염 레벨들이 생성될 수 있다.
일부 실시예들에서, 새로운 정전식 클램프 시스템은 컴포넌트들의 디자인 예컨대 기판을 지지하는 정전식 클램프의 절연체 부분내 채널 또는 채널들의 변경에 의해 플라즈마 형성의 가능성을 줄이도록 구성된다. 일부 실시예들에서, 가스 분배 시스템은 기판의 이면에 적절한 가스 압력을 제공하면서 동시에 이면 분배 시스템내에 플라즈마 형성을 회피하는 가스 상태들을 생성하기 위해 이면 분배 채널들내에 제공되는 가스 압력을 변경할 수 있다. 가스 분배 시스템은 추가적으로 조성물 플라즈마 형성을 회피하기 위해 정전식 클램프에 제공되는 가스의 조성물을 변경할 수 있다. 추가 실시예들에서, 이하에서 상세하게 설명될 것 처럼 것 처럼, 플라즈마 형성을 줄이기 위해 정전식 클램프내 전극 시스템에 인가되는 AC 전압의 주파수는 조절될 수 있다. 또 다른 실시예들에서, 플라즈마의 형성의 확률을 줄이기 위해, 정전식 클램프의 절연체 부분은 기판에 가스를 전도하는 채널내에 접지 도전체 또는 저 방사율 재료를 포함할 수 있다.
도 1 은 본 개시의 실시예들에 따른 정전식 클램프 시스템(100)을 도시한다. 정전식 클램프 시스템 (100)은 기판에 능동적 가열 또는 냉각을 제공하기에 바람직할 수 있는 다양한 프로세싱 툴들에서의 사용에 적절할 수 있다. 이런 프로세싱 툴들은 이온 주입 시스템들, 증착 시스템들, 에칭 시스템들, 및 어닐링 시스템들을 포함한다. 그러나, 실시예들은 이 상황에 제한되지 않는다.
정전식 클램프 시스템 (100)는 정전식 클램프 (102), 가스 공급 시스템 (110) 및 전압 서플라이(112)를 포함한다. 정전식 클램프 (102)는 베이스 (104) 및 베이스 (104)에 인접한 절연체 부분 (106)을 포함한다. 절연체 부분 (106)은 예시된 바와 같이 기판(108)을 지지하도록 구성된다. 다양한 실시예들에서, 절연체 부분 (106)은 세라믹 플레이트(ceramic plate) 또는 세라믹 계층일 수 있다. 전압 서플라이 (112)는 기판 (108)을 끌어당기고 보유하는 클램핑 힘을 인가하는 전기장을 생성할 수 있는 정전식 클램프내에 포함된 전극 시스템 (별도로 도시하지 않음)에 전압을 공급하도록 구성된다. 다양한 실시예들에서, 이하에서 상세하게 설명될 것 처럼, 전압은 이미지 전하가 빠르게 생성되는 AC 신호로 인가될 수 있고, 그렇게 함으로써 기판 (108)의 빠른 척킹(chucking) 및 디-척킹(de-chucking)을 가능하게 한다. 전압 서플라이 (112)는 기판 (108)에 적절한 클램핑 힘을 생성하기 위해 바이어스 전압 예컨대 1000 V을 공급하도록 구성될 수 있다. 이것은 일부 경우들에서 50 토르 내지 200 토르 크기의 정전식 클램프 압력을 생성할 수 있다.
가스 공급 시스템 (110)은 정전식 클램프 (102)의 베이스 (104)에 가스 (미도시)를 공급하도록 구성되고, 가스는 정전식 클램프 (102)와 기판 (108)사이에 열-전도 매체를 제공하기 위해 기판 (108)에 분배될 수 있다. 상이한 실시예들에서, 정전식 클램프에 공급되는 가스는 헬륨, 네온, 아르곤, 질소 또는 다른 가스 종들 또는 가스 종들의 조합일 수 있다. 실시예들은 이 상황에 제한되지 않는다. 기판 (108)과 정전식 클램프 (102)사이에 충분한 열 전도를 공급하기 위해, 정전식 클램프 시스템 (100)은 정전식 클램프(102)내에 10 토르 내지 100 토르, 및 일부 경우들에서 50 토르 내지 100 토르의 가스 압력을 전달하도록 구성될 수 있다.
다양한 실시예들에 따라, 정전식 클램프 시스템 (100)은 이면 영역 (116)에 플라즈마 형성을 회피하기 위해 상이한 방식들로 구성될 수 있다. 이면 영역 (116)은 정전식 클램프(102)내에 채널들 및 기판 (108)이 인접한 절연체 부분 (106)에 인접하여 보유될 때 기판 (108)과 정전식 클램프 (102)사이에 정의되는 공동들을 포함할 수 있다. 이하에서 상세하게 설명될 것 처럼, 정전식 클램프 시스템 (100)은 전극들에 인가되는 전압 신호을 조정함으로써, 가스 조성물을 조정함으로써 또는 파센(Paschen) 최소값을 회피하도록 가스 압력을 조정함으로써, 정전식 클램프 (102)내 공동 구성을 조정함으로써, 또는 전압 신호, 가스 압력, 또는 공동 구성의 조정을 조합함으로써 플라즈마 형성 면제를 제공할 수 있다. 일부 실시예들에서, 공동 구성의 조정은 정전식 클램프 (102)의 다른 공동 영역 또는 채널내에 접지된 도전성 계층을 형성하기 위해 접지된 전기적으로 도전성 채널 코팅을 제공함으로써, 또는 채널 또는 다른 공동 영역에 낮은 전자 방사율 재료를 제공함으로써 정전식 클램프 (102)내 가스를 전도하는 채널 또는 채널들의 폭을 줄이는 것을 포함할 수 있다.
도 2a는 본 개시의 다양한 실시예들에 따른 조립된 정전식 클램프(200)의 측부 단면도를 도시한다. 도 2b는 정전식 클램프 (200)의 절연체 부분 (204)의 평면도를 도시하고, 도 2c는 절연체 부분 (204)이 제거된 정전식 클램프 (200)의 베이스 (202)의 평면도를 도시한다. 다양한 실시예들에서, 베이스 (202)는 금속성 재료일 수 있고 정전식 클램프 (200)를 가열하도록 디자인된 히터 (미도시)를 포함할 수 있다. 다른 실시예들에서 정전식 클램프 (200)는 정전식 클램프에 외부에 있거나 또는 정전식 클램프에 부착된 히터에 의해 가열될 수 있다. 도 1의 실시예에서 처럼, 정전식 클램프 (200)는 기판 (108)을 절연체 부분 (204)에 인접하게 보유하고 지지할 수 있다. 절연체 부분 (204)은 차례로 일련의 통상의 바이폴라 정전식 클램프에서 처럼 동작하는 전극들 (미도시) 예컨대 일련의 전극 쌍들을 포함할 수 있다. 전극 쌍들의 세트내 전극 쌍들의 수는 하나, 둘, 셋 또는 더 클 수 있다.
정전식 클램프 (200)과 기판 (108)사이의 열 전도를 가능하게 하기 위해, 가스가 정전식 클램프 (200)에 제공될 수 있다. 도 2에 예시된 바와 같이, 베이스 (202)는 기판의 이면에 인접하여 가스를 제공하기 위해 정전식 클램프 (200)의 상이한 부분들내에 가스를 분배하도록 구성된 가스 분배 공동 (212)을 포함할 수 있다. 도 2c에 예시된 바와 같이, 가스 분배 공동 (212)은 가스를 정전식 클램프(200)에 원주방향으로 분포할 수 있다. 그러나, 다른 실시예들에서, 가스 분배 공동은 다른 형상들을 가질 수 있다. 추가로 도 2b에 도시된 절연체 부분 (204)은 정전식 클램프 (200)가 조립된 때 가스 분배 공동 (212)과 연통하도록 구성된 일련의 채널들, 예컨대 채널들 (210)를 포함할 수 있다. 채널들 (210)은 예를 들어 도 1에 도시된 가스 공급 시스템 (110)을 이용하여 가스가 공급될 때 절연체 부분 (204)과 기판 (108)사이의 이면 영역 (214)으로 가스를 가스를 전달하는 역할을 한다.
다양한 실시예들에 따른, 가스 공급 시스템 (110) 및 채널들 (210)은 클램핑 전압이 인가되고 가스가 정전식 클램프 (200)에 제공될 때 플라즈마 형성을 회피하도록 특별히 디자인될 수 있다. 이제 도 3a 및 도 3b로 가서, 정전식 클램프(200)의 변형예의 추가 세부사항들이 도시된다. 특별히, 도 3b는 정전식 클램프 (200) 부분의 측단면의 분해 조립도의 측 단면을 예시한다. 예시된 바와 같이, 베이스 (202)는 접착제 예컨대 에폭시일 수 있는 열적 도전성 부분 (302)을 이용하여 절연체 부분 (204)에 결합될 수 있다. 이 변형예에서, 절연체 부분 (204)은 베이스 (202)에 인접한 제 1 부분 (304) 및 기판 (108)에 인접한 제 2 부분 (306)를 포함한다. 전극 (308)이 제 1 부분 (304)과 제 2 부분 (306)사이에 배치된다. 전압이 전극 (308)과 쌍으로된(paired) 전극 (미도시)사이에 인가된 때 양의 또는 음의 이미지 전하가 기판 (108)의 이면 (114)의 영역상에 전개될 수 있다. 이면 (114)상에 반대 이미지 전하가 인접한 쌍으로된 전극에 전개될 수 있다. 이것은 기판 (108)을 제 2 부분 (306)에 끌어당기는 필드를 생성하는 역할을 한다.
추가로 도 3b에 추가로 도시된 것처럼 제 2 부분 (306)은 제 2 부분 (306)의 평면의 표면(312)에 대하여 양각 되어진 표면 특징부들 (310)을 포함한다. 이것은 기판 (108)이 표면 특징부들 (310)에 컨택하고 가스가 정전식 클램프(200)에 제공될 때 가스가 흐를 수 있는 공동 또는 공동들 (미도시)을 생성한다.
고전압이 전극 (308)에 인가된, 필드 세기는 정전식 클램프 (200)로 향하는 가스의 가스 압력 및 공동 크기가 임의 범위들내에 이르면 이면 영역 (214)에 플라즈마를 생성하기에 충분할 수 있다는 것에 주목하여야 한다. 따라서, 다양한 실시예들에서, 정전식 클램프 (200)내에 어떤 특징부들의 크기 및 정전식 클램프 (200)로 향하는 가스 압력은 플라즈마 형성을 회피하도록 디자인된다. 이하에서 상세하게 설명되는, 특정 실시예들에서, 채널 (210)의 크기 및 가스의 압력은 크기와 압력의 곱이 파센 최소값을 만족하도록 디자인된다. 추가 실시예들에서, 이면 영역 (214)내 플라즈마 형성의 확률을 줄이기 위해 정전식 클램프에 제공되는 가스의 조성물이 조절될 수 있다.
도 4 는 평행 플레이트 시스템내 가스에 대한 압력-거리 (PD) 곱의 함수로서 항복 전압 VB을 나타내는 파센 커브 움직임을 예시하는 커브 (402)를 포함하는 그래프이다. 커브 (402)는 커브 (402)에 도시된 정성적인 움직임(qualitative behavior)에 따라 행동하는 상이한 가스들에 대한 파센 커브들의 합성을 나타낸다. 특별히, 파센 최소값 (404)에 해당하는 PD 곱의 아래 값에서, 항복 전압은 빠르게 증가하며, PD 곱의 값들을 커브 (402)에 도시된 PD 곱 값의 파센 최소값 아래로 감소하여 항복(breakdown)은 빠르게 증가하는 더 큰 전압들을 요구한다는 것을 의미한다. 많은 흔한 가스 종들, 예컨대 Ar, He, Ne, 및 N2에 대하여, 파센 최소값에서 VB의 값은 100 V과 500 V 사이의 범위에 이른다. 이들 가스 종들 중, 파센 최소값에서, 아르곤, 네온 및 헬륨은 VB가 약간 100 V 초과 내지 약간 200 V 초과를 나타내는 것으로 측정되었다. 아르곤은 또한 0.7-2 토르-cm의 범위에 PD의 최저값을 나타낸다. 정전식 클램프들에 공급 가스로서 흔한 질소는, 파센 최소값에서 1 토르-cm 범위에 PD 곱의 값을 나태내지만 200 V 내지 400 V의 범위내 파센 최소값에서 약간 더 큰 VB를 나타내는 것으로 측정되었다. 네온 및 헬륨에 대하여 파센 최소값에서 PD 곱은 개별적으로 1.5 및 2-4의 범위로 측정되었다. 그러나 네온 및 헬륨 각각은 파센 최소값에서 200 V 또는 미만 범위에 항복 전압을 나타낸다. PD 곱의 더 큰 값들에서, 항복 전압은 커브 (402)에 도시된 바와 같이 PD 곱과 선형 방식으로 증가한다.
현대 정전식 클램프들은 기판을 보유하기 위한 희망하는 클램핑 힘을 생성하기 위해 1000 V (라인 (412)에 의해 표시된) 또는 그 이상의 전압들을 인가할 수 있다. 따라서, 예제의 1000 V의 클램핑 전압을 이용하여, PD 곱의 값들의 넓은 범위에 대하여, VB의 값은 인가된 전압 아래에 있을 수 있고 이는 영역 (406)에 의해 표시된다는 것을 도 4로부터 알 수 있다. 통상-사용되는 질소 가스의 VB는, 비록 흔한 불활성 가스들보다 더 높을 수 있지만, 가스 압력 및 공동 크기가 파센 최소값에 가까운 PD곱으로 귀결될 때 정전식 클램프에 인가되는 전압에 의해 여전히 초과될 수 있다는 것은 사실이다. 추가로 현대 정전식 클램프들은 흔히 웨이퍼 이면에 인가되는 압력이 5 토르 내지 15 토르 범위에 이르는 상태들하에서 작동하도록 디자인된다는 것에 유의해야 할 것이다. 이 압력 범위는 그것이 양호한 열 전도가 정전식 클램프과 기판사이에서 달성될 수 있지만, 정전식 클램프에 인가되는 전압에 의해 발생되는 힘에 대항될 수 있는 만큼 충분히 낮은 이면 압력(backside pressure)을 제공하는 가스 압력 범위를 제공하기 때문에 편리하다. 예를 들어, 많은 정전식 클램프들은 30-200 토르 사이의 클램핑 압력을 을 전달할 수 있다.
그러나, 기판과 정전식 클램프사이의 양호한 열 전도를 위해 충분히 높은 이면 압력을 제공하는 것과 적절한 기판 클램핑을 보장하기 위해 충분히 낮은 이면 압력을 제공하는 것 사이의 이 절충은 희생을 치르게 된다. 현대 정전식 클램프들은 흔히 가스 분배 채널들을 포함하고 채널들의 크기는 정전식 클램프에 인가되는 동작 전압들 및 동작 압력들에서 플라즈마 형성에 영향을 받기 쉽다. 특별히, 채널 폭 (D)은 가스가 정전식 클램프로 전달될 때 파센 최소값에 근접한 PD 곱으로 귀결될 수 있다. 예를 들어, 채널들이 3 mm 또는 그 이상의 범위에 폭들을 갖는 것이 보통이다. 일 예로서, 만약 10 토르 압력이 정전식 클램프에 전달되고 채널 폭이 3 mm이면, PD 곱의 값은 3 토르-cm이고, 이는 Ar, Ne, 및 He과 같은 가스들에 파센 최소값 근처가 되고 영역 (406)내에 존재한다. 예를 들어 500-1500 V의 클램핑 전압이 이런 디자인 조건들하에서 동작되는 정전식 클램프에 인가될 때, 정전식 클램프내에 공동들 예컨대 채널들이 특별히 플라즈마 형성에 영향을 받기 쉬울 수 있다.
다양한 실시예들이 플라즈마 형성을 회피하기 위해 전압 신호, 가스 압력 및 채널 크기의 조합을 디자인함으로써 이 문제를 극복한다. 특별히, 이런 요인들의 조합은 PD 곱이 플라즈마 형성이 거의 없는 도 4의 영역들 (408) 또는 (410)에 속하게 할 수 있다.
도면들 5a-5e은 다양한 실시예들에 따라 정전식 클램프의 동작 동안 플라즈마 형성을 줄이는 원리들을 예시한다. 도 5a에서, 정전식 클램프를 동작시키기 위한 참조 시나리오를 도시한다. 정전식 클램프 (500)는 예시된 바와 같이 프로세싱 동안에 기판 (502)을 보유할 수 있다. 다양한 요인들에 의존하여, 정전식 클램프 (500)는 플라즈마의 형성 없이 동작될 수 있거나 또는 플라즈마 형성에 영향을 받기 쉬울 수 있다. 도 5a에 도시된 바와 같이, 가스가 정전식 클램프 (500)로 전달되고 압력 P1의 전개로 이어진다. 전압 서플라이 (504)는 전압 V1을 전극 (514)에 인가하도록 구성되고, 이는 주파수 f1에서의 AC 신호로서 인가될 수 있다. 일 예에서 f1는 25-30 Hz이다. 가스가 베이스 (506)의 가스 분배 공동 (516)에 제공될 때, 가스는 기판 (502)에 도달하기 전에 절연체 부분 (508)의 채널 (512)에 유입될 수 있다. 채널 (512)은 폭 D1에 의해 특징 되어지고, 폭의 사이즈는 도시된 바와 같이 플라즈마 (510)의 형성을 가능하게 할 수 있다. 플라즈마 (510)가 정전식 클램프 (500)의 부분들 예컨대 채널 (512)의 영역내 절연체 부분 (508)에 부딪칠 때, 재료가 제거될 수 있고 재증착 될 수 있어서 도시된 바와 같이 기판 (502)의 부분상에 오염 물질 영역 (518)을 형성한다. 오염 물질 영역 (518)내 오염 물질들은 이어서 전면 (519)으로 확산할 수 있다.
도 5b에서 플라즈마 형성을 회피하는 본 개시의 실시예들에 따른 정전식 클램프 (520)의 동작 시나리오가 도시된다. 이 실시예에서 정전식 클램프 (520)는 채널의 폭 D2가 폭 D1보다 적은 채널 (522)을 갖는 절연체 부분 (528)을 포함한다. 일부 경우들에서 폭 D2는 채널 (522)은 플라즈마 형성을 방지하기 위해 암흑 공간 차폐 원리(principle of dark space shielding)에 따라 동작하도록 디자인된다. 특별히, 소정의 가스 압력에 대하여, 플라즈마를 형성하는 공동의 크기가 어떤 사이즈 아래로 축소되면, 플라즈마의 형성은 방지될 수 있다. 일부 실시예들에서, 폭 D2는 약 0.1-0.5 mm일 수 있다.
도 5c에서 본 개시의 다른 실시예들에 따라 플라즈마 형성을 회피하는 정전식 클램프 (530)의 동작의 다른 시나리오가 도시된다. 이 실시예에서 정전식 클램프 (530)는 채널의 폭 D3가 폭 D1보다 적은 채널 (532)을 포함하는 절연체 부분 (538)을 포함한다. 폭 D3은 도 5a의 예에 반대로 파센 최소값에서 더 먼 곳에 PD 곱을 생성함으로써 채널 (532)내 플라즈마 형성이 회피되도록 디자인된다. 일부 실시예들에서, 폭 D3는 약 0.1-1.0 mm일 수 있다. 다양한 실시예들에서, 도 5c에 의해 제안된 것처럼, 채널 (512)에 반대로 더 적은 채널 (532)의 크기를 보상하기 위해 정전식 클램프 (530)에 전달되는 압력 P2는 P1보다 더 클 수 있다. 증가된 압력은 정전식 클램프 (530)과 기판 (502) 사이의 희망하는 레벨의 열 전도를 제공하도록 충분한 가스 압력이 기판 (502)에 인접하여 존재하는 것을 보장할 수 있다. 특별히 실시예들, 곱 P2D3은 P1D1보다 작아서 P2D3는 소정의 가스 (539)에 대하여 파센 최소값 보다 작다. 이 방식에서, 가스 (539)는 정전식 클램프 (530)과 기판 (502) 사이에 효율적인 열 전송을 제공할 수 있으면서 채널 (532)내 플라즈마 형성에 내성이 있다.
도 5d에서 본 개시의 다른 실시예들에 따라 플라즈마 형성을 회피하는 정전식 클램프 (500)의 동작의 다른 시나리오가 도시된다. 정전식 클램프 (500)는 다른식으로 언급된 것을 제외하고는 도 5a에 도시된 것과 동일하게 구성될 수 있다. 특별히, 이 시나리오에서 전압 서플라이 (504)는 주파수 f2에서의 AC 신호인 전압 V1을 전극 (514)에 인가하도록 구성되고, 여기서 f2 <f1 이다. 일 예에서 f1는 15 Hz 또는 그 미만의 주파수, 예컨대 10-15 Hz이다. 심지어 전압 V1이 전극 (514)에 인가된 때도, 전압 신호의 낮은 주파수 때문에 플라즈마 형성이 방지될 수 있다.
도 5e에서 본 개시의 다른 실시예들에 따라 플라즈마 형성을 회피하는 정전식 클램프 (550)의 동작의 다른 시나리오가 도시된다. 정전식 클램프 (550)는 다른식으로 언급된 것을 제외하고는 도 5a에 도시된 정전식 클램프 (500)와 동일하게 구성될 수 있다. 특별히, 정전식 클램프 (550)는 접지된 도전체가 공동 영역들내에 배치될 수 있는 절연체 부분(558)을 포함한다. 예를 들어, 도 5e에 도시된 바와 같이, 접지된 도전체 (552)가 채널 (512)내에 배치되고,채널 (512)을 포함하는 정전식 클램프 (550)의 영역들내에 전기장의 형성을 방지하는 역할을 하고, 그렇게 함으로써 가스 (509)가 채널 (512)내로 흐를 때 플라즈마 형성을 방지한다.
추가의 실시예들에서, 정전식 클램프에 공급된 가스는 질소에서 플라즈마 형성의 가능성을 줄이는 다른 가스들로 변환될 수 있다. 일 실시예에서, He 가스가 정전식 클램프에 공급된다. 비록 He은 그것의 파센 최소값에서 더 낮은 VB을 나타낼 수 있지만, He은 질소에 15 eV에 비하여 약 25 eV의 제 1 이온화 전위를 보여서 적어도 특정 조건들하에서 정전식 클램프에서 플라즈마의 형성 확률을 줄인다. 추가 실시예들에서, 정전식 클램프에 공급된 가스는 가스 종들의 혼합물을 함유할 수 있다. 예를 들어, 각각이 강한 전자 친화도를 보이는 SF6 또는 NF3와 같은 가스 종들이 혼합 종들의 가스를 생성하기 위해 N2 또는 불활성 가스에 추가될 수 있는데, SF6 또는 NF3는 형성되기 쉬울 수 있는 임의의 플라즈마의 퀀치(quench)로서 역할을 한다. 실시예들은 이 상황에 제한되지 않는다.
도 6는 본 개시의 추가 실시예들에 따른 다른 정전식 클램프(600) 부분을 도시한다. 이 실시예에서 정전식 클램프 (600)는 주입 또는 다른 기판 프로세싱 동안에 기판 (604)을 가열하도록 디자인된다. 정전식 클램프 (600)는 히터(602)를 포함하고, 일부 실시예들에서 내성이 있는(resistance) 히터일 수 있다. 히터 (602)는 베이스 (202)과 절연체 부분 (204) 사이에 내장된다. 추가로 도 6 에 도시된 것처럼, 동작 동안 베이스 (202)의 가열을 줄이기 위해 열 실드 (606)가 베이스 (202)와 히터 (602)사이에 내장될 수 있다. 히터 (602)가 동작중일 때 정전식 클램프 (600)는 특별히, 열 실드 (606) 위에 놓인 부분들은 상승된 온도로 가열될 수 있다. 절연체 부분 (204)은 전압이 전압 서플라이 (608)로부터 전극 (308)에 인가되고 가스 (미도시)가 정전식 클램프로 분배될 때 플라즈마 형성의 확률을 줄이는 역할을 하는 위에서 상술된 컴포넌트들을 포함할 수 있다. 이것은 그렇지 않으면, 정전식 클램프 (600)에 형성할 수 있는 플라즈마에 의해 발생될 수 있는 기판 (604)의 화학적 오염을 회피하는데 도움이 된다. 이런 오염은 특별히 정전식 클램프 (600)를 사용하는 주입 프로세스 또는 다른 프로세스동안에 제어하는 것이 특별히 어려운데, 상승된 온도에서는 많은 화학적 오염 물질들이 기판 (604)의 이면 (610)으로부터 활성 디바이스 층들이 존재할 수 있는 전면 영역 (612)으로 확산할 수 있기 때문이다.
추가의 실시예들에서, 통상의 정전식 클램프의 다수의 특징부들이 플라즈마 형성을 줄이기 위해 조절될 수 있다. 이들 실시예들에서, 정전식 클램프내 채널 크기, 가스 압력, 가스 종들, 또는 채널에 접지된 도전체의 추가 중 적어도 두개를 조정하는 것과 같이 통상의 정전식 클램프의 두개 이상의 특징부들이 플라즈마 형성을 방지하기 위해 조정될 수 있다. 예를 들어, 헬륨 가스가 정전식 클램프에 제공될 수 있고, 파센 최소값은 2 토르-cm의 영역에 존재한다. 절연체 부분내 채널 크기, 예컨대 채널 높이 또는 채널 폭은 0.1 mm까지 축소될 수 있고, 반면에 압력은 75 토르로 조정된다. 이 조합은 0.75의 PD 곱으로 귀결되고, 이는 헬륨에 대하여 파센 최소값의 훨씬 아래 영역이어서, 항복 및 플라즈마 형성이 발생할 가능성이 없게 한다.
또한 추가 실시예들에서, 정전식 클램프는 플라즈마 형성을 방지하기 위해 낮은 2차 전자 방출 재료를 갖는 코팅을 포함하는 공동을 포함할 수 있다. 이런 코팅을 위한 적절한 재료들은 탄소, 탄소 나이트라이드, 및 티타늄 나이트라이드를 포함한다. 실시예들은 이 상황에 제한되지 않는다.
본 발명은 본 명세서에 기술된 특정 실시예에 의해 그 범위가 제한되지 않는다. 오히려, 본 명세서에 기술된 이러한 실시예들에 더하여, 본 발명의 다른 다양한 실시예들 및 이에 대한 변형들이 당업자들에게 전술한 설명 및 첨부된 도면들로부터 명백해질 것이다. 그러므로, 그러한 다른 실시예들 및 변경들은 본 발명의 개시된 범위 내에 들어가도록 의도된다. 또한, 본 발명이 본 명세서에서 특정 목적을 위한 특정 환경에서의 특정 구현의 맥락에서 기술되었으나, 당업자들은 본 발명의 유용성이 그에 한정되지 한고, 본 발명이 임의의 수의 목적들을 위한 임의의 수의 환경들 내에서 유익하게 구현될 수 있다는 것을 인식할 것이다. 따라서, 이하에 개시되는 청구항들은 본 출원에서 설명되는 본 발명의 전체 효과와 취지에서 해석되어야 한다.
Claims (15)
- 기판을 지지하기 위한 장치에 있어서,
베이스(base);
상기 베이스에 인접하고 상기 기판의 표면을 지지하도록 구성된 절연체 부분(insulator portion), 및
상기 기판에 클램핑 전압을 인가하는 전극 시스템;을 포함하되,
상기 절연체 부분은 적어도 하나의 채널을 통하여 상기 기판에 가스를 제공하도록 구성되고, 상기 적어도 하나의 채널은 임의의 채널 폭을 갖고, 상기 가스의 가스 압력 및 상기 채널 폭의 곱은 상기 가스에 대한 파센 최소값(Paschen minimum)보다 작고, 상기 채널은 전기적으로 접지된 전기적으로 도전성 채널 코팅을 포함하고, 상기 가스의 항복 전압은 상기 클램핑 전압보다 더 큰, 장치. - 청구항 1에 있어서, 상기 전극 시스템에 AC 전압을 인가하도록 구성된 전압 서플라이(voltage supply)를 더 포함하고, 상기 AC 전압의 주파수는 15 Hz 또는 그 미만인, 장치.
- 청구항 1에 있어서, 상기 채널 폭은 0.1 mm 내지 1 mm인, 장치.
- 청구항 1에 있어서, 상기 가스 압력은 50 토르 내지 100 토르인, 장치.
- 삭제
- 청구항 1에 있어서, 상기 적어도 하나의 채널은 탄소, 탄소 나이트라이드, 또는 티타늄 나이트라이드를 포함하는, 장치.
- 청구항 1에 있어서, 상기 가스는 헬륨을 포함하는, 장치.
- 청구항 1에 있어서, 상기 가스는 NF3 또는 SF6을 포함하는, 장치.
- 삭제
- 삭제
- 청구항 1에 있어서, 상기 베이스로 상기 가스를 공급하는 가스 공급 시스템을 더 포함하고, 상기 베이스는 상기 적어도 하나의 채널로 상기 가스를 분배하는 가스 분배 공동을 포함하는, 장치.
- 정전식 클램프를 동작시키는 방법에 있어서,
임의의 채널 폭을 갖는 상기 정전식 클램프의 절연체 부분의 적어도 하나의 채널을 배열하는 단계;
상기 정전식 클램프의 전극에 클램핑 전압을 인가하는 단계; 및
상기 적어도 하나의 채널을 통하여 임의의 가스 압력에서 상기 정전식 클램프로 가스를 전달하는 단계를 포함하되, 상기 가스 압력 및 상기 채널 폭의 곱은 상기 가스에 대한 파센 최소값(Paschen minimum)보다 작고, 상기 채널은 전기적으로 접지된 전기적으로 도전성 채널 코팅을 포함하고, 상기 가스의 항복 전압은 상기 클램핑 전압보다 더 큰, 방법. - 청구항 12에 있어서, 상기 클램핑 전압은 주파수 15 Hz 또는 그 미만을 갖는 AC전압으로 인가되는, 방법.
- 청구항 12에 있어서, 상기 채널 폭은 0.1 mm 내지 1 mm인, 방법.
- 청구항 12에 있어서, 상기 가스 압력은 50 토르 내지 100 토르인, 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/179,030 | 2014-02-12 | ||
US14/179,030 US20150228524A1 (en) | 2014-02-12 | 2014-02-12 | Plasma resistant electrostatic clamp |
PCT/US2015/014351 WO2015123059A1 (en) | 2014-02-12 | 2015-02-04 | Plasma resistant electrostatic clamp |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160119228A KR20160119228A (ko) | 2016-10-12 |
KR102353090B1 true KR102353090B1 (ko) | 2022-01-19 |
Family
ID=53775560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167025093A KR102353090B1 (ko) | 2014-02-12 | 2015-02-04 | 기판을 지지하기 위한 장치 및 정전식 클램프를 동작시키는 방법 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20150228524A1 (ko) |
KR (1) | KR102353090B1 (ko) |
CN (1) | CN105993070B (ko) |
TW (1) | TWI645499B (ko) |
WO (1) | WO2015123059A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7370259B2 (ja) * | 2020-01-27 | 2023-10-27 | 東京エレクトロン株式会社 | 基板処理装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5880924A (en) | 1997-12-01 | 1999-03-09 | Applied Materials, Inc. | Electrostatic chuck capable of rapidly dechucking a substrate |
KR100291648B1 (ko) * | 1992-01-21 | 2001-06-01 | 조셉 제이. 스위니 | 분리된 정전척 및 여기방법 |
US6628500B1 (en) | 1998-06-16 | 2003-09-30 | Surface Technology Systems Plc | Method and apparatus for dechucking a substrate from an electrostatic chuck |
JP2006344766A (ja) * | 2005-06-09 | 2006-12-21 | Matsushita Electric Ind Co Ltd | プラズマ処理装置 |
US20130021717A1 (en) | 2011-07-19 | 2013-01-24 | Lam Research Corporation | Electrostatic chuck with wafer backside plasma assisted dechuck |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5103367A (en) * | 1987-05-06 | 1992-04-07 | Unisearch Limited | Electrostatic chuck using A.C. field excitation |
DE4301189C2 (de) * | 1993-01-19 | 2000-12-14 | Leybold Ag | Vorrichtung zum Beschichten von Substraten |
US6320736B1 (en) * | 1999-05-17 | 2001-11-20 | Applied Materials, Inc. | Chuck having pressurized zones of heat transfer gas |
JP4115155B2 (ja) * | 2002-04-11 | 2008-07-09 | 東京エレクトロン株式会社 | プラズマ処理装置の真空処理室内部品の帯電抑制方法 |
JP4141234B2 (ja) * | 2002-11-13 | 2008-08-27 | キヤノンアネルバ株式会社 | プラズマ処理装置 |
-
2014
- 2014-02-12 US US14/179,030 patent/US20150228524A1/en not_active Abandoned
-
2015
- 2015-02-02 TW TW104103358A patent/TWI645499B/zh active
- 2015-02-04 KR KR1020167025093A patent/KR102353090B1/ko active IP Right Grant
- 2015-02-04 CN CN201580008408.6A patent/CN105993070B/zh active Active
- 2015-02-04 WO PCT/US2015/014351 patent/WO2015123059A1/en active Application Filing
-
2019
- 2019-04-29 US US16/397,324 patent/US20190252230A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100291648B1 (ko) * | 1992-01-21 | 2001-06-01 | 조셉 제이. 스위니 | 분리된 정전척 및 여기방법 |
US5880924A (en) | 1997-12-01 | 1999-03-09 | Applied Materials, Inc. | Electrostatic chuck capable of rapidly dechucking a substrate |
US6628500B1 (en) | 1998-06-16 | 2003-09-30 | Surface Technology Systems Plc | Method and apparatus for dechucking a substrate from an electrostatic chuck |
JP2006344766A (ja) * | 2005-06-09 | 2006-12-21 | Matsushita Electric Ind Co Ltd | プラズマ処理装置 |
US20130021717A1 (en) | 2011-07-19 | 2013-01-24 | Lam Research Corporation | Electrostatic chuck with wafer backside plasma assisted dechuck |
Also Published As
Publication number | Publication date |
---|---|
CN105993070A (zh) | 2016-10-05 |
TWI645499B (zh) | 2018-12-21 |
CN105993070B (zh) | 2021-01-22 |
US20150228524A1 (en) | 2015-08-13 |
KR20160119228A (ko) | 2016-10-12 |
US20190252230A1 (en) | 2019-08-15 |
WO2015123059A1 (en) | 2015-08-20 |
TW201532184A (zh) | 2015-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7988814B2 (en) | Plasma processing apparatus, plasma processing method, focus ring, and focus ring component | |
JP6173313B2 (ja) | ウエハ背面のプラズマ支援デチャックを備えた静電チャック | |
KR102594473B1 (ko) | 내장형 rf 차폐부를 갖는 반도체 기판 지지부들 | |
JP7098273B2 (ja) | ユニバーサルプロセスキット | |
US20080180357A1 (en) | Plasma processing apparatus | |
KR20170024613A (ko) | 분리가능한 고 저항률 가스 분배 플레이트를 갖는 샤워헤드 | |
KR102069773B1 (ko) | 피처리체의 처리 장치 및 피처리체의 재치대 | |
JP2019500751A (ja) | 静電チャック機構および半導体処理装置 | |
JP2018006299A (ja) | プラズマ処理装置用処理対象支持台、プラズマ処理装置及びプラズマ処理方法 | |
US8681472B2 (en) | Platen ground pin for connecting substrate to ground | |
JP2012186497A (ja) | 電極アッセンブリ | |
TW201320235A (zh) | 靜電夾盤 | |
KR20080044169A (ko) | 반경 방향 플라즈마 분포에 대한 개선된 자기 제어를 위한플라즈마 제한 배플 및 유동비 이퀄라이저 | |
JP2004165460A (ja) | プラズマ処理装置 | |
KR20080021026A (ko) | 조정가능 전극 면적비를 갖는 제한된 플라즈마 | |
CN108649012B (zh) | 新型陶瓷塞及具有该新型陶瓷塞的静电卡盘装置 | |
JP2011525304A5 (ko) | ||
US20230298922A1 (en) | Electrostatic chuck design with improved chucking and arcing performance | |
JP2020521269A (ja) | 電極フィラメントを有するプラズマ反応器 | |
KR20220056869A (ko) | 기판을 프로세싱하기 위한 방법들 및 장치 | |
JP4993694B2 (ja) | プラズマcvd装置、薄膜形成方法 | |
US10672605B2 (en) | Film forming method | |
KR102353090B1 (ko) | 기판을 지지하기 위한 장치 및 정전식 클램프를 동작시키는 방법 | |
JP4677474B2 (ja) | プラズマ処理装置用基板ホルダーにおける特性補正リングの温度制御方法及びプラズマ処理装置用基板ホルダー | |
US10392703B2 (en) | Plasma CVD apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |